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Abstract

This paper shows that not only do the codimension one spurious poles of NkMHV tree
level diagrams in N=4 SYM theory cancel in the tree level amplitude as expected, but their
vanishing loci have a geometric interpretation that is tightly connected to their representation
in the positive Grassmannians. In general, given a positroid variety, Σ, and a minimal matrix
representation of it in terms of independent variable valued matrices, MV , one can define a
polynomial, R(V) that is uniquely defined by the Grassmann necklace, I, of the positroid cell.
The vanishing locus of R(V) lies on the boundary of the positive variety Σ \ Σ, but not all
boundaries intersect the vanishing loci of a factor of R(V). We use this to show that the
codimension one spurious poles of N=4 SYM, represented in twistor space, cancel in the tree
level amplitude.

1 Introduction

The holomorphic Wilson loop representation of N = 4 SYM theory is calculated on families of
Feynman diagrams called maximally helicity violating (MHV) diagrams, next to maximal helicity
violating (NMHV) diagrams, and so forth (NkMHV diagrams). When represented in twistor space
[1, 2, 3], the calculations of the associated integrals simplify dramatically. Furthermore, in a
dual representation of NkMHV diagrams, called Wilson loop diagrams in this paper, the diagrams
correspond to subspaces of the positive Grassmanian, called positroid cells. The connection between
the tree level physical interactions and the geometry of the positive Grassmannians is well studied,
both in the holomorphic Wilson loop context and in the context of BCFW diagrams (or plabic
graphs) where the associated geometric object is called the Amplituhedron [4, Chapter 2].

In [5], the author suggested that the momentum twistor representation of the integrals adopted in
this paper should lead to an algebraic proof of the cancellation of spurious poles in N = 4 SYM
theory. In this paper, not only do we show that the spurious poles cancel in the tree level amplitude,
but also that these poles are tightly connected to the positive geometry of the theory. To be specific,
the spurious poles of the theory manifest as the factors of a polynomial in the denominator of the
integrand associated to a Wilson loop diagram, (P, [n]) [6, 7, 5]. We indicate these polynomials
as R(V(P)). Each Wilson loop diagram represents an NkMHV diagram, and also corresponds
to a convex subspace of GR,≥0(k, n) called a positroid cell, denoted Σ(V(P)) [8, 9]. Any positroid
cell, Σ, can also be defined by a set of Plücker coordinates called the Grassmann necklace, I[10,
Section 16]. Recent work has shown that the irreducible factors of the product of elements of the
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Grassmann necklace are the frozen variables of the cluster algebra defined by Σ [11, 12]. Given a
representation of Σ in terms of variable valued matrices, MV one may identify a polynomial R(V)
as the radical of the polynomial formed by taking the product of the minors in the Grassmann
necklace on the matrix MV . In other words, the polynomial R(V) corresponds to the product of
the frozen variables of the cluster algebra associated to Σ in the choice of coordinates given by MV .
Recent work has also shown that the polynomial R(V(P)) is a special case of this phenomenon [9].
For I(V(P)), the Grassmann necklace of Σ(V(P)), we have R(V(P)) = rad(

∏

Ii∈I(V(P))∆Ii(x)).
In other words, the spurious poles of N=4 SYM theory, as expressed in the twistor notation of
Wilson loop diagrams, is the product of the frozen variable of the cluster algebra of the associated
positroid cell in the set of coordinates defined by the diagram.

It is also worth noting that this cluster algebra arises from the plabic graph representation of the
positoid cell. The BCFW diagrams that define the Amplituhedron have a natural representation in
terms of plabic graphs [13, Section 5]. While there is not yet a clear translation from the geometry
of the Wilson loop diagrams to the geometry of the Amplitudehedron, this gives another tantalizing
clue pointing at the similarities between the Amplituhedron and the geometry of the holomorphic
Wilson loop representation.

In this paper, we study the geometry of the spurious poles of N=4 SYM theory in terms of positroid
varieties. In Theorem 3.12, we show that the spurious poles lie on the boundaries of the associated
positroid cells. Moreover, Theorem 3.13 shows that the poles with codimension one vanishing
loci are dense in the codimension one boundary varieties. Furthermore, we show that while the
vanishing loci of the square free factors of the product of the Grassmann necklace minors lies on the
boundary of the corresponding positroid variety, not every codimension one boundary intersects
the vanishing locus of such a factor. We give a partial characterization of which codimension one
boundaries do not intersect the codimension one vanishing loci of these factors. We use these facts
to show that the codimension one spurious poles of tree level Wilson loop diagrams cancel exactly
in the tree level amplitude.

Section 2 gives the necessary background on Wilson loop diagrams (2.1) and variable valued ma-
trices along with their associated matroids (2.2). Section 3 describes the geometry of the spurious
poles, with Section 3.1 relating the diagrams to their associated positroid varieties. Section 3.2
both introduces the integrals defined by the Wilson loop diagrams and the polynomial R(V(P))
that determines the spurious poles of N=4 SYM theory and is determined by the Grassmann neck-
lace associated to the Wilson loop diagram. Section 3.3 relates the spurious poles of N=4 SYM
theory to the frozen variables of the cluster algebra defined by the same positroid variety. Finally,
Section 4 discusses the spurious poles of the three level interactions. We show that while the vari-
ety defined by these polynomials lives on the boundary of the corresponding positroid cells, not all
codimension one boundaries intersect these varieties (4.1). Finally, in section 4.2, we also explicitly
show that the codimension one spurious poles cancel exactly (Theorem 4.5). There are several
technical lemmas that are needed in order to perform the necessary calculations to demonstrate
the cancellations in Theorem 4.5. The details of these calculations can be found in Appendix A.
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2 Diagramatical and matroidal background

In this section, we present the necessary diagramatic background to understand Wilson loop dia-
grams (Section 2.1). Section 2.2 provides standard background on matroids and variable valued
matrices.

2.1 Diagramatics

A Wilson loop diagram W = (P, [n]) consists of a cyclically ordered set [n] = {1, · · · , n} and a set
of propagators P = {(i, j)|i, j ∈ [n]} as an unordered pair of integers. We depict these diagrams
by drawing the set [n] as vertices on a circle. The ith edge of the marked circle is the edge between
the vertices i and i+1. Then the propagator p = (i, j) is depicted as a wavy line on the interior of
the circle connecting the ith edge to the jth edge. In this manner, we say that the propagator p is
supported by the vertices Vp = {i, i+ 1, j, j +1}, as these are the vertices bounding the edges that
p ends on.

It is useful to develop some nomenclature for the positioning of propagators on a given edge of a
Wilson loop diagram.

Definition 2.1. Let e be an edge of a Wilson Loop diagram W = (P, [n]), and let {q1, . . . , qs} be
the propagators incident on the edge e, ordered according to their proximity to vertex e. We say
that qi and qi+1 are adjacent on the edge e.

More generally, for a subset of propagators P ⊂ P, we write VP = ∪p∈PVp to indicate the set of
vertices supporting the propagator set P . For any V ⊂ [n], the set of propagators supported by V
is written Prop(V ) = {p ∈ P|Vp∩V 6= ∅}. We also give a name to the set of vertices not supporting
a set of propagators: for P ⊂ P, define F (P ) = V c

P c. Next we present two examples of diagrams
that we refer to throughout the paper.

Example 2.2. Draw W = ({(3, 5), (1, 7)}, [8]) as

W =

•

•

•

• •

•

•

•
1

2

3

4 5

6

7

8
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and W ′ = ({(1, 4), (3, 5), (6, 7), (8, 1), (8, 1)}, [8]) as

W ′ =

•
•

•

•

• •
•

•

•

•
1

2

3

4

5 6

7

8

9

10

.

Note that the pairs indicating the propagators are unordered. That is if the propagator p ends on
the third and fifth edges, we may write p = (3, 5) or p = (5, 3). In this paper, we use the convention
that one may write p = (i, j) = (j, i). That is, the two indices do not correspond to an ordered
pair, or impose an orientation on p. Rather, they are simply the edges on which the propagators
end. Furthermore, we use the convention that if two propagators have endpoints on the same edge,
they are drawn so that they do not cross.

In the diagram W , the propagators p = (3, 5) and r = (2, 5) both end on the the 5th edge of the
diagram. By Definition 2.1, these two edges are adjacent. When we need to refer to their positioning
on the 5th edge, refer to them as q1 = p and q2 = r. Consider the set of two propagators: Q = {p, r}.
Then VQ = {2, 3, 4, 5, 6}. Let s = (1, 7) be the final propagator in W . Then F (s) = {1, 7, 8} = V c

Q

is the set of vertices that do not support Q. In particular, the vertex 2, which is in Vw and Vr isn’t
an element of F (s).

The physics literature, is only interested in a certain subclass of these graphs, called admissible
Wilson loop diagrams. An admissible Wilson loop diagram, W = (P, [n]), satisfies the following
conditions:

1. Non-crossing No pair of propagators p, q ∈ P cross in the interior of W . That is, for two
propagators p = (i, j), q = (k, l) ∈ P written such that i < j and k < l in natural linear
order on [n], if i < k then l < j.

2. Local Density Any subset of propagators P ⊂ P is supported by at least 3 more vertices
than the number of propagators in P : |VP | ≥ |P |+ 3.

3. Global Density There are at least 4 more vertices in the diagram than there are propagators.
That is n ≥ |P|+ 4.

Note that the diagram W above is admissible, while W ′ is not. Furthermore, note that local density
implies that one cannot have a propagators p = (i, i + 1) or pairs of propagators with the same
endpoints: p = q = (i, j).

For the remainder of this paper, we restrict our attention only to admissible Wilson loop diagrams.
We denote by Wk,n to be the set of all Wilson loop diagrams with k propagators and n vertices:
Wk,n = {(P, [n])| admissible ; |P| = k}.
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2.2 Variable valued matrices and matroids

Wilson loop diagrams have a natural matrix representation with real independent variable entries.
These matrices are a bridge between the combinatorics of the diagrams to matroids and to geometric
subspaces of the positive Grassmannians. Before introducing this representation, we define some
notation around matrices with algebraically independent invertible variables, and recall some facts
about matroids

Definition 2.3. Let V = {V1, V2, . . . , Vk} be a collection of subsets of {1, 2, . . . , n}. Let x = {xi,j}
be a set of algebraically independent invertible variables. Define MV ∈ Mk,n to be the k×n matrix
having xi,j as its i, j entry if j ∈ Vi and 0 otherwise.

One can realize a matrix MV at a point x = {xi,j} ∈ R|x| to get a real valued matrix. We can vary
the points in R|x| to parameterize a family of real valued k×n matrices. Furthermore, by ignoring
any such matrices of less than full rank, we may parameterize a subset of GR(k, n).

