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Abstract. The gerrymander sequence, gL, given as A348456 in the OEIS, counts

the number of ways to dissect a 2L × 2L chessboard into two polyominoes of equal

area. Recently Kauers, Koutschan and Spahn announced a significant increase in the

length of this sequence from 3 to 7 terms. We give a further extension to 11 terms,

but more significantly prove that the coefficients grow as λ4L2

, where λ ≈ 1.7445498,

and is equal to the corresponding quantity for self-avoiding walks crossing a square

(WCAS), or self-avoiding polygons crossing a square (PCAS). These are, respectively,

OEIS sequences A007764 and A333323. Thus we have established a close connection

between these previously separate problems.

We have also related the sub-dominant behaviour to that of WCAS and PCAS,

allowing us to conjecture that the coefficients of the gerrymander sequence grow as

gL ∼ λ4L2+2dL+e · (2L)h, where d = −4.04354 ± 0.0001, e ≈ 8 and h = 0.75 ± 0.01,

with h almost certainly 3/4 exactly.

We have also generated 26 terms of the related OEIS sequence A068416, which

counts the number of ways to partition a L×L square into two connected components

(not necessarily of equal area). We have thus been able to predict the asymptotic

behaviour of this sequence with a satisfying degree of precision. Indeed, it behaves

exactly as L times the corresponding coefficient of the generalised gerrymander

sequence (defined below).

The improved algorithm we give for counting these sequences is a variation of that

which we recently developed for extending a number of sequences for SAWs and SAPs

crossing a domain of the square or hexagonal lattices. It makes use of a minimal perfect

hash function and in-place memory updating of the arrays for the counts of the number

of paths.
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1. Introduction

The gerrymander sequence, gL, counts the number of ways to dissect a 2L × 2L

chessboard into two polyominoes, each of area 2L2. Until very recently only the first

three terms of this sequence were known. Following a challenge from Neil Sloane the

sequence was extended by Kauers, Koutschan and Spahn from 3 terms to 7 terms [1].

In this paper (among other calculations) we further extend the gerrymander sequence

to 11 terms.

Our approach is slightly more general. Divide an L× L square into two connected

regions but not necessarily of equal area. We refer to these as generalised

gerrymander configurations. Let gL,k be the number of such configurations with one

region having area k (the other having area L2 − k). Note that any configuration is

counted twice, once for the region of area k and once for the region of area L2 − k.

Then, clearly gL,k is symmetric, so that gL,k = gL,L2−k.

Set i = ⌊L2/2⌋. We then define the generalised gerrymander sequence as ĝL = gL,i.

For L even ĝL is twice the gerrymander sequence coefficient, while for L odd, it is one

of the two (equal) terms on either side of the half area mark. The sequence gL,k is

by definition symmetric and by observation unimodal so ĝL is the largest term in the

sequence‡.

It should be noted that in any generalised gerrymander configuration one (or

both) regions has to be a self-avoiding polygon (SAP). This is the key to our efficient

enumeration of gerrymanders.

In Figure 1 we display examples of the four distinct cases one has to consider, noting

that the grey region is a SAP. Given the constraint of only two connected regions, it

follows that the grey region can be chosen so that it contains either zero, one, or two

corners of the square.

If the grey region contains none of the corners then it is either a SAP not touching

any of the sides or it is a SAP touching one and only one side of the square. In the first

case, shown in panel 4 of Figure 1, all cells on the border belongs to the white region.

In the second case the part of the SAP along the side must consist of contiguous cells as

illustrated in panel 3 of Figure 1. All cells on the remaining sides of the square belongs

to the white region.

If the grey region contains one corner then the cells along the two sides next to

this corner must be contiguous as shown in panel 2 of Figure 1. All cells along the two

remaining sides (top row and right-most column in our example) belongs to the white

region. Finally when the grey region contains two corners these must lie on the same

side of the square (see panel 1 of Figure 1). All cells on the remaining side (top row in

our example) belong to the white region.

By symmetry, configurations shown in panel 1 must be counted twice since the

‡ We cannot prove unimodality, which is not surprising, as it took 150 years to prove unimodality [2]

for the much simpler subset of generalised gerrymander configurations in which only steps to the north

and east are taken. The area under such a path is given by the q-binomial coefficients.
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Figure 1: The four cases of self-avoiding polygons (grey regions) resulting in

gerrymander configurations.

SAP could include the bottom or left side of the square, those in panels 2 and 3 must

be counted four times and those in panel 4 must be counted only once. To count

generalised gerrymander configurations we therefore need to count SAPs by area (with

some constraints which we will detail further in Section 3).

We define an area generating function (or gerrymander polynomial)

GL(q) =
L2

−1∑

k=1

gL,kq
k (1)

GL(q) counts all generalised gerrymander configurations and is a symmetric polynomial.

GL(1)/2 is the number of ways to partition the square into two connected regions. We

calculated GL(q) up to L = 22, and we extended this up to L = 26 for the special case

of GL(1)/2. The first 6 terms of GL(1)/2 were obtained by RH Hardin and extended to

14 terms by A Howroyd, see OEIS sequence A068416.

A n-step self-avoiding walk (SAW) ω on a regular lattice is a sequence of distinct

vertices, ω0, ω1, . . . , ωn, such that each vertex is a nearest neighbour of its predecessor.

SAWs are considered distinct up to translations of the starting point ω0. If ω0 and ωn

are nearest-neighbours we can form a closed (n + 1)-step self-avoiding polygon (SAP)

by adding an edge between the two end-points.

We recently studied SAWs on an L×L square lattice, with the walks starting at the

south-west corner (0, 0) and finishing at the north-east corner (L, L), and constrained

within the square (see the first diagram in Figure 2), and refer to these as WCAS [3].

Consider the generating function CL(x) =
∑

n cL,nx
n, where cL,n denotes the number of

WCAS of length n on a L× L square.

The existence of the limit

lim
L→∞

CL(1)
1/L2

= λ (2)

was proved in both [4] and [5] by different methods, and has recently been given a

third proof [6]. In our recent work [3] we estimated λ = 1.7445498 ± 0.0000012. We

also estimated the sub-dominant terms by finding compelling numerical evidence for

the asymptotic behaviour

CL(1) ∼ λL2+bL+c · Lg, (3)
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where b = −0.04354±0.0001, c = 0.5624±0.0005, and g = 0.000±0.005, from which we

conjectured that g = 0, exactly. This conjectured asymptotic form has received support

by a very recent result of Whittington [6] who has proved that CL(1) = λL2+O(L), a

significant improvement on the previous result CL(1) = λL2+o(L2).

