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SOMOS-4 EQUATION AND RELATED EQUATIONS

ANDREI K. SVININ

Abstract. The main object of study in this paper is the well-known Somos-4 recurrence.
We prove a theorem that any sequence generated by this equation also satisfies Gale-
Robinson one. The corresponding identity is written in terms of its companion elliptic
sequence. An example of such relationship is provided by the second-order linear sequence
which, as we prove using Wajda’s identity, satisfies the Somos-4 recurrence with suitable
coefficients. Also, we construct a class of solutions to Volterra lattice equation closely
related to the second-order linear sequence.

1. Introduction

In this paper we consider three-term discrete quadratic equation of fourth order

tntn+4 = αtn+1tn+3 + βt2n+2, (1.1)

where α and β are arbitrary parameters.

To start, it should be clever to recall a story about a sequence [15] http://oeis.org/A006

720, which is sometimes referred to as Somos(4). It is defined by (1.1) with α = β = 1

and initial data (t0, t1, t2, t3) = (1, 1, 1, 1). Michael Somos once asked to prove noticed

by him amazing fact of integrity of this sequence. Apparently, the proof of this fact was

first published in the paper [13] by Malouf, but it seems that this proof does not reflect

the essence of this phenomenon. It is now clear that this follows immediately from the

Laurent property of this equation [2].

Theorem 1.1. Equation (1.1) has the Laurent property, that is, given initial data

(t0, t1, t2, t3), all of the terms in the sequence are Laurent polynomials in the variables

(t0, t1, t2, t3) whose coefficients are in Z[α, β], so that tn ∈ Z[α, β, t±1
0 , t±1

1 , t±1
2 , t±1

3 ] for all

n ∈ Z.

As is known, equation (1.1) is not the only one that has the Laurent property. For

example, it follows from the Theorem 1.6 in [2] that this property have any equation of

the form

tntn+N = αtn+ptn+N−p + βtn+qtn+N−q (1.2)

which is known as a three-term Gale-Robinson recurrence [4], [5], [17]. It should be noted

that the Somos-4 and Gale-Robinson equations appear in Fomin and Zelevinsky’s theory

of cluster algebras [3] providing corresponding combinatorial structures.

It can however be said that the Somos-4 equation (1.1) has its own distinctive features.

Namely, each sequence generated by this recurrence is associated with a sequence of points

P0 + nP on a some suitable elliptic curve [7].
1
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Theorem 1.2. The general solution of the Somos-4 equation (1.1) can be written in the

form

tn = ABnσ(z0 + nκ)

σ(κ)n
2

, (1.3)

where z0, κ ∈ Jac(E) are nonzero suitable complex numbers, the constants A and B are

given by

A =
t0

σ(z0)
, B =

t1σ(z0)σ(κ)

σ(z0 + κ)
.

In Theorem 1.2, we denote above by σ(z) = σ(z; g2, g3) a corresponding Weierstrass

sigma function of an elliptic curve E : y2 = 4x3 − g2x− g3.

For completeness, we also give well-known explicit expressions for the invariants of the

curve E: g2 and g3. But first let us define a function

H =
tntn+3

tn+1tn+2
+ α

t2n+1

tntn+2
+ α

t2n+2

tn+1tn+3
+ β

tn+1tn+2

tntn+3
.

It can be checked that it is the first integral (translation invariant) of the equation (1.1).

Apparently this integral was first found and used in [22]. Since we consider only au-

tonomous equations, when writing any first integral, it is convenient to set n equal to

zero.