Let M rk k
k,n be the set of k × n matrices of full rank. Then the standard quotient map takes M rk k

k,n

to GR(k, n)

φ : M rk k
k,n → GR(k, n) (1)

Definition 2.4. Let L(V) be the set of point of GR(k, n) that can be realized by setting the entries
of MV to real values. In other words, L(V) = φ(MV ∩M rk k

k,n ).

Finally, sometimes we need to refer to the subsets in V that intersect a subset S ∈ {1, 2, . . . , n}.
These sets correspond to the rows of MV have non-zero entries in the columns indicated by S.

Definition 2.5. For S ∈ {1, 2, . . . , n}, write VS = {Vi ∈ V|Vi ∩ S 6= ∅}.

Matrices of the form MV define matroids1. The remainder of this section gives a brief overview of
matroids, which the expert reader may skip.

A matroid can be defined as a set, and a set of independence conditions on said set. For instance,
one can define M = (E,B), where B, called a basis set, is a non-empty set of subsets of E, each of
the same size, satisfying the basis exchange condition:

for all A and B ∈ B, if a ∈ A \B then ∃b ∈ B \ A and (A \ a) ∪ b ∈ B .

Each element of B is a basis of M and denotes a maximal independent set. The rank of the matroid,
denoted rk (M) is the unique size of all the basis sets. We may also refer to the rank of a subset
of E, S ⊂ E. We write the rank of S as rk (S) = max{|B ∩ S| : B ∈ B}.

Equivalently, one can define M = (E,F), where F = {F ⊂ E|∀x ∈ E \ F, rk (F ∪ x) > rk (F )}
is the set of flats of M . For any subset S ⊂ E, we can define the closure of the set cl(S) = {x ∈
E|rk (S) = rk (S ∪ x)} as the smallest flat containing S. Note that if S and T are two flats, then
S ∩ T is also a flat.

1Specifically, the class of matroids defined in this way are transversal matroids [14], as discussed in [15], but the
details are beyond the scope of this discussion.
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Also equivalently, we may write M = (E, C) where C = {C ⊂ E|∀S ( C, S ⊂ B for some B ∈ B}
is the set of circuits of M . The circuits are the minimal dependent sets, i.e. each proper subset of
C is independent. If C and D are both circuits, then C ∪D is a cycle.

Given a matroid M = (E,B), and a subset S ⊂ E, the restriction M |S = (S,B|S) = {B ∩ S|B ⊂
B such that |B ∩ S| = rk (S)}. The contraction is defined M/S = (E \ S,B/S) = {B \ S|B ⊂
B such that |B ∩ S| maximal}. A matroid is disconnected if it can be written as the direct sum of
two matroids: M = (E1,B1)⊕ (E2,B2) = (E1 ∪ E2,B1 × B2). Otherwise, it is connected.

A matroid is representable if it can be written as a matrix with the same independence data. In
particular, since the matrices MV have algebraically independent non-zero entries, it is straight
forward to read off the matriod associated to the collection of sets V.

Example 2.6. Given a collection of subsets V as in Definition 2.3, we may define a matroid with a
ground set consisting of the columns of MV . That is, E = {1, . . . , n}. Then, the set S ⊂ E is a
circuit in the matroid defined by MV if the set of rows with non-zero entries in S (i.e. VS as defined
in Definition 2.5) contains exactly one fewer element than S: i.e. |VS |+ 1 < |S|. For instance, any
zero column of MV is a circuit.

Definition 2.7. We write M(V) to denote the matroid defined by the variable valued matrix MV .

A positroid is a matroid, endowed with a cyclic ordering on the ground set, that can be realized as
a matrix with all positive minors. Note that if M is a positroid, as a matroid it is invariant under
any permutation of the ground set. However, as a positroid, in order to preserve the non-negativity
of the minors, it is only invariant under cyclic permutations of the ground set.

Let <a denote the a-th cyclic shift of the standard order on {1, . . . , n}. So, a <a (a + 1) <a

· · · <a (a − 1). These cyclic orderings on E define Gale orderings on the subsets, {s1 <a s2 <a

· · · <a sk} ≤a {t1 <a t2 <a · · · <a tk} if and only if si ≤a ti for all 1 ≤ i ≤ k. The collection of
minimal basis sets for each cyclic shift of the Gale ordering gives the Grassmann necklace associated
to a positroid. The Grassmann necklaces also define a stratification of the Grassmannians called
positroid varieties. See [10, Section 16] for the original construction or [16] for a good exposition.
Positroid varieties define subsets of GR(k, n) that give a CW-complex when restricted to GR,≥0(k, n)
[10, Section 3]. We refer to the positroid varieties as Σ and the positroid cells by Σ≥0.

One way to determine if a matroid is a positroid is to look at its flacets. A flacet, F , of a (connected)
matroid M is any subset of M such that M |F and M/F are both connected. If M is a positroid,
then every flacet is a cyclic interval of the ground set. Furthermore, for any matroid, any flacet is
a cyclic flat.

Definition 2.8. If the matroid M(V) is a positroid, let Σ(V) and Σ(V) be associated open and
closed positroid varieties respectively. As such, it defines a subspace of GR(k, n). We write
Σ≥0(V) = Σ(V)∩GR,≥0(k, n) and Σ≥0(V) = Σ(V)∩GR,≥0(k, n) to be the open and closed positroid
cells defined by restricting to GR,≥0(k, n). Similarly, we write L≥0(V) to be the restriction of L(V)
to GR,≥0(k, n).

In this way, the word positroid has both a geometric meaning (as a subset of a Grassmannians)
and a matroidal meaning (as a matroid where every flacet is a cyclic flat). These two meanings are
tightly related in that every geometric positroid can be represented matroidaly as a positroid and
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vice versa. It should be clear from context whether the word positroid is referring to a combinatorial
object or a subset of the Grassmannians. Note that while the geometrically motivated subspaces
of GR(k, n), Σ(V), are in one to one correpondence with the subspaces defined by matrices, L(V),
these two subspaces are not the same.

We conclude this section with an example of how L(V), Σ(V), and Σ(V) differ.

Example 2.9. This example illustrates the differences between the sets L(V), Σ(V), and Σ(V). Let

MV =

[

xp,1 xp,2 0 xp,4 xp,5 0
xq,1 xq,2 0 0 xq,5 xq,6

]

.

Note that this matrix corresponds to a Wilson loop diagram, but the result demonstrated in this
example is much more general. Let Σ(V) and Σ(V) be the associated open and closed positroid
cells respectively.

The point represented by
[

1 1 0 1 1 0
1 1 0 0 1 1

]

is in L(V) \ Σ(V), since the minor ∆12 vanishes.

The point represented by
[

1 0 0 1 0 1
0 1 0 1 1 1

]

is in Σ(V) \ L(V) since there is no point in L(V) where ∆45,∆56 6= 0 and ∆46 = 0.

The point represented by
[

0 0 0 0 1 0
0 0 0 1 0 1

]

is in Σ(V) \ (Σ(V) ∪ L(V)).

3 Geometry of Wilson loop diagrams

We are now ready to combine the notation above to define the matrices associated to Wilson loop
diagrams, and thus define the integrals associated to the diagrams. In this section, we show that
the polynomials appearing in the denominator of the integrands thus defined, R(V(P)), are both
physically and geometrically interesting. Physically, these denominators correspond to the spurious
poles of N = 4 SYM [5]. Geometrically, these polynomials are defined by the Grassmann necklace
associated to the diagram [17]. Furthermore, the vanishing locus of R(V(P)) is contained in the
boundary of the corresponding positroid variety (Theorem 3.12) and if the vanishing locus has
codimension one in the closed positroid variety, then it is dense in the closure of a codimension one
boundary Theorem 3.13. Finally, we show that these polynomials are closely related to the frozen
variables of the cluster algebras defined by the positroid variety, Σ(V(P)).

For physical reasons, one is only interested in the intersection of the positroid varieties with
GR,≥0(k, n). Therefore, while we prove results in this section for Σ(V(P)), for physical inter-
pretations of the spurious poles one is only interested in the restriction to Σ≥0(V(P)).
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3.1 Wilson loop diagrams and positroid varieties

In order to associate a matrix to a Wilson loop diagram, W = (P, [n]), we associate a 4 dimensional
subspace of RPn+1 to each propagator p ⊂ P:

Yp =

{

xp,i i = 0 or i ∈ Vp

0 else,

where xp,i are algebraically independent real valued variables [18]. Then one may associate to W
a subspace of GR(k, n + 1) given by the linear span of the Yp.

In other words, for each Wilson loop diagram (P, [n]), we have two sets of subsets

Y(P) = {Vp ∪ 0|p ∈ P} and V(P) = {Vp|p ∈ P}

that define two matrices MY(P) and MV(P). These define subspaces of GR(k, n + 1) and GR(k, n)
respectively, that we call L(Y(P)) and L(V(P)) as in Definition 2.4.

Example 3.1. Given the Wilson loop diagram W in Example 2.2, with p = (3, 5), r = (2, 5), and
s = (1, 7) one may write

MY(P) =





xp,0 0 0 xp,3 xp,4 xp,5 xq,6 0 0
xr,0 0 xr,2 xr,3 0 xr,5 xr,6 0 0
xs,0 xs,1 xs,2 0 0 0 0 xs,7 xs,8



 .

We define the matrix MV(P) to be the one defined by ignoring the first column of MY(P). In the
running example,

MV(P) =





0 0 xp,3 xp,4 xp,5 xq,6 0 0
0 xr,2 xr,3 0 xr,5 xr,6 0 0

xs,1 xs,2 0 0 0 0 xs,7 xs,8



 .

Remark 3.2. Note that, as a subspace of GR(k, n) (resp. GR(k, n + 1)), the ordering of the rows
in MV(P), resp. MY(P) do not matter.

Remark 3.3. It is also worth noting that in previous literature, the matrices MY(P) and MV(P)

were denoted C∗(W ) and C(W ) respectively. However, in this paper, we wish to exploit the results
of [15] to understand the properties of the parameterized spaces and therefore change the naming
conventions.

Note that in this setup, for W = (P, [n]) and S ⊂ [n], the set Prop(S) indicates the rows of MV(P)

that have non-zero entries in the collumns indicated by V . That is, in the notation of Definition
2.5, Prop(S) = V(P)S .

