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SAMPLING PLANAR TANGLEGRAMS AND PAIRS OF

DISJOINT TRIANGULATIONS

ALEXANDER E. BLACK, KEVIN LIU, ALEX MCDONOUGH, GARRETT NELSON,

MICHAEL C. WIGAL, MEI YIN, AND YOUNGHO YOO

Abstract. A tanglegram consists of two rooted binary trees and a perfect

matching between their leaves, and a planar tanglegram is one that admits

a layout with no crossings. We show that the problem of generating pla-

nar tanglegrams uniformly at random reduces to the corresponding problem

for irreducible planar tanglegram layouts, which are known to be in bijection

with pairs of disjoint triangulations of a convex polygon. We extend the flip

operation on a single triangulation to a flip operation on pairs of disjoint trian-

gulations. Interestingly, the resulting flip graph is both connected and regular,

and hence a random walk on this graph converges to the uniform distribution.

We also show that the restriction of the flip graph to the pairs with a fixed

triangulation in either coordinate is connected, and give diameter bounds that

are near optimal. Our results furthermore yield new insight into the flip graph

of triangulations of a convex n-gon with a geometric interpretation on the

associahedron.

1. Introduction

A tanglegram consists of two rooted binary trees and a perfect matching between
their leaves. They initially arose in computer science and biology [5, 7, 19]. Tan-
glegrams are drawn in the plane using layouts such as the ones shown in Figure 1.
Layouts with the fewest number of crossings possible are of interest in applications
such as estimating the number of horizontal gene transfers between species [27].

Figure 1. Two layouts for the same tanglegram.

Combinatorial interest has grown recently, and enumerating several variations
of tanglegrams has been studied [4, 13, 24]. Algorithms for uniform sampling of
tanglegrams were established in [4] and [12], and properties of random tanglegrams
were studied in [15].

A tanglegram is planar if it has a layout with no crossings, and we refer the
reader to [8, 17, 18, 24] for many interesting results about them. The second
author established a characterization of all planar layouts of a planar tanglegram
in [17] and then proposed the problem of efficiently sampling planar tanglegrams
uniformly at random. In this paper, we consider this problem. Note that one
can use the algorithms in [4] and [12] to sample tanglegrams uniformly at random
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until a planar tanglegram is generated, but results in [4] and [24] imply that planar
tanglegrams are rare.

In their work enumerating planar tanglegrams, Ralaivaosaona, Ravelomanana,
and Wagner [24] introduced irreducible planar tanglegrams, which are planar tan-
glegrams that cannot be constructed from smaller tanglegrams. We make this
definition precise in Section 2. Let P and I respectively denote the set of planar
and irreducible planar tanglegrams. [24, Theorem 1] gives a relation between the
generating functions

T (x) =
∑

T ∈P

x|T |,

H(x) =
1

2
x2 +

∑

T ∈I: |T |>2

x|T |,
(1.1)

where |T | denotes the number of leaves in the component trees of T . Their se-
quences of coefficients can be found at [22, A257887, A349408]. Letting Irr(T )
denote the irreducible tanglegram formed by contracting each of the smaller tan-
glegrams in T to a pair of matched leaves, we generalize these generating functions
to also account for Irr(T ) by defining

T (x, y) =
∑

T ∈P

x|T |y| Irr(T )|,

H(x, y) = H(xy) =
1

2
x2y2 +

∑

T ∈I: |T |>2

x|T |y|T |.
(1.2)

We establish a generalization of the relation on T (x) and H(x) from [24, Theorem
1]. Note that substituting y = 1 recovers the original result.

Theorem 1.1. The following holds:

(1.3) T (x, y) = H(T (x), y) +
T (x2)y2

2
+ xy.

Using this result, we establish Theorem 3.2, which reduces the problem of gener-
ating planar tanglegrams uniformly at random to computing coefficients of T (x, y)
and generating irreducible planar tanglegram layouts uniformly at random. In their
work enumerating planar tanglegrams, Ralaivaosaona, Ravelomanana, and Wagner
[24] also established a natural bijection between irreducible planar tanglegram lay-
outs and pairs of triangulations of a convex polygon that do not share a diagonal.
We call these pairs of disjoint triangulations. Hence, one can instead consider the
problem of generating pairs of disjoint triangulations uniformly at random.

