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SUBSPACE CONCENTRATION OF DUAL CURVATURE

MEASURES OF SYMMETRIC CONVEX BODIES

KÁROLY J. BÖRÖCZKY, MARTIN HENK, AND HANNES POLLEHN

Abstract. We prove a tight subspace concentration inequality for the
dual curvature measures of a symmetric convex body.

1. Introduction

Let Kn denote the set of convex bodies in R
n, i.e., all convex and compact

subsets K having a non-empty interior. The set of convex bodies having the
origin as an interior point and the set of origin-symmetric convex bodies, i.e.,
those sets which satisfyK = −K are denoted byKn

o andKn
e respectively. For

x,y ∈ R
n, let 〈x,y〉 denote the standard inner product and |x| =

√
〈x,x〉

the Euclidean norm. We write Bn for the n-dimensional Euclidean unit ball,
i.e., Bn = {x ∈ R

n : |x| ≤ 1} and Sn−1 for its boundary. The k-dimensional
Hausdorff-measure will be denoted by Hk(·) and instead of Hn(·) we will
also write vol(·) for the n-dimensional volume.

At the heart of the Brunn-Minkowski theory is the study of the volume
functional with respect to the Minkowski addition of convex bodies. This
leads to the theory of mixed volumes and, in particular, to the quermass-
integrals Wi(K) of a convex body K ∈ Kn. The latter may be defined via
the classical Steiner formula, expressing the volume of the Minkowski sum
of K and λBn, i.e., the volume of the parallel body of K at distance λ as a
polynomial in λ (cf., e.g., [40, Sect. 4.2])

(1.1) vol(K + λBn) =

n∑

i=0

λi

(
n

i

)
Wi(K).

A more direct geometric interpretation is given by Kubota’s integral formula
(cf., e.g., [40, Subsect. 5.3.2]), showing that they are – up to some constants
– the means of the volumes of projections

(1.2) Wn−i(K) =
vol(Bn)

voli(Bi)

∫

G(n,i)
voli(K|L) dL, i = 1, . . . , n,

where voli(·) denotes the i-dimensional volume, integration is taken with
respect to the rotation-invariant probability measure on the Grassmannian
G(n, i) of all i-dimensional linear subspaces and K|L denotes the orthogonal
projection onto L.
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A local version of the Steiner formula above leads to two important series
of geometric measures, the surface area measures Si(K, ·) and the curvature
measures Ci(K, ·), i = 0, . . . , n − 1, of a convex body K. Here we will only
briefly describe the surface area measures since they may be considered as
the “primal” counterpart to the dual curvature measures we are interested
in.

To this end, we denote for ω ⊆ Sn−1 by ν−1
K (ω) ⊆ ∂K the set of all

boundary points of K having an outer unit normal in ω. Moreover, for
x ∈ R

n \ K let rK(x) ∈ ∂K be the point of K closest to K. Then for a
Borel set ω ⊆ Sn−1 and λ > 0 we consider the local parallel body

(1.3) BK(λ, ω) =
{
x ∈ R

n : 0 < |x− rK(x)| ≤ λ and rK(x) ∈ ν−1
K (ω)

}
.

The local Steiner formula is now a polynomial in λ whose coefficients are
(up to constants depending on i, n) the surface area measures (cf., e.g., [40,
Sect. 4.2])

(1.4) vol(BK(λ, ω)) =
1

n

n∑

i=1

λi

(
n

i

)
Sn−i(K,ω).

They may also be regarded as the (right hand side) differentials of the quer-
massintegrals

(1.5) lim
ǫ↓0

Wn−1−i(K + ǫBn)−Wn−1−i(K)

ǫ
=

∫

Sn−1

dSi(K,u).

Also observe that Si(K,Sn−1) = nWn−i(K), i = 0, . . . , n − 1.
To characterize the surface area measures Si(K, ·), i ∈ {1, . . . , n − 1},

among the finite Borel measures on the sphere is a corner stone of the
Brunn-Minkowski theory. Today this problem is known as the Minkowski–

Christoffel problem, since for j = n − 1 and the surface area measure
Sn−1(K, ·) it is the classical Minkowski problem and for j = 1 it is the
Christoffel problem. We refer to [40, Chapter 8] for more information and
references.