The matroidal properties of Wilson loop diagrams derived in [8] can be verified by considering the
independent columns of MV(P).
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1. Theorem [3.9] of [8] states that a set of vertices of a Wilson loop diagram, (P, [n]) is inde-
pendent if and only if no subset supports fewer propagators than vertices in the subset. I.e.
V ⊂ [n] is independent if, for all U ⊆ V , Prop(U) ≥ |U |. In terms of rows and columns of
MV(P), this simply states that any set of columns of MV(P) contains a dependent subset if and
only if said subset is non-zero on fewer rows than columns in the subset, which is consistent
with the circuit condition laid out in Example 2.6

2. Corollary 3.39 of [8] shows that all admissible Wilson loop diagrams, in particular those sat-
isfying the non-crossing and local density conditions, correspond to positroids. This means
that, as matroids, the Wilson loop diagrams can be represented by matrices with all non-
negative maximal minors. That is, the subspace of GR(k, n) parameterized by MV(P) inter-
sects GR,≥0(k, n).

Example 3.4. For instance, in W from Example 2.2, the vertices {7, 8} are a circuit since they
only support one propagator between them. On the other hand, the vertices {3, 4} support two
propagators, and thus are independent. Consider the set of propagators P = {(2, 5), (3, 5)}. Then
F (P ) = {1, 7, 8}. This is a flat of rank 2. In [8], set of the form F (P ) are called propagator flats,
and the author shows that the cyclic flats of the matroid associated to W are propagator flats.

Furthermore, [15] gives insight into the geometry of Wilson loop diagrams in GR,≥0(k, n). In [15,
Theorem 8.4] the author shows that for a Wilson Loop diagram W = (P, [n]), the closure of the
locus L(V(P)) is exactly the closure of the positroid: L(V(P)) = Σ(V(P)). Thus, in the positive
Grassmannians as well, the subspace parameterized by the matrices MV(P) agrees with a positroid

cell, up to a set of measure 0, L≥0(V(P)) = Σ≥0(V(P)). This fact is illustrated in Example 2.9.

The author of [15] also shows each Σ(V(P)) is a 3k dimensional space. More generally, the author
shows, using slightly different notation:

Theorem 3.5 (Theorem 3.2, [15]). Given a variable valued k × n matrix MV with m non-zero
entries representing a positroid Σ(V), the following are equivalent:

1. dim(Σ(V)) = m− k

2. MV has the smallest number of non-zero variable entries of any variable valued matrices
representing Σ(V)

3. For all T ⊆ V,

|
⋃

T∈T

T | ≥ max
T∈T

(|T |) + |T | − 1 .

Definition 3.6. We say that MV is a minimal representation of Σ(V) if the matroid M(V) is a
positroid and if MV satisfies condition 2 of Theorem 3.5.

Note that each matrix of the from MV(P) is a minimal representation of Σ(V(P)).

In [19, section 2.3], the authors show that the subspace of GR(k, n+1) parameterized by MY(P) can
be viewed as a real k vector bundle over the space parameterized byMV(P), i.e. ∪W∈Wk,n

L(Y(P)) →
∪W∈Wk,n

L(V(P)). Restricting to any given Wilson loop diagram gives a trivial vector bundle
L(Y(P)) → L(V(P)). As shown in Theorem 2.29 of loc. cit., the space ∪(P,[n])∈Wk,n

L(Y(P)) need
not be orientable.
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3.2 Integrals and poles

The goal of this paper is to show that the spurious poles of the integrals associated to Wilson loop
diagrams cancel in the calculation of the full amplitude. In this section we define the integrals and
show that the poles lie on the boundary of the associated positroid cell (Σ≥0(V(P))).

Recall that there are two types of singularities in this theory: the physical poles and the spurious
poles. The physical poles arise when the vectors representing the particles do not span R4, as one
expects in a physical theory with infrared singularities. The spurious poles are those that arise in
each summand of the integrals involved in calculating the three level scattering amplitude. These
should cancel in the sum. In this section, we discuss the algebraic and geometric properties of these
poles.

3.2.1 Integrals associated to Wilson loop diagrams

The Wilson loop diagrams represent the tree level contributions to the scattering amplitudes in the
physical theory N=4 SYM. The holomorphic Wilson loop for n particles and k propagators gives
the contribution to the n particle scattering amplitude of N=4 SYM by k propagators [1, 2, 3, 5].
The tree level contribution to this amplitude is given by a sum of integrals associated to admissible
Wilson loop diagrams:

Atree
k,n =

∑

(P,[n])∈Wk,n

I(V(P)) . (2)

The scattering amplitude is a functional on the particles of the theory, represented in twistor space.
In this case, the external data are represented as n sections of a k dimensional real vector bundle
over a real twistor space. The set of external data, {Z1, . . . , Zn}, is constructed such that the
n× (k + 4) matrix defined with the vector Zi in the ith row has positive maximal ordered minors.
Furthemore, we fix a gauge section, Z0, which can be taken, without loss of generality, to be a 0
section. We define the matrices

Z =







− Z1 −
...

− Zn −






; Z∗ =











− Z0 −
− Z1 −

...
− Zn −











.

Note from above, the matrix Z has positive maximal minors, while the matrix Z∗ may not.

Before we define the actual integral, I(V(P)), recall that if multiple propagators end on the eth

edge, we order them according to their proximity to the vertex e (Definition 2.1). We are now
ready to define the integrals associated to each Wilson loop diagram W = (P, [n]), with k = |P|:

Definition 3.7.

I(V(P))(Z∗) =

∫

(RP4)k

∏

p∈P

∏

v∈Vp
dxp,v

R(V(P))
δ4k|4k(MY(P) · Z∗)

10



where, for X a k × k + 4 matrix,

δ4k|4k(X) =

k
∏

b=1

(Xb,4+b)
4δ4((Xb,1,Xb,2,Xb,3,Xb,4))

and R(V(P)) is a polynomial determined from the W as follows:

1. Define Re = xq1,e+1

(
∏s−1

r=1(xqr ,exqr+1,e+1 − xqr,e+1xqr+1,e)
)

xqs,e

2. R(V(P)) =
∏

e∈[n]Re

For more detail on the derivation of these integrals, see [7, 18]. Appendix A gives examples and
context for calculations done with these integrals.

There are a few features to note in this definition. First, notice that the spurious poles of the theory
correspond to setting the factors of R(V(P)) to zero. Specifically, by equations (5) in Appendix A,
the variables xp,0 localize to 0 when the vectors representing the particles do not span R4. This
corresponds to the physical poles of the theory. The spurious poles occur when xp,0 6= 0, but the
polynomial R(V(P)) goes to 0. See [20, 7, 18] for more calculations of this form.

Secondly, note that in this definition we take the integral over (RP4)k. In particular, the polynomial
R(V(P)) is defined over (RP4)k, and not over L(V(P)). Note that by a toric action, we may consider
MY(P) as a subspace of (RPn)k, and since each row has exactly five non-zero entries, we may view

each Wilson loop diagram as an isomorphism from (RP4)k to MY(P). Finally, by the map in
equation (1), we may study the vanishing locus of R(V(P)) as a subspace of L(Y(P)).

Thirdly, in [8], the authors show that the matroid M(V(P)) is a positroid, i.e. the parameterized
space L(V(P)) intersects the non-negative Grassmannian. Due to the parallels with the Ampli-
tuhedron, we are interested in the non-negative geometry of the spaces defined by the Wilson loop
diagrams. In [15], the author shows that

L≥0(V(P)) = Σ≥0(V(P)) . (3)

In other words, up to a space of measure 0, the non-negative space parameterized by the Wilson
loop diagrams, {Vp} ⊂ (RPn)k and MV(P) ⊂ (Rn×k) both parameterize a particular positroid cell
in the appropriate positive Grassmannian.

Finally, returning to the main purpose of this paper, we wish to show that the poles of these
integrals (the spurious poles of the theory) cancel in the tree level amplitude. Equation (2) shows
that NkMHV (tree level) amplitude on n points is given by the sum of all the I(V(P)), for
(P, [n]) ∈ Wk,n. Theorem 3.13 shows that the spurious poles all fall on the boundaries of a
geometric space defined by these diagrams. Then in Theorem 4.5 we show that the poles that fall
on codimension one boundaries cancel.

However, unlike in the Amplituhedron story, one cannot associate a geometric meaning to the sum
of these integrals. In [19], the authors show that while each subspace L≥0(Y(P)) is orientable, the
union of said spaces are not. Therefore, one cannot interpret the sum of the associated integrals as
the volume of a geometric space. This result has also been shown explicitly and separately in [7]
which explicitly calculates a contradiction that occurs if one attempts this interpretation.
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Here, we propose a different geometric interpretation of the sum of these integrals. The space
L≥0(Y(P)) forms a k vector bundle over L≥0(V(P)) [19]: L≥0(Y(P)) → L≥0(V(P)). One can
consider L≥0(Y(P)) as the closure of a k-dimensional line bundle over L≥0(V(P)) [19]. Then, we
may consider the cancellation of spurious poles on any section of the bundle, i.e. after fixing values
to the variables xp,0. In fact, for the spurious poles, one typically sets the values of xp,0 to be ±1,
and factors of R(V(P)) evaluates to 0 [20, 7, 18]. The physical poles of the tree level amplitude
Ak,n arise when the variables xp,0 = 0.

3.2.2 Geometry of spurious poles

In this section, we investigate the geometry of the spurious poles of the Wilson loop diagrams, or
the factors of the polynomial R(V(P)). We give three results showing that these factors are closely
related to the geometry underlying the positroid Σ(V(P)). Namely, the polynomial is exactly the
product of the square free factors of the minors identified in the Grassmann necklace of Σ(V(P)).
The zero loci of the factors of R(V(P)) lie on the the boundary of Σ(V(P)) and the codimension
one zero loci are dense in the codimension one boundaries of Σ(V(P)).

In [17], the authors show that the prime factors of R(V(P)) to are also the prime factors of the
product of the minors defined by the Grassmann necklace of Σ(V(P)). We restate it here using the
notation of this paper. First we introduce some notation.

Definition 3.8. Given a variable valued matrix MV(P), with Grassmann necklace I(V(P)), let
∆Ii(x) be the polynomial in x defined by the minor of MV(P) indicated by the columns indexed by
Ii.

This is a polynomial in the variables making up the matrix, and is a different object than the
Plücker coordinate indicated by Ii. Recall that the matrix MV is parameterized by the independent
variables x, with one algebraically independent variable in each non-zero entry.

Theorem 3.9. [17, Proposition 5.3] Write I = {I1, . . . In} as the Grassmann necklace associated
to the positroid cell Σ(V(P)). Then

1. Each ∆Ii(x) splits into linear and quadratic factors. All linear factors of ∆Ii(x) are single
variables and all irreducible quadratic factors are 2× 2 determinants of single variables.

2. Quadratic factors in ∆Ii(x) arise precisely when propagators p and q are supported on a
common edge a.

3. The factor re divides ∆Ie(x).

4. The ideal generated by R(V(P)) is the radical of the ideal generated by
∏n

i=1 ∆Ii(x).