For SAPs crossing a square (PCAS) our analysis clearly demonstrated that the

growth constant is the same as for WCAS. We prove this result in Section 2. We

also conjectured that the subdominant term λb is the same as for WCAS, estimated

c ≈ −1.197, and that the corresponding exponent g = −1
2
.

In Section 2 we prove that the growth constant for the generalised gerrymander

sequence equals the growth constant for WCAS. We use the data generated in this

study to estimate the sub-dominant behaviour, and find that ĝL ∼ λL2+dL+e ·Lh, where

d = −4.04354 ± 0.0001, e ≈ 8 and h = 0.75 ± 0.01 for generalised gerrymanders, and

is likely 3/4 exactly. Consequently we find that the coefficients of the gerrymander

sequence gL (OEIS A348456) grow as gL ∼ λ4L2+2dL+e · (2L)h.

Finally, we find GL(1)/2 ∼ λL2+dL+e · Lg, where now d = −4.04354± 0.0001, e ≈ 8

and g = 1.75± 0.01, and is likely 7/4 exactly. So this is just L times the corresponding

coefficient ĝL.

In Section 2 we present proofs that the growth constants for both PCAS and

gerrymanders are equal to the growth constant for WCAS. In Section 3 we give a

description of the new and very efficient algorithm we used to calculate the series for

generalised gerrymanders. Section 5 contains an analysis of the generalised gerrymander

sequence. Section 6 contains our conclusions and gives a summary of the estimates we

have obtained.

2. Proof of main results for growth constants

In Figure 2 we show, from left to right, a WCAS, a PCAS, and a cow-patch, so called

as if we colour each domain within the figure alternately black and white, the resulting

figure resembles the pattern on the skin of a suitably endowed cow. In [7] it was proved

that WCAS and cow-patches have the same growth constant. We next give a proof that

PCAS and WCAS have the same growth constant.

Theorem 1. PCAS has the same growth constant as WCAS.

Proof. Consider a PCAS, such as that shown in the middle panel of Figure 2. Delete

all the bonds along the boundary of the square. This transforms the PCAS into a

cow-patch pattern (see first panel of Figure 3). Not all cow-patch patterns can be so

constructed (the cow-patch in Figure 2 is an example). This shows that the number of

PCAS is less than the number of cow-patch patterns in squares of the same size.

To obtain a bound in the other direction, take a WCAS in an L× L square, going

from (0, 0) to (L, L), as shown in the left-most panel of Figure 2. Then add a bond

from (0, 0) to (0,−1), then a sequence of horizontal bonds to (L+ 1,−1), turn left and

add bonds up to (L+ 1, L), then a final bond to (L, L) as shown in the second panel of
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Figure 3. We have converted a WCAS in a L×L square to a PCAS in a (L+1)×(L+1)

square. Not all polygons can be produced this way. So PL+1(1) ≥ CL(1), where PL(1)

denotes the number of PCAS in an L× L square.

Let CPL(1) denote the cardinality of the set of cow-patch configurations. We have

thus shown that

CL(1) ≤ PL+1(1) ≤ CPL+1(1).

In [7] it was proved that limL→∞CL(1)
1/L2

:= λ exists and is equal to

limL→∞CPL(1)
1/L2

. Hence it follows that limL→∞ PL(1)
1/L2

= λ.

Figure 2: An example of a SAW configuration crossing a square (left panel), traversing

a square from left to right (middle panel) and a cow-patch (right panel).

Next consider SAPs in an L× L square that do not necessarily touch any sides of

the square, also known as cycles in the grid graph. Denote the number of such polygons

by PL(1).

Theorem 2. PL(1) grows as WCAS.

Proof. Any PCAS is also a cycle so PL(1) ≥ PL(1). If we delete a nominated bond,

say the bottom-most, left-most bond, we convert a cycle into a SAW within a square,

but not every SAW can be so constructed. Let CL(1) denote the number of SAWs in a

square, then we have

Figure 3: Illustrations of the constructions used to bound the number of PCAS.
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PL(1) ≤ PL(1) ≤ CL(1).

We proved in [8] that CL(1) has the same growth constant as WCAS. As in the

previous proof, it then follows that limL→∞PL(1)
1/L2

= λ.

Theorem 3. The number of two component partitionings of a square, GL(1)/2, has the

same growth constant as WCAS.

Proof. Consider the gerrymander polynomial GL(q), whose coefficients gL,k are just the

number of ways to partition a L × L square into two connected regions, one of area k

and the other of area L2 − k.

At least one of the regions has to be a SAP. So every generalised gerrymander

configuration is equivalent to a SAP in an L× L square, but not necessarily vice versa.

Hence generalised gerrymander configurations are a proper subset of SAPs in an L× L

square.

Any SAP in an (L − 2)× (L − 2) square can be surrounded by empty cells on all

sides yielding a generalised gerrymander configuration in an L×L square. So generalised

gerrymander configurations are a superset of SAPs on the (L− 2)× (L− 2) square.

Let PL(1) be the number of SAPs in an L×L square. Then PL−2(1) ≤ GL(1)/2 ≤

PL(1), and GL(1)/2 and CL(1) have the same growth constant. As above, it follows

that limL→∞(GL(1)/2)
1/L2

= λ.

Figure 4: The padding of a WCAS with grey cells resulting in a corresponding SAP

and hence a connected grey region.

Theorem 4. The gerrymander sequence has a lower bound, gL+2 ≥ (CL(1)/L
2)4, and

gL ∼ λ4L2

, where λ is the growth constant of WCAS.

Proof. Any WCAS from (0, 0) to (L, L) divides an L×L square into two (not necessarily

connected) regions, one (grey) of area n, the other (white) of area L2 − n. To see this,

navigate the walk from (0, 0) to (L, L), shading all squares to the right of the current

step – see the first diagram of Figure 4. The grey (and indeed white) region will fail to
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Figure 5: Illustration of the construction used to find a lower bound for the number of

gerrymanders in terms of WCAS.

be connected if the walk has steps along the boundary edges from (0, 0) to (L, 0), or from

(L, 0) to (L, L), that are not joined to the corners by steps along the boundary (shown in

red in Figure 4). Similarly, any WCAS touching edges along the other two boundaries

render the white region disconnected. The reason being that any walk segment along

the boundary renders disjoint the white regions at either end of the segment. Now add

a row of grey cells immediately below and to the right of the (L × L) square, plus one

additional corner cell where this row and column meet, as shown in the second diagram

of Figure 4. This construction ensures that the grey area is now connected since we can

join the end-points of the WCAS by steps along the outside edges of the added cells

yielding a SAP as was the case for the construction in Figure 3. Similarly, padding

with white cells along the left- and top-most boundaries will result in a connected white

region.

