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Abstract

We enumerate factorisations of the complete graph into spanning regular graphs

in several cases, including when the degrees of all the factors except for one or two

are small. The resulting asymptotic behaviour is seen to generalise the number of

regular graphs in a simple way. This leads us to conjecture a general formula when

the number of factors is vanishing compared to the number of vertices.

1 Introduction

A classical problem in enumerative graph theory is the asymptotic number of regular

graphs. This has now been solved by the overlap of three papers [4, 6, 7], with the inter-

esting conclusion that the same formula holds in the sparse and dense regimes.

Theorem 1.1. Let Rd(n) be the number of regular graphs of degree d and order n, where

1 ≤ d ≤ n− 2. Define λ = d/(n− 1). Then, as n→∞,

Rd(n) ∼
(
λλ(1− λ)1−λ

)(n
2)
(
n− 1

d

)n
e1/2 21/2.

In the above, and throughout the paper, we tacitly assume that regular graphs have

even degree whenever the number of vertices is odd.

We can consider Rd(n) to count the number partitions of the edges of Kn into two

spanning regular subgraphs, one of degree d and one of degree n − d − 1. This suggests
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a generalization: how many ways are there to partition the edges of Kn into more than

two spanning regular subgraphs, of specified degrees?

For integers d0, d1, . . . , dk ≥ 1 such that
∑k

i=0 di = n − 1, define R(n; d0, . . . , dk) to

be the number of ways to partition the edges of Kn into spanning regular subgraphs of

degree d0, d1, . . . , dk? We conjecture that for k = o(n), the asymptotic answer is a simple

generalisation of Theorem 1.1.

Conjecture 1.2. Define λi = di/(n−1) for 0 ≤ i ≤ k. If k = o(n), then R(n; d0, . . . , dk) ∼
R′(n; d0, . . . , dk), where

R′(n; d0, . . . , dk) =

( k∏
i=0

λλii

)(n
2)( n− 1

d0, . . . , dk

)n
ek/4 2k/2,

using a multinomial coefficient.

We will prove the conjecture in four cases.

1. k = 1 and 1 ≤ d1 ≤ n− 2.

2.
∑k

i=1 di = o(n1/3) and
∑

1≤i≤j<t≤k didjd
2
t = o(n).

3. k = o(n5/6) and d1 = · · · = dk = 1.

4. min{d1, n − 1 − d1} ≥ cn/ log n for some constant c > 2
3

and
∑k

i=2 di = O(nε) for

sufficiently small ε > 0.

Case 1 is just a restatement of Theorem 1.1, since Rd(n) = R(n;n−1−d, d). Case 2

will follow from a switching argument applied to the probability of two randomly labelled

regular graphs being edge-disjoint. Case 3 is a consequence of [8]. Case 4 will follow from

a combination of [5], [7] and Part 1. Case 2 with k = 2, d1 = 2 and d2 = O(1) appears

in [10].

2 Two regular graphs

We begin by considering the case of two arbitrary regular graphs which are randomly

labelled. What is the probability of them being edge-disjoint?

Lemma 2.1. Let D and H be regular graphs on n vertices, where D is d-regular for d ≥ 1

and H is h-regular for h ≥ 1. Suppose d2h2 = o(n) and define M = dmax{8dh, log n}e,
Then, with probability 1−O(d

2h2

n
), a random relabeling of the vertices of H does not have

any common path of length 2 with D and the number of common edges with D is less

than M .
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Proof. The probability that a given path of length 2 of H is mapped to a path of length 2

of D is
2n(d

2)(n−3)!
n!

and the number of paths of length 2 of H is n
(
h
2

)
. So the expected

number of paths of length 2 which are mapped to a path of length 2 is at most

2n2
(
d
2

)(
h
2

)
(n− 3)!

n!
= O

(d2h2
n

)
.

So with probability 1 − O(d
2h2

n
), a random relabeling of the vertices of H does not have

any common path of length 2 with D.