We can generalize this result to define a polynomial given by a minimal parametrization of a
positroid variety.

Definition 3.10. Let the set of subsets V define a positroid variety Σ(V), with matroid M(V).
Let I = {I1, . . . In} be the associated Grassmann necklace. Then define R(V) to be the polynomial
formed by the product of the prime factors of

∏n
i=1 ∆Ii(x) in the variables {xi,j} defined by the set

V. That is, R(V) = rad(
∏n

i=1 ∆Ii(x)).

12



We note that here, R(V) is a polynomial in the matrix entries xp,i. The radicals taken are over the
polynomial ring R[x], defining a variety in the space of n×k matrices. To pass to the Grassmannian
and obtain the variety Σ(V), one must consider the image under the map in (1).

In particular, there may be multiple polynomials arising from the same Grassmann necklace defining
the positroid variety Σ(V), as illustrated in the following example.

Example 3.11. Note that the polynomial R(V) is dependent on the minimal parameterization of the
positroid defined by the Grassmann necklace I. For instance, in [9], the authors give conditions for
when multiple Wilson loop diagrams can correspond to the same positroid cell. For example, the
two by six matrices defined by V1 = {{1, 2, 4, 5}, {1, 2, 3, 4}} and V2 = {{1, 2, 4, 5}, {2, 3, 4, 5}} both
correspond to the positroid variety with Grassmann necklace I = {12, 23, 34, 45, 51, 12}. However

R(V1) = x1,2(x1,1x2,2 − x2,1x1,2)x2,1x2,3x2,4x1,4x1,5 while

R(V2) = x1,1x1,2x2,2x2,3x2,5(x1,4x2,5 − x2,4x1,5)x1,4 .

Both correspond to the polynomial formed by the product of the prime factors of
∏n

i=1∆Ii(x)
under the corresponding coordinate system.

This is different from the approach elsewhere in the literature, e.g. [11, 12], where similar polyno-
mials are defined on the Plücker coordinates.

Next, we to show that the factors of R(V(P)) vanish on the boundary of the associated positroids.
While this has been shown explicitly in the case of n = 6 and k = 2 [20], it has not been shown in
general.

Proposition 3.12. If the matroid M(V) is a positroid, then the factors of R(V) vanish on the
boundary of the positroid variety Σ(V).

Proof. Let I(V) = {I1, I2, . . . , Ik} be the Grassmann necklace associated Σ(V). From Definition
3.10,

R(V) = rad

(

k
∏

i=1

∆Ii(x)

)

.

From Theorem 5.15 in [21], the ideal of functions defining the variety Σ(V) is generated by

{∆I |Ib 6≤b I; b ∈ [k]},

where ≤b indicates the bth cyclic shift of the Gale ordering. From [15, Theorem 5.1], L(V) ⊂ Σ(V)
and hence every function vanishing on Σ(V) vanishes on L(V). Theorem 5.1 in [21] implies that
the open positroid variety Σ(V) is defined as a subset of Σ(V) by requiring certain minors to be
non-vanishing. Namely,

∆I1 ,∆I2 , . . . ,∆Ik 6= 0.

We may consider the minors ∆Ii either as Plücker coordinates, or as polynomials in variables
defining MV , i.e. ∆Ii(x). Using the latter interpretation, we note that the polynomial R(V)
vanishes exactly where at least one of the ∆Ii(x) vanishes. So, the vanishing set of R(V) inside
L(V) is exactly the set of points in L(V) lying outside Σ(V), or L(V) \Σ(V). Noting that

L(V) \Σ(V) ⊂ Σ(V) \Σ(V),

gives the desired result.
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Next, we use Proposition 3.12 to show that for Wilson loop diagrams, factors of R(V(P)) that
vanish on codimension one boundaries of Σ(V(P)) have a locus that is dense in the corresponding
positroid.

Theorem 3.13. Let W = (P, [n]) be an admissible Wilson loop diagram and let L′ ⊂ L(V(P)) be
the vanishing locus of a single factor of R(V(P)) inside L(V(P)) and suppose that L′ has codimen-
sion one in L(V(P)). Then, the space parameterized by by the restriction is dense in a positroid
variety, i.e. L′ = Σ′, where Σ′ is a positroid cell in the boundary of Σ = Σ(V(P)).

Proof. From Theorem 3.9, R(V(P)) is the product of individual entries and two by two minors of
MV(P). Suppose first that L′ is a codimension one locus obtained by setting a single variable xp,i
to zero. Then, L′ is the subset of the Grassmannian consisting of row spaces of matrices of the
form MV(P) where xp,i is set to zero and all other entries are evaluated at real numbers. Recall
from Definition 2.7 and equation (1) that all generic points in L′ come from the same variable
valued matrix, and thus define the same matroid. Furthermore, since the basis set of the matroid
associated to L′ is contained in basis set for M(V), the former is a boundary of the latter. Since the
positroid stratification is coarser than the matroid stratification, a generic point in L′ is contained
in the closure of some positroid Σ′ ⊂ Σ. Proposition 3.12 implies that L′ ⊂ Σ \ Σ and so Σ′ 6= Σ.
Since L′ was assumed to be codimension one, the matroid represented by a generic point in L′ is
in fact Σ′. Then, [15, Theorem 5.1] implies that L′ = Σ′, as desired.

Next, suppose that L′ is a codimension one boundary obtained by setting a two by two minor of
MP(x) to zero. As in Lemma A.2, L′ may be represented by reparameterizing this two by two minor
in MV(P), then setting one of the new parameters to zero. Let M ′ denote the variable valued matrix
obtained by this change of variables. As above, all generic points in L′ represent the same matroid,
namely the matroid whose bases are the minors M ′ which aren’t identically zero. Proposition 3.12
implies L′ ⊂ Σ \Σ. Then, since L′ has codimension one in Σ, the matroid represented by a generic
point in L′ is a positroid Σ′. The open positroid Σ′ has a parameterization via a Marsh-Reitsch
matrix R in the same number of variables as M ′. Then, as in the proof of [15, Theorem 5.1], M ′

and R are generically related by a change of basis matrix and thus L′ = Σ′.

Example 3.14. Note that not all factors of R(V(P)) correspond to codimension one subspaces of
Σ(V(P)).

For instance, consider the diagram in Example 2.9. Setting xp,4 to 0 gives the matrix

M ′ =

[

xp,1 xp,2 0 0 xp,5 0
xq,1 xq,2 0 0 xq,5 xq,6

]

,

which can be written as MV with V = {V1 = {1, 2, 5}, V2 = {1, 2, 5, 6}}. Note that while
|
⋃

V ∈V V | = 4,
max

V ∈V(|V |)
+|V| − 1 = 4 + 2− 1.

Therefore the third equivalent statement of Theorem 3.5 does not hold, and thus MV is not a
minimal representation of a 5 dimensional subspace of GR(k, n). Since, by display (1) of [15], 5 was
an upper bound on the dimension of L(V), setting xp,4 must correspond to a higher codimension
subspace of Σ(V(P)). In fact, direct calculation shows that this factor lies on a codimension 2
locus.
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We show in Section 4.1 that the converse of Theorem 3.13 does not hold. Namely, not every
codimension one boundary of Σ(V(P)) contains the vanishing loci of a factor of R(V(P)).

3.3 Cluster algebras, frozen variables, Grassmann necklaces

We conclude this section with a brief aside, noting that the polynomial
∏

Ii∈I
Ii has appeared in

relation to a cluster algebra associated to the positroid Σ where I = {I1, I2, . . . , Ik} be the associated
Grassmann necklace [11, 12]. Note that there is a difference in the Grassmann necklace presented
in loc. cit. and this work. Namely, in in that work, the Grassmann necklace is a written in terms
of the Plücker coordinates coming from GR(k, n). In this paper, we fix a (minimal) representation,
MV , of Σ(V). Then, instead of the Plücker coordinates Ii, we consider the minors ∆Ii of MV as
polynomials in xp,i.

In particular, in [11], the authors consider I∗ to be the reverse Grassmann necklace associated to Σ.
That is, I∗j is that maximal set in the jth cyclic shift of the Gale order on sets such that the Plücker
coordinate ∆I∗j

is non-vanishing on Σ(V). Following Chapter 5 of [21] replacing Schubert varieties
in the Grassmannian with reverse Schubert varieties, one sees Σ can equivalently be defined as
an intersection of reverse Schubert varieties. In [12], the authors show that each positroid variety
defines a cluster algebra, and that the prime factors of

∏

I∗i ∈I
∗ I∗i are exactly the frozen variable of

said cluster algebra.

In the notation of this, paper, given a minimal representation MV , we may define I∗(V) as the
reverse Grassmann necklace of the associated positroid. Define

R∗(V) = rad

(

k
∏

i=1

∆I∗i
(x)

)

where x is the set of variables defining MV .

In Theorem 3.15, we show that the polynomial R∗(V) and R(V) are equal. In this manner, we show
that the polynomials R(V) defined in this paper generate the radical ideal of the ideal generated
by the product of the frozen variables of the associated cluster algebra, expressed in the coordinate
system V. In particular, for V(P) defined by a Wilson loop diagram, the locus of the spurious poles
(i.e. the vanishing locus of R(V(P))) is the vanishing locus of the frozen variables of the cluster
algebra defined by Σ(V(P)).

In other words, the spurious poles of the Wilson loop diagrams are intricately connected to the
geometry of positroid varieties in ways that require further exploration.

Theorem 3.15. The two polynomials R∗(V) and R(V) are the same.

Proof. This theorem follows from the fact that R∗(V) and by R(V) are both radical polynomials
defining the same subvariety of the positroid variety Σ(V).

From Section 5 of [21], the open positroid variety Σ(V) is defined as a subset of Σ(V) by ∆I 6= 0
for all I ∈ I, where I is the Grassmann necklace of Σ(V). So,

∏

I∈I ∆I defines the subvariety

(Σ(V) \ Σ(V)) ⊂ Σ(V), the boundary of the open positroid inside the closed positroid.
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From Theorem 5.1 in [15], we know that L(V) ⊂ Σ(V). Let V be the subset of L(V) that is the
image of the vanishing loci of R(V) under the map in (1). That is, V = L(V)∩{∆Ii(x) = 0|Ii ∈ I}.
Then,

V = V ∩ Σ(V)

=
(

L(V) ∩ {∆Ii = 0|Ii ∈ I}
)

∩ Σ(V)

= L(V) ∩
(

Σ(V) \Σ(V)
)

= L(V) \ Σ(V).