Triangulations of a convex n-gon are one of many objects enumerated by the
Catalan numbers. Sampling Catalan objects uniformly or approximately uniformly
at random has been an active area of research over the last several decades. Ap-
proaches include direct methods using properties of Catalan numbers [2, 3, 25],
Boltzmann sampling with the generating function relation [10], and Markov chains
on flip graphs of Catalan objects [11, 20, 21]. Enumerative results suggest that
pairs of disjoint triangulations are significantly more complicated than individual
triangulations. In particular, there is no known simple formula in n for the number
of pairs of disjoint triangulations of an n-gon, even after fixing one of the triangu-
lations [1, 24].
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We extend the flip operation on single triangulations to a new flip operation on
the pairs of disjoint triangulations of an n-gon. We write Dn for the graph whose
vertices are pairs of disjoint triangulations and whose edges are given by flips, and
we call this the flip graph on pairs of disjoint triangulations. The flip graph D5 is
shown in Figure 2. Our flip operation implies many surprising properties for Dn.
In particular, we can define a Markov chain (Xt) from a random walk on Dn. We
set X0 to be an arbitrary vertex and, for t > 0, choose Xt uniformly at random
among the vertices adjacent to Xt−1.

Theorem 1.2. For a fixed n ≥ 5, let (Xt) be the Markov chain defined above.
Then as t → ∞, (Xt) converges to the uniform distribution on the vertices of Dn

in total variance distance.

Figure 2. The flip graph D5. Single lines indicate when only one
triangulation is changed, and double lines indicate when both are
changed.

Theorem 1.2 gives a method for near uniform sampling of pairs of disjoint trian-
gulations. The mixing time of Xt is a topic of continued study. Our general method
is similar to one used by Heitsch and Tetali to study meanders, which are also pairs
of Catalan objects subject to some property [14]. More specifically, a meander is a
pair of noncrossing matchings of 2n points that form a cycle, such as the one shown
in Figure 3. Heitsch and Tetali also constructed a Markov chain that converges to
the uniform distribution, and the mixing time of their Markov chain also remains
open.

Figure 3. An example of a meander, with each noncrossing
matching color-coded.

In order to prove Theorem 1.2, we show that Dn is regular and connected. In
the process, we bound the diameter of Dn. In particular, we prove the following.
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Theorem 1.3. For any positive integer n ≥ 5, the graph Dn is simple, connected,
and 2(n− 3)-regular, with diameter at most 4n− 16.

The proof of Theorem 1.3 provides novel insight into the classical flip graph of
triangulations of an n-gon. Namely, we show in Theorem 4.5 that the induced
subgraph of triangulations of an n-gon disjoint from some fixed triangulation is
always connected. The flip graph in this case is the set of vertices and edges of the
associahedron, a polytope that plays a fundamental role in algebraic and geometric
combinatorics, see [6] and references therein. Our results may be rephrased within
that context. The facets of the associahedron are in natural bijection with the set
of diagonals of the polygon. A triangulation corresponds to a vertex of a given
facet if and only if that triangulation contains the diagonal corresponding to that
facet. Therefore, we have shown that for any fixed vertex v of the associahedron,
the induced subgraph consisting of all vertices that do not share a facet with v is
still connected with small diameter, a property that one can study for any polytope
as discussed in Problem 4.

This paper is organized as follows. In Section 2, we outline background on tan-
glegrams and summarize relevant results in [24] on planar tanglegrams, including
their connection with pairs of disjoint triangulations. In Section 3, we prove Theo-
rem 1.1 and apply it to construct our algorithm for sampling planar tanglegrams. In
Section 4, we define our flip graphs on pairs of disjoint triangulations and establish
Theorems 1.2 and 1.3. We conclude in Section 5 with open problems.

2. Preliminaries

A rooted binary tree is a tree with a distinguished vertex called the root where
each vertex has zero or two children. We consider children to be unordered, so these
are different from the plane binary trees enumerated by the Catalan numbers.

A tanglegram T = (L,R, σ) is formed from an ordered pair of rooted binary trees
(L,R) with the same number of leaves and a perfect matching σ between the leaves
of L and R. The size of a tanglegram, denoted |T |, is the common number of leaves
in the two trees forming the tanglegram. An isomorphism between two tanglegrams
T = (L,R, σ) and T ′ = (L′, R′, σ′) is an isomorphism of the underlying graphs that
maps L to L′ and R to R′. See [4, 19] for more details. All tanglegrams in this
paper are considered up to isomorphism.