Considering a given set S of M edges of H, the probability that a random relabeling

of the vertices of H maps S to M distinct edges of D is(
nd/2
M

)
M ! 2M(n− 2M)!

n!

Since there are
(
nh/2
M

)
sets of M different edges of H, the expected number of such rela-

beling is at most

E =

(
nh/2
M

)(
nd/2
M

)
M ! 2M(n− 2M)!

n!
≤ n2MeMdMhM

2MMM(n− 2M)2M
.

For big enough n, n2

(n−2M)2
≤ 2. Hence, the expected number of such relabeling is at

most O(( edh
M

)M). Since M ≥ 8dh ≥ e2dh and M ≥ log n, ( edh
M

)M ≤ e−M ≤ n−1. This is

dominated by the term d2h2

n
from the first part of the proof, so with probability 1−O(d

2h2

n
)

a random relabeling of the vertices of H does not have any common path of length 2 with

D and the number of common edges with D is less than M .

Let L(t) be the set of all relabeling of the vertices of H with no common paths of

length 2 with D and exactly t common distinct edges with D. Define L(t) = |L(t)|, so in

particular the number of relabeling of the vertices of H with no common edges with D is

L(0). Let

T =
M−1∑
t=0

L(t)

In the next step we estimate the value of T/L(0) by the switching method.

3 The switching

A forward switching is a permutation (a e)(b f) of the vertices of H such that

• vertices a, e, b, f are all distinct.

• ab is a common edge of D and H,
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• ef is non-edge of D, and

• after the permutation, the common edges of D and H are the same except that ab

is no longer a common edge.

A reverse switching is a permutation (a e)(b f) of the vertices of H such that

• vertices a, e, b, f are all distinct.

• ab is an edge of H that is not an edge of D,

• ef is an edge of D that is not an edge of H, and

• after the permutation, the common edges of D and H are the same except that ef

is a common edge of D and H.

Lemma 3.1. Assume d, h ≥ 1, d2h2 = o(n), and define md = nd
2

and mh = nh
2

. Then for

1 ≤ t ≤M and n→∞ we have uniformly

L(t)

L(t− 1)
=

(md − (t− 1))(mh − (t− 1))

t
(
n
2

) (
1 +O

(dh
n

))
.

Proof. By using a forward switching, we will convert a relabeling π ∈ L(t) to a relabeling

π′ ∈ L(t − 1). Without lose of generality, we suppose that π = (1), since our estimates

will be independent of the structure of H other than its degree.

There are t choices for edge ab and at most 2(
(
n
2

)
−md) = 2

(
n
2

)
(1 + O(d/n)) choices

for e and f . But some of the choices of e and f are not suitable. There are at most 4n

choices of e and f such that a, e, b, f are not all distinct.

Since D and H have no paths of length 2 in common, there are no other common

edges of H and D incident to a or b. If neither e nor f are an end vertex of a common

edge, then no common edge is destroyed. Therefore, there are at most 4tn pairs {e, f}
that can destroy a common edge.

If none of the following happens, no new common edge is created by the forward

switching:

• vertex e has a neighbor in H which is a neighbor of a in D.

• vertex e has a neighbor in D which is a neighbor of a in H.

• vertex f has a neighbor in H which is a neighbor of b in D.

• vertex f has a neighbor in D which is a neighbor of b in H.

So, there are at most 4dh vertices which do not satisfy one of the above conditions.

So there are at most 4dh(n− 2(t− 1)) unsuitable couples which can produces some new

common edges. Therefore the number of forward switchings is

WF = t

(
n

2

)(
1 +O

(dh
n

))
.
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A reverse switching converts a relabeling π′ ∈ L(t−1) to a relabeling π in L(t). Again,

without loss of generality, we can suppose that π′ = (1). There are (mh − t + 1) choices

for edge ab and there is at most 2(md− t+1) choices for e and f . But some of the choices

of e and f are not suitable.