There are two far-reaching extensions of the classical Brunn-Minkowski
theory, both arising basically by replacing the classical Minkowski-addition
by another additive operation (cf. [17]). The first one is the Lp addition
introduced by Firey (see, e.g., [12]) which leads to the rich and emerging
Lp-Brunn-Minkowski theory for which we refer to [40, Sect. 9.1, 9.2]).

The second one, introduced by Lutwak [29], is based on the radial addition
+̃ where x +̃y = x+y if x,y are linearly dependent and 0 otherwise. Con-
sidering the volume of radial additions leads to the dual Brunn-Minkowski

theory (cf. [40, Sect. 9.3]) with dual mixed volumes, and, in particular,

also with dual quermassintegrals W̃i(K) arising via a dual Steiner formula
(cf. (1.1))

vol(K +̃λBn) =
n∑

i=0

λi

(
n

i

)
W̃i(K).

In general the radial addition of two convex sets is not a convex set, but the
radial addition of two star bodies is again a star body. This is one of the
features of the dual Brunn-Minkowski theory which makes it so useful. The
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celebrated solution of the Busemann-Petty problem is amongst the recent
successes of the dual Brunn-Minkowski theory, cf. [13, 18, 44], and it also
has connections and applications to integral geometry, Minkowski geometry,
and the local theory of Banach spaces.

In analogy to Kubota’s formula (1.2) the dual quermassintegrals W̃i(K)
admit the following integral geometric representation as the means of the
volumes of sections (cf. [40, Sect. 9.3])

W̃n−i(K) =
vol(Bn)

voli(Bi)

∫

G(n,i)
voli(K ∩ L) dL, i = 1, . . . , n.

There are many more “dualities” between the classical and dual theory, but
there were no dual geometric measures corresponding to the surface area
or curvature measures. This missing link was recently established in the
ground-breaking paper [25] by Huang, Lutwak, Yang and Zhang. Let ρK
be the radial function (see Section 2 for the definition) of a convex body
K ∈ Kn

o . Analogous to (1.3) we consider for a Borel set η ⊆ Sn−1 and λ > 0
the set

ÃK(λ, η) =
{
x ∈ R

n : 0 ≤ |x− ρK(x)x| ≤ λ and ρK(x)x ∈ ν−1
K (η)

}
.

Then there also exists a local Steiner type formula of these local dual parallel
sets [25, Theorem 3.1] (cf. (1.4))

vol(ÃK(λ, η)) =

n∑

i=0

(
n

i

)
λiC̃n−i(K, η).

C̃i(K, η) is called the ith dual curvature measure and they are the counter-
parts to the surface area measures Si(K,ω) in the dual Brunn-Minkowski

theory. Observe that C̃i(K,Sn−1) = W̃n−i(K). As the surface area measure
(cf. (1.5)), the dual curvature measures may also be considered as differen-
tials of the dual quermassintegrals, even in a stronger form (see [25, Section
4]). We want to point out that there are also dual surface area measures
corresponding to the curvature measures in the classical theory (see [25]).

Huang, Lutwak, Yang and Zhang also gave an explicit integral represen-
tation of the dual curvature measures which allowed them to define more
generally for q ∈ R the qth dual curvature measure of a convex bodyK ∈ Kn

o

as [25, Def. 3.2]

(1.6) C̃q(K, η) =
1

n

∫

α∗
K
(η)

ρK(u)qdHn−1(u).

Here α∗
K(η) denotes the set of directions u ∈ Sn−1, such that the boundary

point ρK(u)u belongs to ν−1
K (η). The analog to the Minkowski-Christoffel

problem in the dual Brunn-Minkowski theory is (cf. [25, Sect. 5])

The dual Minkowski problem. Given a finite Borel measure µ on Sn−1

and q ∈ R. Find necessary and sufficient conditions for the existence of

a convex body K ∈ Kn
o such that C̃q(K, ·) = µ.