Tanglegrams are drawn in the plane using layouts, where L is embedded in the
plane left of the line x = 0 with leaves on x = 0, R is embedded in the plane right
of x = 1 with leaves on x = 1, and the matching σ is drawn using straight lines.
A crossing in a layout is any intersecting pair of lines induced by σ. In general,
a tanglegram has multiple layouts, and a tanglegram is planar if it has a layout
in which none of the straight lines induced by σ cross. Examples are shown in
Figure 4.

For a tanglegram T = (L,R, σ), suppose that for the internal vertices u ∈ L and
v ∈ R, the descendants of u and v are matched by σ. When u and v are not the
roots of L and R, the subtrees rooted at v1 and v2 with the matching induced by
σ is a proper subtanglegram of T .

A tanglegram T is irreducible if it contains no proper subtanglegrams. For
any tanglegram T , its irreducible component, denoted Irr(T ), is the tanglegram
obtained by contracting each maximal proper subtanglegram to a pair of matched
leaves. If T ′ is an irreducible tanglegram, then T ′ extends to T if Irr(T ) = T ′.
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Figure 4. A layout for each of the 13 tanglegrams of size four.

Observe that in Figure 4, the last two tanglegrams are irreducible and not planar.
Of the eleven planar tanglegrams, five are irreducible, three have an irreducible
component of size two, and three have an irreducible component of size three.

We now state two results of [24]. Note that the first result can also be derived
as a consequence of [17, Theorem 1.1].

Proposition 2.1. [24, Proposition 5] Every irreducible planar tanglegram T with
|T | ≥ 3 has exactly two planar layouts. Moreover, the two planar layouts are mirror
images of one another.

Theorem 2.2. [24, Theorem 4] For any n ≥ 2, there is a bijection between the
following sets:

• the set of planar layouts of irreducible planar tanglegrams of size n, and
• the set of ordered pairs of disjoint triangulations of an (n+ 1)-gon.

We describe this bijection. Starting with the two plane binary trees in a planar
layout of T = (L,R, σ), draw lines from the root and all leaves to infinity. Then
take the plane dual. Label the region above the root in each tree as 1. In L, proceed
clockwise, and in R, proceed counterclockwise. An example is shown in Figure 5.

1 2

3

45

12

3

4 5

1

2

3 4

5

1

2

3 4

5

Figure 5. The plane dual bijection from Theorem 2.2.

3. Planar tanglegrams

In this section, we consider the problem of uniformly sampling planar tangle-
grams. We first establish Theorem 1.1 and its consequences. We then apply these
results to reduce the problem of uniformly sampling planar tanglegrams to the
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corresponding problem for irreducible planar tanglegrams or their layouts in The-
orem 3.2.

Recall the generating functions defined in Equations (1.1) and (1.2). We now
prove Theorem 1.1, which generalizes part of [24, Theorem 1].

Proof of Theorem 1.1. We rewrite the right hand side of Equation (1.3) as

(3.1)

(

H(T (x), y)−
T (x)2y2

2

)

+

(

T (x)2y2 + T (x2)y2

2

)

+ xy

The third summand xy accounts for the unique tanglegram where both trees consist
of a single vertex. For the remaining summands, we consider those with irreducible
component size two and greater than two separately.

To interpret the first summand, observe that H(x, y) − x2y2

2 counts irreducible

tanglegrams of size at least 3, where each term xkyk corresponds to an irreducible
planar tanglegram of size k. Proposition 2.1 implies that irreducible tanglegrams
of size at least 3 have no symmetry. Consequently, given an irreducible tanglegram
T of size k > 2, fixing a layout of T and replacing matched leaves from top-to-
bottom with planar tanglegrams (Ti)

k
i=1 produces a distinct tanglegram for each

selection of (Ti)
k
i=1. The generating function T (x)k counts ordered k-tuples of

planar tanglegrams, and replacing pairs of matched leaves with planar tanglegrams

corresponds to replacing x with T (x). Hence, H(T (x), y)− T (x)2y2

2 is the generating
function for planar tanglegrams with | Irr(T )| ≥ 3.