There are at most 4n choices of e and f such that a, e, b, f are not all distinct. If

neither e nor f are an end vertex of a common edge, then no common edge is destroyed

and also no common edge except ef has an end vertex in e or f . So, there are at most

2td unsuitable choices for e and f that may can destroy a common edge or construct a

common path of length 2.

If none of the following happens, no other new common edge obtains after doing the

reverse switching:

• vertex e has a neighbor in H which is a neighbor of a in D.

• vertex e has a neighbor in D which is a neighbor of a in H.

• vertex f has a neighbor in H which is a neighbor of b in D.

• vertex f has a neighbor in D which is a neighbor of b in H.

So, there are at most 4dh vertices which does not satisfy one of the above conditions.

So there are at most 4d2h unsuitable couples which can produces some other new common

edges.

Therefore the number of reverse switchings is

WR =
(
md − t+ 1

)(
mh − t+ 1

)(
1 +O

(dh
n

))
.

By considering the number of forward switchings and the number of reverse switchings,

we have
L(t)

L(t− 1)
=

(md − t+ 1)(mh − t+ 1)

t
(
n
2

) (
1 +O

(dh
n

))
.

We will need the following summation lemma from [9, Cor. 4.5].

Lemma 3.2. Let Z ≥ 2 be an integer and, for 1 ≤ i ≤ Z, let real numbers A(i),

B(i) be given such that A(i) ≥ 0 and 1 − (i − 1)B(i) ≥ 0. Define A1 = minZi=1A(i),

A2 = maxZi=1A(i), C1 = minZi=1A(i)B(i) and C2 = maxZi=1A(i)B(i). Suppose that there

exists ĉ with 0 < ĉ < 1
3

such that max{A/Z, |C|} ≤ ĉ for all A ∈ [A1, A2], C ∈ [C1, C2].

Define n0, . . . , nZ by n0 = 1 and

ni/ni−1 = 1
i
A(i)(1− (i− 1)B(i))

for 1 ≤ i ≤ Z, with the following interpretation: if A(i) = 0 or 1− (i− 1)B(i) = 0, then

nj = 0 for i ≤ j ≤ Z. Then

Σ1 ≤
Z∑
i=0

ni ≤ Σ2,
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where

Σ1 = exp
(
A1 − 1

2
A1C2)− (2eĉ

)Z
and

Σ2 = exp
(
A2 − 1

2
A2C1 + 1

2
A2C

2
1

)
+ (2eĉ)Z .

Lemma 3.3. Let d, h ≥ 1 and d2h2 = o(n). Then, as n→∞,

T

L(0)
= exp

(
1
2
dh+O

(d2h2
n

))
.

Proof. The condition d2h2 = o(n) and the definition of M allow us to write Lemma 3.1

as

L(t)

L(t− 1)
=
dh

2t

(
1− (t− 1)

2(d+ h)

dhn

)(
1 +O

(dh
n

))
,

where the implicit constant in the O( ) depends on t but is uniformly bounded for 1 ≤
t ≤M . For 0 ≤ t ≤M , define

A(t) = 1
2
dh
(

1 +O
(dh
n

))
B(t) =

2(d+ h)

dhn
,

Then A(t) ≥ 0 and 1 − (t − 1)B(t) ≥ 0 as n → ∞. Define A1, A2, C1 and C2 as in

Lemma 3.2. This gives

A1, A2 = 1
2
dh
(

1 +O
(dh
n

))
= O(dh),

C1, C2 = O
(d+ h

n

)
.

The condition max{A/M, |C|} ≤ ĉ of Lemma 3.2 is satisfied with ĉ = 1
15

, due to

d2h2 = o(n) and the definition of M . We also have

A1C2, A2C1, A2C
2
1 = O

(dh(d+ h)

n

)
and (2eĉ)M ≤ nlog(2e/15) = o(n−1). Therefore, by Lemma 3.2,

T

L(0)
= exp

(
1
2
dh+O

(d2h2
n

))
.