An amazing feature of these dual curvature measures is that they also link
two other well-known fundamental geometric measures of a convex body

(cf. [25, Lemma 3.8]): when q = 0 the dual curvature measure C̃0(K, ·) is –
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up to a factor of n – Aleksandrov’s integral curvature of the polar body of
K and for q = n the dual curvature measure coincides with the cone-volume
measure of K given by

C̃n(K, η) = VK(η) =
1

n

∫

ν−1

K
(η)

〈x, νK(x)〉dHn−1(x).

Similarly to the Minkowsi problem, the dual Minkowski problem is equiv-
alent to solving a Monge-Ampère type partial differential equation if the
measure µ has a density function g : Sn−1 → R. In particular, if q ∈ (0, n],
then the dual Minkowski problem amounts to solving the Monge-Ampère
equation

(1.7)
1

n
h(x)|∇h(x) + h(x)x|q−n det[hij(x) + δijh(x)] = g(x),

where [hij(x)] is the Hessian matrix of the (unknown) support function h
with respect to an orthonormal frame on Sn−1, and δij is the Kronecker
delta.

If 1
n h(x)|∇h(x) + h(x)x|q−n were omitted in (1.7), then (1.7) would be-

come the partial differential equation of the classical Minkowski problem,
see, e.g., [9, 10, 38]. If only the factor |∇h(x) + h(x)x|q−n were omitted,
then equation (1.7) would become the partial differential equation associated
with the cone volume measure, the so-called logarithmic Minkowski problem
(see, e.g., [7, 11]). Due to the gradient component in (1.7) if q ∈ (0, n), the
dual Minkowski problem is signicantly more challenging than the classical
Minkowski problem and logarithmic Minkowski problem.

The cone-volume measure for convex bodies has been studied extensively
over the last few years in many different contexts, see, e.g., [2, 3, 6, 7, 8, 17,
19, 21, 25, 27, 28, 32, 33, 34, 35, 36, 37, 39, 43, 45, 46]. One very important
property of the cone-volume measure – and which makes it is so useful – is
its SL(n)-invariance, or simply called affine invariance. It is also the subject
of the central logarithmic Minkowski problem which asks for sufficient and
necessary conditions of a measure µ on Sn−1 to be the cone-volume measure
of a convex body K ∈ Kn

o . This is the p = 0 limit case of the general
Lp-Minkowski problem within the above mentioned Lp Brunn-Minkowski
theory for which we refer to [26, 31, 47] and the references within.

The discrete, planar, even case of the logarithmic Minkowski problem, i.e.,
with respect to origin-symmetric convex polygons, was completely solved by
Stancu [41, 42], and later Zhu [45] as well as Böröczky, Hegedűs and Zhu [4]
settled (in particular) the case when K is a polytope whose outer normals
are in general position.

In [7], Böröczky, Lutwak, Yang and Zhang gave a complete characteriza-
tion of the cone-volume measure of origin-symmetric convex bodies among
the even measures on the sphere. The key feature of such a measure is ex-
pressed via the following condition: A non-zero, finite Borel measure µ on
the unit sphere satisfies the subspace concentration condition if

(1.8)
µ(Sn−1 ∩ L)

µ(Sn−1)
≤

dimL

n
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for every proper subspace L of Rn, and whenever we have equality in (1.8)
for some L, there is a subspace L′ complementary to L, such that µ is
concentrated on Sn−1 ∩ (L ∪ L′).

Apart from the uniqueness aspect of the Minkowski problem, the sym-
metric case of the logarithmic Minkowski problem is settled.

Theorem 1.1 ([7]). A non-zero, finite, even Borel measure µ on Sn−1 is

the cone-volume measure of K ∈ Kn
e if and only if µ satisfies the subspace

concentration condition.

An extension of the validity of inequality (1.8) to centered bodies, i.e.,
bodies whose center of mass is at the origin, was given in the discrete case
by Henk and Linke [23], and in the general setting by Böröczky and Henk [5].

A generalization (up to the equality case) of the sufficiency part of Theo-
rem 1.1 to the q-dual curvature measure for q ∈ (0, n] was given by Huang,
Lutwak, Yang and Zhang. For clarity, we separate their main result into the
next two theorems.

Theorem 1.2 ([25, Theorem 6.6]). If q ∈ (0, 1], then an even finite Borel

measure µ on Sn−1 is a q-dual curvature measure if and only if µ is not

concentrated on any great subsphere.