To interpret the second summand, tanglegrams with | Irr(T )| = 2, we must start
with the unique layout for the unique tanglegram of size two and replace matched
leaves with T1 and T2. However, interchanging the order of T1 and T2 produces
an isomorphic tanglegram. Observe that T (x)2y2 double counts the cases when

T1 6= T2, and T (x2)y2 counts the cases when T1 = T2. Hence, T (x)2y2+T (x2)y2

2
enumerates planar tanglegrams with | Irr(T )| = 2. �

Note that once we can efficiently compute the coefficients of T (x) and H(x),
we can efficiently perform the composition to generate the coefficients of T (x, y).
Using known values of T (x) and H(x) from [22, A257887, A349408], we give some
coefficients of T (x, y) in Table 1.

n, k 2 3 4 5 6 7 8 total
2 1 1
3 1 1 2
4 3 3 5 11
5 13 9 20 34 76
6 90 46 70 170 273 649
7 747 312 360 680 1638 2436 6173
8 7040 2580 2435 3570 7371 17052 23391 63429

Table 1. The number of tanglegrams of size n with irreducible
component size k.

We respectively use the notation tn and tn,k for the coefficient of xn in T (x)
and xnyk in T (x, y). We also use the notation hn for tn,n, which is the number
of irreducible planar tanglegrams of size n. Recall that a composition of n is a
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decomposition of n into an ordered sum of positive integers, and we use the notation
(ai)

k
i=1 |= n to denote this. The preceding theorem and proof imply the following

corollary.

Corollary 3.1. Let 2 ≤ k ≤ n. The number of ways to extend a size k irreducible
planar tanglegram into a size n planar tanglegram, denoted cn,k, is independent of
the irreducible planar tanglegram. Moreover,

(a) if n is even, then tn,2 = 1
2

(

∑n−1
i=1 titn−i + tn/2

)

,

(b) if n is odd, then tn,2 = 1
2

∑n−1
i=1 titn−i, and

(c) if k 6= 2, then tn,k = hk ·
∑

(ai)ki=1
|=n ta1

ta2
. . . tak

.

Note that cn,k = tn,k/hk.

Using these cn,k constants, we define a procedure for uniformly sampling planar
tanglegrams that encodes the techniques from Theorem 1.1, assuming an algorithm
for uniformly sampling irreducible planar tanglegram layouts. Hence, this reduces
the problem of generating planar tanglegrams to generating irreducible planar tan-
glegrams or their layouts.

Theorem 3.2. The following procedure generates a planar tanglegram of size n ≥ 3
uniformly at random.

(1) Choose an integer 2 ≤ k ≤ n with probability
hkcn,k

tn
and generate an irreducible

planar tanglegram layout L of size k uniformly at random.

(2) (a) If k 6= 2, select (ai)
k
i=1 |= n with probability

ta1
ta2

...tak

cn,k
and independently

generate planar tanglegrams (Ti)
k
i=1 of sizes (ai)

k
i=1 uniformly at random.

(b) If n is odd and k = 2, select (a1, a2) |= n with probability
ta1

ta2

2cn,2
and inde-

pendently generate planar tanglegrams (T1, T2) of sizes (a1, a2) uniformly
at random.

(c) If n is even and k = 2,

• with probability
tn/2

2cn,2
, generate a single tanglegram T1 = T2 of size n/2

uniformly at random, and

• otherwise, select (a1, a2) |= n with probability
ta1

ta2∑n−1

i=1
titn−i

and indepen-

dently generate planar tanglegrams (T1, T2) of sizes (a1, a2) uniformly
at random.

(3) In all cases, output the tanglegram corresponding to L with matched leaves
replaced from top to bottom by {Ti}

k
i=1.

Proof. The definition of cn,k and the results of Corollary 3.1 imply that all of the
necessary quantities in steps (1) and (2) sum to 1. We show that each tangle-
gram of size n can be generated in two ways, and each of these possibilities has
probability 1

2tn
.

Consider a planar tanglegram T with | Irr(T )| ≥ 3. To generate T in the algo-
rithm, we must first generate one of the layouts of Irr(T ) in step (1). Proposition 2.1
implies that there are two possibilities L1 and L2, and observe that each of them

has probability
hkcn,k

tn
· 1
2hk

=
cn,k

2tn
of being generated. For each Li, a unique list

of tanglegrams (Ti,j)
k
j=1 must replace the matched leaves in Li from top-to-bottom

to construct T . Letting ai,j = |Ti,j |, we see in that the probability (Ti,j)
k
j=1 is

generated in step (2) is given by
ta1

ta2
...tak

cn,k
· 1
ta1

ta2
...,tak

= 1
cn,k

. Hence, each of the
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two ways of generating T has probability
cn,k

2tn
· 1
cn,k

= 1
2tn

of being generated, so

the probability T is generated is 1
tn
.

