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CHARACTER ANALOGUES OF COHEN-TYPE IDENTITIES AND RELATED

VORONOI SUMMATION FORMULAS

DEBIKA BANERJEE AND KHYATI KHURANA

Abstract. In [1], B. C. Berndt and A. Zaharescu introduced the twisted divisor sums associated with the Dirich-
let character while studying the Ramanujan’s type identity involving finite trigonometric sums and doubly infinite
series of Bessel functions. Later, in a follow-up paper [2], S. Kim extended the definition of the twisted divisor
sums to twisted sums of divisor functions. In this paper, we derive identities associated with the aforementioned
weighted divisor functions and the modified K-Bessel function in light of recent results obtained by the first
author and B. Maji [3]. Moreover, we provide a new expression for L(1, χ) from which we establish the positivity
of L(1, χ) for any real primitive character χ. In addition, we deduce Cohen-type identities and then exhibit the
Voronöı-type summation formulas for them.

1. Introduction

We begin by reminiscing about a beautiful identity due to Ramanujan involving the K-Bessel function, which
is recorded on page 253 of his lost notebook. If α and β are any two positive numbers such that αβ = π2 and
ν is any complex number, then

√
α

∞
∑

n=1

σ−ν(n)n
ν/2Kν/2(2nα) −

√

β

∞
∑

n=1

σ−ν(n)n
ν/2Kν/2(2nβ)

=
1

4
Γ
(ν

2

)

ζ(ν){β(1−ν)/2 − α(1−ν)/2}+ 1

4
Γ
(

−ν

2

)

ζ(−ν){β(1+ν)/2 − α(1+ν)/2}, (1.1)

where σk(n) =
∑

d|n d
k and Kν(z) denotes the modified Bessel function of order ν [4, p. 78], which is defined

as the following

Kν(z) :=
π

2

I−ν(z) − Iν(z)

sinπν
, z ∈ C, ν /∈ Z, (1.2)

with Iν being the Bessel function of the imaginary argument [4, p. 77] given by

Iν(z) :=

∞
∑

n=0

(12z)
ν+2n

n!Γ(ν + n+ 1)
, z ∈ C. (1.3)

Later in 1955, Guinand [5] derived a formula almost similar to (1.1) by appealing to a formula due to Watson
[6] involving the K-Bessel function. One can use Ramanujan’s formula (1.1) to derive Koshliakov’s formula [7],
given by

√
α

(

1

4
γ − 1

4
log(4β) +

∞
∑

n=1

d(n)K0(2nα)

)

=
√

β

(

1

4
γ − 1

4
log(4α) +

∞
∑

n=1

d(n)K0(2nβ)

)

, (1.4)

where γ denotes Euler’s constant and K0(z) is defined by the limit

K0(z) := lim
ν→0

Kν(z). (1.5)

Koshliakov, in 1929, proved the formula (1.4) by employing the Voronöı summation formula [8], which reads
as the following

∑

a≤n≤b

′d(n)f(n) =
∫ b

a
(log(x) + 2γ)f(x)dx +

∞
∑

n=1

d(n)

∫

b

a

f (x ) (4K0 (4π
√
nx )− 2πY0 (4π

√
nx ))dx , (1.6)
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where the prime ′ on the summation of the left-hand side implies that if a or b is an integer, only f(a)/2 or
f(b)/2 is counted, respectively. Here f(x) is a function of bounded variation in (a, b) with 0 < a < b, and K0(z)
is defined in (1.5), and Yν(z) denotes the Weber-Bessel function of order ν [4, p. 64] given by

Yν(z) :=
Jν(z) cos πν − J−ν(z)

sinπν
, z ∈ C, ν /∈ Z, (1.7)

Yn(z) := lim
ν→0

Yν(z), z ∈ C, n ∈ Z, (1.8)

and Jν(z) denotes the Bessel function of the first kind of order ν [4, p. 40]

Jν(z) :=
∞
∑

n=0

(−1)n(12z)
ν+2n

n!Γ(ν + n+ 1)
, z ∈ C. (1.9)

After Voronöı’s remarkable discovery of (1.6), many number theorists examined the formula (1.6) and provided
proofs under different conditions on the function f(x). A. L. Dixon and W. L. Ferrar [9] gave proof for a bounded
second differential coefficient function f(x) in (a, b). Koshliakov proved (1.6) for the analytic function f inside
a closed contour strictly containing the interval [a, b] with 0 < a < b. J. R. Wilton [10] proved (1.6) for the

function f , which has compact support in the interval [a, b] such that limε→0 V
β−ε
α f(x) = V β−0

α f(x) where V β
α

denotes the total variation of f(x) over (α, β). In 1987, M. Jutila [11] gave a Voronöı-type summation formula
involving an exponential factor. One can refer to [12, 13, 14, 15] for details and developments on Voronöı’s
summation formulas. Apart from its connection to different fields of mathematics, Voronöı-type summation
formulas also have some applications in physics, especially in quantum graph theory [16].

After Koshliakov, many mathematicians studied his formula (1.4). In 1936, Ferrar [17] reproved (1.4) by
appealing to the functional equation of ζ(s). Later in 1966, K. Soni [18] showed that the functional equation
of ζ2(s) is equivalent to the Voronöı summation formula (1.6) and is equivalent to Koshliakov’s formula (1.4).
In 1972, Oberhettinger and Soni [19] established that the functional equation of ζ(s) and Koshliakov’s formula
are equivalent using the methods of Hamburger. In 2008, B. C. Berndt, Y. Lee, and J. Sohn [20] proved (1.1)
by elaborating Guinand’s method. They rediscovered Koshliakov’s formula (1.4) by taking ν → 0 in (1.1).
However, A. Dixit in [21] gave an extended version of Ramanujan’s formula (1.1) by appealing to the Cauchy
residue theorem and the theory of the Mellin transform. Further analysis of identities analogous to (1.1) and
(1.4) have been done by B. C. Berndt, S. Kim and A. Zaharescu in [22]. They studied character analogues
of Koshliakov’s formula (1.4) for even characters. They replaced the classical divisor function d(n) with the
twisted divisor sums, namely,

dχ(n) =
∑

d|n
χ(d), dχ1,χ2

(n) =
∑

d|n
χ1(d)χ2(n/d), (1.10)

where χ, χ1 and χ2 are the Dirichlet characters, and they proved the following beautiful identity

qL(1, χ)

4τ(χ)
+

∞
∑

n=1

dχ(n)K0

(

2πnz√
q

)

=

√
qL(1, χ)

4z
+

τ(χ)

z
√
q

∞
∑

n=1

dχ̄(n)K0

(

2πn

z
√
q

)

,

where χ is a non-principal even primitive character mod q, ℜ(z) > 0, and τ(χ) is the Gauss sum defined in
(2.2), and K0(z) is defined in (1.5). In particular, for even real character χ, they established the positivity
of L(1, χ), which is instrumental in proving Dirichlet’s theorem on primes in arithmetic progressions. The
weighted divisor sums defined in (1.10) were introduced by B. C. Berndt and A. Zaharescu [1], where they
showed that the twisted or weighted divisor sums could be studied in connection with identities associated with
r2(n). However, S. Kim [2] extended the definition of twisted divisor sums to twisted sums of divisor functions,
namely,

σk,χ(n) :=
∑

d|n
dkχ(d), σ̄k,χ(n) :=

∑

d|n
dkχ(n/d), σk,χ1,χ2

(n) :=
∑

d|n
dkχ1(d)χ2(n/d), (1.11)

and they studied Riesz sum-type identities associated with them. Recently A. Dixit and A. Kesarwani [23]
studied a new generalization of the modified Bessel function of the second kind. They derived a formula
analogous to (1.1) associated with the generalized Bessel function. They proved that their formula is equivalent
to the functional equation of a non-holomorphic Eisenstein series on SL(2,Z).
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The study of the infinite series in (1.1) is of prime importance as it is intimately connected with the Fourier se-
ries expansion of non-holomorphic Eisenstein series on SL(2,Z) or Maass wave forms [24, 25, 26, 27]. Motivated
by this fact, Cohen, in 2010 [28], established the following result, similar to (1.1),

4x
1

2

∞
∑

n=1

σν(n)

nν/2
Kν/2(2πnx) + Λ(s)(x(1−ν)/2 − x(ν−1)/2) = 4x−

1

2

∞
∑

n=1

σν(n)

nν/2
Kν/2(

2πn

x
)

+ Λ(−s)(x−(1+ν)/2 − x(1+ν)/2), (1.12)

where Λ(s) = π− s

2Γ
(

s
2

)

ζ(s) andKν(z) is defined in (1.2). As an application, he obtained the following beautiful
identity involving the divisor function σs(n) and the modified K-Bessel function.

Proposition 1.1. [28, p. 62, Theorem 3.4] For ν /∈ Z such that ℜ(ν) ≥ 0 and any integer N such that

N ≥ ⌊ℜ(ν)+1
2 ⌋, then

8πx
ν

2

∞
∑

n=1

σ−ν(n)n
ν/2Kν(4π

√
nx) = −Γ(ν)ζ(ν)

(2π)ν−1
+

Γ(1 + ν)ζ(1 + ν)

πν+12νx
+







ζ(ν)xν−1

sin
(

πν
2

) +
2

sin
(

πν
2

)

N
∑

j=1

ζ(2j) ζ(2j − ν)x2j−1

−π
ζ(ν + 1)xν

cos(πν
2
)

+
2

sin
(

πν
2

)

∞
∑

n=1

σ−ν(n)
x2N+1

(n2 − x2)

(

nν−2N − xν−2N
)

}

. (1.13)

In addition to (1.13), he derived several interesting identities involving the divisor function σs(n) and the
modified K-Bessel function. Later, B. C. Berndt, A. Dixit, A. Roy, and A. Zaharescu [29], in their seminal
work, showed that Cohen-type identity (1.13) can be used to derive the Voronöı-type summation formula for
σs(n).

Proposition 1.2. [29, p. 841, Theorem 6.1] Let 0 < α < β and α, β /∈ Z. Let f denote a function analytic
inside a closed contour strictly containing [α, β]. Assume that −1

2 < ℜ(ν) < 1
2 . Then

∑

α<j<β

σ−ν(j)f(j) =

∫ β

α
f(t)

(

ζ(1− ν, χ) t−ν + ζ(ν + 1)
)

dt

+ 2π

∞
∑

n=1

σ−ν(n)n
ν/2

∫ β

α
f(t)(t)−

ν

2

{(

2

π
Kν(4π

√
nt)− Yν(4π

√
nt)

)

cos
(πν

2

)

− Jν(4π
√
nt) sin

(πν

2

)

}

dt.

Inspired by Cohen’s results [28], the first author and B. Maji [3] studied the infinite series involving the
generalised divisor function and the modified K-Bessel functions. More precisely, they studied the following
infinite series, for r ∈ Z, z ∈ C and a and x be any two positive real numbers,

∞
∑

n=1

σ(r)
z (n)n

ν

2Kν(a
√
nx), (1.14)

where σ
(r)
z (n) =

∑

dr |n d
z and ν is a complex number with ℜ(ν) ≥ 0. It is important to note that σ

(1)
z (n) = σz(n).

Hence almost all the Cohen-type identities can be derived from their results. In this article, we are interested
in the character analogues of (1.14). That is, we study the following infinite series

∞
∑

n=1

σz,χ(n)n
ν

2Kν(a
√
nx),

∞
∑

n=1

σ̄z,χ(n)n
ν

2Kν(a
√
nx),

∞
∑

n=1

σz,χ1,χ2
(n)n

ν

2Kν(a
√
nx), (1.15)

where σz,χ(n), σ̄z,χ(n) and σz,χ1,χ2
(n) are defined in (1.11), and ν is a complex number with ℜ(ν) ≥ 0. We

derive Cohen-type identities for twisted sums of divisor functions σz,χ(n), σ̄z,χ(n) and σz,χ1,χ2
(n) and obtain the

Voronöı-type summation formula for them. The paper is organized as follows: Section 2 states the results for
the twisted sums of divisor functions when z ∈ Z. Section 3 provides Cohen-type identities for them. Section
4 states the Voronöı-type summation formula for twisted sums of divisor functions. Section 5 reviews several
significant results needed to derive our main results. Sections 6, 7 and 8 are devoted to the proofs of identities
stated in Sections 2, 3 and 4, respectively.
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2. Main Results for the case z ∈ Z≥0

In this section, we consider z a non-negative integer and denote it by k. Throughout the paper, we assume
that a and x are two strictly positive real numbers, which differ from 0. Before proceeding further, we will
mention some definitions and notations which will be used later.

The Dirichlet L-function is defined by

L(s, χ) :=
∞
∑

n=1

χ(n)

ns
, ℜ(s) > 1, (2.1)

where χ is a Dirichlet character modulo q. It can be meromorphically continued to the entire complex plane.
Furthermore, if χ is principal, the corresponding Dirichlet L-function has a simple pole at s = 1. Otherwise,
the L-function is entire.