The idea of the proof is to put 4 WCAS together (each within a square of side-

length L, with the walk dividing the square into a grey region of area n and a white

region of area L2 − n) to give a gerrymander in a square of side-length 2L+ 4. Denote

the set of all such WCAS as CL,n. Then CL(1) =
∑L2

n=0 |CL,n|. The maximum (over n)

of |CL,n| ≥ CL(1)/L
2. We take this maximum value, whatever it is, say n = k, and take

any four WCAS in CL,k and combine them as per Figure 5.
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In the top left corner (inside the square with a red boundary) is a WCAS in CL,k
with area k comprising grey cells. Likewise for the top right corner, though here the

walk is reflected so as to cross from (L, 0) to (0, L). In the bottom left and bottom right

corners are two more WCAS in CL,k, appropriately rotated or reflected, with regions of

area L2−k shaded grey. We then connect these four squares with the grey cross-shaped

region of width two. (This adds the required boundary rows and columns of cells to

ensure that the grey region is connected). We next add a boundary of white cells of

width 1, so that the total width of the square is 2L + 4. This ensures that the white

region is connected. Finally, we shade grey four squares on the right boundary, as shown.

As we show this ensures equal areas of the white and grey regions.

This final shading potentially raises a small pathology, in that the white cell(s)

incident on the bottom-right corner can potentially become disjoint. This will occur

if there is a white cell in the bottom right corner of the WCAS in the first quadrant,

marked with an asterisk, (or in the top right corner of the fourth quadrant, similarly

marked), and the cell immediately above (below) that corner cell is grey. In that case,

one must unshade the cell immediately above (below) the corner cell marked with an

asterisk, and, correspondingly, shade any white cell which has at least one edge on the

walk crossing the square, and which doesn’t create a disconnected region. For example,

any boundary cell.

The total area of the square is (2L + 4)2 = 4L2 + 16L + 16. The grey area is

2k + 2(L2 − k) + 8L + 4 + 4 = 2L2 + 8L + 8, which is half the total area. So we have

constructed a gerrymander.

This construction produces a unique sequence of gerrymanders. Not all

gerrymanders can be so constructed. So we have, gL+2 ≥ CL,k(1)
4 ≥ (CL(1)/L

2)4,

which gives us our desired lower bound as CL(1)
4 ∼ λ4L2

. Combined with the previous

result from Theorem 3, which implies gL ≤ G2L(1)/2 ∼ λ4L2

, we have proved that

limL→∞ g
1/4L2

L = λ.

3. Algorithm to enumerate the gerrymander sequence.

In Section 1 we argued that gerrymander configurations (partitioning the square into two

connected regions) can be enumerated by considering the grey SAPs shown in Figure 1.

The SAPs in panels 1 and 2 can be counted in a single calculation for each L and

require counting SAPs in rectangles of size (L − 1) × L with the constraint that the

SAP has a single column of cells starting from the bottom of the rectangle and with the

further constraint that once the SAP leaves the bottom it can never return.

The SAPs in panel 3 are SAPs in a rectangle of size (L − 2) × (L − 1) with the

constraint that there is a single column of cells on the left boundary. Finally, the

configurations in panel 4 are unconstrained SAPs in an (L− 2)× (L− 2) square. These

two cases can also be counted in a single calculation as shown later.

To calculate the (generalised) gerrymander sequence we need to count the

configurations where each region has equal (or close to) area. To achieve this we actually
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2q3+2q6 2q4+2q5 2q4+2q5 2q4+2q5 2q5+2q4 2q5+2q4 2q5+2q4 2q6+2q3

4q+4q8 4q2+4q7 4q2+4q7 4q3+4q6 4q3+4q6 4q3+4q6 4q4+4q5

4q+4q8 4q2+4q7 q+q8

Figure 6: Configurations contributing to G3(q).

calculate the complete gerrymander polynomials GL(q) by enumerating the grey SAPs of

Figure 1 by area. When combining the counts for the four SAP cases, with appropriate

symmetry factors, we get the coefficients pL,k, which count the contributions to G(q)

from grey SAPs of area k in a L × L square. We then use the coefficients pL,k to

calculate GL(q) since gL,k = pL,k + pL,L2−k, where pL,L2−k accounts for the contributions

from white regions of area k.

In Figure 6 we explicitly list all the configurations we must consider to calculate

G3(q). The top row shows the contributions from configurations of panel 1 in Figure 1,

the middle row arises from configurations of panel 2 while the last row arises from

configurations in panels 3 and 4. The contributions to G3(q) are listed below each

panel and the first term comes from the grey region while the second term is from the

white region. Counting only the contributions from the grey regions (as done by our

algorithms) gives rise to the polynomial, 9q + 12q2 + 14q3 + 10q4 + 6q5 + 2q6, which

has coefficients p3,k. From these we can then calculate the corresponding gerrymander

polynomial,

G3(q) = 9q + 12q2 + 16q3 + 16q4 + 16q5 + 16q6 + 12q7 + 9q8.

We implemented the very efficient transfer matrix (TM) algorithm of Iwashita et

al. [9] for enumerating SAPs on the square lattice making use of a minimal perfect

hash function and in-place memory updating of the arrays for the counts of the number

of SAPs. We gave a quite detailed description of the algorithm applied to paths on

the hexagonal lattice in our recent paper [3] and most of the considerations from that

paper apply to the case of SAPs on the square lattice. So here we will just give a brief

description of the main points of the algorithm and point our readers to [3] for further

details.

If we draw a line across the square as shown in Figure 7 we observe that the

partial SAP to the left of the intersection consists of arcs connecting two edges on
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◦
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◦

)

◦

◦

(

)

(

◦

◦

◦

)

◦

Figure 7: The basic TM move (left panel) in which the intersection is moved so as

to add another cell (coloured green) and two edges (coloured red) to the section of the

square already visited. The type of update to apply is determined by the states of the

edge on the bottom left of the new cell and the vertex in the top left corner. The right

panel show the final TM move which completes a column of the lattice.

the intersection and a ‘special’ vertex where there is a kink in the intersection. On

two-dimensional lattices arcs cannot intertwine so each arc end can be assigned a label

depending on whether it is the lower or upper end of an arc, and these labels will form a

balanced parenthesis. The vertex at the kink in the intersection can have an additional

blocked state if two edges of the partial SAP are incident on the vertex (as shown in the

figure). We shall refer to the configuration along the intersection as a signature, denoted

by Σ, which can be represented by a string of states, σi, where

σi =





◦ empty edge/vertex,

( lower arc end,

) upper arc end,

• blocked vertex.

The partial SAP in Figure 7 has the signature Σ = ◦ ( ) ( ◦ • ◦ ) ◦ .