Next, consider a planar tanglegram T with | Irr(T )| = 2. This requires first
generating the unique layout L for the unique planar tanglegram of size 2. If
n = |T | is odd, then two possibilities (T1, T2) and (T2, T1) extend L to T . Letting
a1 = |T1| and a2 = |T2|, the probability of obtaining T is given by

h2cn,2
tn

·

(

ta1
ta2

2cn,2
·

1

ta1
ta2

+
ta2

ta1

2cn,2
·

1

ta2
ta1

)

=
1

tn
.

Note that h2 = 1, so this term disappears in the product above.
Now consider when n = |T | is even. Suppose T requires replacing the matched

leaves in L with the same tanglegram T ′. With probability
tn/2

2cn,2
· 1
tn/2

, we generate

T ′ twice in the first case of (2c), so T has a

h2cn,2
tn

·
tn/2

2cn,2
·

1

tn/2
=

1

2tn

probability of being generated this way. The probability of generating T by gener-
ating T ′ twice in the second case of (2c) is

h2cn,2
tn

·

(

1−
tn/2

2cn,2
·

)

·
tn/2tn/2

∑n−1
i=1 titn−i

·
1

tn/2tn/2
.

Using Corollary 3.1, h2 = 1, and cn,2 = tn,2, this simplifies to

cn,2
tn

·

∑

i=1 hihn−i

2cn,2
·

1
∑n−1

i=1 titn−i

=
1

2tn
.

The case when T requires replacing matched leaves in L with two distinct tan-
glegrams is done using the same properties, where we note that there is no way
to generate T in the first case of (2c) but two ways to generate it in the second
case. �

Note that the procedure in Theorem 3.2 can be applied recursively when gen-
erating {Ti}

k
i=1, except that the tanglegrams of size 1 and 2 should be generated

directly since they are unique. For efficiency reasons, one can also directly generate
all planar tanglegrams below a certain size. From this, we see that uniform sam-
pling of planar tanglegrams can be reduced to computation of the coefficients in
T (x, y) and uniform sampling of irreducible planar tanglegram layouts.

4. Pairs of disjoint triangulations

In this section, we consider the problem of uniformly sampling pairs of disjoint
triangulations, which is equivalent to uniformly sampling irreducible planar tangle-
gram layouts by Theorem 2.2. In Section 4.1, we construct our flip graph Dn on the
pairs of disjoint triangulations of an n-gon. We then establish Theorems 1.2 and 1.3
using Lemma 4.4 and Corollary 4.6. In Section 4.2, we describe the operation on
irreducible planar tanglegram layouts that corresponds to flips in Dn.
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4.1. A flip graph on pairs of disjoint triangulations. Throughout this sub-
section, we fix a labeling of the convex n-gon using [n] = {1, 2, . . . , n}, and use
pairs (a, b) with a, b ∈ [n] to denote diagonals. For a triangulation T , we use the
notation (a, b) ∈ T to denote that the diagonal (a, b) is in the triangulation T .

If (a, b) is a diagonal of a triangulation T , then deleting (a, b) creates a unique
quadrilaterial (a, a′, b, b′) for some a′, b′ ∈ [n]. A flip at (a, b) ∈ T replaces (a, b)
with (a′, b′), resulting in another triangulation of the n-gon. We extend the flip
operation to pairs of disjoint triangulations. An example is shown in Figure 6.

Definition 4.1. Let (T1, T2) be an ordered pair of disjoint triangulations of an
n-gon, and suppose (a, b) ∈ Ti for some i ∈ [2]. A flip at (a, b)i ∈ (T1, T2) is defined
as

(a) flip (a, b) ∈ Ti, and
(b) if the resulting diagonal (a′, b′) is in Tj for j 6= i, then flip (a′, b′) ∈ Tj .

When only (a) is performed, we refer to this as a single flip, and when both (a) and
(b) are performed, we refer to this as a double flip.

12

3

4 5

6

12

3

4 5

6 −→

12

3

4 5

6

12

3

4 5

6

−→

Figure 6. A (double) flip at (2, 4)1 with the corresponding irre-
ducible planar tanglegram layouts shown.