Theorem 1.3 ([25, Theorem 6.6]). Let q ∈ [1, n] and let µ be a non-zero,

finite, even Borel measure on Sn−1 satisfying the subsapce mass inequality

(1.9)
µ(Sn−1 ∩ L)

µ(Sn−1)
< 1−

q − 1

q

n− dimL

n− 1

for every proper subspace L of Rn. Then there exists a o-symmetric convex

body K ∈ Kn
e with C̃q(K, ·) = µ.

In particular, it is highly desirable to understand how close (1.9) is to
characterize q-dual curvature measures. Observe that for q = n the inequal-
ity (1.9) becomes essentially (1.8).

Our main result treats the necessity of a subspace concentration bound
on dual curvature measures.

Theorem 1.4. Let K ∈ Kn
e , q ∈ [1, n] and let L ⊂ R

n be a proper subspace.

Then we have

(1.10)
C̃q(K,Sn−1 ∩ L)

C̃q(K,Sn−1)
≤ min

{
dimL

q
, 1

}
,

and equality holds in (1.10) if and only if q = n and C̃n(K, ·), i.e., the cone-

volume measure of K, satisfies the subspace concentration condition (1.8).

In particular, for q < n we always have strict inequality in (1.10), but this
is also optimal.

Proposition 1.5. Let 0 < q < n and k ∈ {1, . . . , n − 1}. There exists a

sequence of convex bodies Kl ∈ Kn
e , l ∈ N, and a k-dimensional subspace

L ⊂ R
n such that

lim
l→∞

C̃q(Kl, S
n−1 ∩ L)

C̃q(Kl, Sn−1)
=

{
k
q , k ≤ q,

1 , k ≥ q.
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We observe that if q ∈ [1, n] and dimL = 1 for a linear subspace L

then 1− q−1
q

n−dimL
n−1 = dimL

q . Therefore Theorems 1.3 and 1.4 complete the

characterization of the q-dual curvature measures if n = 2.

Corollary 1.6. If q ∈ [1, 2), then an even finite Borel measure µ on S1 is

a q-dual curvature measure if and only if

µ(S1 ∩ L)

µ(S1)
<

1

q

for every one-dimensional subspace L of R2.

We remark that the dual Minkowski problem is far easier to handle for
the special case where the measure µ has a positive continuous density,
(where subspace concentration is trivially satisfied). The singular general
case for measures is substantially more delicate, which involves measure
concentration and requires far more powerful techniques to solve.

The paper is organized as follows. First we will briefly recall some basic
facts about convex bodies needed in our investigations in Section 2. In Sec-
tion 3 we will prove a lemma in the spirit of the celebrated Brunn-Minkowski
theorem, which is one of the main ingredients for the proof of Theorem 1.4
given in Section 4. Finally, in Section 5 we will prove Proposition 1.5.

2. Preliminaries

We recommend the books by Gardner [15], Gruber [20] and Schneider [40]
as excellent references on convex geometry.

For a given convex body K ∈ Kn the support function hK : Rn → R is
defined by

hK(x) = max
y∈K

〈x,y〉.

A boundary point x ∈ ∂K is said to have a (not necessarily unique) unit
outer normal vector u ∈ Sn−1 if 〈x,u〉 = hK(u). The corresponding sup-
porting hyperplane {x ∈ R

n : 〈x,u〉 = hK(u)} will be denoted by HK(u).
For K ∈ Kn

o the radial function ρK : Rn \ {0} → R is given by

ρK(x) = max{ρ > 0: ρx ∈ K}.

Note, that the support function and the radial function are homogeneous of
degrees 1 and −1, respectively, i.e.,

hK(λx) = λhK(x) and ρK(λx) = λ−1 ρK(x),

for λ > 0. We define the reverse radial Gauss image of η ⊆ Sn−1 with
respect to a convex body K ∈ Kn

o by

α∗
K(η) = {u ∈ Sn−1 : ρK(u)u ∈ HK(v) for a v ∈ η}.