(4)

Following Section 5 of [21] and replacing Schubert varieties with opposite Schubert varieties,
Σ(V(P)) is similarly defined as a subset of Σ(V) by ∆I∗ 6= 0 for all I∗ ∈ I∗. So,

∏

I∗∈I∗ ∆I∗(x)

also defines the subvariety (Σ(V) \Σ(V)) ⊂ Σ(V). Call V ∗ the image of the vanishing loci of R∗(V)
under the map in (1).

Following (4), we see that V ∗ = V . That is, the images of the polynomials R(V) and R∗(V) vanish
on the same set. By Definition 3.10 R(V) is the polynomial generating the radical of the ideal
generated by

∏

I ∆Ii(x). The polynomial R∗(V) is radical by definition. Since R∗(V) and R(V) are
both radical polynomials defining the same variety, R∗(V) = R(V).

4 The poles of Wilson loop diagrams

Finally, we are ready to show that the codimension one singularities appearing in the integrals
I(V(P)) cancel in the sum given in (2). We do this by comparing positroid varieties with common
codimension one boundaries that contain the vanishing loci of the polynomials R(V(P)). We first
show that there are codimension one boundaries of a positroid variety Σ(V) that do not contain the
vanishing loci of any factor of R(V) with codimension one. This phenomena occurs because while
L(V) is dense in Σ(V), L(V) has empty intersection with certain boundary positroids. Since the
vanishing set of R(V(P)) is a subset of L(V), it will not contain these boundary positroids which
do not intersect L(V).

4.1 Boundaries without poles

For a positroid variety Σ, every boundary corresponds to setting a (set of) elements of the Grass-
mann necklace to 0. Indeed one positroid variety is said to be in the boundary of another if the
set of non-vanishing Plücker coordinates of the first are contained in the second. However, this
property does not hold when one considers the minimal representations of Σ. Specifically, if MV is
a minimal representation of Σ(V), then not every codimension one boundary of Σ(V) contains the
vanishing locus of a factor of R(V).

In order to reach a boundary of a positroid cell, one must send certain minors to 0 while not causing
any previously vanishing minors to become positive. Sending parameters to 0, which causes the
polynomial R(V) to vanish, is certainly one way to do this. However, the boundary of Σ(V) contains
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other positroid cells which do not necessarily intersect the vanishing set of R(V). In this section,
we give one criterion for identifying boundaries of positroid cells that do not contain the loci of
these vanishing factors.

Here, we give a characterization of a class of variable valued matrices for which this type of boundary
occurs. We consider a variable valued matrix, MV , with certain conditions on its cyclic flats. Let
V,W ⊂ {1, . . . n} define cyclic flats of MV such that:

1. neither flat has full rank (rk (V ), rk (W ) < k),

2. the sets V , W and V ∪W are cyclic intervals in [n] and

3. one cyclic flat is not contained in the other (e.g. W 6⊂ V ).

Without loss of generality, suppose that the ranks of V and W are related as follows: rk (V \W ) ≥
rk (W \ V ). That is, the flat V has non-zero entries in at least as many rows outside of the rows
VW as vice versa. Then, construct the variable valued matrix MV ′ from MV by zeroing out the
variable entries of (MV)|W and inserting an equal number of non-zero entries in the rows VV and
columns V ∪W such that circuits in V and W are preserved. In other words, for V = {V1, . . . Vn}
the set V ′ = {V ′

1 , . . . V
′
n} is constructed as follows:

1. for every Vi ∈ VW , write V ′
i = Vi \W ;

2. the number of non-zero entries in V ′
V increases from that in VV by the number removed from

VW :
∑

V ′

i ∈V
′

V

|V ′
i | =

∑

Vi∈VV

|Vi|+
∑

Vj∈VW

|Vj ∩W |;

3. if Vi 6∈ VV ∪W then Vi = V ′
i .

An example of this type of boundary pair is given in Example 4.3 below.

Proposition 4.1. Let MV and MV ′ be variable valued matrices as above, and let both have the
same rank. Then MV ′ defines a positroid, Σ(V ′), that lies in the boundary of the positroid Σ(V).

Proof. We prove the theorem by showing that the Grassmann necklace associated to MV ′, I(V ′), is
different from the Grassmann necklace defined by MV , I(V), and that the basis set of MV contains
the basis set of MV ′. In this way, we show that Σ(V ′) 6= Σ(V), and that Σ(V ′) lies in the boundary
of Σ(V).

First, we compare the Grassmann necklaces defining Σ(V) and Σ(V ′). We may read these directly
off the matrices MV and MV ′ . In particular, we wish to show that that I(V) 6= I(V ′). To see this,
first note that rk (V ) (resp. rk (W )) > 0. If this were not true, then whichever flat had rank 0
would be contained in the other flat, which contradicts our hypothesis. Since V ∪ W is a cyclic
interval (in both MV and MV ′), let v denote the first element in the cyclic interval V ∪W such that
rk (v) > 0. Let Iv and I ′v be the Grassmann necklace element starting at the column v in I(V) and
I(V ′) respectively. We have that v ∈ Iv and v ∈ I ′v.
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Without loss of generality, assume that V precedes W in the cyclic interval V ∪ W . Write Iv =
{v = v1, . . . , vr, w1, . . . ws, u1, . . . ut}, where vi ∈ V , wi ∈ W and ui 6∈ (V ∪W ). From this, we can
see that rk (V ) = r and rk (V ∪W ) = r+ s in MV . Furthermore, since W is not a subset of V , we
know that s > 0.

Suppose, for contradiction, we have that I(V) = I(V ′). Then we would have Iv = I ′v. But this
would imply that rk (V ∪W ) inMV ′ is r+s. However, by construction, inMV ′, rk (V ) = rk (V ∪W ),
i.e. r = r + s which contradicts the fact that s > 0.

To see that basis set B of MV contains the basis set B′ of MV ′ , note that any B ∈ B that does not
intersect V ∪W is also a basis set of B′ and vice versa. Let B′ ∈ B′ be a basis set of MV ′ intersecting
V ∪W . Partition B′ into two sets, those elements in V ∪ W and those not: B′ = B′

1 ∪ B′
2 with

B′
1 ⊂ V ∪ W and B′

2 ∩ (V ∪ W ) = ∅. If B′ were not a basis set of M(V) (i.e. B′ 6∈ B), then B′
1

would contain a circuit in MV . But this would imply that a set of columns that formed a circuit in
MV |V or MV |W became an independent set in MV ′ which violates the construction.

Next we show that for pairs of matrices MV and MV ′ as above, the positroid cell Σ(V ′), which lies
on the boundary of the cell Σ(V), does not contain the locus of a factor of R(V). The following
Theorem considers the minors Iv and I ′v defined in Proposition 4.1.

Theorem 4.2. Given a matrix MV and MV ′ as above, the polynomial R(V) does not vanish on
Σ(V ′).

Proof. Consider the sets Iv and I ′v defined above, elements of the Grassmann necklaces I(V) and
I(V ′) respectively. So, Iv = {v = v1, . . . , vr, w1, . . . ws, u1, . . . ut}, and I ′v = {v = v1, . . . , vr, u1, . . . ut+s}
where vi ∈ V , wi ∈ W and ui 6∈ (V ∪W ). Furthermore, let Iw be the Grassmann necklace element
of I(V) that is minimal in the <w order. That is, Iw = {w = w1, . . . ws+m, u1, . . . ut, . . .}.

Note that since the the cycles of V and W are the same in both MV and MV ′ , Iw is also an element
of the Grassmann necklace I(V ′). That is, the set {w1, . . . ws} is still the lexicographically minimal
set of rank s in MV ′ in the <w order. Note that w need not be the first element of the cycle W in
the <v order.

Note that the minors {∆Iv ,∆I′v
,∆Iw} are non-zero in Σ(V). Furthermore, setting the minor ∆Iv

to 0 in L(V), has several implications about I ′v and Iw1
, depending on how this is done:

1. if ∆Iv vanishes because {v1, . . . , vr} is not independent, then ∆I′v
= 0;

2. if ∆Iv vanishes because {w1, . . . , ws} is not independent, then ∆Iw = 0;

3. if ∆Iv vanishes because {u1, . . . , ut} is not independent, then both ∆Iv and ∆Iw = 0;

4. if ∆Iv vanishes because {w1, . . . , ws, u1, . . . , ut} is not independent but {w1, . . . , ws} is inde-
pendent, then ∆Iw = 0;

5. if ∆Iv vanishes because {v1, . . . , vr, u1, . . . , ut} is not independent but {v1, . . . , vr} is indepen-
dent, then ∆Iv = 0;
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6. if {v1, . . . , vr, w1, . . . , ws} is not independent, but both {v1, . . . , vr} and {w1, . . . , ws} are in-
dependent, then there is a cycle C ⊂ {v1, . . . , vr, w1, . . . , ws} with rank greater than 0 and
bounded above by the number of shared rows between V and W : 0 < rk (C) ≤ |VW ∩ VV |.
Let C be the maximal such cycle, Σ′′ the be positroid variety defined by this independence
data, and denote c = rk C in Σ′′. By construction, C contains elements of both V and
W . Let I ′′v = {v1, . . . , vr, w

′
1, . . . , w

′
s, u1 . . . ut}, be the element of the Grassmann necklace

of Σ′′ corresponding to the vertex v. Here {w′
1, . . . , w

′
s} is a different set of vertices in W

that is not weakly less than {w1, . . . , ws} in the Gale ordering at v. Therefore, I ′′v �v I ′v
in the Gale ordering. So, ∆I′′v

vanishes on Σ(V ′) and thus Σ′′ 6= Σ(V ′). Since c > 0 and
rk (V ∪W ) > |VW ∩ VV | in M(V ′), there is a basis set, B, of M(V ′) such that |(B ∩C)| ≥ c.
Such a basis does not exist in Σ′′. In other works, Σ(V ′) 6⊂ Σ′′.

Note that if VW ∩VV = ∅, we cannot have {v1, . . . , vr, w1, . . . , ws} but {v1, . . . , vr} and {w1, . . . , ws}.

In otherwords, in L(V), if ∆Iv = 0, either ∆I′v
= 0, or ∆Iw = 0, or, if neither are 0, it defines a

positroid variety that does not contain Σ(V ′). However, in L(V ′), ∆Iv a uniformly zero while ∆Iw1

and ∆I′v
are not. Therefore, L(V) does not contain the positroid cell Σ(V ′).

By Proposition 3.12, we have that R(V) vanishes on L(V) \Σ(V). Therefore, R(V) does not vanish
on Σ(V ′).

We give an explicit example of the phenomenon characterized above.

Example 4.3. The Wilson loop diagram

W =

•

•

• •

•

•1

2

3
4

5

6

p

q

can be written as

V(P) = {Vp = {1, 2, 5, 6} ; V1 = {1, 2, 3, 4}} .

with a matrix

MV(P) =

[

xp,1 xp,2 0 0 xp,5 xp,6
xq,1 xq,2 xq,3 xq,4 0 0

]

.