Now having in hand H, one can write the invariants of the curve E. They look

g2 =
H4 − 8βH2 − 24α2H + 16β2

12α2
(1.4)

and

g3 = −H6 − 12βH4 − 36α2H3 + 48β2H2 + 144α2βH + 216α4 − 64β3

216α3
. (1.5)

In what follows we use the notion of a companion elliptic sequence. In general, of

course, it is worth starting with the fact that an elliptic sequence, which were introduced

by Morgan Ward [24], is a very important concept that arises in the framework of the

theory of elliptic curves. A good exposition of the relationship of elliptic sequences and

elliptic curves can be found, for example, in [22]. To be more exactly, this sequence is

defined by a quadratic recurrence

WnWn+4 = W 2
2Wn+1Wn+3 −W1W3W

2
n+2, (1.6)

which, as can be easily seen, is a special case of the Somos-4 one. From (1.6), it follows

that (Wn) is an anti-symmetric sequence, that is, W−n = −Wn. In general, no one

forbids to consider complex-valued sequences generated by (1.6), but from the point of

view of application, integer sequences play a special role. In [24], Morgan Ward proved

the following fact.

Theorem 1.3. Let W0 = 0 and W1 = 1, while W2, W3 and W4 are three arbitrary integers

with the only one condition W2|W4, then all other members of this sequence are integers

and the following divisibility property holds: Wn|Wm whenever n|m. The converse is

obviously true.
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Well, now goes back to the companion elliptic sequence associated with any sequence

defined by the Somos-4 equation (1.1). It is calculated as follows (see, for example, [8]).

The first five of Wn’s are

W0 = 0, W1 = 1, W2 =
√
α, W3 = −β, W4 = −I

√
α, (1.7)

where I = α2 + βH. All other terms of this sequence are defined by a recurrence (1.6).

For reference, here are a few more terms of the sequence:

W5 = −J, W6 = β
(

I2 + J
)√

α, W7 = α2I3 + β3J, W8 =
(

J2 − β3
(

I2 + J
))

I
√
α,

W9 = −β
(

α2
I
3
(

I
2 + J

)

+ J
3
)

, . . . (1.8)

where J = α2I− β3.

This is essentially an algebraic definition of companion elliptic sequence but we will also

need its analytic definition. Attached to Theorem 1.2, the terms of the sequence (Wn) are

given as

Wn =
σ(nκ)

σ(κ)n2
. (1.9)

where σ(z) = σ(z; g2, g3) is the same Weierstrass sigma function as in Theorem 1.2.

One of our aims of the paper is to show an infinite set of identities connecting the

sequences (tn) and (Wn). In the next section, we consider Vajda’s identity and its gen-

eralizations for a Lukas sequence. Then we prove the validity of a three-term four-linear

identity for any Lucas sequence which makes it look very much like an elliptic sequence.

In Section 4, we prove Theorem 4.3 which says something like this: 1) any second-order

linear sequence is a particular solution of the Somos-4 equation with suitable coefficients;

2) any second-order linear sequence satisfy the Gale-Robinson recurrence (1.2) with coef-

ficients that are uniquely expressed in terms of Lucas polynomials. The Lucas sequence,

or more precisely, its tweaked version, plays the role of the companion elliptic sequence

(Wn) for general linear sequence in the sense described above. Ultimately, this gives us

an example of a couple (tn,Wn), where (tn) is a solution of the Somos-4 equation, while

(Wn) is the companion elliptic sequence. And then we ask the following question: well, the

Gale-Robinson equation is satisfied by any second-order linear sequence, but what about

the general solution of the Somos-4 equation? And as it is logical to assume, yes, such

relation, that involve the companion elliptic sequence, are also true. This statement is

formulated as Theorem 5.1. As a corollary of this theorem, we obtain the following prop-

erty of the solutions of the Somos-4 equation. Given any Somos-4 sequence (tn) select

a subsequence (tdn+r), that is, subscripts belong to an arbitrary arithmetic progression.

Any such sequence is again a solution of the Somos-4 equation. In Section 6, we consider

three-term Somos-N equations. We show a theorem that provide a relationship between

Somos-N equation and some discrete equation that play the role of compatible constraints

for a Volterra lattice equation

∂Yn

∂x
= Yn (Yn+1 − Yn−1) . (1.10)
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In Section 7, we present a solution of Cauchy problem for the Volterra lattice (1.10) with

initial data related to the second-order linear sequence. Finally, in Sections 8 and 9, we

discuss some technical details related to this solution.