If η is a Borel set, then α∗
K(η) is Hn−1-measurable (see [40, Lemma 2.2.11.])

and so the q-th dual curvature measure given in (1.6) is well defined. We
will need the following identity.
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Lemma 2.1. Let K ∈ Kn
o , q > 0 and η ⊆ Sn−1 a Borel set. Then

C̃q(K, η) =
q

n

∫

x∈K, x/|x|∈α∗
K
(η)

|x|q−ndHn(x).

Proof. Since q > 0, we may write via spherical coordinates

q

n

∫

x∈K, x/|x|∈α∗
K
(η)

|x|q−ndHn(x) =
1

n

∫

α∗
K
(η)




ρK(u)∫

0

q rn−1 rq−ndr


dHn−1(u)

=
1

n

∫

α∗
K
(η)

ρK(u)qdHn−1(u) = C̃q(K, η).

�

Let L be a linear subspace of Rn. We write K|L to denote the orthogonal
projection of K onto L and L⊥ for the subspace orthogonal to L.

As usual, for two subsets A,B ⊆ R
n and reals α, β ≥ 0 the Minkowski

combination is defined by

αA+ βB = {αa+ βb : a ∈ A, b ∈ B}.

By the well-known Brunn-Minkowski inequality we know that the n-th
root of the volume of the Minkowski combination is a concave function.
More precisely, for two convex bodies K0,K1 ⊂ R

n and for λ ∈ [0, 1] we
have

(2.1) voln((1− λ)K0 + λK1)
1/n ≥ (1− λ)voln(K0)

1/n + λvoln(K1)
1/n,

where voln(·) = Hn(·) denotes the n-dimensional Hausdorff measure. We
have equality in (2.1) for some 0 < λ < 1 if and only if K0 and K1 lie in
parallel hyperplanes or they are homothetic, i.e., there exist a t ∈ R

n and
µ ≥ 0 such that K1 = t+ µK0 (see, e.g., [14], [40, Sect. 6.1]).

3. Integrals of even unimodal functions

A function f on the real line R is called unimodal if there is a number
m ∈ R, such that f is an increasing function on (−∞,m) and decreasing
on (m,∞). Obviously the integral of f over an interval of fixed length
is maximal when the interval is centered at m. The notion of unimodal
functions can be extended to higher dimensional spaces in the following
way.

The superlevel sets of a function f : Rn → R are given by L+
f (α) = {x ∈

R
n : f(x) ≥ α}, α ∈ R. We say that f is unimodal if every superlevel set of

f is closed and convex. It was shown by Anderson [1] that the integral of
an even unimodal function over translates of a symmetric convex region is
maximal if the center of symmetry is moved to the origin. His proof relies
only on the Brunn-Minkowski theorem. Here we generalize this approach to
integrals over a convex combination of a convex body K and its reflection
−K.



8 KÁROLY J. BÖRÖCZKY, MARTIN HENK, AND HANNES POLLEHN

Lemma 3.1. Let K ∈ Kn and dimK = k. Let f : Rn → R≥0 ∪ {∞} be a

unimodal function, such that f(x) = f(−x) for every x ∈ R
n and

∫

1

2
K+ 1

2
(−K)

f(x)dHk(x) < ∞.

Let λ ∈ (0, 1). Then

(3.1)

∫

λK+(1−λ)(−K)

f(x)dHk(x) ≥

∫

K

f(x)dHk(x).

Moreover, equality holds if and only if for every α > 0

volk

(
[λK + (1− λ)(−K)] ∩ L+

f (α)
)
= volk(K ∩ L+

f (α)).

Proof. Let Kλ = λK+(1−λ)(−K). By the convexity of L+
f (α) we have for

every α ∈ R

(3.2) Kλ ∩ L+
f (α) ⊇ λ(K ∩ L+

f (α)) + (1− λ)((−K) ∩ L+
f (α)).

The Brunn-Minkowski inequality (2.1) applied to the set on right hand side
of (3.2) gives

volk(Kλ ∩ L+
f (α)) ≥volk

(
λ(K ∩ L+

f (α)) + (1− λ)((−K) ∩ L+
f (α))

)

≥
(
λvolk(K ∩ L+

f (α))
1/k + (1− λ)volk((−K) ∩ L+

f (α))
1/k

)k
.