The Grassmann necklace of Σ(V(P)) is I(W ) = {{12}, {23}, {35}, {45}, {51}, {61}}. From [20], we
see that Σ(V(P)) shares a boundary with the positroid cells corresponding to

MV1
=

[

x1,1 x1,2 0 0 0 x1,6
0 x2,2 x2,3 x2,4 x2,5 x2,6

]

and MV2
=

[

x1,1 x1,2 x1,3 0 0 0
0 x2,2 x2,3 x2,4 x2,5 x2,6

]

.
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In particular, the common boundary is parameterized by the matrix

M∂V =

[

x1,1 x1,2 0 0 0 0
0 x2,2 x2,3 x2,4 x2,5 x2,6

]

.

This common boundary is 5 dimensional, parameterized for instance by setting one of the stars in
each row to be 1 and allowing the other entries to be free.

From Proposition 3.12, the vanishing set of R(V(P)) is exactly L(V(P)) \ Σ(V(P)). We show
that there is a codimension one boundary of Σ(V(P)) that does not intersect the vanishing set of
R(V(P)).

Let Σ(V ′) be the positroid cell defined by the matrixMV ′ as defined in Theorem 4.1. By construction
Σ(V ′) lies on the boundary of Σ(V(P)). We show that Σ(V ′) does not contain the vanishing loci
of any of the factors of R(V(P)). The minors ∆13 and ∆15 are both non-vanishing on Σ(V ′), while
∆35 is uniformly zero. However, on L(V(P)) the non-vanishing of the minors ∆13 and ∆15 implies
the non-vanishing of the minor ∆35. Since ∆35 vanishes on Σ(V ′), L(V(P)) does not intersect this
boundary and hence R(V(P)) does not vanish on Σ(V ′).

Note that W = {3, 4}, and V = {5, 6} are two cyclic flats of MV(P) that satisfy the conditions of
the proposition. Then, up to permutations of the rows, there is only one choice for MV ′:

MV ′ =

[

x1,1 x1,2 0 0 0 0
x2,1 x2,2 x2,3 x2,4 x2,5 x2,6

]

.

Note that while this is not the same matrix as M∂V these two matrices do represent the same
matroid, which can be seen by comparing basis sets. In fact, the matrix MV ′ is a non-minimal
representation of the matrix M∂V .

Remark 4.4. As remarked in Example 4.3, the matrix MV ′ defined above Lemma 4.1 does not
have the minimal number of parameters to represent the boundary positroid Σ(V ′). In particular,
we have that

|
⋃

V ∈V ′

V | = 6 while max
V ∈V ′

(|V |) + |V|+ 1 = 5 + 2 + 1 = 8 .

Therefore, setting V ′ = T , we see that the third equivalence of Theorem 3.5 doesn’t hold, and thus
MV ′ is not a minimal representation. In fact, there is a GL(k) transformation taking MV ′ to M∂V :
[

1 0

−
xq1

xp1
1

]

[

xp,1 xp,2 0 0 0 0
xq,1 xq,2 xq,3 xq,4 xq,5 xq,6

]

=

[

xp,1 xp,2 0 0 0 0

0 xq,2 −
xq1

xp2

xp1
xq,3 xq,4 xq,5 xq,6

]

.

The requirement that V and W are cyclic intervals may seem arbitrary until one considers that
all flacets of a matroid are cyclic intervals if and only if the matroid is a positroid. Thus, in some
moral sense, the algorithm prescribed in Proposition 4.1 aims to combine two flacets into a larger
flacets in order to define a new positroid cell.

In the particular case of Wilson loop diagrams, recall from Lemma 2.28 of [8] that all cyclic flats
can be represented as propagator flats, F (P ), and that by Lemma 3.35 of [8] any propagator flat
that is a cyclic flat has rank equal to the number of propagators in the set defining it. Therefore,
the boundaries of the sort considered in Lemma 4.1 occur when there are two propagators flats
F (P ) and F (Q) such that:
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1. Neither P nor Q are the full propagators set, P.

2. The sets F (P ), F (Q) and F (P ) ∪ F (Q) form cyclic intervals in [n].

3. One propagator set is not contained in the other.

It is easy to check that these conditions are met in the Wilson loop diagram W in Example 4.3.

4.2 Cancelation of poles on the boundary

We are now ready to prove the main result of this section: that the singularities of I(V(P)) that
lie on codimension one boundaries of Σ(V(P)) all cancel in the tree level amplitude.

First, recall a few facts about the polynomial R(V(P)). By Definition 3.7, the primitive factors
of R(V(P)) either have degree one or two, corresponding to one by one or two by two minors of
MV(P). In particular, if the edge e supports {q1, . . . , qs} ordered as in Definition 2.1, the degree one
factors of R(V(P)) are of the form xq1,e+1 or xqs,e. Note that there is never any factor of R(V(P))
that involves two non-adjacent propagators.

Theorem 4.5. All the codimension one spulrios poles of admissible Wilson loop diagrams cancel.

Proof. In the diagrams in this proof, propagators contained in a diagram are drawn with a solid
line, while potential propagators are denoted with a dashed line.

We first consider all the possible degree one factors of R(V(P)). Write W = (P, [n]) with p =
(i, j) ∈ P. There are several cases to consider:

Case 1:

•

•

•

• •

•

•

•
1

2

3

4 5

6

7

8

p
Suppose j > i+ 2 (i.e. if Vp does not consist of 4 cyclically consecutive

vertices) and, without loss of generality, assume xp,i is a factor of R(V(P)). Then if q = (i+1, j) 6∈ P
the we may define another diagram W ′ = ((P \ p) ∪ q, [n]) that is identical to W except that the
propagator p is replaced by q. Then limxp,i→0 I(V(P)) = − limxq,i+2→0 I(W

′), where the negative

sign comes from the evaluation of δ4k|4k (see Lemma A.1). For more details on the minus signs, see
[20, 7, 18]. By the arguments of [15], we see that this parametrizes a codimension one boundary of
Σ(V(P)). It is easy to check that W ′ satisfies both non-crossing (because W satisfies non-crossing)
and the density (because q 6∈ P, and W satisfies density) conditions for admissibility. Therefore
W ′ is admissible.

Case 1a:

•

•

•

• •

•

•

•
1

2

3

4 5

6

7

8

p
q

If q = (i + 1, j) ∈ P, then, in the matrix limxp,i→0MV(P), the row

corresponding to the propagator p now has 3 non-zero entries (corresponding to the columns {i+
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1, j, j + 1}) and the row corresponding to q has 4 non-zero entries (corresponding to the columns
{i + 1, i + 2, j, j + 1}). That is, we have 2 rows with non-zero entries in 4 columns. Therefore, by
Theorem 3.5, we see that this locus lies in a boundary of Σ(V(P)) of codimension of at least 2.
Therefore, we do not consider these poles in this argument.

Case 2:

•

•

•

• •

•

•

•
1

2

3

4 5

6

7

8

p

;

•

•

•

• •

•

•

•
1

2

3

4 5

6

7

8

p

;

•

•

•

• •

•

•

•
1

2

3

4 5

6

7

8

p

Next, consider the case when j =

i + 2, i.e. p = (i, i + 2). If xp,i+1 or xp,i+2 is a factor of R(V(P)), then consider the propatator
q = (i− 1, i+ 2) or q = (i, i + 3) respectively. If q 6∈ P, then the diagram W ′ = ((P \ p) ∪ q, [n]) is
admissible, and the argument proceeds as Case 1. If q ∈ P, then the argument proceeds as in Case
1a. If xp,i or xp,i+3 is a factor of R(V(P)), consider q = (i+1, i+3) and q = (i−1, i+1) respectively.
By the non-crossing condition, p and q cannot simultaneously exist in W . If W does not contain
another propagator of the form (i+2, k) or (i, k) respectively, we may define an admissible diagram
W ′ = ((P \ p)∪ q, [n]) (otherwise, q would cross the existing propagator (i+2, k) or (i, k)). In this
case, limxp,i→0 I(V(P)) = − limxq,i+4→0 I(W

′) where the negative sign again comes from Lemma
A.1.

Case 2a:

•

•

•

• •

•

•

•
1

2

3

4 5

6

7

8

p

;

•

•

•

• •

•

•

•
1

2

3

4 5

6

7

8

p

Consider p as above, and that there exists a propagator

(i+ 2, k) (resp. (i, k)) in W . If xp,i (resp. xp,i+3) is a factor of R(V(P)), the singularity formed by
sending xp,i (resp. xp,i+3) to zero cancels with a pole coming from degree 2 factors contributed by
other diagrams. Therefore, we return to this during the discussion of two by two minors.

Case 3:

•

•

•

• •

•

•

•
1

2

3

4 5

6

7

8

p
q

Next, we consider the degree 2 factors of R(V(P)). If such a factor exists,

there must be two propagators p = (i, j) and q = (i, k) adjacent on the edge i. Suppose k > j + 1,
that is, the other endpoints of p and q are not on adjacent edges. If r = (j, k) 6∈ P, consider two
other diagrams formed by replacing the propagator p and q by r: W ′ = (P ′ = (P \ p) ∪ r, [n])
and W ′′ = (P ′′ = (P \ q) ∪ r, [n]). Since k > j + 1 and r 6∈ P, both W ′ and W ′′ satisfy density.
Furthermore, since W is admissible, and p and q are adjacent on the edge i, there does not exist
a propagator (i,m) with j < m < k, that is, that has one endpoint on the ith edge, and the
other between the other endpoints of p and q. Therefore, W ′ and W ′′ satisfy the non-crossing
condition. Thus, W ′ and W ′′ are both admissible. Note that the diagrams W , W ′ and W ′′ are in
the configuration laid out in display (7). By Corrollary A.10, we see that the reparameterization
performed in Lemma A.2 means that lim(xp,ixq,i+1−xp,i+1xq,i)→0 MV(P) parameterizes a codimension

one subspace of Σ(V(P)). By Proposition 3.12, this is lies in a codimension one boundary of
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Σ(V(P)). According to Lemma A.3, after appropriate changes of parameterizations, one may write

lim
(xr,kxq,k+1−xr,k+1xq,k)→0

I(V(P)′) + lim
(xp,ixq,i+1−xp,i+1xq,i)→0

I(V(P)) + lim
(xp,jxr,j+1−xp,j+1xr,j)→0

I(V(P)′′) = 0 .

In other words, these three singularities, which lie on the common codimension one boundary
positroid of Σ(V(P)), Σ(V(P)′) and Σ(V(P)′′), cancel in the sum of integrals in the tree level
amplitude.