Lemma 4.2. Let (T1, T2) be an ordered pair of disjoint triangulations of an n-gon.
If (T ′

1, T
′
2) is obtained from (T1, T2) by a flip at (a, b)i, then (T ′

1, T
′
2) is also a pair

of disjoint triangulations. Furthermore, (T1, T2) can also be obtained from (T ′
1, T

′
2)

by some flip.

Proof. Without loss of generality, assume we flip the edge (a, b) ∈ T1 to obtain T ′
1.

If after the flip, the new diagonal (a′, b′) does not coincide with any diagonals of
T2, then we are done. Note that in this case, we have that T2 = T ′

2, and the flip
(a′, b′)2 allows us to obtain (T1, T2) from (T ′

1, T
′
2).

Otherwise, we flip (a′, b′) in the second polygon to obtain T ′
2. The resulting

diagonal (a′′, b′′) crosses (a′, b′), and hence cannot appear in T ′
1. Hence, (T

′
1, T

′
2) is

a pair of disjoint triangulations. In this case, observe that the flip (a′′, b′′)2 allows
us to obtain (T1, T2) from (T ′

1, T
′
2). �

The mutual reachability between two pairs of disjoint triangulations allows us
to now formally define the flip graph on pairs of disjoint triangulations.
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Definition 4.3. Let Dn denote the (undirected) graph with vertices corresponding
to ordered pairs of disjoint triangulations of an n-gon and adjacency given by flips.

Observe that D3 is a single vertex graph and D4 is a path graph on two vertices.
Hence, we are primarily interested in the cases n ≥ 5.

For a given (T1, T2) ∈ Dn, there are 2(n − 3) diagonals on which a flip can be
performed. It is not difficult to see that if n ≥ 5, then flipping at different diagonals
results in different pairs of disjoint triangulations.

Lemma 4.4. For any integer n ≥ 5, the flip graph Dn is simple and 2(n − 3)-
regular.

Proof. It suffices to show that for any pair (T1, T2) of disjoint triangulations, a flip
at (a, b) ∈ T1 and a flip at (c, d) ∈ T2 cannot result in the same pair (T ′

1, T
′
2). Let

(a′, b′) ∈ T ′
1 and (c′, d′) ∈ T ′

2 be the diagonals obtained by flipping (a, b) ∈ T1 and
(c, d) ∈ T2 respectively. If (T ′

1, T
′
2) is obtained from (T1, T2) by flipping (a, b) ∈ T1,

then (a′, b′) = (c, d), and if (T ′
1, T

′
2) is obtained from (T1, T2) by flipping (c, d) ∈ T2,

then (c′, d′) = (a, b). This implies that (a, c, b, d) is a quadrilateral in both T1

and T2. Since n ≥ 5, this implies that T1 and T2 share a diagonal, which is a
contradiction. �

Let Tn denote the flip graph for triangulations of an n-gon. For any triangulation
S of an n-gon, the subgraph of Tn induced by the set of triangulations disjoint from
S is denoted Tn(S). Pournin showed in [23] that the diameter of Tn is 2n− 10 for
n > 12. We show connectedness of Dn and a linear diameter bound for Dn by first
showing corresponding statements for Tn(S).

Theorem 4.5. Let n ≥ 5, and let S be a triangulation of the n-gon. Then Tn(S)
is connected, and its diameter is at most 2n− 8.

Proof. Every triangulation contains a diagonal of the form (i, i+ 2), so we assume
without loss of generality that S contains the diagonal (2, n). Let ∆ denote the
triangulation consisting of {(1, i) : 3 ≤ i ≤ n − 1}, which is called a standard
triangulation in Chapter 1 of [9]. We show that every triangulation T disjoint from
S is connected to ∆ by a path in Tn(S) of length at most n− 4. In fact, we claim
that if T contains d edges of the form {(1, i) : 3 ≤ i ≤ n− 1}, then it is connected
to ∆ by a path in Tn(S) of length at most n− 3− d. Note that d ≥ 1, as (2, n) /∈ T
implies the existence of some diagonal of the form (1, i).