For each signature Σ we simply count the number of partial SAPs, C(Σ, q), where

C(Σ, q) is a polynomial in q such that the coefficient pk of qk equals the number of

partial SAPs of area k. SAPs are counted by moving the intersection so as to add a

single cell and two edges at a time, as illustrated in Figure 7. For each column of height

W the TM move from the left panel of Figure 7 is used W − 1 times followed by the

final move shown in the right panel which completes a column. This sequence of moves

is then repeated to construct a rectangle of the required length.

The updating of the counting polynomial C(Σ, q) depends on the states of the

bottom edge to the left of the new cell and the topmost vertex of the new cell. The new
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)

◦

•

◦

◦

(
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◦

•

(

(

•

(

◦

◦

(

◦

(

(

◦

(

(

(

(

•

◦

) → (

)

(

)

(

•

◦

(

)

(

)

Acc

)

)

)

)

•

◦

( → )

Figure 8: The possible updates in a TM move with thin edges empty and thick edges

occupied by the SAP. The updates are grouped together in such a way as to make it

possible to use in-place memory updating of the counts. When two arc ends are joined,

one may have to relabel another arc end as indicated above the update, i.e., for the

second transition in the left panel in the third row, two lower arc ends are joined and

the matching upper arc end is relabelled as a lower arc end.

cell can either belong to a completed SAP or not and it will belong to a SAP if there is

an odd number of occupied edge states below the new cell.

In Figure 8 we display the possible local ‘input’ states and the ‘output’ states which

arise as the kink in the boundary is propagated by one step (we left out a panel identical

to the second panel from the top but involving an upper arc end rather than a lower arc

end). We shall refer to the signature before the move as the source, ΣS, and a signature

produced as a result of the move as a target, ΣT.
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It is possible to represent the signatures as Motzkin paths, which are directed

walks from (0, 0) to (n, 0) in the first quadrant of the square lattice with step-set

Ω = {(1, 0), (1, 1), (1,−1)}. The basic mapping from a signature to a Motzkin path

is to map ◦ to horizontal steps, ( to up steps, and ) to down steps. Let Mn be

the set of n-step Motzkin paths. Consider enumerations on a rectangle of size W × L

(W ≤ L). The set of unblocked signatures is given by the set MW+1 since there are

W edges and one vertex along the TM intersection. A signature can have only a single

blocked vertex whose position (in either the source or the target signature) is given by

the position of the kink in the TM intersection and the remaining states form a Motzkin

path of length W . The set of blocked signatures can therefore be represented by the set

MW .

Using the mapping of signatures to Motzkin paths one can construct minimal

perfect hash functions Φ : MW+1 → {1, . . . , |MW+1|} for unblocked signatures and

Ψ :MW → {1, . . . , |MW |} for blocked signatures as described in [9, 3].

In Algorithms 1 and 2 we give pseudo code for the updates to the counting

polynomials C(Σ, q). InputState simply extracts the states of the edge and vertex

involved in the update. AddArea determines if the cell added in the TM move adds

to the area of the SAP. ChangeSignature changes the states of the input states to

those indicated by the two blue tiles. RelabelSignature changes the input states to

empty states and finds and relabels the matching arc end in those updates where two

arc ends are connected in a TM update.

A technical point should be noted. In the update at line 7 of Algorithm 1 there

should seemingly be a factor q1−∆ multiplying the term on the right. After all inserting

a new arc changes whether or not the added cell lies within the SAP. The factor is

missing at this point because the target signature is processed later as a source and

any missing unit of area is added at line 32. One could rearrange the code and include

the processing happening for the case ( ) when processing the case ◦ ◦ and then do

nothing for the case ( ) .

The four cases of SAPs we enumerate can in fact be done in just two separate

calculations. This requires some minor changes to the code of Algorithms 1 and 2

and different ways of initializing C(Σ, q) to account for the permitted columns on the

left-most boundary.

The SAPs in panels 1 and 2 of Figure 1 can be counted in one calculation on a

rectangle of size (L−1)×L. Initially, C(Σ, q) = 2qk for signatures with a ( at position

0, a ) at position k, and all other states ◦ . This gives a column of cells on the left

boundary starting from the bottom. Next we add L−1 columns to the lattice by the TM

updates with the addition to the SAP count done as: P(q)← P(q)+2C[Φ(ΣS), q]. Then

one adds one extra column, but without adding to the SAP count at case ( ) . This

ensures that all configurations of panel 2 are counted four times. After the addition

of the final column the SAP counts P(q) are updated by adding the counts for the

signatures used to initialize C(Σ, q), thus counting the configurations in panel 1 twice.

One further change to the algorithm is required. Once a SAP has stepped away
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Algorithm 1 Update the counts of signatures

1: procedure UpdateCounts(ΣS)

2: S ← InputState(ΣS) ⊲ States of update edges

3: ∆← AddArea(ΣS) ⊲ ∆ = 1 if new cell in SAP (0 otherwise)

4: if S = ◦ ◦ then

5: ΣT ← ChangeSignature(ΣS, ( ) ) ⊲ Insert new arc

6: ΣB ← ChangeSignature(ΣS, • ◦ ) ⊲ Blocked signature

7: C[Φ(ΣT), q]← C[Φ(ΣT), q] + C[Φ(ΣS), q] ⊲ Update count of ΣT

8: C[Φ(ΣS), q]← q∆(C[Φ(ΣS), q] + C[Ψ(ΣB), q]) ⊲ Update count of ΣS

9: C[Ψ(ΣB), q]← 0 ⊲ Count of target ΣB is 0

10: else if S = ( ◦ then

11: ΣT ← ChangeSignature(ΣS, ◦ ( )

12: ΣB ← ChangeSignature(ΣS, • ( )

13: T (q)← C[Φ(ΣS), q] ⊲ Store count of ΣS

14: C[Φ(ΣS), q]← q∆(C[Φ(ΣS), q] + C[Φ(ΣT), q] + C[Ψ(ΣB), q])

15: C[Φ(ΣT), q]← q1−∆C[Φ(ΣT), q]

16: C[Ψ(ΣB), q]← q1−∆T (q) ⊲ Count of ΣB as target

17: else if S = ◦ ( then

18: Null ⊲ Do nothing. Processed in previous update

19: else if S = ) ◦ then

20: Same updates as for ( ◦ with ( → ) .