The Gauss sum of a Dirichlet character modulo q is

τ(χ) :=

q
∑

h=1

χ(h)e2πih/q . (2.2)

Since our results involve the modified K-Bessel function, it is important to state some related results. The
asymptotic estimate for the K-Bessel function defined in (1.2) is [4, p. 202]

Kν(x) =
( π

2x

)
1

2

e−x +O

(

e−x

x
3

2

)

as x → ∞.

The above expression ensures the absolute convergence of all the infinite series defined in (1.15). Throughout
this paper, we will consider ℜ(ν) ≥ 0 as K−ν(x) = Kν(x). We recall that K0(x) is defined by (1.5). From the
integral representation of K0(x) [4, p. 446]

K0(x) =

∫ ∞

0
e−x cosh tdt,

one can see that K0(x) is positive and monotonically decreasing on the interval (0,∞). We also note the series
representation of K0(x) [4, p. 80]

K0(x) = − log
(x

2

)

I0(x) +

∞
∑

m=0

(

x
2

)2m

(m!)2
Γ′(m+ 1)

Γ(m+ 1)
,

where I0(x) is defined in (1.3). From its series representation mentioned above, one can infer that K0(x) tends
to +∞ as x decreases to 0.

2.1. Identities involving odd characters. In this subsection, we will consider k to be an even, non-negative
integer and χ an odd primitive character.

Theorem 2.1. Let k be an even, non-negative integer and χ be an odd primitive Dirichlet character modulo
q. Then, for any ℜ(ν) > 0,

∞
∑

n=1

σk,χ(n)n
ν

2Kν(a
√
nx) =δk

2ν+1

aν+2
Γ(1 + ν)L(1, χ)x−

ν

2
−1 +

(−1)
k

2 iqk

aν2k+2−νπk+1
Γ(ν)τ(χ)Γ(k + 1)L(k + 1, χ̄) x−

ν

2

− (−1)
k

2 iaνqν+k x
ν

2

23ν+k+2π2ν+k+1
Γ(ν + k + 1)τ(χ)

∞
∑

n=1

σ̄k,χ̄(n)
(

n+ a2qx
16π2

)ν+k+1
,

where δk is given by

δk =

{

1, if k = 0,

0, if k > 0.
(2.3)

Our next result corresponds to ν = 0 is as follows
4



Theorem 2.2. Let k be an even, non-negative integer and χ be an odd primitive Dirichlet character modulo
q. Then

∞
∑

n=1

σk,χ(n)K0(a
√
nx) =δk

2

a2x
L(1, χ)− L(−k, χ)

4

(

log

(

8π

a2

)

+
L′(−k, χ)

L(−k, χ)
− 2γ

)

+
L(−k, χ)

4
log x

+ (−1)
k

2
ik!qk

2(2π)k+1
τ(χ)

∞
∑

n=1

σ̄k,χ̄(n)

(

1

nk+1
− 1

(n + a2qx
16π2 )k+1

)

, (2.4)

where δk is defined in (2.3).

Remark 1. Let us assume that χ is a real odd primitive Dirichlet character modulo q. Now setting k = 0 and
then employing the functional equation (5.16) in (2.4), we obtain

∞
∑

n=1

dχ(n)K0(a
√
nx) =

L(1, χ)

x

(

2

a2
− iτ(χ)

4π
x log x

)

− L(0, χ)

4

(

log

(

8π

a2

)

+
L′(0, χ)
L(0, χ)

− 2γ

)

+
ia2q x

64π3
τ(χ)

∞
∑

n=1

dχ̄(n)

n(n+ a2qx
16π2 )

. (2.5)

Now we can easily show that dχ(n) is non-negative for each n from the Euler product on the left-hand side of
(5.10). More precisely, the factors in its Euler product are of the forms

(

1− 1

ps

)−1

,

(

1− 1

ps

)−2

, or

(

1− 1

p2s

)−1

,

according as to whether χ(p) = 0, 1 or −1 respectively. Therefore, by rewriting the Euler product as a Dirichlet
series, one can easily notice that dχ(n) ≥ 0 for all n. In addition, it is clear from (1.10) that dχ(n) ≥ 1
whenever n is a perfect square. We have already mentioned the fact that K0(x) tends to +∞ as x decreases to
0 at the beginning of this section. Therefore, the left-hand side of (2.5) approaches +∞ as x decreases to 0.
Let us examine the right-hand side of (2.5). Noting that iτ(χ) is real for real odd primitive Dirichlet character
[30, Theorem 9.9, p. 288], we can easily deduce that the infinite series on the right-hand side of (2.5) tends to
0 as x decreases to 0. Next noting that iτ(χ) is real and x log x tends to 0 as x decreases to 0, we infer that
L(1,χ)

x tends to +∞ as x decreases to 0, which ensures the strict positivity of L(1, χ).

Theorem 2.3. Let k ≥ 2 be an even integer and χ be an odd primitive Dirichlet character modulo q. Then,
for any ℜ(ν) > 0,

∞
∑

n=1

σ̄k,χ(n)n
ν

2Kν(a
√
nx) =

2ν+2k+1

aν+2k+2
Γ(k + 1)Γ(ν + k + 1)L(1 + k, χ) x−

ν

2
−k−1

− (−1)
k

2 i(aq)ν x
ν

2

23ν+k+2π2ν+k+1
Γ(ν + k + 1)τ(χ)

∞
∑

n=1

σk,χ̄(n)
(

n+ a2qx
16π2

)ν+k+1
.

The result corresponding to ν = 0 is as follows

Theorem 2.4. Let k ≥ 2 be an even integer and χ be an odd primitive Dirichlet character modulo q. Then

∞
∑

n=1

σ̄k,χ(n)K0(a
√
nx) =

22k+1

a2k+2
Γ2(k + 1)L(k + 1, χ)

1

xk+1
+

1

2
ζ ′(−k)L(0, χ)

+
(−1)

k

2 ik!τ(χ)

2(2π)k+1

∞
∑

n=1

σk,χ̄(n)

(

1

nk+1
− 1

(n+ a2qx
16π2 )k+1

)

.

Remark 2. The case k = 0 is excluded from Theorem 2.3 and Theorem 2.4 because of the fact that σ̄0,χ(n) =

σ0,χ(n) = dχ(n) and
∑∞

n=1 dχ(n)n
ν/2Kν(a

√
nx) for ℜ(ν) > 0 and

∑∞
n=1 dχ(n)K0(a

√
nx) are already considered

in Theorems 2.1 and 2.2, respectively.
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2.2. Identities involving even characters. In this subsection, we present similar results when k is an odd
positive integer and χ is a non-principal even primitive character.

Theorem 2.5. Let k ≥ 1 be an odd integer and χ be a non-principal even primitive Dirichlet character modulo
q. Then, for any ℜ(ν) > 0,

∞
∑

n=1

σk,χ(n)n
ν

2Kν(a
√
nx) =

(−1)
k−1

2 qk

aν2k+2−νπk+1
Γ(ν)τ(χ)Γ(k + 1)L(1 + k, χ̄) x−

ν

2

+
(−1)

k+1

2 aνqν+k x
ν

2

23ν+k+2π2ν+k+1
Γ(ν + k + 1)τ(χ)

∞
∑

n=1

σk,χ̄(n)
(

n+ a2qx
16π2

)ν+k+1
.

The result corresponding to ν = 0 is as follows

Theorem 2.6. Let k ≥ 1 be an odd integer and χ be a non-principal even primitive Dirichlet character modulo
q. Then

∞
∑

n=1

σk,χ(n)K0(a
√
nx) =− L(−k, χ)

4

(

log

(

8π

a2

)

+
L′(−k, χ)

L(−k, χ)
− 2γ

)

+
L(−k, χ)

4
log x

+ (−1)
k−1

2
k!qk

2(2π)k+1
τ(χ)

∞
∑

n=1

σ̄k,χ̄(n)

(

1

nk+1
− 1

(n+ a2qx
16π2 )k+1

)

.

Theorem 2.7. Let k ≥ 1 be an odd integer and χ be a non-principal even primitive Dirichlet character modulo
q. Then, for any ℜ(ν) > 0,

∞
∑

n=1

σ̄k,χ(n)n
ν

2Kν(a
√
nx) =

2ν+2k+1

aν+2k+2
Γ(k + 1)Γ(ν + k + 1)L(1 + k, χ) x−

ν

2
−k−1

+
(−1)

k+1

2 (aq)ν x
ν

2

23ν+k+2π2ν+k+1
Γ(ν + k + 1)τ(χ)

∞
∑

n=1

σk,χ̄(n)
1

(

n+ a2qx
16π2

)ν+k+1
.

The result corresponding to ν = 0 is as follows

Theorem 2.8. Let k ≥ 1 be an odd integer and χ be a non-principal even primitive Dirichlet character modulo
q. Then

∞
∑

n=1

σ̄k,χ(n)K0(a
√
nx) =

22k+1

a2k+2
Γ2(k + 1)L(k + 1, χ)

1

xk+1
+

1

2
ζ ′(−k)L(0, χ)

+
(−1)

k−1

2 k!

2(2π)k+1
τ(χ)

∞
∑

n=1

σk,χ̄(n)

(

1

nk+1
− 1

(n+ a2qx
16π2 )k+1

)

.

The next result corresponds to the case ν = 0 and k = 0. We can also claim the positivity of L(1, χ) for even
real character χ from the following identity.

Theorem 2.9. Let χ be a non-principal even primitive Dirichlet character modulo q. Then we have

∞
∑

n=1

dχ(n)K0(a
√
nx) =

2

a2x
L(1, χ)− τ(χ)

8
L(1, χ̄) +

a2q x

32π4
τ(χ)

∞
∑

n=1

dχ̄(n)
log
(

16π2n
a2qx

)

n2 −
(

a2qx
16π2

)2 , (2.6)

provided a2qx
16π2 /∈ Z+.

Remark 3. When χ is any real even primitive Dirichlet character modulo q, we can show that dχ(n) is non-
negative for each n by similar arguments given in Remark 1. From (1.10), it can be easily seen that dχ(n) ≥ 1
whenever n is a perfect square. As K0(x) tends to +∞ as x decreases to 0, the left-hand side of (2.6) approaches
+∞ as x decreases to 0. Now the infinite series in the right-hand side of (2.6) decreases rapidly as x decreases
to 0. Therefore, we arrive at the conclusion that 2

a2x
L(1, χ) tends to +∞ as x decreases to 0 which proves the

strict positivity of L(1, χ).
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2.3. Identities involving two characters. In this subsection, we provide the identities corresponding to
σk,χ1,χ2

(n) =
∑

d/n d
kχ1(d)χ2(n/d), where χ1 and χ2 are Dirichlet characters modulo p and q, respectively.

Theorem 2.10. Let k ≥ 1 be an odd integer. Let χ1 and χ2 be primitive characters modulo p and q, respectively,
such that either both are non-principal even characters or both are odd characters. Then, for any ℜ(ν) > 0,

∞
∑

n=1

σk,χ1,χ2
(n)n

ν

2Kν(a
√
nx) =

(−1)
k+1

2 (aq)νpν+k x
ν

2

23ν+k+2π2ν+k+1
τ(χ1)τ(χ2)Γ(ν + k + 1)

∞
∑

n=1

σk,χ̄2,χ̄1
(n)

(

n+ a2pqx
16π2

)ν+k+1
.

The result corresponding to ν = 0 is as follows

Theorem 2.11. Let k ≥ 1 be an odd integer. Assume that χ1 and χ2 are primitive characters modulo p and
q, respectively, such that either both are non-principal even characters or both are odd characters, then

∞
∑

n=1

σk,χ1,χ2
(n)K0(a

√
nx) =

1

2
ck,χ1,χ2

+
(−1)

k−1

2 k!pk

2(2π)k+1
τ(χ1)τ(χ2)

∞
∑

n=1

σk,χ̄2,χ̄1
(n)

(

1

nk+1
− 1

(n+ a2pqx
16π2 )k+1

)

,

where ck,χ1,χ2
is a constant defined as

ck,χ1,χ2
=

{

L(−k, χ1)L
′(0, χ2), if both χ1 and χ2 are even,

L′(−k, χ1)L(0, χ2), if both χ1 and χ2 are odd.
(2.7)

Setting χ1 = χ2 = χ and observing σk,χ,χ(n) = χ(n)
∑

d/n d
k = χ(n)σk(n) in Theorems 2.10 and 2.11, we

obtain the following interesting identities.

Corollary 2.12. Let k ≥ 1 be an odd integer and χ be a non-principal primitive character modulo q. Then,
for any ℜ(ν) > 0,

∞
∑

n=1

σk(n)χ(n)n
ν

2Kν(a
√
nx) =

(−1)
k+1

2 aνq2ν+k x
ν

2

23ν+k+2π2ν+k+1
τ2(χ)Γ(ν + k + 1)

∞
∑

n=1

σk(n) χ̄(n)
(

n+ a2q2x
16π2

)ν+k+1
.