We prove the claim by induction on n−3−d. If d = n−3, then T = ∆, and these
triangulations are connected by a path of length n−3− (n−3) = 0 as needed. Now
suppose d < n− 3, and let 3 ≤ i1 < i2 < . . . < id ≤ n− 1 denote the indices such
that (1, ij) ∈ T for all ij . Since d < n− 3, it must be that ij+1 − ij > 1 for some
j ∈ {1, . . . , d}. Consider the polygon with vertices {1, ij, ij + 1, ij + 2, . . . , ij+1}
with triangulation T1 induced by T . Observe that T1 cannot contain any edges of
the form (1, i), and since ij , 1, ij+1 are consecutive vertices, this can only occur if
(ij, ij+1) ∈ T1. Flipping this diagonal results in (1, i′) for some ij < i′ < ij+1. Note
that this diagonal (1, i′) cannot appear in S since S contains (2, n). Hence, flipping
(ij, ij+1) in T results in some triangulation T ′ disjoint from S that contains d + 1
diagonals of the form {(1, i) : 3 ≤ i ≤ n− 1}. By the inductive hypothesis, T ′ and
∆ are connected by a path in Tn(S) of length at most n− 3 − d− 1, and hence T
is connected to ∆ by a path in Tn(S) of length at most n− 3− d.
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Now let T1 and T2 be any two triangulations disjoint from S. Choosing ∆ as
above, we see that each Ti is connected to ∆ by a path of length at most n− 4 in
Tn(S), implying T1 and T2 are connected by a path of length at most 2n− 8. �

Pournin’s result for diam(Tn) when n > 12 combined with known values for
5 ≤ n ≤ 12 imply that for all n ≥ 5, we have that diam(Tn) ≤ 2n− 8. Hence, the
above result implies the following statements for Dn.

Corollary 4.6. For n ≥ 5, the flip graph Dn is connected and

diam(Dn) ≤ diam(Tn) + 2n− 8 ≤ 4n− 16.

Proof. Let (T1, T2), (T3, T4) ∈ Dn. Then there is a path of length at most diam(Tn)
in Dn from (T1, T2) to (T3, T ) for some T disjoint from T3. By Theorem 4.5, there
is a path from (T3, T ) to (T3, T4) of length at most 2n− 8 in Dn. �

It is well known that a random walk on a regular connected graph converges to
the uniform distribution in total variation distance if it is aperiodic. Aperiodicity
follows from the fact that Dn contains cycles of size 3 for all n ≥ 5, which is shown
using the standard triangulations in Figure 7. This implies that Theorem 1.2 follows
from Theorem 1.3, which is immediate from Lemma 4.4 and Corollary 4.6.

12

3

4 5

n

12

3

4 5

n

Figure 7. A pair of disjoint triangulations where two sequences
of flips (n, 2)2, (2, 4)1 and (n, 2)2, (1, 3)2, (2, 4)1 both result in the
original pair again.

4.2. Rotations of irreducible planar tanglegram layouts. In this subsection,
we establish the operation on planar layouts of irreducible planar tanglegrams that
corresponds to flips in pairs of disjoint triangulations. Our operation uses the well-
known rotation on plane binary trees, which is given in Figure 8. Note that our
resulting correspondence is not the first of its kind, and we refer the reader to [26,
Lemma 1] for one such example.

...

P3

P2P1

u

v

a

b

c

d

rotation at v

rotation at u

...

P1

P2 P3

v

u

a

c

b

d

Figure 8. The rotation operation on rooted binary trees. A por-
tion of the plane duals are shown in blue.
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Lemma 4.7. Let P be a rooted plane tree and T be its plane dual triangulation.
The following operations correspond:

• a rotation at vertex v ∈ V (P ), and
• a flip at the diagonal in T corresponding to the two regions separated by the
edge between v and its parent.

Proof. Suppose v is the left child of its parent u. If the regions of the plane dual
surrounding v and u are {a, b, c, d} as in Figure 8, then observe that a rotation at
v replaces the diagonal (a, c) in the dual with (b, d) while preserving all remaining
diagonals. This is precisely a flip at the diagonal (a, c). When v is the right child
of its parent, then a similar argument applies. �

We now generalize the rotation operation to planar layouts of irreducible planar
tanglegrams. Note that any such planar layout is determined by the two compo-
nent plane binary trees P1 and P2, as all edges between matched leaves must be
horizontal. Hence, we denote a planar layout simply as (P1, P2). Furthermore, in
the plane dual bijection of Theorem 2.2, if two vertices u and v form the roots of
a proper subtanglegram, then the regions adjacent to their parent edges form the
shared diagonal in the dual of (P1, P2).