Since f is even, the superlevel sets L+
f (α) are symmetric. Hence, volk(K ∩

L+
f (α)) = volk((−K) ∩ L+

f (α)) and so

volk(Kλ ∩ L+
f (α)) ≥ volk(K ∩ L+

f (α))

for every α ∈ R. Fubini’s theorem yields

∫

Kλ

f(x)dHk(x) =

∞∫

0

volk(Kλ ∩ L+
f (α))dα

≥

∞∫

0

volk(K ∩ L+
f (α))dα

=

∫

K

f(x)dHk(x).

Suppose we have equality in (3.1). Since volk(Kλ ∩L+
f (α)) is continuous on

the left with respect to α we find that

volk(Kλ ∩ L+
f (α)) = volk(K ∩ L+

f (α))

for every α > 0. �
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4. Proof of Theorem 1.4

Now we are ready to give the proof of Theorem 1.4. We use Fubini’s theo-
rem to decompose the dual curvature measure into integrals over hyperplane
sections. Lemma 3.1 will provide a critical estimate for these integrals.

Proof of Theorem 1.4. In order to prove the inequality (1.10) wer we may
certainly assume q > dimL = k. For y ∈ K|L put y = ρK|L(y)y and

Fy = conv{0,K ∩ (y + L⊥)},

My = conv{K ∩ L⊥,K ∩ (y + L⊥)}.

Observe that My∩(y+L⊥) = Fy∩(y+L⊥) = K∩(y+L⊥). By Lemma 2.1
and Fubini’s theorem we may write

C̃q(K,Sn−1) =
q

n

∫

K|L




∫

K∩(y+L⊥)

|z|q−ndHn−k(z)


 dHk(y)

≥
q

n

∫

K|L




∫

My∩(y+L⊥)

|z|q−ndHn−k(z)


 dHk(y).

(4.1)

In order to estimate the inner integral let y ∈ K|L, y 6= 0, and for ab-
breviation we set λ = ρK|L(y)

−1 ≤ 1. Then by the symmetry of K we
find

My ∩ (y + L⊥) ⊇λ(K ∩ (y + L⊥)) + (1− λ)(K ∩ L⊥)

⊇λ(K ∩ (y + L⊥))

+ (1− λ)

(
1

2
(K ∩ (y + L⊥)) +

1

2
(−(K ∩ (y + L⊥)))

)

=
1 + λ

2
(K ∩ (y + L⊥)) +

1− λ

2
(−(K ∩ (y + L⊥))).

Hence the set My ∩ (y+L⊥) contains a convex combination of a set and its
reflection at the origin. This allows us to apply Lemma 3.1 from which we
get

(4.2)

∫

My∩(y+L⊥)

|z|q−ndHn−k(z) ≥

∫

K∩(y+L⊥)

|z|q−ndHn−k(z).

Together with (4.1) we obtain the lower bound

(4.3) C̃q(K,Sn−1) ≥
q

n

∫

K|L




∫

K∩(y+L⊥)

|z|q−ndHn−k(z)


 dHk(y).



10 KÁROLY J. BÖRÖCZKY, MARTIN HENK, AND HANNES POLLEHN

On the other hand we find

C̃q(K,Sn−1 ∩ L) =
q

n

∫

K|L




∫

Fy∩(y+L⊥)

|z|q−ndHn−k(z)


 dHk(y)

=
q

n

∫

K|L




∫

(ρK|L(y)−1(K∩(y+L⊥))

|z|q−ndHn−k(z)


 dHk(y)

=
q

n

∫

K|L

ρK|L(y)
k−q




∫

K∩(y+L⊥)

|z|q−ndHn−k(z)


 dHk(y).

The inner integral is independent of the length of y ∈ K|L and might be
as well considered as the value g(u) of a (measurable) function g : Sn−1∩L →
R≥0. By taking this into account and using spherical coordinates we obtain

C̃q(K,Sn−1 ∩ L) =
q

n

∫

K|L

ρK|L(y)
k−qg(y/|y|)dHk(y)

=
q

n

∫

Sn−1∩L

g(u)




ρK|L(u)∫

0

ρK|L(ru)
k−qrk−1dr


dHk−1(u)

=
q

n

∫

Sn−1∩L

g(u)ρK|L(u)
k−q




ρK|L(u)∫

0

rq−1dr


dHk−1(u)

=
1

n

∫

Sn−1∩L

g(u) ρK|L(u)
kdHk−1(u).