Corollary 2.13. Let k ≥ 1 be an odd integer and χ be a non-principal primitive character modulo q. For
ν = 0, we have

∞
∑

n=1

σk(n)χ(n)K0(a
√
nx) =

1

2
ck,χ,χ +

(−1)
k−1

2 k!qk

2(2π)k+1
τ2(χ)

∞
∑

n=1

σk(n) χ̄(n)

(

1

nk+1
− 1

(n+ a2q2x
16π2 )k+1

)

,

where ck,χ,χ is defined in (2.7).

The results corresponding to ν = 0 and k = 0 are as follows

Theorem 2.14. Let χ1 and χ2 be non-principal even primitive characters modulo p and q, respectively. Then

∞
∑

n=1

dχ1,χ2
(n)K0(a

√
nx) =

a2pq x

32π4
τ(χ1)τ(χ2)

∞
∑

n=1

dχ̄1,χ̄2
(n)

log
(

16π2n
a2pqx

)

n2 −
(

a2pqx
16π2

)2 ,

provided a2pqx
16π2 /∈ Z+.

Theorem 2.15. Let χ1 and χ2 be odd primitive characters modulo p and q, respectively. Then we have
∞
∑

n=1

dχ1,χ2
(n)K0(a

√
nx) =

1

2
L(0, χ1)L(0, χ2)

(

−2γ + log

(

4

a2x

)

+
L′(0, χ1)

L(0, χ1)
+

L′(0, χ2)

L(0, χ2)

)

+
a4p2q2

512π4
x2τ(χ1)τ(χ2)

∞
∑

n=1

dχ̄1,χ̄2
(n) log

(

a2pqx
16π2n

)

n
(

n2 − (a
2pqx
16π2 )2

) ,

provided a2pqx
16π2 /∈ Z+.
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Theorem 2.16. Let k be an even, non-negative integer. Assume that χ1 and χ2 are primitive characters
modulo p and q, respectively, such that one is a non-principal even character and the other is an odd character.
Then, for any ℜ(ν) > 0,

∞
∑

n=1

σk,χ1,χ2
(n)n

ν

2Kν(a
√
nx) =

(−1)
k

2 (aq)νpν+k x
ν

2

i23ν+k+2π2ν+k+1
τ(χ1)τ(χ2)Γ(ν + k + 1)

∞
∑

n=1

σk,χ̄2,χ̄1
(n)

(

n+ a2pqx
16π2

)ν+k+1
.

The result corresponding to ν = 0 is as follows

Theorem 2.17. Let k be an even, non-negative integer. If χ1 and χ2 are primitive characters modulo p and
q, respectively, such that one is a non-principal even character and the other is an odd character, then

∞
∑

n=1

σk,χ1,χ2
(n)K0(a

√
nx) =

1

2
ek,χ1,χ2

+ (−1)
k

2
ik!pk

2(2π)k+1
τ(χ1)τ(χ2)

∞
∑

n=1

σk,χ̄2,χ̄1
(n)

(

1

nk+1
− 1

(n + a2pqx
16π2 )k+1

)

,

where

ek,χ1,χ2
=

{

L(−k, χ1)L
′(0, χ2), if χ1 is odd and χ2 is even,

L′(−k, χ1)L(0, χ2), if χ1 is even and χ2 is odd.
(2.8)

3. Cohen-Type Identities

This section deals with z = −ν with ν /∈ Z such that ℜ(ν) ≥ 0. We will assume that x is a strictly positive
real number.

3.1. Identities involving even characters and specializations. In this subsection, we present the identities
associated with σ−ν,χ̄(n) and σ̄−ν,χ̄(n) when χ is a non-principal even primitive character.

Theorem 3.1. Let ν /∈ Z such that ℜ(ν) ≥ 0. Let χ be a non-principal even primitive character modulo q. If

N is any integer such that N ≥ ⌊ℜ(ν)+1
2 ⌋, then

8πxν/2
∞
∑

n=1

σ−ν,χ̄(n)n
ν/2Kν(4π

√
nx) = −Γ(ν)L(ν, χ̄)

(2π)ν−1
+

2Γ(1 + ν)L(1 + ν, χ̄)

(2π)ν+1
x−1

+
2q1−ν

τ(χ) sin
(

πν
2

)







N
∑

j=1

ζ(2j) L(2j − ν, χ)(qx)2j−1 + (qx)2N+1
∞
∑

n=1

σ̄−ν,χ(n)

(

nν−2N − (qx)ν−2N

n2 − (qx)2

)







, (3.1)

provided qx /∈ Z+.

The specialization of the above theorem to ν = 1/2 is as follows

Corollary 3.2. We have

2π
∞
∑

n=1

σ− 1

2
,χ̄(n)e

−4π
√
nx = −πL(1/2, χ̄) +

1

4π
L(3/2, χ̄)x−1 +

2q3/2

τ(χ)
x

∞
∑

n=1

σ̄− 1

2
,χ(n)

1

(n + qx)(
√
n+

√
qx)

.

Theorem 3.3. Let ν /∈ Z such that ℜ(ν) ≥ 0. Let χ be a non-principal even primitive character modulo q. If

N is any integer such that N ≥ ⌊ℜ(ν)+1
2 ⌋, then

8πxν/2
∞
∑

n=1

σ̄−ν,χ̄(n)n
ν/2Kν(4π

√
nx) =

q

τ(χ)

{

L(ν, χ)

sin
(

πν
2

)(qx)ν−1 − πL(1 + ν, χ)

cos
(

πν
2

) (qx)ν

+
2

sin
(

πν
2

)

N
∑

j=1

ζ(2j − ν)L(2j, χ)(qx)2j−1 +
2

sin
(

πν
2

)(qx)2N+1
∞
∑

n=1

σ−ν,χ(n)

(

nν−2N − (qx)ν−2N

n2 − (qx)2

)







,

provided qx /∈ Z+.

The result corresponding to ν = 1/2 is as follows
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Corollary 3.4. We have

2π
∞
∑

n=1

σ̄− 1

2
,χ̄(n)e

−4π
√
nx =

q1/2

τ(χ)
L(1/2, χ)x−

1

2 − πq3/2

τ(χ)
L(3/2, χ)x

1

2 +
2q2

τ(χ)
x

∞
∑

n=1

σ− 1

2
,χ(n)

(n+ qx)(
√
n+

√
qx)

.

3.2. Identities involving odd characters and specializations. In this subsection, we state the identities
associated with σ−ν,χ̄(n) and σ̄−ν,χ̄(n) when χ is an odd primitive character.

Theorem 3.5. Let ν /∈ Z such that ℜ(ν) ≥ 0. Let χ be an odd primitive character modulo q. If N is any integer

such that N ≥ ⌊ℜ(ν)+1
2 ⌋, then

8πxν/2
∞
∑

n=1

σ−ν,χ̄(n)n
ν/2Kν(4π

√
nx) = −Γ(ν)L(ν, χ̄)

(2π)ν−1
+

2Γ(1 + ν)L(1 + ν, χ̄)

(2π)ν+1
x−1 +

2iq1−ν

τ(χ) cos
(

πν
2

)

×







ζ(ν + 1)L(1, χ)(qx)ν −
N
∑

j=1

ζ(2j) L(2j − ν, χ)(qx)2j−1 − (qx)2N+1
∞
∑

n=1

σ̄−ν,χ(n)

n

(

nν+1−2N − (qx)ν+1−2N

n2 − (qx)2

)







,

provided qx /∈ Z+.

Setting ν = 1/2 in the above theorem, we obtain the following

Corollary 3.6. We have

2π

∞
∑

n=1

σ− 1

2
,χ̄(n)e

−4π
√
nx =− πL(1/2, χ̄) +

1

4π
L(3/2, χ̄)x−1 +

2iq

τ(χ)
ζ(3/2)L(1, χ)x1/2

− 2iq3/2

τ(χ)
x

∞
∑

n=1

σ̄− 1

2
,χ(n)

(n+
√
nqx+ qx)

n(n+ qx)(n
1

2 + (qx)
1

2 )
.

Theorem 3.7. Let ν /∈ Z such that ℜ(ν) ≥ 0. Let χ be an odd primitive character modulo q. If N is any integer

such that N ≥ ⌊ℜ(ν)+1
2 ⌋, then

8πxν/2
∞
∑

n=1

σ̄−ν,χ̄(n)n
ν/2Kν(4π

√
nx) =

2Γ(ν)ζ(ν)L(0, χ̄)

(2π)ν−1
+

iq

τ(χ)

{

L(ν, χ)

cos
(

πν
2

)(qx)ν−1 +
πL(1 + ν, χ)

sin
(

πν
2

) (qx)ν

+
2

cos
(

πν
2

)

N−1
∑

j=1

ζ(2j + 1− ν)L(2j + 1, χ)(qx)2j +
2

cos
(

πν
2

)(qx)2N
∞
∑

n=1

σ−ν,χ(n)

(

nν+1−2N − (qx)ν+1−2N

n2 − (qx)2

)







,

provided qx /∈ Z+.

The result corresponding to ν = 1/2 is as follows

Corollary 3.8. We have

2π

∞
∑

n=1

σ̄− 1

2
,χ̄(n)e

−4π
√
nx =2πζ(1/2)L(0, χ̄) +

iq1/2

τ(χ)
L(1/2, χ)x−

1

2 +
πiq3/2

τ(χ)
L(3/2, χ)x

1

2

+
2iq

τ(χ)

∞
∑

n=1

σ− 1

2
,χ(n)

(n+
√
nqx+ qx)

(n+ qx)(
√
n+

√
qx)

.

3.3. Identities involving two characters and specializations. Here we state the identities correspond-
ing to σ−ν,χ1,χ2

(n) =
∑

d/n d
−νχ1(d)χ2(n/d), where χ1 and χ2 are the Dirichlet characters modulo p and q,

respectively.

Theorem 3.9. Let ν /∈ Z such that ℜ(ν) ≥ 0. Both χ1 and χ2 are non-principal even primitive characters

modulo p and q, respectively. If N is any integer such that N ≥ ⌊ℜ(ν)+1
2 ⌋, then

8πx
ν

2

∞
∑

n=1

σ−ν,χ̄1,χ̄2
(n)nν/2Kν(4π

√
nx) =

2p1−νq

τ(χ1)τ(χ2) sin
(

πν
2

)







N
∑

j=1

L(2j, χ2) L(2j − ν, χ1)(pqx)
2j−1
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+(pqx)2N+1
∞
∑

n=1

σ−ν,χ2,χ1
(n)

(

nν−2N − (pqx)ν−2N

n2 − (pqx)2

)

}

,

provided pqx /∈ Z+.

Setting χ1 = χ2 = χ in the above theorem, we get the following

Corollary 3.10. Let ν /∈ Z such that ℜ(ν) ≥ 0. Let χ be a non-principal even primitive character modulo q.

If N is any integer such that N ≥ ⌊ℜ(ν)+1
2 ⌋, then

8πx
ν

2

∞
∑

n=1

σ−ν(n)χ̄(n)n
ν/2Kν(4π

√
nx) =

2q2−ν

τ2(χ) sin
(

πν
2

)







N
∑

j=1

L(2j, χ) L(2j − ν, χ)(q2x)2j−1

+(q2x)2N+1
∞
∑

n=1

σ−ν(n)χ(n)

(

nν−2N − (q2x)ν−2N

n2 − (q2x)2

)

}

,

provided q2x /∈ Z+.

Theorem 3.11. Let ν /∈ Z such that ℜ(ν) ≥ 0. Both χ1 and χ2 are odd primitive characters modulo p and q,

respectively. If N is any integer such that N ≥ ⌊ℜ(ν)+1
2 ⌋, then

8πxν/2
∞
∑

n=1

σ−ν,χ̄1,χ̄2
(n)nν/2Kν(4π

√
nx) = Γ(ν)L(ν, χ̄1)L(0, χ̄2)

2

(2π)ν−1

− 2p1−νq

τ(χ1)τ(χ2) sin
(

πν
2

)







−L(ν + 1, χ2)L(1, χ1)(pqx)
ν +

N−1
∑

j=1

L(2j + 1, χ2) L(2j + 1− ν, χ1)(pqx)
2j

+(pqx)2N
∞
∑

n=1

σ−ν,χ2,χ1
(n)

n

(

nν−2N+2 − (pqx)ν−2N+2

n2 − (pqx)2

)

}

,

provided pqx /∈ Z+.

Taking χ1 = χ2 = χ in the above theorem, we get the following

Corollary 3.12. Let ν /∈ Z such that ℜ(ν) ≥ 0. Let χ be an odd primitive character modulo p. If N is any

integer such that N ≥ ⌊ℜ(ν)+1
2 ⌋, then

8πx
ν

2

∞
∑

n=1

σ−ν(n)χ̄(n)n
ν/2Kν(4π

√
nx) = Γ(ν)L(ν, χ̄)L(0, χ̄)

2

(2π)ν−1

− 2p2−ν

τ2(χ) sin
(

πν
2

)







−L(ν + 1, χ2)L(1, χ1)(p
2x)ν +

N−1
∑

j=1

L(2j + 1, χ) L(2j + 1− ν, χ)(p2x)2j

+(p2x)2N
∞
∑

n=1

σ−ν(n)χ(n)

n

(

nν−2N+2 − (p2x)ν−2N+2

n2 − (p2x)2

)

}

,

provided p2x /∈ Z+.