Definition 4.8. Let (P1, P2) be a planar layout of an irreducible planar tanglegram.
A rotation at u ∈ V (P1) ∪ V (P2) is defined as

(a) rotate u ∈ V (Pi), and
(b) if a proper subtanglegram is formed, then rotate at the vertex v ∈ V (Pj)

whose subtree forms part of a proper subtanglegram, where j 6= i.

Theorem 4.9. Let Ln be the graph on planar layouts of irreducible planar tangle-
grams of size n with edges given by rotations. Then Ln is isomorphic to Dn+1.

Proof. A bijection between the vertices of Ln and Dn+1 is given by Theorem 2.2, so
it suffices to show that the rotation and flip operations correspond appropriately.
Let (P1, P2), (P

′
1, P

′
2) ∈ V (Ln) with respective plane dual pairs of triangulations

(T1, T2), (T
′
1, T

′
2) ∈ V (Dn+1). We claim that (P ′

1, P
′
2) can be obtained by some

rotation in (P1, P2) if and only if (T ′
1, T

′
2) can be obtained by some flip in (T1, T2).

Suppose (P ′
1, P

′
2) can be obtained from (P1, P2) by some rotation, which we

assume without loss of generality is at some v ∈ V (P1). By Lemma 4.7, we have
that T ′

1 is obtained from T1 by some flip. If (P ′
1, P2) does not contain any proper

subtanglegrams, then the result follows. Otherwise, a proper subtanglegram in
(P ′

1, P2) corresponds to a shared diagonal in (T ′
1, T2), and we know that there is

only one shared diagonal in (T ′
1, T2). Observe that there is a unique flip in T2

that removes the shared diagonal in (T ′
1, T2). The rotation in P2 described in

Definition 4.8(b) removes the proper subtanglegram in (P ′
1, P2), and hence this

rotation in P2 and the necessary flip in T ′
2 must coincide. We conclude that (T ′

1, T
′
2)

is obtained from (T1, T2) by some flip. A similar argument implies the converse. �

5. Open Problems

Running the Markov chain on Dn from Theorem 1.2 sufficiently many iterations
allows for approximately uniform sampling of pairs of disjoint triangulations. De-
termining the number of iterations needed remains open, similar to the Markov
chain in [14].
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Problem 1. Determine the mixing time of the Markov chain from Theorem 1.2
and the meanders Markov chain from [14].

Note that a trivial upper bound for the mixing time of the Markov chain on Dn is
O(|V (Dn)|

2) [16, Proposition 10.28]. We suspect that this bound can be improved
significantly because the mixing time for a random walk on Tn is polynomial in
n [20, 21], while |V (Dn)| grows rapidly with respect to n [24]. The computer data
given in Table 2 supports our suspicion that O(|V (Dn)|

2) is not a useful upper
bound for the mixing time of Dn.

n 5 6 7 8 9
|V (Dn)| 10 68 546 4872 46782
iterations 3 7 14 25 39

σ2 0.5590... 0.7287... 0.8478... 0.9512... 0.9677...

Table 2. For each n, the number of iterations needed for the total
variation distance from the uniform distribution to be smaller than
1/4 regardless of the initial vertex chosen, and the second largest
eigenvalue of the transition matrix.

The Markov chains discussed in this paper allow for near-uniform generation of
the corresponding elements. Another natural question is what properties a “typical”
element has. One surprising result of [15] is that as n → ∞, generating a tanglegram
of size n uniformly at random becomes similar to generating two rooted plane binary
trees on n leaves independently and uniformly at random. Konvalinka and Wagner
used this result to establish asymptotic properties of tanglegrams.

Problem 2. Study properties of pairs of disjoint triangulations, meanders, and pla-
nar tanglegrams generated uniformly at random. In the case of planar tanglegrams,
establish analogues of results in [15].

Known enumerative results for meanders [22, A005315] and pairs of disjoint
triangulations [24] imply that these objects are not in bijection with each other.
However, it is possible that other connections exist by applying certain bijections
between Catalan objects.

Problem 3. Explore connections between pairs of disjoint triangulations, mean-
ders, and other pairs of Catalan objects satisfying some property.

Finally, we pose a problem involving our construction of Dn. Our techniques on
Dn can be generalized much further in the broader language of polyhedra.

Problem 4. For a given simple polytope P , explore the graph on pairs

{(u, v) : u, v ∈ V (P ), u and v are not contained in the same facet}

with edges constructed in a manner similar to in Dn. Determine what analogues of
Theorem 1.3 hold and when this is the graph of an abstract polytope.
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