21: else if S = ◦ ) then

22: Null ⊲ Do nothing. Processed in previous update

23: else if S = ( ( then

24: ΣB ← RelabelSignature(ΣS, ◦ • , ( ) ⊲ Connect arc ends and relabel

25: C[Ψ(ΣB), q]← C[Ψ(ΣB), q] + q1−∆C[Φ(ΣS), q]

26: C[Φ(ΣS), q]← q∆C[Φ(ΣS), q]

27: else if S = ( ) then

28: ΣT ← ChangeSignature(ΣS, ◦ ◦ ) ⊲ Form closed loop

29: if ΣT = ◦ · · · ◦ then ⊲ Empty signature so valid SAP

30: P(q)← P(q) + C[Φ(ΣS), q] ⊲ Add to SAP count

31: end if

32: C[Φ(ΣS), q]← q∆C[Φ(ΣS), q]

33: else if S = ) ( then

34: ΣB ← ChangeSignature(ΣS, ◦ • ) ⊲ Connect arc ends

35: C[Ψ(ΣB), q]← C[Ψ(ΣB), q] + q1−∆C[Φ(ΣS), q]

36: C[Φ(ΣS), q]← q∆C[Φ(ΣS), q]

37: else if S = ) ) then

38: ΣB ← RelabelSignature(ΣS, ◦ • , ) ) ⊲ Connect arc ends and relabel

39: C[Ψ(ΣB), q]← C[Ψ(ΣB), q] + q1−∆C[Φ(ΣS), q]

40: C[Φ(ΣS), q]← q∆C[Φ(ΣS), q]

41: end if

42: end procedure



The gerrymander sequence, or A348456. 14

Algorithm 2 Update the counts of signatures as final cell added

1: procedure UpdateCounts(ΣS)

2: S ← InputState(ΣS) ⊲ States of update edges

3: if S = ◦ ◦ then

4: ΣT ← ChangeSignature(ΣS, ( ) ) ⊲ Insert new arc

5: ΣB ← ChangeSignature(ΣS, • ◦ ) ⊲ Blocked signature

6: C[Φ(ΣT), q]← C[Φ(ΣT), q] + C[Φ(ΣS), q] ⊲ Update count of ΣT

7: C[Φ(ΣS), q]← C[Φ(ΣS), q] + C[Ψ(ΣB), q] ⊲ Update count of ΣS

8: else if S = ( ◦ then

9: ΣT ← ChangeSignature(ΣS, ◦ ( )

10: ΣB ← ChangeSignature(ΣS, • ( )

11: C[Φ(ΣT), q]← C[Φ(ΣT), q] + C[Φ(ΣS), q]

12: C[Φ(ΣS), q]← q(C[Φ(ΣT), q] + C[Ψ(ΣB), q])

13: else if S = ◦ ( then

14: Null ⊲ Do nothing. Processed in previous update

15: else if S = ( ( then

16: ΣT ← RelabelSignature(ΣS, ◦ ◦ , ( ) ⊲ Connect arc ends and relabel

17: C[Φ(ΣT), q]← C[Φ(ΣT), q] + C[Φ(ΣS), q]

18: C[Φ(ΣS), q]← qC[Φ(ΣS), q]

19: else if S = ( ) then

20: ΣT ← ChangeSignature(ΣS, ◦ ◦ ) ⊲ Form closed loop

21: if ΣT = ◦ · · · ◦ then ⊲ Empty signature so valid SAP

22: P(q)← P(q) + C[Φ(ΣS), q] ⊲ Add to SAP count

23: end if

24: C[Φ(ΣS), q]← qC[Φ(ΣS), q]

25: end if

26: end procedure

27: After update completed: C[Ψ(ΣB), q]← 0, ∀ ΣB.

from the bottom of the rectangle (there are some empty cells at the bottom of a column)

it is not allowed to return to the bottom of the rectangle since this would produce

configurations with more than two connected components. This constraint can be easily

implemented by some minor changes to Algorithm 2. The insertion of a new arc at line

4 is not permitted so this line is simply removed from the code and the updating at

line 12 is changed to, C[Φ(ΣS), q] ← q(C[Φ(ΣS), q] + C[Ψ(ΣB), q]), which prevents the

situation where a lower arc end is extended from above to an empty edge on the bottom

of the rectangle.

The SAPs in panels 3 and 4 of Figure 1 can be counted in one calculation on a

rectangle of size (L− 2)× (L− 1). Initially, C(Σ, q) = 4qk−j for signatures with a ( at

position j, a ) at position k > j, and all other states ◦ . This gives a column of cells

on the left boundary starting at position j and ending at position k. Next we add L−2
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columns by TM updates. This counts configurations in panel 3 four times. The SAPs

of panel 4 are just cycles on a (L− 2)× (L− 2) square. The counts for these SAPs are

added by putting a few extra lines of code after line 32 of Algorithm 1 and line 24 of

Algorithm 2:

if ΣT = ◦ · · · ◦ then

C[Φ(ΣS), q]← q + C[Φ(ΣS), q]

end if

This inserts an arc into the empty signature and it corresponds to starting a new SAP

in an otherwise empty lattice and counting it once.

We used our algorithms to calculate GL(q) up to L = 22.

Calculating the sequence GL(1)/2 is a simplification of the algorithms since we no

longer need to keep track of the area of the SAP. That is, the variable q is removed and

the count C(Σ) is just a number and not a polynomial. This makes the memory use

and running time much smaller and we could therefore quite readily extend the counts

for GL(1)/2 up to L = 26.

The coefficients become very large and we deal with this by actually performing

all calculation modulo various prime numbers and then we reconstruct the actual

coefficients using the Chinese remainder theorem. For GL(q) we used primes of the

form pi = 230 − ri while for GL(1)/2 we used primes of the form pi = 262 − ri, with ri
chosen so that we used the largest primes possible.

The algorithms can readily be made parallel using OpenMP for shared memory

systems as shown in [3]. The most demanding calculation is L = 22 for SAPs in panel 1

of Figure 1. The total memory use was just short of 1TB and required 12 primes. The

calculations were performed on a system with 2TB of memory and a 48 core 2.6GHz

Intel Xeon processor (Icelake). Using all 48 cores each calculation required 3.26 CPU

hours per core and had a wall time of 4.04 hours for a fairly respectable 80% CPU

utilisation rate.

Similarly for GL(1)/2 the most demanding calculation used about 260GB of

memory, required 8 primes with each using around 1.66 CPU hours per core with a

wall time of 1.92 hours for an 87% CPU utilisation rate.

The enumeration data for all problems studied in this paper and some of the source

code used to calculate the exact coefficients can be found at our GitHub repository

https://github.com/IwanJensen/Enumerations/tree/Gerrymander.

4. Generated data

The generalised gerrymander sequence is

0, 4, 16, 140, 2804, 161036, 27803749, 14314228378, 21838347160809, 99704315229167288,

1367135978051264146578, 56578717186086829451888706, 7065692298178203128922479762418,

2670113158846160742372913777087464324, 3052313665715695874527667027409186333152556,

10576314351887299911761821933016870059157696799590,

111034100174173892447665912670921261073467364516352741228,

https://github.com/IwanJensen/Enumerations/tree/Gerrymander


The gerrymander sequence, or A348456. 16

3537028455649887297336276306453996860419253673550043079822024000,

341733163421465989689352428385746691084586717358593912894419042539233990,

100252523974388276666190532080484359784524540996444484455535420554238978388252504,

89264965524987466095382312579079040669851719236758669481553261745368627073196518991122982,

241454160053307991366810217012218245577185945222070621347619706812992698342006623035833679925950124.