Theorem 3.13. Let ν /∈ Z such that ℜ(ν) ≥ 0. Let χ1 be a non-principal even primitive character modulo p

and χ2 be an odd primitive character modulo q. If N is any integer such that N ≥ ⌊ℜ(ν)+1
2 ⌋, then

8πxν/2
∞
∑

n=1

σ−ν,χ̄1,χ̄2
(n)nν/2Kν(4π

√
nx) =

2

(2π)ν−1
Γ(ν)L(ν, χ̄1)L(0, χ̄2) +

2ip1−νq

τ(χ1)τ(χ2) cos
(

πν
2

)

×







N−1
∑

j=1

L(2j + 1, χ2)L(2j + 1− ν, χ1)(pqx)
2j + (pqx)2N

∞
∑

n=1

σ−ν,χ2,χ1
(n)

(

nν−2N+1 − (pqx)ν−2N+1

n2 − (pqx)2

)







,

provided pqx /∈ Z+.
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Theorem 3.14. Let ν /∈ Z such that ℜ(ν) ≥ 0. Let χ1 be an odd primitive character modulo p and χ2 be a

non-principal even primitive character modulo q. If N is any integer such that N ≥ ⌊ℜ(ν)+1
2 ⌋, then

8πxν/2
∞
∑

n=1

σ−ν,χ̄1,χ̄2
(n)nν/2Kν(4π

√
nx) =

2ip1−νq

τ(χ1)τ(χ2) cos
(

πν
2

) {L(ν + 1, χ2)L(1, χ1)(pqx)
ν

−
N
∑

j=1

L(2j, χ2) L(2j − ν, χ1)(pqx)
2j−1 − (pqx)2N+1

∞
∑

n=1

σ−ν,χ2,χ1
(n)

n

(

nν−2N+1 − (pqx)ν−2N+1

n2 − (pqx)2

)







,

provided pqx /∈ Z+.

4. Connection with Voronöı summation formula

In this section, we offer Voronöı-type summation formulas for σz,χ(n), σ̄z,χ(n) and σz,χ1,χ2
(n) defined in

(1.11).

4.1. Identities involving even characters.

Theorem 4.1. Let 0 < α < β and α, β /∈ Z. Let f denote a function analytic inside a closed contour strictly
containing [α, β]. Assume that χ is a non-principal even primitive character modulo q. For 0 < ℜ(ν) < 1

2 , we
have

q1−
ν

2

τ(χ)

∑

α<j<β

σ̄−ν,χ(j)f(j) =
q1−

ν

2

τ(χ)
L(1− ν, χ)

∫ β

α

f(t)

tν
dt+ 2π

∞
∑

n=1

σ−ν,χ̄(n) n
ν/2

∫ β

α
f(t)(t)−

ν

2

×
{(

2

π
Kν

(

4π

√

nt

q

)

− Yν

(

4π

√

nt

q

))

cos
(πν

2

)

− Jν

(

4π

√

nt

q

)

sin
(πν

2

)

}

dt.

Theorem 4.2. Let 0 < α < β and α, β /∈ Z. Let f denote a function analytic inside a closed contour strictly
containing [α, β]. Assume that χ is a non-principal even primitive character modulo q. For 0 < ℜ(ν) < 1

2 , we
have

q1+
ν

2

τ(χ)

∑

α<j<β

σ−ν,χ(j)f(j) =
q1+

ν

2

τ(χ)
L(1 + ν, χ)

∫ β

α
f(t)dt+ 2π

∞
∑

n=1

σ̄−ν,χ̄(n) n
ν/2

∫ β

α
f(t)(t)−

ν

2

×
{(

2

π
Kν

(

4π

√

nt

q

)

− Yν

(

4π

√

nt

q

))

cos
(πν

2

)

− Jν

(

4π

√

nt

q

)

sin
(πν

2

)

}

dt.

4.2. Identities involving odd characters.

Theorem 4.3. Let 0 < α < β and α, β /∈ Z. Let f denote a function analytic inside a closed contour strictly
containing [α, β]. Assume that χ is an odd primitive character modulo q. For 0 < ℜ(ν) < 1

2 , we have

q1−
ν

2

τ(χ)

∑

α<j<β

σ̄−ν,χ(j)

j
f(j) =

q1−
ν

2

τ(χ)
L(1− ν, χ)

∫ β

α

f(t)

tν+1
dt− 2πi

∞
∑

n=1

σ−ν,χ̄(n) n
ν/2

∫ β

α
f(t)(t)−

ν

2
−1

×
{(

2

π
Kν

(

4π

√

nt

q

)

− Yν

(

4π

√

nt

q

))

sin
(πν

2

)

+ Jν

(

4π

√

nt

q

)

cos
(πν

2

)

}

dt.

Theorem 4.4. Let 0 < α < β and α, β /∈ Z. Let f denote a function analytic inside a closed contour strictly
containing [α, β]. Assume that χ is an odd primitive character modulo q. For 0 < ℜ(ν) < 1

2 , we have

q1+
ν

2

τ(χ)

∑

α<j<β

σ−ν,χ(j)f(j) =
q1+

ν

2

τ(χ)
L(1 + ν, χ)

∫ β

α
f(t)dt+ 2πi

∞
∑

n=1

σ̄−ν,χ̄(n) n
ν/2

∫ β

α
f(t)(t)−

ν

2

×
{(

2

π
Kν

(

4π

√

nt

q

)

+ Yν

(

4π

√

nt

q

))

sin
(πν

2

)

− Jν

(

4π

√

nt

q

)

cos
(πν

2

)

}

dt.
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4.3. Identities involving two characters. In this subsection, we state Voronöı-type summation formula
associated with σ−ν,χ1,χ2

(n) =
∑

d/n d
−νχ1(d)χ2(n/d), where χ1 and χ2 are Dirichlet characters modulo p and

q, respectively.

Theorem 4.5. Let 0 < α < β and α, β /∈ Z. Let f denote a function analytic inside a closed contour
strictly containing [α, β]. Assume that χ1 and χ2 are non-principal even primitive characters modulo p and q,
respectively. For 0 < ℜ(ν) < 1

2 , we have

p1−
ν

2 q1+
ν

2

τ(χ1)τ(χ2)

∑

α<j<β

σ−ν,χ2,χ1
(j)f(j) = 2π

∞
∑

n=1

σ−ν,χ̄1,χ̄2
(n) nν/2

∫ β

α
f(t)(t)−

ν

2

×
{(

2

π
Kν

(

4π

√

nt

pq

)

− Yν

(

4π

√

nt

pq

))

cos
(πν

2

)

− Jν

(

4π

√

nt

pq

)

sin
(πν

2

)

}

dt.

Substituting χ1 = χ2 = χ in the above theorem, we get the following

Corollary 4.6. Let 0 < α < β and α, β /∈ Z. Let f denote a function analytic inside a closed contour strictly
containing [α, β]. Assume that χ is a non-principal even primitive character modulo q. For 0 < ℜ(ν) < 1

2 , we
have

q2

τ2(χ)

∑

α<j<β

σ−ν(j)χ(j)f(j) = 2π

∞
∑

n=1

σ−ν(n)χ̄(j) nν/2

∫ β

α
f(t)(t)−

ν

2

×
{(

2

π
Kν

(

4π

√

nt

q2

)

− Yν

(

4π

√

nt

q2

))

cos
(πν

2

)

− Jν

(

4π

√

nt

q2

)

sin
(πν

2

)

}

dt.

Theorem 4.7. Let 0 < α < β and α, β /∈ Z. Let f denote a function analytic inside a closed contour strictly
containing [α, β]. Assume that χ1 and χ2 are odd primitive characters modulo p and q, respectively. For
0 < ℜ(ν) < 1

2 , we have

p1−
ν

2 q1+
ν

2

τ(χ1)τ(χ2)

∑

α<j<β

σ−ν,χ2,χ1
(j)f(j)

j
= −2π

∞
∑

n=1

σ−ν,χ̄1,χ̄2
(n) nν/2

∫ β

α
f(t)(t)−

ν

2
−1

×
{(

2

π
Kν

(

4π

√

nt

pq

)

+ Yν

(

4π

√

nt

pq

))

cos
(πν

2

)

+ Jν

(

4π

√

nt

pq

)

sin
(πν

2

)

}

dt.

Substituting χ1 = χ2 = χ in the above theorem, we get the following

Corollary 4.8. Let 0 < α < β and α, β /∈ Z. Let f denote a function analytic inside a closed contour strictly
containing [α, β]. Assume that χ is an odd primitive character modulo q. For 0 < ℜ(ν) < 1

2 , we have

q2

τ2(χ)

∑

α<j<β

σ−ν(j)χ(j)f(j)

j
= −2π

∞
∑

n=1

σ−ν(n)χ̄(j) nν/2

∫ β

α
f(t)(t)−

ν

2
−1

×
{(

2

π
Kν

(

4π

√

nt

q2

)

+ Yν

(

4π

√

nt

q2

))

cos
(πν

2

)

+ Jν

(

4π

√

nt

q2

)

sin
(πν

2

)

}

dt.

Theorem 4.9. Let 0 < α < β and α, β /∈ Z. Let f denote a function analytic inside a closed contour strictly
containing [α, β]. Assume that χ1 is a non-principal even primitive character modulo p and χ2 is an odd
primitive character modulo q. For 0 < ℜ(ν) < 1

2 , we have

p1−
ν

2 q1+
ν

2

τ(χ1)τ(χ2)

∑

α<j<β

σ−ν,χ2,χ1
(j)f(j) = 2πi

∞
∑

n=1

σ−ν,χ̄1,χ̄2
(n) nν/2

∫ β

α
f(t)(t)−

ν

2

×
{(

2

π
Kν

(

4π

√

nt

pq

)

+ Yν

(

4π

√

nt

pq

))

sin
(πν

2

)

− Jν

(

4π

√

nt

pq

)

cos
(πν

2

)

}

dt.

Theorem 4.10. Let 0 < α < β and α, β /∈ Z. Let f denote a function analytic inside a closed contour
strictly containing [α, β]. Assume that χ1 is an odd primitive character modulo p and χ2 is a non-principal
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even primitive character modulo q. For 0 < ℜ(ν) < 1
2 , we have

p1−
ν

2 q1+
ν

2

τ(χ1)τ(χ2)

∑

α<j<β

σ−ν,χ2,χ1
(j)f(j)

j
= −2πi

∞
∑

n=1

σ−ν,χ̄1,χ̄2
(n) nν/2

∫ β

α
f(t)t−

ν

2
−1

×
{(

2

π
Kν

(

4π

√

nt

pq

)

− Yν

(

4π

√

nt

pq

))

sin
(πν

2

)

+ Jν

(

4π

√

nt

pq

)

cos
(πν

2

)

}

dt.

5. Preliminaries

We begin this section by recalling and proving some important results which will be used throughout the
paper.

The Mellin transform of a locally integrable function f(x) on (0,∞) is defined by

M[f ; s] = F (s) =

∫ ∞

0
f(t) ts−1dt, (5.1)

provided the integral converges. The basic properties of the Mellin transform follow immediately from those of
the Laplace transform since these transforms are intimately connected. The integral in (5.1) defines the Mellin
transform in a vertical strip in the s plane whose boundaries are determined by the analytic structure of f(x)
as x → 0+ and x → +∞. If we assume that f(x) satisfies the following growth condition

f(x) =

{

O(x−a−ε) as x → 0+,

O(x−b+ε) as x → +∞,
(5.2)

where ε > 0 and a < b, then the integral (5.1) converges absolutely in the strip a < ℜ(s) < b and defines an
analytic function there in the strip. This strip is known as the strip of analyticity of M[f ; s]. Furthermore, the
inversion formula for (5.1) follows directly from the corresponding inversion formula for the bilateral Laplace
transform. Thus,

f(x) =
1

2πi

∫ c+i∞

c−i∞
x−sM[f ; s]ds (a < c < b), (5.3)

which is valid at all points x ≥ 0 where f(x) is continuous. For example, M[ex; s] = Γ(s) for ℜ(s) > 0, and we
have the corresponding Mellin’s inversion formula

e−y =
1

2πi

∫

(c)
Γ(s)y−sds,

valid for ℜ(y) > 0. The functional relations for Γ(s) are given by [31, p. 73]

Γ(s+ 1) =sΓ(s), Γ(s)Γ

(

s+
1

2

)

= 21−2s√πΓ(2s), (5.4)

Γ(s)Γ(1− s) =
π

sin(πs)
. (5.5)

The following lemma states the asymptotic behaviour of Γ(s).