Theorem 3.4. Let D and H be regular graphs on n vertices, where D is d-regular for

d ≥ 1 and H is h-regular for h ≥ 1. Suppose d2h2 = o(n) as n→∞. Then the probability

that a random relabelling of H is edge-disjoint from D is

exp
(
−1

2
dh+O

(d2h2
n

))
.
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Proof. The probability that there are no common paths of length two and less than M

common edges is 1−O(d2h2/n) by Lemma 2.1. Subject to those conditions, the probability

of no common edge is

exp
(
−1

2
dh+O

(d2h2
n

))
,

by Lemma 3.3. Multiplying these probabilities together gives the theorem.

Since the formula in Theorem 3.4 does not depend on the structure of D or H, the

same formula holds if one or both H and D are random regular graphs with the given

degrees.

Corollary 3.5. Let D1, D2, . . . , Dk be regular graphs on n vertices, with degrees d1, . . . , dk,

respectively. Assume di ≥ 1, i = 1, . . . , k and
∑

1≤i≤j<t≤k didjd
2
t = o(n) as n→∞. Then

the probability that D1, D2, . . . , Dk are edge-disjoint after random relabelling is

exp
(
−1

2

∑
1≤i<j≤k

didj +O
(∑

1≤i≤j<t≤k didjd
2
t

n

))
.

Proof. First compute the probability that a random relabeling of D2 has no common

edges with D1. Then, let D1 +D2 be the d1 +d2-regular graph obtained from merging D1

and D2 and compute the probability that a random relabeling of D3 has no common edges

with D1 +D2. We continue doing these computations inductively. The corollary obtained

by applying Theorem 3.4 repeatedly. It can be shown that this form of the error term is

the best that follows from Theorem 3.4 and that it is minimized when d1 ≥ · · · ≥ dk.

Now we can prove our first new case of Conjecture 1.2.

Theorem 3.6. Let d0, d1, . . . , dk ≥ 1 be integers such that
∑n

j=0 dj = n − 1. Define

d =
∑k

i=1 di and suppose that
∑

1≤i≤j<t≤k didjd
2
t = o(n) and d3 = o(n) as n→∞. Define

λj =
dj
n−1 for each j. Then

R(n; d0, . . . , dk) = R′(n; d0, . . . , dk)
(

1 +O
(d3
n

+
1

n

∑
1≤i≤j<t≤k

didjd
2
t

))
,

where R′(n; d0, . . . , dk) is defined in Conjecture 1.2.

Proof. We can construct all such factorisations by choosing edge-disjoint regular graphs

D1, . . . , Dk of degrees d1, . . . , dk.

In the case of k = 1, we are counting regular graphs, and it was shown in [7] that

Rdi(n) = R′(n;n−1−di, di)
(
1 +O(d2i /n)

)
, (3.1)
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provided the error term is o(1). Now we can write

R(n; d0, . . . , dk) = P (n; d1, . . . , dk)
k∏
i=1

Rdi(n),

where P (n; d1, . . . , dk) is the expression in Corollary 3.5. Using (1 − x) log(1 − x) =

−x+ 1
2
x2 +O(x3) we have

log

∏k
i=1

(
λλii (1− λi)1−λi

)(
1−

∑k
i=1 λi

)1−∑k
i=1 λi

∏k
i=1 λ

λi
i

= −
∑

1≤i<j≤k

λiλj +O(d3/n3)

= − 1

n(n− 1)

∑
1≤i<j≤k

didj +O(d3/n3).

For 1 ≤ x = o(n1/2) we have
∑x−1

i=0 log(1− i/(n− 1)) = −x(x− 1)/(2n) +O(x3/n2), so

log

(
n−1

d0,...,dk

)∏k
i=1

(
n−1
di

) =
1

n

∑
1≤i<j≤k

didj +O(d3/n2).

Putting the parts together with (3.1) completes the proof.