This sequence can now be found as entry A358289 in the OEIS [10].

The gerrymander sequence, A348456 is

2, 70, 80518, 7157114189, 49852157614583644, 28289358593043414725944353,

1335056579423080371186456888543732162, 5288157175943649955880910966508435029578848399795,

1768514227824943648668138153226998430209626836775021539911012000,

50126261987194138333095266040242179892262270498222242227767710277119489194126252,

120727080026653995683405108506109122788592972611035310673809853406496349171003311517916839962975062.

The sequence GL(1)/2, previously given in the OEIS [10] to 14 terms as sequence

A068416 is

0, 6, 53, 627, 16213, 1123743, 221984391, 127561384993, 215767063451331, 1082828220389781579, 16209089366362071416785,

726438398002211876667379681, 97741115155002465272674416929195, 39565596445488219947994403962984729307,

48266553553179571390563558537192580883946581, 177681396812088238354165934687481183466893654956289,

1975937643872352724089992826014929798118573656798037151869,

66439263265451619293993827233543293728049358568766901433376111533,

6759530908927225810082912389523913516153699624404397503364760209750198965,

2082175573105919327579605927684972257244834479905043487606018480891006067503189435,

1942921711925290132823971776864238644417661540760987603847662976606820344224527922302926211,

5494467860345971380570753195590132183781118478869271589678543047862011487452888227090933031310123701,

47108220518641518802118971470955381408131440042706598149849757389472954451355452889071492134660868248563001011,

1224939601435250677240944373082090949943585589026155133464810175292336195388826375748636115618176553643756803498606264191,

96628963298447280919927953386332031167682264043092747711368137641453332526883992822518172167968007887771992080746478077722442851831,

23130601650038998858250356469453469539571044679175753615930334928835892794769268061796821453552124424327952585726630671538922720993311640741787.

5. Analysis of sequences.

In [3] we gave compelling numerical evidence that PCAS behaved as PL(1) ∼ λL2+bL+c ·

Lg, where λ = 1.7445498 ± 0.0000012, b = −0.04354 ± 0.0001, c ≈ −1.197 and

g = −0.500± 0.005.

Having shown that the dominant term for generalised gerrymanders is λL2

, we make

the obvious conjecture that the sub-dominant terms for generalised gerrymanders are

similar to those of PCAS, and write ĝL ∼ λL2+dL+e · Lh.

Then

PL(1)

ĝL
∼ λαL+β · Lδ, (4)

where α = b− d, β = c− e, and δ = g − h.

Note that we are analysing the series for generalised gerrymanders. These will

grow like λL2

, whereas the gerrymander sequence given by A348456 grows like λ4L2

.

The asymptotics in that case are clearly stated in the abstract and conclusion.
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Equation 4 can be rewritten in the more generic form PL(1)
ĝL

= g̃L ∼ FµL ·Lδ, where

µ = λα, and F = λβ. Such sequences can be analysed by the ratio method, briefly

described in Appendix A.
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2

l L

Figure 9: Ratios rL = g̃L/g̃L−1 plotted against 1/L and the linear intercepts plotted

against 1/L2.

We actually extended this sequence by 20 further approximate terms, using the

method of series extension [11], briefly described in Appendix C. The ratios are expected

to be accurate to at worst 5 significant digits, which is sufficient accuracy for the ratio

method to be used.

In the left panel Figure 9 we show the ratios, rL := g̃L/g̃L−1, plotted against

1/L. In the right panel of Figure 9 we show the corresponding linear intercepts,

lL = 1
2
[L · rL − (L − 2) · rL−2], which eliminate the term O(1/L) in the ratio sequence,

and so should converge faster. We used alternate terms in forming the linear intercepts

to minimise a slight parity effect. The solid curves are a quadratic fit using the date

from L = 15 in the case of rL and a simple linear fit using the data for from L = 20 in

the case of the lL.

From this figure we estimate the limit as L→∞ to be around 9.2615. Now this is

µ = λα, which gives α ≈ 3.9998. It is not unreasonable to conjecture that α = 4 exactly.

This then gives d = −4.04354 ± 0.0001. Assuming α = 4 exactly, we obtain a refined

estimate of µ = 9.2626123. Using this, we estimate the exponent δ, see eqn. (A.3), and

this is shown in the left panel of Figure 10. The solid curves are quadratic fits using

the data from L = 30 (using other starting values gave intercepts between −1.2475 and

−1.2525). This leads us to conclude δ = −1.250 ± 0.005, so that h = 0.750 ± 0.005,

from which we conjecture δ = −5/4 and h = 3/4 exactly. We also eliminated the term

O(1/L) which gave an even more convincing plot (not shown), clearly going to a limit

very close to −5/4, so we are quite confident in this conjecture.

Finally, we estimate e by extrapolating the sequence ĝL/(λ
L2+dL · Lh) ∼ λe, using

the estimates of λ, d and h we have just obtained. This sequence of estimates is shown
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in the right panel of Figure 10, and leads us to estimate λe ≈ 86.2, so that e ≈ 8.01.

Again eliminating the O(1/n) term, we can improve this estimate to λe ≈ 86.1± 0.2, so

that e = 8.01± 0.015. Since this estimate is exquisitely sensitive to the estimate of the

parameter d, we prefer to quote it as e ≈ 8.
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Figure 10: Estimates of δ and λe plotted against 1/L.

We next analysed the sequence GL(1)/2 in a similar manner. Having proved that

the dominant term for GL(1) is λ
L2

, we again conjecture that the sub-dominant terms

are similar to those of PCAS, and write GL(1)/2 ∼ λL2+dL+e · Lh.

Then

GL(1)/2

λL2
∼ λdL+e · Lh. (5)

Equation 5 can also be rewritten in the more generic form GL(1)/2

λL2 := G̃L ∼ FµL ·Lδ,

where µ = λd, F = λe, and h = δ. This sequence can be analysed similarly to our

immediately preceding analysis.