Lemma 5.1. [32, p. 38] In a vertical strip, for s=σ + it with a ≤ σ ≤ b and |t| ≥ 1,

|Γ(s)| = (2π)
1

2 |t|σ− 1

2 exp−
1

2
π|t|
(

1 +O

(

1

|t|

))

.

In our investigation, we shall require the following results related to the Mellin transform of derivatives of a
function.

Lemma 5.2. Let n ∈ N. Assume that φ is n-times differentiable function and

M[φ(t); s] =

∫ ∞

0
φ(t)ts−1dt = Φ(s). (5.6)

If φ satisfies (5.2), then

M[φ(n)(t)tn; s] = (−1)n
Γ(s+ n)

Γ(s)
Φ(s), (5.7)
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where s ∈ {w ∈ C; a < ℜ(w) < b}, provided
lim

t→0,∞
ts+n−j−1φ(n−j−1)(t) = 0 j = 0, 1, · · · , n− 1. (5.8)

Proof. The proof relies on mathematical induction. Using integration by parts, we have

M[xφ′(x); s] =
∫ ∞

0
φ′(t) tsdt = [tsφ(t)]∞0 − s

∫ ∞

0
φ(t) ts−1dt.

Noting φ(t) satisfies (5.2), we can claim that

M[xφ′(x); s] = −sΦ(s) for a < ℜ(s) < b.

Suppose the statement of the theorem is true for n = N and φ is N+1-times differentiable function and satisfies
(5.8). Then

M[xN+1φ(N+1)(x); s] =

∫ ∞

0
tN+1φ(N+1)(t) ts−1dt

=
[

ts+Nφ(N)(t)
]∞

0
− (s +N)

∫ ∞

0
tNφ(N)(t) ts−1dt.

As φ satisfies (5.8), so we have

M[φ(N+1)(t)tN+1; s] = −(s+N)

∫ ∞

0
tNφ(N)(t) ts−1dt = (−1)N+1Γ(s+N + 1)

Γ(s)
Φ(s),

and this completes the proof. �

Lemma 5.3. [33, p. 91, Formula (3.3.9)] We have

M[(1 + x)−a; s] =
Γ(s)Γ(a− s)

Γ(a)
,

for 0 < ℜ(s) < ℜ(a).
As an immediate consequence of Lemma 5.3 we get,

Lemma 5.4. For any n ∈ N,

M
[

a(a+ 1) · · · (a+ n− 1)xn

(1 + x)a+n
; s

]

=
Γ(s+ n)Γ(a− s)

Γ(a)
,

whenever 0 < ℜ(s) < ℜ(a).
Proof. By Lemma 5.3, we can write

M[(1 + x)−a; s] =
Γ(s)Γ(a− s)

Γ(a)
,

for 0 < ℜ(s) < ℜ(a). The function φ(t) = 1
(1+t)a for t ≥ 0 is a continuous function and satisfies all the conditions

of Lemma 5.2. Furthermore,

φ(n)(t) = (−1)n
a(a+ 1) · · · (a+ n− 1)

(1 + t)(a+n)
.

We have

Φ(s) =
Γ(a− s)Γ(s)

Γ(a)
for 0 < ℜ(s) < ℜ(a).

Hence by Lemma 5.2,

M
[

a(a+ 1) · · · (a+ n− 1)tn

(1 + x)(a+1)
; s

]

=
Γ(s+ n)

Γ(s)
Φ(s) =

Γ(s+ n)Γ(a− s)

Γ(a)
,

for 0 < ℜ(s) < ℜ(a). �

Lemma 5.5. Let n ≥ 0 be any integer and t > 0 be any real number. Then

1

2πi

∫

(c)
Γ(s+ n)Γ(a− s)t−sds =

Γ(a+ n)

(1 + t)a+n
tn,

for 0 < c < ℜ(a).
14



Proof. We get our desired result by combining Lemmas 5.3 and 5.4 and applying Mellin’s inversion formula. �

Lemma 5.6. [34, p. 346, Formula (20)] We have

M
[

log t

t− 1
; s

]

=
π2

sin2(πs)
,

for 0 < ℜ(s) < 1. The integral is convergent in the sense of Cauchy’s principal value.

Lemma 5.7. We have

M
[

4 log x

x2 − 1
; s

]

=
π2

sin2
(

πs
2

) , (5.9)

for 0 < ℜ(s) < 2. The integral is convergent in the sense of Cauchy’s principal value.

Proof. This is a direct consequence of Lemma 5.6. �

Now, we record a few important results related to the modified K-Bessel function Kν(x) defined by (1.2).

Lemma 5.8. [3, p. 10, Lemma 3.3] Let ν ∈ C. For any c > max{0,−ℜ(ν)}, we have

t
ν

2Kν(a
√
tx) =

1

2

(

2

a
√
x

)ν 1

2πi

∫

(c)
Γ(s)Γ(s+ ν)

(

4

a2x

)s

t−sds.

We first observe that the generating functions for σz,χ(n) and σ̄z,χ(n) and σz,χ1,χ2
(n) defined in (1.11) are

the following

ζ(s)L(s− z, χ) =

∞
∑

m=1

1

ms

∞
∑

d=1

dzχ(d)

ds
=

∞
∑

n=1

σz,χ(n)

ns
, (5.10)

ζ(s− z)L(s, χ) =

∞
∑

m=1

1

ms−z

∞
∑

d=1

χ(d)

ds
=

∞
∑

n=1

σ̄z,χ(n)

ns
, (5.11)

L(s− z, χ1)L(s, χ2) =

∞
∑

d=1

dzχ1(d)

ds

∞
∑

m=1

χ2(m)

ms
=

∞
∑

n=1

σz,χ1,χ2
(n)

ns
, (5.12)

for ℜ(s) > max(ℜ(z)+1, 1), where ζ(s) denotes the the Riemann zeta function and L(s, χ) denotes the Dirichlet
L-function defined by (2.1) for ℜ(s) > 1. We recall that the functional equation of ζ(s) [35, p. 234]

ζ(s) = 2sπs−1 sin
(πs

2

)

Γ(1− s)ζ(1− s). (5.13)

Replacing s by 1− s in (5.13), we obtain

Γ(s)ζ(s) =
πsζ(1− s)

21−s cos
(

πs
2

) . (5.14)

Next, we write the functional equation for L(s, χ) [31, p. 71]

L(s, χ) =
τ(χ)

iκ
√
q

(

π

q

)s−1/2 Γ(1−s+κ
2 )

Γ(s+κ
2 )

L(1− s, χ̄), (5.15)

where

κ = κ(χ) =

{

0, if χ(−1) = 1,

1, if χ(−1) = −1.

Employing (5.4) and (5.5) in (5.15), we obtain [30, Corrolary 10.9, p. 333]

L(s, χ) = i−κ τ(χ)

π

(

(2π)

q

)s

Γ(1− s) sin
π(s + κ)

2
L(1− s, χ̄). (5.16)

Now replacing s by s− z in (5.16), we get

L(s− z, χ) = i−κ τ(χ)

π

(

(2π)

q

)s−z

Γ(1 + z − s) sin
π(s+ κ− z)

2
L(1 + z − s, χ̄).
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So, we can rewrite the above equation as

Γ(1 + z − s)L(1 + z − s, χ̄) = iκ
π

τ(χ)

( q

2π

)s−z L(s − z, χ)

sinπ(s+κ−z
2 )

. (5.17)

We will also note that [31, p. 69, p. 71]

τ(χ)τ(χ̄) =

{

−q, for odd primitive χ mod q,

q, for even non-principal primitive χ mod q.
(5.18)

6. Proof of results when z ∈ Z+

We will start this section by considering a more general setup. Let χ be any Dirichlet character modulo q
and z ∈ C. Let fz(n) be one of the arithmetical functions σz,χ(n) or σ̄z,χ(n) or σz,χ1,χ2

(n) defined in (1.11).
We denote

Fz(s) :=
∞
∑

n=1

fz(n)

ns
, ℜ(s) > 1. (6.1)

Hence Fz(s) is one of the Dirichlet series given in (5.10) or (5.11) or (5.12). As mentioned in the previous section,
we will consider ℜ(ν) > 0 and ν = 0. Employing Lemma 5.8 with t = n and subsequently interchanging the
summation and integration, we get

∞
∑

n=1

fz(n)n
ν/2Kν(a

√
nx) =

1

2

(

2

a
√
x

)ν 1

2πi

∫

(c)
Γ(s)Γ(s+ ν)

(

4

a2x

)s ∞
∑

n=1

fz(n)n
−sds

=
1

2
Xν/2 1

2πi

∫

(c)
Γ(s)Γ(s+ ν)Fz(s)X

sds, (6.2)

where c > ℜ(z) + 1 and X = 4
a2x

. Here the notation (c) denotes the vertical line [c − i∞, c + i∞]. Next, we
investigate the following integral

I(ν)z (X) :=
1

2πi

∫

(c)
Γ(s+ ν)Γ(s)Fz(s)X

sds. (6.3)

We shall use the Cauchy residue theorem to evaluate this line integral in (6.3). We consider the contour formed
by the line segments [c − iT, c + iT ], [c + iT,−d + iT ], [−d + iT,−d − iT ], [−d − iT, c − iT ], where the choice
for d is as follows: 0 < d < min{1,ℜ(ν)} whenever ℜ(ν) > 0 and 0 < d < 1 otherwise. Here, T is taken to
be a large positive number. The possible poles of the integrand function in (6.3) are at s = 0, 1 and z + 1.
Now letting T → ∞ and invoking Lemma 5.1, one can show that the integrals along the horizontal segments
[c+ iT,−d+ iT ] and [−d− iT, c− iT ] vanish and get

I(ν)z (X) = Rz+1 +R1 +R0 +
1

2πi

∫

(−d)
Γ(s+ ν)Γ(s)Fz(s)X

sds, (6.4)

where Rz+1, R1 and R0 are the residues at s = z + 1, 1 and s = 0, respectively. It is easy to see that Rz+1 = 0
whenever z = 0. Hence combining (6.2) and (6.3) together with (6.4), we obtain

∞
∑

n=1

fz(n)n
ν/2Kν(a

√
nx) =

1

2
Xν/2

(

Rz+1 +R1 +R0 + J (ν)
z (X)

)

, (6.5)

where J
(ν)
z (X) is defined by

J (ν)
z (X) :=

1

2πi

∫

(−d)
Γ(s+ ν)Γ(s)Fz(s)X

sds. (6.6)

Next, we will offer the proofs of the theorems corresponding to z = k, where k is a non-negative integer.

Proof of Theorem 2.1. Letting fk(n) = σk,χ(n) where χ being an odd primitive character modulo q and k an
even, non-negative integer in (6.5), we obtain

∞
∑

n=1

σk,χ(n)n
ν/2Kν(a

√
nx) =

1

2
Xν/2

(

Rk+1 +R1 +R0 + J (ν)
z (X)

)

, (6.7)
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where ℜ(ν) > 0 and J
(ν)
k (X) is defined in (6.6) with Fk(s) = ζ(s)L(s− k, χ). It is easy to see that Rk+1 = 0 as

the integrand function in (6.6) does not have any pole at s = k + 1. Here, one can notice that L(s− k, χ) has
a zero at s = 1 when k ≥ 2 is an even integer and χ is odd. Therefore, we will not get any contribution from
the pole of ζ(s) at s = 1. However, if k = 0, the integrand in (6.6) will encounter a pole at s = 1. Therefore,
we can get

R1 =

{

0, if k > 0,

Γ(1 + ν)L(1, χ)X, if k = 0.
(6.8)

The integrand also has a pole at s = 0 with residue R0 given by

R0 = −Γ(ν)L(−k, χ)

2
=

(−1)
k

2 iτ(χ)

2π

(

(2π)

q

)−k

Γ(1 + k)Γ(ν)L(1 + k, χ̄), (6.9)

where in the last step, we have applied functional equation (5.16). Collecting (6.8) and (6.9) and Rk+1 = 0 and
then substituting them in (6.7), we get

X− ν

2

∞
∑

n=1

σk,χ(n)n
ν

2Kν(a
√
nx) =

(−1)
k

2 iτ(χ)

4π

(

(2π)

q

)−k

Γ(1 + k)Γ(ν)L(1 + k, χ̄)

+ δk
Γ(1 + ν)L(1, χ)

2
X +

1

2
J
(ν)
k (X), (6.10)

where δk is defined in (2.3). To evaluate J
(ν)
k (X) defined in (6.6), we invoke the functional equations (5.14) and

(5.16),

J
(ν)
k (X) =

hk
2πi

∫

(−d)
Γ(s+ ν)Γ(1 + k − s)ζ(1− s)L(1− s+ k, χ̄)Y sds

=
Y hk
2πi

∫

(1+d)
Γ(1− s+ ν)Γ(k + s)ζ(s)L(s+ k, χ̄)Y −sds

= Y hk

∞
∑

n=1

σ−k,χ̄(n)
1

2πi

∫

(1+d)
Γ(1− s+ ν)Γ(k + s)(nY )−sds,

where hk = (−1)1+
k
2 iτ(χ)