(4.4)

Applying the same transformation to the right hand side of (4.3) gives

C̃q(K,Sn−1) ≥
q

n

∫

K|L

g(y/|y|)dHk(y)

=
q

n

∫

Sn−1∩L

g(u)




ρK|L(u)∫

0

rk−1dr


dHk−1(u)

=
q

n

1

k

∫

Sn−1∩L

g(u) ρK|L(u)
kdHk−1(u).

(4.5)

Combining (4.4) and (4.5) yields (1.10) in the case k = dimL ≤ q, i.e.,

C̃q(K,Sn−1 ∩ L)

C̃q(K,Sn−1)
≤

k

q
.

Now suppose that the dual curvature measure of K satisfies the inequality
(1.10) with equality with respect to a proper subspace L. Then we certainly
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have dimL < q, since the curvature measure cannot be concentrated on
a great hypersphere. Hence we must have equality in (4.2) for every y ∈
relint (K|L).

Assume q < n. Then the superlevel sets L+
f (α) of the function f(z) =

|z|q−n, z ∈ R
n, are balls. Hence, in view of the equality condition of

Lemma 3.1, equality in (4.2) implies that My∩ (y+L⊥)∩ rBn and K ∩ (y+

L⊥) ∩ rBn have the same (n − k)-dimensional volume for every r > 0. For
sufficiently small r, however, the intersection of K ∩ (y + L⊥) ⊂ ∂K with
r Bn is empty. Hence we must have q = n and in this case we know by Theo-
rem 1.1 that equality is attained if and only if the cone-volume measure of K
satisfies the subspace concentration condition as stated in Theorem 1.1. �

Remark 4.1. It is worth noting, that the proof of Theorem 1.4 only relies

on the symmetry of the function | · |q−n = ρBn(·)
n−q, its homogeneity and

the convexity of its unit ball. In fact, the ball Bn can be replaced by any

symmetric convex body M ∈ Kn
e in the sense that

∫

α∗
K
(Sn−1∩L)

ρM (u)n−qρK(u)qdHn−1(u) ≤

dimL

q

∫

Sn−1

ρM (u)n−qρK(u)qdHn−1(u),

(4.6)

where L ⊆ R
n is a subspace with dimL ≤ q. Observe, in this more general

setting, Lemma 2.1 becomes
∫

α∗
K
(η)

ρM (u)n−qρK(u)qdHn−1(u)

=

∫

α∗
K
(η)

ρM (u)n−q




ρK(u)∫

0

q rn−1 rq−ndr


dHn−1(u)

=q

∫

x∈K, x/|x|∈α∗
K
(η)

ρM (x)n−qdHn(x),

and (4.6) can be proved along the same lines as Theorem 1.4 with ρBn(·)
replaced by ρM (·).

5. Proof of Proposition 1.5

Here we show that the bounds given in Theorem 1.4 are indeed tight for
every choice of q ∈ (0, n). To this end let k ∈ N with 0 < k < n and for
r > 0 let Kr be the cylinder

Kr = (rBk)×Bn−k.

Let L = lin {e1, . . . ,ek} be the k-dimensional subspace generated by the
first k canonical unit vectors ei.

For x ∈ R
n write x = x1+x2, where x1 ∈ R

k×{0} and x2 ∈ {0}×R
n−k.

The supporting hyperplane of Kr with respect to a unit vector v ∈ Sn−1∩L
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is given by

HKr(v) = {x ∈ R
n : 〈v1,x1〉 = r}.

Hence the part of the boundary of Kr covered by all these supporting hyper-
lanes is given by rSk−1×Bn−k. In view of Lemma 2.1 and Fubini’s theorem
we conclude

C̃q(Kr, S
n−1 ∩ L) =

q

n

∫

x1∈rBk




∫

x2∈Bn−k

r|x2|≤|x1|

(|x1|
2 + |x2|

2)
q−n

2 dHn−k(x2)


 dHk(x1).