In the top left panel of Figure 11 we show the ratios, rL := G̃L/G̃L−1 ∼ µ(1+ δ/L),

plotted against 1/L. In the top right panel we show the linear intercepts, lL :=

L · rL − (L − 1) · rL−1, which eliminate the term O(1/L) in the ratio sequence, and so

should converge faster. The middle left panel of Figure 11 shows the quadratic intercepts,

qL := [L2 · lL− (L− 1)2 · lL−1]/(2L− 1), which eliminate the term O(1/L2). These three

figures give increasingly precise estimates of µ, and we conclude that µ ≈ 0.10538, which

translates to d ≈ −4.04348. Given that the corresponding quantity for the generalised

gerrymander sequence that we’ve just analysed was −4.04354, it seems reasonable

to conjecture that this quantity is exactly the same, that is d = −4.04354, so that

µ ≈ 0.1053765.

Next, to estimate the exponent δ, we form the sequence δL := (rL/µ − 1) · L ∼

δ + O(1/L). Estimates of δ and the linear intercepts, LδL − (L − 1)δL−1, are shown

in the middle right and bottom left panels of Figure 11, and lead to the estimate

δ ≈ 1.75 = 7/4.
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Figure 11: Ratios rL = G̃L/G̃L−1 plotted against 1/L (top left panel), and the

corresponding linear (top right panel) and quadratic (middle left panel) intercepts.

Estimates for the exponent δ (middle right panel) and the corresponding liner intercepts

(bottom left panel). Estimates of the amplitude λe (bottom right panel).

Finally, we estimated the amplitude, just as we did for the previous sequence, by

plotting (bottom right panel of Figure 11) the sequence, GL(1)/(2λ
L2+dL · Lh) ∼ λe,
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using the estimates of λ, d and h we have just obtained. This seems to be approaching

a limit which we estimate to be 85.8±0.4, so that e = 8.000±0.008. Since this estimate

is exquisitely sensitive to the estimate of the parameter d, we prefer to quote it as e ≈ 8,

exactly the same value as we found for the generalised gerrymander sequence.

For SAWs spanning a square, with coefficients SL(1), we estimated in [3] that the

asymptotics were very similar, with the same exponent 7/4, but with growth constant

µ = λd with d = −0.04354. That is to say, we expect the coefficient ratios to be

ŜgL := SL(1)/ĝL ∼ C · λ4L. To investigate this, we show in the left panel of Figure 12

the ratio rL = ŜgL/ŜgL−1, which should go to a limit of λ4 ≈ 9.262612 if our conjectures

are correct. It seems from the figure that this is entirely plausible. To investigate this

further, we plotted the quantity tL := (rL/λ
4− 1) ·L ∼ 0 against 1/L in the right panel

of Figure 12, and it can be seen that the data does indeed extrapolate persuasively to

zero.
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Figure 12: Ratios, rL = ŜgL/ŜgL−1, plotted against 1/L2 (left panel) and, tL =

(rL/λ
4 − 1) · L, plotted against 1/L (right panel).

Note that the asymptotics of the two sequences we have analysed are numerically

identical, apart from the power of the sub-sub-dominant term, Lδ, which differs by 1

between the two sequences. To test this observation more precisely, we formed the

sequence
GL(1)/2

L · ĝL
∼ const.

We show a plot of this ratio in figure 13. This plot is clearly going to a constant value,

which appears to be a little below 1. This is abundant support for the conjecture that

the asymptotics are identical, apart from a factor of L.

6. Conclusion

We have given a new, powerful, algorithm to generate coefficients for the generalised

gerrymander sequence ĝL, and have generated several further terms. To be precise, we
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Figure 13: GL(1)/2
LĝL

plotted against 1/L.

have generated four further terms in the gerrymander sequence gL, OEIS A348456. We

have also generated 26 terms in the sequence GL(1)/2, OEIS A068416, which counts the

number of ways to partition a square into two connected regions.

We have proved that ĝL and GL(1)/2 grow with the same dominant behaviour λL2

as do SAWs and SAPs crossing an L × L square. It then follows that gL = ĝ2L/2 has

the dominant behaviour λ4L2

.

We have used our new data to estimate the sub-dominant terms, and consequently

estimate that ĝL ∼ λL2+dL+e ·Lh, where d = −4.04354±0.0001, e ≈ 8 and h = 0.75±0.01

for generalised gerrymanders, and the coefficients of the OEIS sequence A348456 grow

as λ4L2+2dL+e · (2L)h.

Similarly we find that GL(1)/2 ∼ λL2+dL+e ·Lh, where d = −4.04354±0.0001, e ≈ 8

and h = 1.75± 0.01. The two sequences GL(1)/2 and ĝL behave identically, apart from

a factor of L.
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Appendix A. Ratio Method

The ratio method was perhaps the earliest systematic method of series analysis employed,

and is still the most useful method when only a small number of terms are known. Given

a series
∑

cnz
n, which behaves as

F (z) =
∑

n

cnz
n ∼ C(1− z/zc)

−γ , (A.1)

it is assumed that limn→∞ cn/cn−1 exists and is equal to the growth constant µ = 1/zc.

For some combinatorial sequences this has been proved (see e.g.[12]), but it is usually

just assumed.

From the binomial theorem it follows that

cn ∼
C

Γ(γ)
· z−n

c · n
γ−1.

From that equation it follows that the ratio of successive terms

rn =
cn
cn−1

=
1

zc

(
1 +

γ − 1

n
+ o

(
1

n

))
. (A.2)

It is then natural to plot the successive ratios rn against 1/n. If the correction terms o( 1
n
)

can be ignored§, such a plot will be linear, with gradient γ−1
zc

, and intercept µ = 1/zc at

1/n = 0.

Linear intercepts ln eliminate the O
(
1
n

)
term in eqn. (A.2), so in the case of a pure

power-law singularity, one has

ln := nrn − (n− 1)rn−1 = µ

(
1 +

c

n2
+O

(
1

n3

))
.

This process can often be iterated, giving quadratic, cubic etc. intercepts.

Various refinements of the method can be readily derived. If the critical point is

known exactly, it follows from eqn. (A.2) that estimators of the exponent γ are given

by

γn := n(zc · rn − 1) + 1 = γ + o(1). (A.3)

If the critical point is not known exactly, one can still estimate the exponent γ.

From eqn. (A.2) it follows that

γn := 1 + n2

(
1−

rn
rn−1

)
= γ + o(1). (A.4)

Similarly, if the exponent γ is known, estimators of the growth constant µ are given

by

µn =
nrn

n + γ − 1
= µ+ o(1/n).

§ For a purely algebraic singularity, with no confluent terms, the correction term will be O( 1
n2 ).
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Appendix B. Differential approximants

The generating functions of some problems in enumerative combinatorics are sometimes

algebraic, such as that for Av(1342) pattern-avoiding permutations, sometimes D-

finite, such as with Av(12345) pattern-avoiding permutations, sometimes differentially

algebraic, and sometimes transcendentally transcendental. The not infrequent

occurrence of D-finite solutions was the origin of the method of differential approximants,

a very successful method of series analysis for analysing power-law singularities [13].