2π

( q
2π

)k
and Y = 4π2

q X with X = 4
a2x

. As 0 < d < ℜ(ν), we can apply Lemma 5.5 with

n = k and a = 1 + ν to obtain

J
(ν)
k (X) = Y k+1Γ(1 + ν)hk

∞
∑

n=1

σ−k,χ̄(n)
(ν + 1) · · · (ν + k)nk

(1 + nY )1+ν+k

= Y k+1Γ(1 + ν + k)hk

∞
∑

n=1

σ̄k,χ(n)

(1 + nY )1+ν+k
, (6.11)

where in the penultimate step we have used the fact nkσ−k,χ(n) = σ̄k,χ(n). Therefore, remarking Y = 16π2

a2qx

and inserting (6.11) in (6.10) and simplifying, we can complete the proof. �

Proof of Theorem 2.2. Let us begin the proof by taking fk(n) = σk,χ(n) with χ being an odd primitive
character modulo q and k ≥ 0 an even integer and ν = 0 in (6.5). The corresponding Dirichlet series, in this
case, is Fk(s) = ζ(s)L(s− k, χ). Therefore, we obtain

∞
∑

n=1

σk,χ(n)K0(a
√
nx) =

1

2
(Rk+1 +R1 +R0 + J

(0)
k (X)), (6.12)

where J
(0)
k (X) is defined in (6.6). It is clear that Rk+1 = 0 for k ≥ 0. L(s − k, χ) has a zero at s = 1 in case

k ≥ 2 is an even integer, and χ is odd. So we will not get any contribution from the pole of ζ(s) at s = 1.
However, in the case of k = 0, the integrand in (6.6) will encounter a pole at s = 1. Hence, we can write

R1 =

{

0, if k > 0,

L(1, χ)X, if k = 0,
(6.13)
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and the integrand in (6.6) encounters a double pole at s = 0 with residue R0 given by

R0 = −L(−k, χ)

2

(

log(2πX) +
L′(−k, χ)

L(−k, χ)
− 2γ

)

. (6.14)

Now using (6.13) and (6.14) and the fact Rk+1 = 0 in (6.12), we obtain

∞
∑

n=1

σk,χ(n)K0(a
√
nx) =

δk
2
L(1, χ)X − L(−k, χ)

4

(

log(2πX) +
L′(−k, χ)

L(−k, χ)
− 2γ

)

+
1

2
J
(0)
k (X), (6.15)

where δk is defined in (2.3). For J
(0)
k (X), we employ the functional equations (5.14) and (5.16) to obtain

J
(0)
k (X) =

hk
2πi

∫

(−d)
Γ(s)Γ(1 + k − s)ζ(1− s)L(1− s+ k, χ̄)Y sds

=
Y hk
2πi

∫

(1+d)
Γ(1− s)Γ(k + s)ζ(s)L(s+ k, χ̄)Y −sds

= Y hk

∞
∑

n=1

σ−k,χ̄(n)
1

2πi

∫

(1+d)
Γ(1− s)Γ(k + s)(nY )−sds

= πY hk

∞
∑

n=1

σ−k,χ̄(n)
1

2πi

∫

(1+d)

Γ(k + s)

Γ(s) sin(πs)
(nY )−sds

= πY hk





∑

n≤Y −1

+
∑

n>Y −1



σ−k,χ̄(n)
1

2πi

∫

(1+d)

Γ(k + s)

Γ(s) sin(πs)
(nY )−sds, (6.16)

where hk = (−1)1+
k
2 iτ(χ)

2π

( q
2π

)k
and Y = 4π2

q X with X = 4
a2x

. In the second last step, we have used the reflection

formula (5.5).
We will first investigate the infinite sum

∑

n>Y −1 . To evaluate this inner line integral in (6.16), we shall use
the Cauchy residue theorem with the contour consisting of the line segments [1 + d− iT, 1 + d+ iT ], [1 + d+
iT,M + 1

2 + iT ], [M + 1
2 + iT,M + 1

2 − iT ], [M + 1
2 − iT, 1 + d− iT ] where M ∈ N is a large number and T is a

large positive number. The poles of the integrand function in (6.16) are at 2, 3, · · · , M , and they are simple.
The residue at s = m is given by

Rm :=
1

π
(−1)mm(m+ 1)...(m + k − 1)(nY )−m, (6.17)

where m = 2, 3, · · · , M . Employing Lemma 5.1, we can show that both the integrals along the horizontal lines
[1 + d+ iT,M + 1

2 + iT ] and [M + 1
2 − iT, 1 + d− iT ] vanish as T → ∞. From (6.17), we arrive at

1

2πi

∫

(1+d)

Γ(k + s)

Γ(s) sin(πs)
(nY )−sds =−

M
∑

m=2

Rm +
1

2πi

∫

(M+ 1

2
)

Γ(k + s)

Γ(s) sin(πs)
(nY )−sds

=− 1

π

M
∑

m=2

(−1)mm(m+ 1)...(m + k − 1)(nY )−m +Ok

(

Mk

(nY )M+1/2

)

,

where we have used | sinπ(σ + it)| ≫ eπ|t| for |t| ≥ 1 to bound the integral
∫

(M+ 1

2
) and the implied constant

depends on k. Next, allowing M → ∞, the error term goes to 0 as n > Y −1. Now simplifying, we readily
obtain that

1

2πi

∫

(1+d)

Γ(k + s)

Γ(s) sin(πs)
(nY )−sds =− k!

π

(

1

nY

)(

1− nk+1

(Y −1 + n)k+1

)

,

and we easily deduce from the above expression that

∑

n>Y −1

σ−k,χ̄(n)
1

2πi

∫

(1+d)

Γ(k + s)

Γ(s) sin(πs)
(nY )−sds =− k!

πY

∑

n>Y −1

σ−k,χ̄(n)

n

(

1− nk+1

(Y −1 + n)k+1

)

. (6.18)
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Similarly, by shifting the line of integration to the left, we obtain

∑

n≤Y −1

σ−k,χ̄(n)
1

2πi

∫

(1+d)

Γ(k + s)

Γ(s) sin(πs)
(nY )−sds = − k!

πY

∑

n≤Y −1

σ−k,χ̄(n)

n

(

1− nk+1

(Y −1 + n)k+1

)

. (6.19)

Inserting (6.18) and (6.19) in (6.16),

J
(0)
k (X) = −k!hk

∞
∑

n=1

σ−k,χ̄(n)

n

(

1− nk+1

(Y −1 + n)k+1

)

. (6.20)

We finish the proof by noting Y = 16π2

a2qx
, substituting (6.20) in (6.15) and then simplifying. �

Proof of Theorem 2.3. Here we will take fk(n) = σ̄k,χ(n) and ℜ(ν) > 0 in (6.5). Similar to the previous
theorems, χ is odd and k ≥ 2 is an even integer, and the corresponding Dirichlet series is Fk(s) = ζ(s−k)L(s, χ).
It is clear that R1 = 0. When k ≥ 2 is an even integer, ζ(s− k) has a zero at s = 0. Therefore, we will not get
any contribution from the pole of Γ(s) at s = 0. But the integrand in (6.6) will encounter a pole at s = k + 1
with the residue Rk+1 given by

Rk+1 = Γ(k + 1)Γ(ν + k + 1)L(k + 1, χ)Xk+1.

The calculation for J
(0)
k (X) will be similar as given in the proof of Theorem 2.1. To avoid repetition, we skip

the detail of the proof. �

Proof of Theorem 2.4. Here we will consider fk(n) = σ̄k,χ(n) with χ being an odd primitive character modulo
q and k ≥ 2 an even integer and ν = 0 in (6.5). We skip the detail of the proof because of its similarity with
the proof of Theorem 2.2. �

Proofs of Theorems 2.5 and 2.6. Here, we will take fk(n) = σk,χ(n) and χ being a non-principal even primitive
Dirichlet character modulo q and k ≥ 1 an odd integer in (6.5). We can see that Theorem 2.5 deals with the
case ℜ(ν) > 0 while Theorem 2.6 concerns with ν = 0. Proceeding by almost identically the same argument as
in the proof of Theorems 2.1 and 2.2, one can deduce Theorems 2.5 and 2.6, respectively. We leave the details
of the proofs for the reader. �

Proofs of Theorems 2.7 and 2.8. The proofs are similar to the corresponding proofs of Theorems 2.3 and 2.4
for the odd character. �

Proof of Theorem 2.9. It deals with the special case k = 0 and ν = 0 when χ is a non-principal even primitive
character modulo q. Thus setting f0(n) = dχ(n) in (6.5), we obtain

∞
∑

n=1

dχ(n)K0(a
√
nx) =

1

2
(R1 +R0 + J

(0)
0 (X)), (6.21)

where the residues R1 and R0 are given by

R1 =L(1, χ)X, (6.22)

R0 =− 1

2
L′(0, χ) = −τ(χ)

4
L(1, χ̄), (6.23)

where in (6.23), we have used [36, p. 181, equation (3.2)]. Next, we evaluate J
(0)
0 (X) defined in (6.6) with

F0(s) = ζ(s)L(s, χ). Utilizing the functional equations (5.14) and (5.16), one can get

J
(0)
0 (X) =

τ(χ)

4
Y

∞
∑

n=1

dχ̄(n)
1

2πi

∫

(1+d)

(nY )−s

sin2(πs/2)
ds, (6.24)

where Y = 4π2X
q . As 0 < d < 1, applying inverse Mellin transform to (5.9) of Lemma 5.7 and then employing

the formula in (6.24), we deduce that

J
(0)
0 (X) =

τ(χ)

π2
Y

∞
∑

n=1

dχ̄(n)
log(nY )

(nY )2 − 1
. (6.25)

Inserting (6.22), (6.23) and (6.25) in (6.21) and noting Y = 16π2

a2qx
, one can complete the proof. �

Next, we are going to investigate the identities involving two characters.
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Proof of Theorem 2.10. We will take fk(n) = σk,χ1,χ2
(n) and k ≥ 1 an odd integer and ℜ(ν) > 0 in (6.5).

By assumption, χ1 and χ2 are primitive characters modulo p and q, respectively, such that either both are
non-principal even characters or both are odd characters. In the notation of (6.1), Fk(s) = L(s−k, χ1)L(s, χ2).
We get

∞
∑

n=1

σk,χ1,χ2
(n)Kν(a

√
nx) =

1

2
Xν/2(Rk+1 +R1 +R0 + J

(ν)
k (X)), (6.26)

where J
(ν)
k (X) is defined in (6.6). It is easy to see that Rk+1 = 0 and R1 = 0. When both χ1 and χ2 are non-

principal even primitive characters, L(s, χ2) has a zero at s = 0. Hence we will not be getting any contribution
from the pole of Γ(s) at s = 0. As a result, we will get R0 = 0. If both χ1 and χ2 are odd primitive characters,
L(s− k, χ1) has a zero at s = 0 since k is an odd integer. Again, there will be no contribution of the pole from
Γ(s) at s = 0. Therefore R0 = 0. Now utilizing the facts Rk+1 = 0, R1 = 0 and R0 = 0 in (6.26), we obtain

∞
∑

n=1

σk,χ1,χ2
(n)Kν(a

√
nx) =

1

2
Xν/2J

(ν)
k (X). (6.27)

To evaluate J
(ν)
k (X), we utilize the functional equations (5.16), (5.17) with (5.18)

J
(ν)
k (X) = Y gk

∞
∑

n=1

σ−k,χ̄1,χ̄2
(n)

1

2πi

∫

(1+d)
Γ(1− s+ ν)Γ(k + s)(nY )−sds, (6.28)

where gk = (−1)
k+1
2 pkτ(χ1)τ(χ2)
(2π)k+1 and Y = 4π2

pq X. As 0 < d < 1, appealing to Lemma 5.5 with n = k and a = 1+ν,

we deduce

J
(ν)
k (X) = Y k+1gkΓ(1 + ν + k)

∞
∑

n=1

σk,χ̄2,χ̄1
(n)

(1 + nY )1+ν+k
, (6.29)

where we have used the fact σ−k,χ̄1,χ̄2
(n) = n−kσk,χ̄2,χ̄1

(n). We complete the proof by substituting (6.29) in

(6.27) and remarking Y = 16π2

a2pqx
. �

Proof of Theorem 2.11. We leave the proof to the reader for its similarity with the proofs of Theorems 2.2
and 2.6. �

Proofs of Theorems 2.14 and 2.15. We begin the proof by setting k = 0 and ν = 0 and f0(n) = dχ1,χ2
(n) in

(6.5). This will give

∞
∑

n=1

dχ1,χ2
(n)K0(a

√
nx) =

1

2
(R0 +R1 + J

(0)
0 (X)), (6.30)

where J
(0)
0 (X)) is defined in (6.6) with F0(z) = L(s, χ1)L(s, χ2). Here we will have R1 = 0. Now we will discuss

the following two cases.
Case 1: When χ1 and χ2 are even non-principal primitive characters modulo p and q, respectively. Both
L(s, χ1) and L(s, χ2) have simple zero at s = 0 which will get cancelled by the double pole of Γ2(s) at s = 0.
Hence we have R0 = 0. Employing functional relation (5.16), we obtain