(5.1)

Denote the volume of Bn by ωn. Recall, that the surface area of Bn is given
by nωn and for abbreviation we set

c = c(q, k, n) =
q

n
kωk(n− k)ωn−k.

Switching to the cylindrical coordinates

x1 = su, s ≥ 0,u ∈ Sk−1, x2 = tv, t ≥ 0,v ∈ Sn−k−1,

transforms the right hand side of (5.1) to

C̃q(Kr, S
n−1 ∩ L) = c

r∫

0

s/r∫

0

sk−1tn−k−1(s2 + t2)
q−n

2 dt ds

= c

r∫

0

1∫

0

sq−1rk−ntn−k−1(1 + r−2t2)
q−n

2 dt ds

= c rk
1∫

0

1∫

0

sq−1tn−k−1(r2 + t2)
q−n

2 dt ds.(5.2)

Analogously we obtain

C̃q(Kr, S
n−1) =

q

n

∫

x1∈rBk




∫

x2∈Bn−k

(|x1|
2 + |x2|

2)
q−n

2 dHn−k(x2)


 dHk(x1)

= c

r∫

0

1∫

0

sk−1tn−k−1(s2 + t2)
q−n

2 dt ds

= c rk
1∫

0

1∫

0

sk−1tn−k−1(r2s2 + t2)
q−n

2 dt ds.

(5.3)
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When q > k, the monotone convergence theorem gives

lim
r→0+

1∫

0

1∫

0

sq−1tn−k−1(r2 + t2)
q−n

2 dt ds =

1∫

0

sq−1ds ·

1∫

0

tq−k−1dt =
1

q(q − k)

and

lim
r→0+

1∫

0

1∫

0

sk−1tn−k−1(r2s2+t2)
q−n

2 dt ds =

1∫

0

sk−1ds·

1∫

0

tq−k−1dt =
1

k(q − k)
.

Hence, by (5.2) and (5.3) we get

lim
r→0+

C̃q(Kr, S
n−1 ∩ L)

C̃q(Kr, Sn−1)
=

k

q
.

Now suppose q ≤ k. Rewrite (5.3) as

(5.4) C̃q(Kr, S
n−1) = c rk

1∫

0

1/s∫

0

sq−1tn−k−1(r2 + t2)
q−n

2 dt ds,

which in view of (5.2) gives

C̃q(Kr, S
n−1 ∩ L)− C̃q(Kr, S

n−1)

= c rk
1∫

0

1/s∫

1

sq−1tn−k−1(r2 + t2)
q−n

2 dt ds.
(5.5)

Observe, that by the monotone convergence theorem

lim
r→0+

1∫

0

1/s∫

1

sq−1tn−k−1(r2 + t2)
q−n

2 dt ds =

1∫

0

1/s∫

1

sq−1tq−k−1dt ds

=

{∫ 1
0 sq−1 1−sk−q

k−q ds, if q < k,∫ 1
0 sq−1(− log s)ds, if q = k,

=
1

kq
.

(5.6)

On the other hand, if 0 < r < 1, then

1∫

0

1/s∫

0

sq−1tn−k−1(r2 + t2)
q−n

2 dt ds ≥

1∫

0

1∫

r

sq−1tn−k−1(r + t)q−ndtds

≥

1∫

0

1∫

r

sq−1tn−k−1(t+ t)q−ndt ds

=

{
2q−n

q
rq−k−1
k−q , if q < k,

2q−n

q (− log(r)), if q = k,

(5.7)
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which is not bounded from above as a function in r. Hence, by (5.4), (5.5),
(5.6), (5.7) we finally get

lim
r→0+

C̃q(Kr, S
n−1 ∩ L)

C̃q(Kr, Sn−1)
= 1− lim

r→0+

1∫
0

1/s∫
1

sq−1tn−k−1(r2 + t2)
q−n

2 dt ds

1∫
0

1/s∫
0

sq−1tn−k−1(r2 + t2)
q−n

2 dt ds

= 1,

which finishes the proof of Proposition 1.5.
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[2] Franck Barthe, Olivier Guédon, Shahar Mendelson, and Assaf Naor. A probabilistic
approach to the geometry of the lnp -ball. Ann. Probab., 33(2):480–513, 2005.
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