Case 3a:

•

•

•

• •

•

•

•
1

2

3

4 5

6

7

8

p
q

r If k > j + 1 but the propagator r = (j, k) ∈ P, we see from Corollary

A.10 that this has codimension greater than 1.

Case 3b:

•
•

•

•
• •

•

•

•
•

1

2

3

4

5 6

7

8

9

10

q
p The final configuration to check is when p = (i, j) and q = (i, k) with

k = j + 1. Consider the diagrams W ′ = (P ′ = (P \ p) ∪ r = (j, j + 2), [n]) and W ′′ = (P ′′ =
(P \ p)∪ s = (k− 2, k), [n]). Since the edge r 6∈ P (it would cross q if it were), and s 6∈ P (it would
cross p if it were), we see that W ′ and W ′′ satisfy both the non-crossing and density conditions,
and thus are admissible. Furthermore, W , W ′ and W ′′ are in the configurations laid out in display
(8) and the diagrams W ′ and W ′′ are in the configuration laid out in Case 2a.

We see from Lemma A.4 that pole defined by the limit of sending (xp,ixq,i+1 − xp,i+1xq,i) to 0
cancels with degree one poles in the diagrams in W ′ and W ′′ under the correct parameterization:

lim
(xp,ixq,i+1−xp,i+1xq,i)→0

I(V(P)) + lim
xr,k−2→0

I(V(P ′)) + lim
xs,j+3→0

I(V(P ′′)) = 0 .

The limits of I(V(P ′)) and I(V(P ′)) are both codimension one. By Corollary A.10, we see that the
limit of I(V(P)) is as well.

Remark 4.6. Since this cancellation was demonstrated at point by point level, it holds not only
on GR,≥0(k, n), but also on GR(k, n). However, we remark that this cancellation is exact only in
the space parameterized by matrices of the form M(V(P)), as a subspace of GR(k, n) and not in
the space parameterized by matrices of the form M(Y(P)), as a subspace of GR(k, n+1). In [7, 19],
the authors explicitly show that cancellations of this form do not hold in the larger space because
of orientation issues.

A Pole Cancellation calculations

In this section, we present some useful calculations for understanding of the cancellation of spurious
poles. Many of the results here can be found in [20, 18, 7]. However, they are presented here for
completeness.
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Recall from Definition 3.7 that

I(V(P))(Z∗) =

∫

(RP4)k

∏

p∈P

∏

v∈Vp
dxp,v

R(V(P))
δ4k|4k(MY(P) · Z∗)

where, for X a k × k + 4 matrix,

δ4k|4k(X) =
k
∏

b=1

(Xb,4+b)
4δ4((Xb,1,Xb,2,Xb,3,Xb,4)) .

Write Zi
∗ to indicate the ith column of Z∗ and Zµ

∗ to indicate the matrix formed by taking the first
4 columns of Z∗. Then evaluating the integral I(V(P)) corresponds to localizing the expression

∏k
b=1(Yb · Z

b
∗)

4

R(V(P))

at the solution to MY(P) · Z
µ
∗ = 0. Writing the propagator p = (i, j) with i < j, Cramer’s rule

implies that this localization evaluates to

xp,0 = det(Zµ
i , Z

µ
i+1, Z

µ
j , Z

µ
j+1) (5)

xp,i = det(Zµ
0 , Z

µ
i+1, Z

µ
j , Z

µ
j+1) ; xp,i+1 = det(Zµ

i , Z
µ
0 , Z

µ
j , Z

µ
j+1) etc. (6)

That is, the entry xp,m evaluates to the minor of Zµ
∗ indicated by the rows in Vp, with the mth row

replaced by Zµ
0 .

Lemma A.1. For two propagators p = (i, j) and q = (i, j + 1), after localization xp,j = −xq,j+2.

Proof. By the above arguments, note that xp,j = det(Zµ
i , Z

µ
i+1, Z

µ
0 , Z

µ
j+1) while xq,j+2 = det(Zµ

i , Z
µ
i+1, Z

µ
j+1, Z

µ
0 ).

Thus these two values are negatives of each other.

Sometimes, as in Theorem 3.13 and Theorem 4.5, it is necessary to perform changes of variables
in order to understand the relevant loci. In particular, we need the following simplifying change of
variables:

Lemma A.2. Consider two propagators p = (i, j) and q = (i, k) that are adjacent on the ith edge
of a Wilson loop diagram (P, [n]), with p appearing closer to the vertex i and q closer to the vertex
i + 1. There is a reparameterization of the matrix MV(P) under which one can replace the factor
xp,i(xp,ixq,i+1 − xp,i+1xq,i)xq,i+1 in R(V(P)) with the product of 4 terms: xyzw.

Proof. We restrict our attention to the relevant two by two minor of MV(P),

[

xp,i xp,i+1

xq,i xq,i+1

]

, which

we can reparameterize as

[

x y
xz zy +w

]

. Then we have that

xp,i = x ; xp,i+1 = y ; xq,i = xz ; xq,i+1 = zy +w .
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Furthermore,

dxp,i = dx ; dxp,i+1 = dy ; dxq,i = xdz + zdx ; dxq,i+1 = ydz + zdy + dw .

Therefore, under these changes of variables, we see that

dxp,i dxp,i+1 dxq,i dxq,i+1

xp,i+1(xp,ixq,i+1 − xq,ixp,i+1)xq,i
=

dx dy xdz dw

y(xyz + xw − xyz)xz

which simplifies to the desired result.

In general, we use whichever parameterization of the two by two minors is convenient. To under-
stand the cancelation of spurios poles, the need for a change of variables comes up in two cases.
The first case involves the cancellation of the two by two minors in following three propagator
configurations (see Case 3 for Theorem 4.5):

Config 1 =

•
•

•

•
• •

•

•

•
•

1

2

3

4

5 6

7

8

9

10

; Config 2 =

•
•

•

•
• •

•

•

•
•

1

2

3

4

5 6

7

8

9

10

;

Config 3 =

•
•

•

•
• •

•

•

•
•

1

2

3

4

5 6

7

8

9

10

. (7)

Lemma A.3. Let (P1, [n]), (P2, [n]) and (P3, [n]) be three different admissible Wilson loop dia-
grams that are identical except for the fact that the propagator set Pi contains the pair of adjacent
propagators shown in Config i above. Then

3
∑

i=1

lim
degree 2 factor of R(V(Pi))→0

I(V(Pi)) = 0 .

This proof is also given in [7, 20] in a slightly different parametrization, and is included here for
completeness.

Proof. Without loss of generality, write MY(Pi) with the pertinent propagators represented in the
first two rows. Then the matrices MY(Pi) are identical except for the first two rows. Since the
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propagators are adjacent, by Lemma A.2 we may write the first two rows as

MY(P1) =

[

1 . . . a b . . . 0 0 . . . c d . . .
1 . . . ae be+ f . . . g h . . . 0 0 . . .

]

MY(P2) =

[

1 . . . a′ b′ . . . c′ d′ . . . 0 0 . . .
1 . . . 0 0 . . . c′e′ d′e′ + f ′ . . . g′ h′ . . .

]

MY(P3) =

[

1 . . . 0 0 . . . a′′ b′′ . . . c′′ d′′ . . .
1 . . . e′′ f ′′ . . . 0 0 . . . c′′g′′ d′′g′′ + h′′ . . .

]

.

We multiply the relevant rows of MY(P2) and MY(P3) by elements of GL(2), leaving the rest of the
rows unchanged. Namely, consider the products:

[

−e′

1−e′
1

1−e′

1 0

]

MY(P2) =

[

1 . . . −e′a′

1−e′
−e′b′

1−e′
. . . 0 f ′

1−e′
. . . g′

1−e′
h′

1−e′
. . .

1 . . . a′ b′ . . . c′ d′ . . . 0 0 . . .

]

[

0 1
−g′′

1−g′′
1

1−g′′

]

MY(P3) =

[

1 . . . e′′ f ′′ . . . 0 0 . . . c′′g′′ d′′g′′ + h′′g′′ . . .

1 . . . e′′

1−g′′
f ′′

1−g′′
. . . −a′′g′′

1−g′′
−b′′g′′

1−g′′
. . . 0 h′′

1−g′′
. . .

]

.

From this, we see that, in the limit f → 0 and MY(P1) and f ′ → 0 for

[

−e′

1−e′
1

1−e′

1 0

]

MY(P2), we

have the change of variables

a =
−e′a′

1− e′
; b =

−e′b′

1− e′
; c =

g′

1− e′
; d =

d

1− e′
;

e =
e′ − 1

e′
; f = 0 ; g = c′ ; h = d′ .

Inverting and performing the change of variables, we see that limf ′→0 I(V(P2)) = limf→0
e

1−e
I(V(P1)).

A similar calculation shows that limh′′→0 I(V(P3)) = limf→0
−1
1−e

I(V(P1)). Thus, in the appropriate
limit,

lim
f→0

I(V(P1)) + lim
f ′→0

I(V(P2)) + lim
h′′→0

I(V(P3)) = 0 .

The last case to consider consists of understanding the poles shared between the diagrams with the
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following configurations:

Config 4 =

•
•

•

•
• •

•

•

•
•

1

2

3

4

5 6

7

8

9

10

; Config 5 =

•
•

•

•
• •

•

•

•
•

1

2

3

4

5 6

7

8

9

10

Config 6 =

•
•

•

•
• •

•

•

•
•

1

2

3

4

5 6

7

8

9

10

(8)

Lemma A.4. Let (P4, [n]), (P5, [n]) and (P6, [n]) be admissible Wilson loop diagrams that are
identical except for the fact that the propagator set Pi contains the pair of adjacent propagators
shown in Config i above. Let p = (i, j) and q = (i, k) with k = j + 1. Then

lim
(xp,ixq,i+1−xp,i+1,xq,i)→0

I(V(P4)) + lim
xr,j+3→0

I(V(P5)) + lim
xr,k−2→0

I(V(P6)) = 0 .

Proof. This proof follows similarly to the above. Write

MY(P4) =

[

1 . . . a b . . . c d 0 . . .
1 . . . ae be+ f . . . 0 g h . . .

]

MY(P5) =

[

1 . . . a′ b′ . . . c′ d′ 0 0 . . .
1 . . . 0 0 . . . c′e′ d′e′ + f ′ g′ h′ . . .

]

MY(P6) =

[

1 . . . 0 0 . . . a′′ b′′ c′′ d′′ . . .
1 . . . e′′ f ′′ . . . 0 0 c′′g′′ d′′g′′ + h′′ . . .

]

.