J
(0)
0 (X) =

τ(χ1)τ(χ2)

4
Y

∞
∑

n=1

dχ̄1,χ̄2
(n)

1

2πi

∫

(1+d)

(nY )−s

sin2
(

πs
2

)ds, (6.31)

where Y = 4π2

pq X. Note that integral in (6.31) can be treated similarly as in the proof of Theorem 2.9. To avoid

repetitions, we skip the detail.
Case 2: When χ1 and χ2 are odd primitive characters modulo p and q, respectively. In this case, the integrand
will encounter a double pole at s = 0. Hence the residue R0 is given by

R0 = L(0, χ1)L(0, χ2)

(

−2γ + log (X) +
L′(0, χ1)

L(0, χ1)
+

L′(0, χ2)

L(0, χ2)

)

. (6.32)
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Employing (6.32) and R1 = 0 in (6.30), we obtain

∞
∑

n=1

dχ1,χ2
(n)K0(a

√
nx) =

1

2
L(0, χ1)L(0, χ2)

(

−2γ + log (X) +
L′(0, χ1)

L(0, χ1)
+

L′(0, χ2)

L(0, χ2)

)

+
1

2
J
(0)
0 (X). (6.33)

Now appealing to functional relation (5.16), we will have

J
(0)
0 (X) =− τ(χ1)τ(χ2)

4
Y

∞
∑

n=1

dχ̄1,χ̄2
(n)

1

2πi

∫

(1+d)

(nY )−s

cos2
(

πs
2

)ds

=− τ(χ1)τ(χ2)Y

4





∑

n<Y −1

+
∑

n>Y −1



 dχ̄1,χ̄2
(n)

1

2πi

∫

(1+d)

(nY )−s

cos2
(

πs
2

)ds, (6.34)

where Y = 16π2

a2pqx and Y −1 /∈ Z+.

We first evaluate the inner line integral on the sum
∑

n>Y −1 . We shall use the Cauchy residue theorem with

the contour formed by the lines [1+ d− iT, 1+ d+ iT ], [1+ d+ iT,M + 1
2 + iT ], [M + 1

2 + iT,M + 1
2 − iT ], [M +

1
2 − iT, 1 + d− iT ] where M ∈ N is any odd large number and T is a large positive number. The poles of the
integrand function in (6.34) are at 3, 5, · · · ,M , and they are double poles. The residue at s = m is given by

Rm := − 4

π2
(nY )−m log (nY ) , (6.35)

where m = 3, 5, · · · , M . Employing Lemma 5.1, we can show both the integrals along the horizontal line
segments [1 + d+ iT,M + 1

2 + iT ] and [M + 1
2 − iT, 1+ d− iT ] vanish as T → ∞. Utilising (6.35), we arrive at

1

2πi

∫

(1+d)

(nY )−s

cos2
(

πs
2

)ds = −
M−1

2
∑

m=1

R2m+1 +
1

2πi

∫

(M+ 1

2
)

(nY )−s

cos2
(

πs
2

)ds

=
4

π2

M−1

2
∑

m=1

log (nY )

(nY )2m+1 +O

(

1

(nY )M+1/2

)

. (6.36)

Letting M → ∞, the error term in (6.36) goes to 0 as n > Y −1. Thus simplifying, we can readily deduce that

1

2πi

∫

(1+d)

(nY )−s

cos2
(

πs
2

)ds =
4

π2

∞
∑

m=1

log (nY )

(nY )2m+1 =
4

π2Y 3

1

n(n2 − Y −2)
log (nY ) ,

and subsequently, we get

∑

n>Y −1

dχ̄1,χ̄2
(n)

1

2πi

∫

(1+d)

(nY )−s

cos2
(

πs
2

)ds =
4

π2

∑

n>Y −1

dχ̄1,χ̄2
(n)

Y −3

n(n2 − Y −2)
log (nY ) . (6.37)

Similarly, by shifting the integration line to the left, we get

∑

n<Y −1

dχ̄1,χ̄2
(n)

1

2πi

∫

(1+d)

(nY )−s

cos2
(

πs
2

)ds =
4

π2

∑

n≤Y −1

dχ̄1,χ̄2
(n)

Y −3

n(n2 − Y −2)
log (nY ) . (6.38)

Hence combining (6.37) and (6.38) with (6.34), we obtain

J
(0)
0 (X) = −τ(χ1)τ(χ2)

π2

∞
∑

n=1

dχ̄1,χ̄2
(n)

Y −2

n(n2 − Y −2)
log (nY ) . (6.39)

Inserting (6.39) in (6.33) and remarking that Y = 16π2

a2pqx
, we get the desired result. �

Proofs of Theorems 2.16 and 2.17. The proofs are similar to the proofs of Theorems 2.10 and 2.11. �
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7. Proof of Cohen-Type Identities

This section is devoted to the proof of Cohen-type identities. Throughout this section, we will deal with
z = −ν /∈ Z and ℜ(ν) ≥ 0. In general set up, if we consider ℜ(ν) ≥ 0 with ν /∈ Z and a = 4π, then (6.5)
becomes

∞
∑

n=1

f−ν(n)n
ν/2Kν(4π

√
nx) =

1

2
Xν/2

(

R1−ν +R1 +R0 +R−ν + J
(ν)
−ν (X)

)

, (7.1)

where R−ν is the residue corresponding to the pole s = −ν. It is easy to see that the pole at s = −ν appears

if ℜ(ν) = 0 and ν /∈ Z. The expression J
(ν)
−ν (X) defined in (6.6), can be rewritten as

J
(ν)
−ν (X) :=

1

2πi

∫

(−d)
Γ(s+ ν)Γ(s)F−ν(s)X

sds, (7.2)

where F−ν(s) defined in (6.1) is the Dirichlet series associated with the arithmetical function f−ν(n). We will
note that X = 1

4π2x .

Proof of Theorem 3.1. Letting f−ν(n) = σ−ν,χ̄(n) where χ being a non-principal even primitive character
modulo q in (7.1), we obtain

∞
∑

n=1

σ−ν,χ̄(n)n
ν/2Kν(4π

√
nx) =

1

2
Xν/2(R1−ν +R1 +R0 +R−ν + J

(ν)
−ν (X)), (7.3)

where J
(ν)
−ν (X) is given in (7.2) and F−ν(s) = ζ(s)L(s + ν, χ̄). The integrand in (7.2) will encounter simple

poles at s = 1 and s = 0 with residues R1 and R0 given by

R1 = Γ(1 + ν)L(1 + ν, χ̄)X, and R0 = −Γ(ν)L(ν, χ̄)

2
, (7.4)

respectively. It is easy to see that R1−ν = 0. As χ̄ is a non-principal even primitive character, L(s+ ν, χ̄) has a
zero at s = −ν. Therefore, we will not be getting any contribution from the pole of Γ(s+ ν) at s = −ν. Hence
R−ν = 0. Now employing (7.4) together with the facts R1−ν = 0 and R−ν = 0 in (7.3), we obtain

∞
∑

n=1

σ−ν,χ̄(n)n
ν/2Kν(4π

√
nx) =

1

2
Xν/2

(

Γ(1 + ν)L(1 + ν, χ̄)X − Γ(ν)L(ν, χ̄)

2
+ J

(ν)
−ν (X)

)

, (7.5)

where X = 1
4π2x

. Next, we evaluate the following integral J
(ν)
−ν (X). Replacing s by 1 − s and then employing

(5.14), (5.17), we obtain

J
(ν)
−ν (X) =

1

2πi

∫

(1+d)
Γ(1− s+ ν)Γ(1− s)ζ(1− s)L(1− s+ ν, χ̄)X1−sds

=

(

2π

q

)ν π2X

τ(χ)

1

2πi

∫

(1+d)

ζ(s)L(s− ν, χ)

((2π)2q−1X)s sin
(

πs
2

)

sin
(

π(s−ν)
2

)ds

=
(2π)νq−ν

4xτ(χ)

1

2πi

∫

(1+d)

ζ(s)L(s− ν, χ)(qx)s

sin
(

πs
2

)

sin
(

π(s−ν)
2

)ds. (7.6)

To evaluate the integral in (7.6), we employ the Cauchy residue theorem with the rectangular contour formed
by the lines [1+ d− iT, 1+ d+ iT ], [1+ d+ iT, 2N + δ+ iT ], [2N + δ+ iT, 2N + δ− iT ], [2N + δ− iT, 1+ d− iT ]

with N ≥ [ℜ(ν)+1
2 ] and {ℜ(ν) + 1} < δ < 1 and T is a large positive number. One can note that the simple

poles of sin−1(π(s−ν)
2 ) at s = ν, ν−2, · · · will get canceled by the simple zeroes of L(s−ν, χ). Hence the poles of

the integrand function in (7.6) are at 2, 4, · · · , 2N, and ν + 2, · · · , ν +2bN where bN = ⌊2N+δ−ν
2 ⌋, and they are

simple. Utilising the fact | sin π(σ + it)| ≫ eπ|t| for |t| ≥ 1, one can see that the integrals along the horizontal
lines [1 + d+ iT, 2N + δ + iT ] and [2N + δ − iT, 1 + d− iT ] vanish as T → ∞. Hence we get

1

2πi

∫

(1+d)

ζ(s)L(s− ν, χ)(qx)s

sin
(

πs
2

)

sin
(

π(s−ν)
2

)ds = −
N
∑

j=1

H2j −
bN
∑

r=1

H2r +
1

2πi

∫

(2N+δ)

ζ(s)L(s− ν, χ)(qx)s

sin
(

πs
2

)

sin
(

π(s−ν)
2

)ds, (7.7)
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where H2j is the residue at s = 2j given by

H2j =− 2ζ(2j)L(2j − ν, χ)(qx)2j

π sin(πν2 )
,

for j = 1, 2, · · · , N and H2r is the residue at s = ν + 2r given by

H2r = 2ζ(ν + 2r)L(2r, χ)
(qx)ν+2r

π sin(πν2 )
=

2

π sin(πν2 )

∞
∑

n=1

σν,χ(n)(n
−1qx)ν+2r,

for r = 1, 2, · · · , bN . In the above expression, we have applied the series representation of function ζ(ν +
2r)L(2r, χ) for r ≥ 1. Now let us evaluate the integral in (7.7):

1

2πi

∫

(2N+δ)

ζ(s)L(s− ν, χ)(qx)s

sin
(

πs
2

)

sin
(

π(s−ν)
2

)ds

=
∞
∑

n=1

σν,χ(n)
1

2πi

∫

(2N+δ)

(n−1qx)s

sin
(

πs
2

)

sin
(

π(s−ν)
2

)ds

=

(

∑

n<qx

+
∑

n>qx

)

σν,χ(n)
1

2πi

∫

(2N+δ)

(n−1qx)s

sin
(

πs
2

)

sin
(

π(s−ν)
2

)ds, (7.8)

noting that qx /∈ Z+.
Next, we will first investigate the sum

∑

n>qx. To evaluate this inner line integral in (7.8), we shall use

the Cauchy residue theorem with the contour consisting of the lines [2N + δ − iT, 2N + δ + iT ], [2N + δ +
iT, 2M + 1

2 + iT ], [2M + 1
2 + iT, 2M + 1

2 − iT ], [2M + 1
2 − iT, 2N + δ − iT ] where M ∈ N is a large number and

T is a large positive number. The poles of the integrand function in (7.8) are at 2N + 2, 2N + 4, · · · , 2M and
ν+2bN+2, ν+2bN+4, · · · , ν+2aM where aM = ⌊M+ 1

4− ν
2⌋, and they are simple. Now taking into account the

fact that both the integrals along the horizontal lines [2M + 1
2 − iT, 2N + δ− iT ] and [2N + δ+ iT, 2M + 1

2 + iT ]
vanish as T → ∞, we obtain

1

2πi

∫

(2N+δ)

(n−1qx)s

sin
(

πs
2

)

sin
(

π(s−ν)
2

)ds

=
2

π sin
(

πν
2

)





M
∑

r=N+1

(n−1qx)2r −
aM
∑

r=bN+1

(n−1qx)ν+2r



+
1

2πi

∫

(2M+ 1

2
)

(n−1qx)s

sin
(

πs
2

)

sin
(

π(s−ν)
2

)ds

=
2

π sin
(

πν
2

)





M
∑

r=N+1

(n−1qx)2r −
aM
∑

r=bN+1

(n−1qx)ν+2r



+O
(

(n−1qx)2M+ 1

2

)

.