The basic idea is to approximate a generating function F (z) by solutions of

differential equations with polynomial coefficients. That is to say, by D-finite ODEs.

The singular behaviour of such ODEs is well documented (see e.g. [14, 15]), and the

singular points and exponents are readily calculated from the ODE.

The key point for series analysis is that even if globally the function is not describable

by a solution of such a linear ODE (as is frequently the case) one expects that locally,

in the vicinity of the (physical) critical points, the generating function is still well-

approximated by a solution of a linear ODE, when the singularity is a generic power

law (A.1).

An M th-order differential approximant (DA) to a function F (z) is formed by

matching the coefficients in the polynomials Qk(z) and P (z) of degree Nk and K,

respectively, so that the formal solution of the M th-order inhomogeneous ordinary

differential equation

M∑

k=0

Qk(z)

(
z
d

dz

)k

F̃ (z) = P (z) (B.1)

agrees with the first N = K +
∑

k(Nk + 1) series coefficients of F (z).

Constructing such ODEs only involves solving systems of linear equations. The

function F̃ (z) thus agrees with the power series expansion of the (generally unknown)

function F (z) up to the first N series expansion coefficients. We normalise the DA by

setting QM(0) = 1, thus leaving us with N rather than N + 1 unknown coefficients to

find. The choice of the differential operator z d
dz

in (B.1) forces the origin to be a regular

singular point. The reason for this choice is that most lattice models with holonomic

solutions, for example, the free-energy of the two-dimensional Ising model, possess this

property. However this is not an essential choice.

From the theory of ODEs, the singularities of F̃ (z) are approximated by zeros

zi, i = 1, . . . , NM of QM(z), and the associated critical exponents γi are estimated from

the indicial equation. If there is only a single root at zi this is just

γi = M − 1−
QM−1(zi)

ziQ
′

M(zi)
. (B.2)

Estimates of the critical amplitude C are rather more difficult to make, involving the

integration of the differential approximant. For that reason the simple ratio method

approach to estimating critical amplitudes is often used, whenever possible taking into

account higher-order asymptotic terms [16].
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Details as to which approximants should be used and how the estimates from many

approximants are averaged to give a single estimate are given in [16]. Examples of the

application of the method can be found in [17]. In that work, and in this, we reject so-

called defective approximants, typically those that have a spurious singularity closer to

the origin than the radius of convergence as estimated from the bulk of the approximants.

Another method sometimes used is to reject outlying approximants, as judged from a

histogram of the location of the critical point (i.e. the radius of convergence) given

by the DAs. It is usually the case that such distributions are bell-shaped and rather

symmetrical, so rejecting approximants beyond two or three standard deviations is a

fairly natural thing to do.

Appendix C. Coefficient prediction

In analysing combinatorial data, it is often the case that the ratio method and the

method of differential approximants work serendipitously together in many cases, even

when one has stretched exponential behaviour, in which case neither method works

particularly well in unmodified form.

To be more precise, the method of differential approximants (DAs) produces ODEs

which, by construction, have solutions whose series expansions agree term by term with

the known coefficients used in their construction. Clearly, such ODEs implicitly define

all coefficients in the generating function, but if N terms are used in the construction

of the ODE, all terms of order zN and beyond will be approximate, unless the exact

ODE is discovered, in which case the problem is solved, without recourse to approximate

methods.

It is useful to construct a number of DAs that use all available coefficients, and

then use these to predict subsequent coefficients. Not surprisingly, if this is done for a

large number of approximants, it is found that the predicted coefficients of the term of

order zn, where n > N, agree for the first k(n) digits, where k is a decreasing function of

n. We take as the predicted coefficients the mean of those produced by the various DAs,

with outliers excluded, and as a measure of accuracy we take the number of digits for

which the predicted coefficients agree, or the standard deviation. These two measures

of uncertainty are usually in reasonable agreement.

Now it makes no logical sense to use the approximate coefficients as input to the

method of differential approximants, as we have used the DAs to obtain these coefficients.

However there is no logical objection to using the (approximate) predicted coefficients

as input to the ratio method. Indeed, as the ratio method, in its most primitive form,

looks at a graphical plot of the ratios, an accuracy of 1 part in 104 or 105 is sufficient,

as errors of this magnitude are graphically unobservable.

Ratio methods, and direct fitting methods, by contrast are much more robust. The

sort of small error that affects the convergence of DAs would not affect the behaviour of

the ratios, or their extrapolants, and would thus be invisible to them. As a consequence,

approximate coefficients are just as good as the correct coefficients in such applications,
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provided they are accurate enough. We re-emphasise that, in the generic situation (A.1),

ratio type methods will rarely give the level of precision in estimating critical parameters

that DAs can give. By contrast, the behaviour of ratios can more clearly reveal features

of the asymptotics, such as the fact that a singularity is not of power-law type. This is

revealed, for example, by curvature of the ratio plots [17].

As an example, consider the OGF for Av(12453) PAPs (see OEIS [10] A116485).

This is known to order x38. Let us take the coefficients to order x16 and use the method

of series extension described above to predict the next 22 ratios, so that we can compare

them to the exact ratios. The results, based on 3rd order differential approximants, are

shown in Table C1. For the first predicted ratio, r18, the discrepancy is in the 10th

significant digit. For the last predicted ratio, r39, the error is in the 5th significant digit.

This level of precision is perfectly adequate for ratio analysis.

Table C1: Ratios r18 to r39 actual and predicted from the coefficients of Av(12453), with

percentage error shown.

Predicted ratios Actual ratios Percentage error

10.654655347 10.65465504 4.78× 10−7

10.828226522 10.82822539 1.04× 10−5

10.986854456 10.98685140 2.79× 10−5

11.132386843 11.13238007 4.78× 10−5

11.266382111 11.26636895 6.08× 10−5

11.390163118 11.39013998 2.03× 10−4

11.504857930 11.50482182 3.14× 10−4

11.611441483 11.61138359 4.99× 10−4

11.710743155 11.71066190 6.94× 10−4

11.803496856 11.80338255 9.68× 10−4

11.890333733 11.89017822 1.31× 10−3

12.048402545 12.04814337 2.15× 10−3

12.120553112 12.12022972 2.67× 10−3

12.188650126 12.18824275 3.34× 10−3

12.252994715 12.25252103 3.87× 10−3

12.313939194 12.31336663 4.65× 10−3

12.371707700 12.37104982 5.32× 10−3

12.426619450 12.42581319 6.49× 10−3

12.478784843 12.47787509 7.29× 10−3

12.528486946 12.52743256 8.41× 10−3

In practice we find that the more exact terms we know, the greater is the number

of predicted terms, or ratios, that can be predicted.
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