We consider the change of variables defined by taking the product with

[

1 0
−e′

1−e′
1

1−e′

]

MY(P5) and

[

0 1
−g′′

1−g′′
1

1−g′′

]

MY(P6) .

Then the same types of calculations as in Lemma A.3 shows that lima′′→0 I(V(P6)) = limf→0
−1
1−e

I(MV(P4))
and limh′→0 I(V(P5)) = limf→0

e
1−e

I(V(P4)), proving the result.

Finally, we show that the limits defined in Lemma A.3 and Lemma A.4 do in fact give rise to
codimension one boundaries of Σ(V(P)). To do this, we define a more general result. In Theorem
A.8, we show that, if M ′ is a variable valued matrix formed by applying an invertible change
of variables to a matrix MV , then sending k variables to 0 in M ′ drops the dimension of the
parameterized space L(M ′) if and only if no row of M ′ is contained in the span of any other subset
of rows of M ′.
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The result is a generalization of the equivalence of 1 and 3 in Theorem 3.5. Condition 3 from
Theorem 3.5 is analogous to the inequality from Hall’s Matching Theorem. However, the matrices
in Theorem 3.5 have the restriction that entries are either zero or totally independent. Theorem A.8
below, relaxes this condition, allowing one to view each independent non-zero entry as a function of
several variables, and setting one of these component variables to 0, as in Lemma A.3 and Lemma
A.4.

We begin with a few definitions.

Definition A.5. For a k × n variable valued matrix M and a set I ⊆ [k], define MI to be the
matrix formed by restricting M to the rows I, and let span(MI) be the subset of Rn obtained by
evaluating linear combinations of the rows M indexed by I at real parameters. Let span(M∅) be
the origin in Rn.

Note that these matrices are different from the variable valued matrices defined by MV above. We
relax the requirement that each entry of the matrix be algebraically independent of all the others.
Furthermore, while the entries of MI are functions of independent variables, the entries themselves
may be related by algebraic functions.

Definition A.6. Let L(MI) be the locus of the variable valued matrix MI in GR(|I|, n), as given
by the map in (1).

Example A.7. Let

M =





x1 x2 0 0
0 0 x1 0
0 0 x2 x1



 .

Then, span(M12) consists of all points in R4 whose last coordinate is zero. On the other hand,
span(M13) consists of points of the form (a, b, bc

a
, c) for some a ∈ R \ {0} and b, c ∈ R together with

points of the form (0, b, c, 0). Finally, span(M123) is all of R4.

Theorem A.8. Let V be a collection of subsets, and let x = {xi,j} and y = {yi,j(x)} be two
sets of algebraically independent invertible variables (arising from the same indexing set V) which
are related by a change of variables. Denote by MV(x) and MV(y) the variable valued matrices
associated to V in the variables x and y. Let S ⊂ x be a subset of the variables x, and write
M ′ = MP(y)|xi,j=0;xi,j∈S. If the function limxi,j∈S→0 y(x) is invertible, denote by d = |x| − |S| the
number of variables in x outside of the set S.

The following are equivalent:

(i) For all I ( [k] and all j ∈ Ic, span(M ′
I) ( span(M ′

I∪j). That is, adding a row to M ′
I always

increases the size of the span.

(ii) dim(L(M ′)) = d− k.

Remark A.9. Similarly to how Condition 3 in Theorem 3.5 should be thought of as analogous
to the inequality from Hall’s Matching Theorem, condition (i) above should be thought of as
analogous to the condition from Rado’s Theorem. Rado’s Theorem is a generalization of Hall’s

28



Theorem, which says that if S1, . . . , Sk ⊆ Rn, then it is possible to select linearly independent
vectors s1 ∈ S1, . . . , sk ∈ Sk if and only if for all I ⊆ [k],

dim

(

span

(

⋃

i∈I

Si

))

≥ |I|.

Condition (ii) from Theorem A.8 relaxes this condition from Rado’s theorem, saying not only does
any subset of vectors have the correct dimension, but adding a new vector always increases the
dimension.

Proof. We show that (ii) implies (i) via induction on k, the number of rows of MV(x). When k = 1,
L(M ′) is a parameterized subset of projective space. Since the transformation from the x to the y

variables are invertible on M ′ = MP(y)|xi,j=0;xi,j∈S , the matrices M ′ and MP (x)|xi,j=0;xi,j∈S have
the same dimension in Rn. One obtains the corresponding locus in projective space by scaling by
a constant, so the dimensions in projective space remain the same.

For larger k, it is not sufficient to use the invertibility of the change of variables as an argument
that the dimension does not change. While this holds on the level of matrices, it may not hold
after quotienting by GL(k) in order to find the locus L(M ′).

In this proof, we consider the Grassmannian set theoretically. So GR(k,Rn) is the set of k-planes
in Rn. Given a vector space V ( Rn, (Rn ⊥ V ) is a subset of Rn, and we write

GR(k,R
n ⊥ V ) = {x ∈ GR(R

n, k)|x ∈ Rn ⊥ V }.

Suppose that the result holds for k = l− 1. Let M ′ be an l× n matrix such that span(M ′
{1,...,l}) =

span(M ′
1,...,l−1), but that span(M

′
I) 6= span(M ′

I∪j) for j /∈ I whenever |I| < l. That is, condition (i)
fails to hold only for the sets |I| = l − 1.

A plane in L(M ′) is spanned by a nonzero vector r ∈ span(M ′
l ), plus a l − 1 plane in

L(M ′
1,...,l−1) ∩GR(k − 1,Rn ⊥ r),

i.e. an (l − 1)-plane in L(M ′) which is orthogonal to r. Since condition (i) does not hold for
I = {1, . . . , l − 1}, r ∈ span(M ′

1,...,l−1). As the map (1) ignores the points parameterized by M ′
I

that do not have full rank, we do not need to consider the case when span(M ′
1,...,l−1) = span(r)

Observe that the set of planes in L(M ′
1,...,l−1) containing r has positive dimension. Thus,

dim(L(M ′
1,...,l−1) ∩GR(k − 1,Rn ⊥ r)) < dim(L(M ′

1,...,l−1)).

Note that the subspace of GR(1,Rn)×GR(k−1,Rn) obtained by evaluating M ′ and independently
taking the span of the lth row and of rows 1, . . . , l− 1 (ignoring matrices of improper rank) is d− k
by the inductive hypothesis. By the remarks above, L(M ′) has strictly lower dimension than this
set. So,

dim(L(M ′)) ≤ d− k − 1,

and thus (ii) implies (i) when k = l.
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Next, we show that (i) implies (ii). When k = 1, L(M ′) is again a parameterized subset of projective
space, and the argument holds similarly to the case for k = 1 in the other direction of this proof.

Suppose the result holds for k = l − 1 and let M ′ be an l × n matrix such that span(M ′
1,...,l) 6=

span(M ′
1,...,l−1). Let dl be the number of parameters appearing in row l of M ′ which do not appear

in rows 1, . . . , l− 1, i.e. there are d− dl variables in the first l− 1 rows of M ′. Note that L(M ′
l ) is

dl − 1 dimensional by similar arguments as the base case.

Then, for a generic point r ∈ span(M ′
l ) that comes from evaluating the last row of M ′, note that

r /∈ span(M ′
1,...,l−1). So, L(M

′
1,...,l−1) ∩GR(k − 1,Rn ⊥ r) = L(M ′

1,...,l−1). In other words

dim(L(M ′
1,...,l−1) ∩GR(k − 1,Rn ⊥ r)) = dim(L(M ′

1,...,l−1)) = d− dl − (l − 1) ,

where, by induction dim(L(M ′
1,...,l−1)) = d− dl − (l − 1). Thus,

dim(L(M ′
1,...,l)) = (dl − 1) + dim(L(M ′

1,...,l−1)) = d− l.

Given Theorem A.8, we see that the boundaries defined in Lemma A.3 and Lemma A.4 do in fact
give rise to codimension one boundaries of Σ(V(P)).

Corollary A.10. Let (P, [n]) be a diagram with two propagators p = (i, j) and q = (i, k) adjacent
on the edge i. After the reparameterization defined in Lemma A.2, setting w to zero reduces the
dimension by one if and only if there is not a propagator r = (j, k) in P.

Proof. For a Wilson loop diagram (P, [n]), let x be the parameterization that includes the variable
w, and let y be the other set of variables. Note that the Jacobian for the change of variables given
in Lemma A.2 has zero determinant when x is sent to 0. When w is set to zero, the determinant of
the Jacobian remains non-zero. Without loss of generality, assume that w is a variable in the row
corresponding to the propagator p.

Further note that whether or not r is in P, the diagram (P ∪r, [n]) is admissible. If r does not exist
in P, then adding it does not violate density. Furthermore, because p and q are adjacent, adding
r does not violate the non-crossing condition either.

First we show that when r ∈ P, when one sets w = 0 the dimension of the span of a row set
does not increase with the rows included in the set. In particular, we may write xq,i = λxp,i and
xq,i+1 = λxp,i+1, with λ a real variable. By adding a scalar multiple of M ′

p to M ′
q, one gets a row

that has independent variable entries exactly in the columns Vr = {j, j + 1, k, k + 1}. If r is in P,
the span of the rows p and q contains the span of the row r in Rn:

span(M ′
{p,q}) = span(M ′

{p,q,r}) . (9)

Thus, Theorem A.8 implies this boundary does not have codimension one.

Next, suppose r 6∈ P. In this case, assume toward contradiction that there is a set of propagators
P ⊂ P such that p 6∈ P and span(M ′

P∪p) = span(M ′
P ). Without loss of generality, assume that P

one of the smallest sets of propagators such that this is true. Note that P cannot exist if q 6∈ P ,
since all the variables in M ′

p and M ′
q are algebraically independent from the variables in M ′

P\{p,q}.
Therefore, without loss of generality, assume q ∈ P .
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Since span(M ′
p) 6= span(M ′

q), the equality span(M ′
P∪p) = span(M ′

P ) implies that span(M ′
{p,q}) ⊆

span(M ′
P ). But equation (9) means that span(M ′

{p,q,r}) ⊆ span(M ′
P ). Removing the rows p and q

from both sides gives

span(M ′
r) ⊆ span(M ′

P\q) . (10)

We claim that this cannot be true. Since q ∈ P but p is not, we have the equality M ′
P\q = MV(P\q)

because the propagator set P \ q is unaffected by the limits defining the matrix M ′. Note that the
propagator set (P \ q) ∪ r is an admissible Wilson loop diagram. By Theorem 3.5,

dim(L(V((P \ q) ∪ r))) = dim(L(V(P \ q))) + 3,

which contradicts (10). Therefore, condition (i) of Theorem A.8 must hold, and thus the limit
w → 0 defines a codimension one subspace of L(MV(P)).
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