Letting M → ∞, the error term in the above expression goes to 0 since n−1qx < 1. Therefore, we get

1

2πi

∫

(2N+δ)

(n−1qx)s

sin
(

πs
2

)

sin
(

π(s−ν)
2

)ds =
2

π sin
(

πν
2

)





∞
∑

r=N+1

(n−1qx)2r −
∞
∑

r=bN+1

(n−1qx)ν+2r



 ,

which in turn will give

∑

n>qx

σν,χ(n)
1

2πi

∫

(2N+δ)

(n−1qx)s

sin
(

πs
2

)

sin
(

π(s−ν)
2

)ds

=
2

π sin
(

πν
2

)

∑

n>qx

σν,χ(n)





∞
∑

r=N+1

(n−1qx)2r −
∞
∑

r=bN+1

(n−1qx)ν+2r



 .
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From the above expression, one can deduce

∑

n>qx

σν,χ(n)
1

2πi

∫

(2N+δ)

(n−1qx)s

sin
(

πs
2

)

sin
(

π(s−ν)
2

)ds− 2

π sin(πν2 )

∑

n>qx

σν,χ(n)

bN
∑

r=1

(n−1qx)ν+2r

=
2

π sin
(

πν
2

)

∑

n>qx

σν,χ(n)

( ∞
∑

r=N+1

(n−1qx)2r −
∞
∑

r=1

(n−1qx)ν+2r

)

=
2

π sin
(

πν
2

)

∑

n>qx

σν,χ(n)
(qx)2N+2

nν

(

nν−2N − (qx)ν−2N
)

n2 − q2x2

=
2(qx)2N+2

π sin
(

πν
2

)

∑

n>qx

σ̄−ν,χ(n)

(

nν−2N − (qx)ν−2N

n2 − q2x2

)

. (7.9)

Similarly, by shifting the line of integration to the left,
∑

n≤qx can be evaluated as

∑

n<qx

σν,χ(n)
1

2πi

∫

(2N+δ)

(n−1qx)s

sin
(

πs
2

)

sin
(

π(s−ν)
2

)ds− 2

π sin(πν2 )

∑

n<qx

σν,χ(n)

bN
∑

r=1

(n−1qx)ν+2r

= − 2

π sin
(

πν
2

)

∑

n<qx

σν,χ(n)

( ∞
∑

r=−N

(n(qx)−1)2r −
∞
∑

r=0

(n(qx)−1)−ν+2r

)

= − 2

π sin
(

πν
2

)

∑

n<qx

σν,χ(n)

(

(qx

n

)2N (qx)2

(qx)2 − n2
−
(qx

n

)ν (qx)2

(qx)2 − n2

)

=
2(qx)2N+2

π sin
(

πν
2

)

∑

n<qx

σ̄−ν,χ(n)

(

nν−2N − (qx)ν−2N

n2 − q2x2

)

. (7.10)

Now substituting (7.9) and (7.10) in (7.8),

1

2πi

∫

(2N+δ)

ζ(s)L(s− ν, χ)(qx)s

sin
(

πs
2

)

sin
(

π(s−ν)
2

)ds =
2

π sin(πν2 )

∞
∑

n=1

σν,χ(n)

bN
∑

r=1

(n−1qx)ν+2r

+
2(qx)2N+2

π sin
(

πν
2

)

∞
∑

n=1

σ̄−ν,χ(n)

(

nν−2N − (qx)ν−2N

n2 − q2x2

)

. (7.11)

Inserting (7.11) in (7.7) and then simplifying, we obtain

1

2πi

∫

(1+d)

ζ(s)L(s− ν, χ)(qx)s

sin
(

πs
2

)

sin
(

π(s−ν)
2

)ds =
2

π sin
(

πν
2

)

N
∑

j=1

ζ(2j) L(2j − ν, χ)(qx)2j

+
2

π sin
(

πν
2

)(qx)2N+2
∞
∑

n=1

σ̄−ν,χ(n)

(

nν−2N − (qx)ν−2N

n2 − q2x2

)

. (7.12)

Combining (7.12) with (7.6), we deduce that

J
(ν)
−ν (X) =

(2π)νq−ν

2πxτ(χ) sin
(

πν
2

)







N
∑

j=1

ζ(2j) L(2j − ν, χ)(qx)2j

+(qx)2N+2
∞
∑

n=1

σ̄−ν,χ(n)

(

nν−2N − (qx)ν−2N

n2 − q2x2

)

}

. (7.13)

Next, by substituting (7.13) in (7.5), one can finish the proof. �

The proofs of other remaining theorems in Section 3 can be proved similarly. We leave the explanations for the
readers.
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8. Proof of Voronöı-type Summation formulas

In this section, we prove Theorem 4.1. The proofs of other theorems will be similar, so we will skip the proofs
of other theorems. To prove Theorem 4.1, we will adapt the method introduced by B. C. Berndt, A. Dixit, A.
Roy, and A. Zaharescu in [29].

Proof of Theorem 4.1. Let us recall the Theorem 3.1. One can see that identity (3.1) in Theorem 3.1 is valid
not only for x > 0 but also for −π < arg x < π by analytic continuation. If we set N = 1 in (3.1), then the

condition ⌊ℜ(ν)+1
2 ⌋ ≤ 1 will imply that 0 ≤ ℜ(ν) < 3. We consider 0 < ℜ(ν) < 1

2 . Replace x by iz/q in (3.1) for
−π < arg z < π

2 and then by −iz/q for −π
2 < arg z < π. Now the common region of the resultant identities is

−π
2 < arg z < π

2 . So we add the resulting two identities and simplify, in the region −π
2 < arg z < π

2 , to obtain

Λ(z, ν) = Ψ1(z, ν), (8.1)

where

Λ(z, ν) = 2z−
ν

2

∞
∑

n=1

σ−ν,χ̄(n) n
ν/2

{

e
iπν

4 Kν

(

4πe
iπ

4

√

nz

q

)

+ e
−iπν

4 Kν

(

4πe
−iπ

4

√

nz

q

)}

, (8.2)

and

Ψ1(z, ν) = −q
ν

2Γ(ν)L(ν, χ̄)

(2π)ν
z−ν +

q1−
ν

2

πτ(χ)

∞
∑

n=1

σ̄−ν,χ(n)

n2 + z2
z. (8.3)

Note that Ψ1(z, ν) is an analytic function of z in C except on negative real axis and at z = in where n ∈ Z.
Hence Ψ1(iz, ν) is analytic in C except on the positive imaginary axis and at z ∈ Z. Similarly, Ψ1(−iz, ν) is
analytic in C except on the negative imaginary axis and at z ∈ Z. We deduce Ψ1(iz, ν)+Ψ1(−iz, ν) is analytic
in both the left and right half plane, except possibly when z is an integer. Since

lim
z→∓n

(z ± n)Ψ1(iz, ν) =
q1−

ν

2

2πiτ(χ)
σ̄−ν,χ(n), lim

z→∓n
(z ± n)Ψ1(−iz, ν) = − q1−

ν

2

2πiτ(χ)
σ̄−ν,χ(n),

so we have

lim
z→∓n

(z ± n) (Ψ1(iz, ν) + Ψ1(−iz, ν)) = 0.

Hence Ψ1(iz, ν) + Ψ1(−iz, ν) is analytic in the entire right half plane. From (8.3), we observe that for z lying
inside an interval (a, b) on the positive real line not containing an integer, we have

Ψ1(iz, ν) + Ψ1(−iz, ν) = −2q
ν

2Γ(ν)L(ν, χ̄)

(2π)ν
cos
(πν

2

) 1

zν
. (8.4)

Since both sides are analytic in the right half-complex plane as a function of z, by analytic continuation, the
identity (8.4) holds for any z in the right half-plane. Next employing functional equation for L-function (5.16)
in (8.4) and simplifying, we obtain for −π

2 < arg z < π
2 ,

Ψ1(iz, ν) + Ψ1(−iz, ν) = −q1−
ν

2

τ(χ)
L(1− ν, χ)

1

zν
. (8.5)

Next, Let f be an analytic function of z in a closed contour γ′ intersecting the real axis in α and β where
0 < α < β, m− 1 < α < m, n− 1 < β < n and m,n ∈ Z. Now γ′ consists of two parts γ1 and γ2 where γ1
is the portion of the contour in the upper half-plane, and γ2 is the portion corresponding to lower half-plane.
Now αγ1β and αγ2β denote the paths from α to β in the upper and lower half planes, respectively. By the
Cauchy residue theorem, we have

∫

αγ2βγ1α
f(z)Ψ1(iz, ν)dz =

q1−
ν

2

τ(χ)

∑

α<j<β

σ̄−ν,χ(j)f(j),

where q1−
ν
2

2πiτ(χ) σ̄−ν,χ(j)f(j) is the residue of f(z)Ψ1(iz, ν) at each integer j where α < j < β. Hence the above

expression can be rewritten as

q1−
ν

2

τ(χ)

∑

α<j<β

σ̄−ν,χ(j)f(j) =

∫

αγ2β
f(z)Ψ1(iz, ν)dz −

∫

αγ1β
f(z)Ψ1(iz, ν)dz
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=

∫

αγ2β
f(z)Ψ1(iz, ν)dz +

∫

αγ1β
f(z)

{

Ψ1(−iz, ν) +
q1−

ν

2

τ(χ)
L(1− ν, χ)

1

zν

}

dz, (8.6)

where in the last step, we used (8.5). Again we make use of the Cauchy residue theorem and obtain

q1−
ν

2

τ(χ)
L(1− ν, χ)

∫

αγ1β

f(z)

zν
dz =

q1−
ν

2

τ(χ)
L(1− ν, χ)

∫ β

α

f(t)

tν
dt. (8.7)

From (8.1), Λ(z, ν) = Ψ1(z, ν) for −π
2 < arg z < π

2 . So it is easy to see that Λ(iz, ν) = Ψ1(iz, ν) holds for
−π < arg z < 0, and Λ(−iz, ν) = Ψ1(−iz, ν) holds for 0 < arg z < π. Thus

{

∫

αγ2β
f(z)Ψ1(iz, ν)dz =

∫

αγ2β
f(z)Λ(iz, ν)dz,

∫

αγ1β
f(z)Ψ1(−iz, ν)dz =

∫

αγ1β
f(z)Λ(−iz, ν)dz.

(8.8)

Here we notice that the series Λ(iz, ν) in (8.2) is uniformly convergent in compact subintervals of −π < arg z < 0,
and series Λ(−iz, ν) is uniformly convergent in compact subintervals of 0 < arg z < π. Thus, interchanging the
order of summation and integration in (8.8) and inserting them in (8.6) together with (8.7), we get

q1−
ν

2

τ(χ)

∑

α<j<β

σ̄−ν,χ(j)f(j) =
q1−

ν

2

τ(χ)
L(1− ν, χ)

∫ β

α

f(t)

tν
dt+ 2

∞
∑

n=1

σ−ν,χ̄(n) n
ν/2

×
∫

αγ2β
f(z)(iz)−

ν

2

{

e
iπν

4 Kν

(

4πe
iπ

4

√

inz

q

)

+ e
−iπν

4 Kν

(

4πe
−iπ

4

√

inz

q

)}

dz

+2

∞
∑

n=1

σ−ν,χ̄(n) n
ν/2

∫

αγ1β
f(z)(−iz)−

ν

2

{

e
iπν

4 Kν

(

4πe
iπ

4

√

−inz

q

)

+ e
−iπν

4 Kν

(

4πe
−iπ

4

√

−inz

q

)}

dz.

Simplifying we get

q1−
ν

2

τ(χ)

∑

α<j<β

σ̄−ν,χ(j)f(j) =
q1−

ν

2

τ(χ)
L(1− ν, χ)

∫ β

α

f(t)

tν
dt

+2
∞
∑

n=1

σ−ν,χ̄(n) n
ν/2

∫

αγ2β
f(z)z−

ν

2

{

Kν

(

4πi

√

nz

q

)

+ e
−iπν

2 Kν

(

4π

√

nz

q

)}

dz

+ 2

∞
∑

n=1

σ−ν,χ̄(n) n
ν/2

∫

αγ1β
f(z)z−

ν

2

{

e
iπν

2 Kν

(

4π

√

nz

q

)

+Kν

(

−4πi

√

nz

q

)}

dz.

Employing the residue theorem again, this time for each of the integrals inside the two sums, and simplifying,
we obtain

q1−
ν

2

τ(χ)

∑

α<j<β

σ̄−ν,χ(j)f(j) =
q1−

ν

2

τ(χ)
L(1− ν, χ)

∫ β

α

f(t)

tν
dt+ 2

∞
∑

n=1

σ−ν,χ̄(n) n
ν/2

×
∫ β

α
f(t)t−

ν

2

{

Kν

(

4πi

√

nt

q

)

+Kν

(

−4πi

√

nt

q

)

+ 2cos
(πν

2

)

Kν

(

4π

√

nt

q

)}

dt. (8.9)

Here by [29, p. 848, equation (7.15)], we have

Kν(ix) +Kν(−ix) = −π
(

Jν(x) sin(
πν

2
) + Yν(x) cos(

πν

2
)
)

, (8.10)

where Jν and Yν are the Bessel functions defined in (1.9) and (1.7), respectively. Now, we replace x by 4π
√

nt/q
in (8.10) and substitute in (8.9), to get the desired result. �
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