Conjecture 1.2 proposes that R′(n; d0, d1, . . . , dn) matches R′(n; d0, d1, . . . , dn) over a

much wider domain than we can proved. One case we can test using earlier work concerns

partial 1-factorisations of Kn. Let F (n, k) be the number of sequences of k disjoint perfect

matchings in Kn. Note that F (n, n − 2) = F (n, n − 1); we will use only F (n, n − 2). In

our notation, F (n, k) = R(n;n−k−1, 1, . . . , 1), where there are k explicit ones. In [8],

McLeod found the asymptotic value of F (n, k) for k = o(n5/6), namely,

F (n, k) ∼
( n!

2n/2(n/2)!

)k( n!

nk(n− k)!

)n/2(
1− k

n

)n/4
ek/4.

The reader can check that this expression is equal toR′(n;n−1−k, 1, . . . , 1) asymptotically

when k = o(n6/7).

To illustrate what happens when k is even larger, Figure 1 shows the ratio

F (n, k)/R′(n;n−1−k, 1, . . . , 1)

for the largest sizes for which F (n, k) is known exactly [1, 3]. Experiment suggests that

F (n, x(n− 2))/R′(n;n−1−x(n− 2), 1, . . . , 1) converges to a continuous function f(x) as

n → ∞ with x fixed. Conjecture 1.2 in this cases corresponds to f(0) = 1. At the

other end, x = 1 corresponding to complete 1-factorisations, we can also check the 3-digit

estimates of F (n, n−2) in [1] for n = 16, 18—they give ratios 0.844 and 0.845, respectively.

Another case that we can solve is when there are two components of high degree and

some number of low degree. In [5], the second author considered the case when k = 2,

min{d1, n− 1− d1} ≥ cn/ log n for some c > 2
3
, and d2 = o(nε) for some sufficiently small

8



Figure 1: Partial 1-factorisations. F (n, k)/R′(n;n−1−k, 1, . . . , 1) for n = 12 (circles) and

n = 14 (diamonds). The horizontal scale is x = k/(n− 2) and the curve is e−x/6.

ε > 0. In this case, the probability that a random d1-regular graph and an arbitrary

d2-regular graph are edge-disjoint is asymptotic to

(1− λ1)d2n/2 exp
(
−λ1d2(d2 − 2)

4(1− λ1)

)
. (3.2)

Note that this is not uniform over d1-regular graphs, but an average over them. However,

within the error term it is uniform over d2-regular graphs and that is enough.

Theorem 3.7. Let d1, d2, . . . , dk ≥ 1 be such that min{d1, n−1−d1} ≥ cn/ log n for some

c > 2
3

and d2 + · · · + dk = O(nε) for sufficiently small ε > 0. Let d0 = n − 1 −
∑k

i=1 di.

Then, as n→∞,

R(n; d0, . . . , dk) ∼ R′(n; d0, . . . , dk).

Proof. Let d̂ =
∑k

i=2 di. By Theorem 3.6, the number of d̂-regular graphs partitioned

into d2, . . . , dk-regular graphs is asymptotic to R′(n;n−1−d̂, d2, . . . , dk). By (3.1), the

number of d1-regular graphs is asymptotic to R′(n;n−1−d1, d1). The probability of these

two graphs being edge disjoint when the d1-regular graph is chosen randomly is given

by (3.2) (with d̂ in place of d2). The product of these three quantities is asymptotic to

R′(n;n−1−d1−d̂, d1, . . . , dk).
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4 Concluding remarks

We have proposed an asymptotic formula for the number of ways to partition a complete

graph into spanning regular subgraphs and proved it in several cases. The analytic method

described in [2] will be sufficient to test the conjecture when there are many factors of

high degree. That will be the topic of a future paper.

References

[1] J. H. Dinitz, D. K. Garnick and B. D. McKay, There are 526,915,620 nonisomorphic

one-factorizations of K12 J. Combin. Designs, 2 (1994) 273–285.

[2] M. Isaev and B. D. McKay, Complex martingales and asymptotic enumeration, Ran-

dom Structures Algorithms, 52 (2018) 617–661.
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