2. Linear sequence of the second order. Vajda’s identity

The practical purpose of this section and some subsequent sections is to show the fact

that any sequence defined by a second-order linear recurrence

Tn+2 = PTn+1 −QTn (2.1)

with arbitrary initial data (T0, T1) = (t0, t1) satisfies the Somos-4 equation (1.1) as well as

the Gale-Robinson recurrence (1.2). Generally speaking, we consider any complex-valued

sequences, although of course we are aware that integer sequences generated by (2.1) are of

greatest interest. Further we show the Vajda’s identity for an arbitrary such sequence, and

also see how generalizations of this identity lead to some identities relating second-order

linear sequences to the Somos-4 recurrence.

In what follows, we use the fact that

Tn = −t0QDn−1 + t1Dn, (2.2)

where (Dn)n≥0 represents a particular solution to the linear equation (2.1) with the initial

condition (t0, t1) = (0, 1). The first few members of this sequence look like this:

D0 = 0, D1 = 1, D2 = P, D3 = P 2 −Q, D4 = P
(

P 2 − 2Q
)

, . . .

In what follows, we call the sequence (Dn)n≥0 the Lucas sequence. Of course, this sequence

of polynomials in (P,Q) is the source of many well-known number sequences, such as

Fibonacci numbers, Mersenne numbers, etc., but we consider this sequence in a slightly

different way.

Further, it will be extremely important for us that the Lukas sequence (Dn)n≥0 can be

formally extended backwards by

D−n = −Dn

Qn
(2.3)

and we will use this fact repeatedly. Moreover, by (2.2) and (2.3), we have

T−n =
t0Dn+1 − t1Dn

Qn

that means that any second-order linear sequence can also be extended backwards.

Throughout the rest of this paper we consider only bi-infinite sequences (Xn)n∈Z, where

X is T or D or something others. For simplicity, to denote bi-infinite sequence, we agree

to write simply (Xn).

Proof of the following lemmas are simple and standard and are given here mainly for

completeness.

Lemma 2.1. For the Lukas sequence (Dn), the convolution identity

Dn+p = −QDp−1Dn +DpDn+1, (2.4)
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for any pair (p, n) ∈ Z
2, is valid.

Proof. Let us suppose that we have proved (2.4) for some values n− 1 and n. Then

Dn+1+p = P (−QDp−1Dn +DpDn+1)−Q (−QDp−1Dn−1 +DpDn)

= QDp−1 (−PDn +QDn−1) +Dp (PDn+1 −QDn)

= −QDp−1Dn+1 +DpDn+2. (2.5)

For n = 1, relation (2.4) becomes

Dp+1 = −QDp−1 + PDp (2.6)

what is valid by definition. In turn, for n = 2, (2.4) becomes

Dp+2 = PDp+1 −QDp

= P (PDp −QDp−1)−QDp

= −QPDp−1 +
(

P 2 −Q
)

Dp

= −QD2Dp−1 +D3Dp. (2.7)

Relations (2.6) and (2.7) give a basis for the induction, with the help of (2.5), to prove

(2.4) for all n ≥ 1. To prove (2.4) for all n ≤ 0 one can use similar arguments. Therefore

this lemma is proved. �

In the sequel, we will use the fact that the identity (2.4) can be rewritten as

Qp−1Dn−p+1 = DpDn −Dp−1Dn+1. (2.8)

The following lemma contains an identity for the Lukas sequence (Dn) that is a gener-

alization of Wajda’s identity [23] for the Fibonacci numbers:

Fn+pFn+q − FnFn+p+q = (−1)nFpFq.

Lemma 2.2. For the Lukas sequence (Dn), a Vajda’s identity

Dn+pDn+q −DnDn+p+q = QnDpDq, (2.9)

for any (p, q, n) ∈ Z
3, is valid.

Proof. By the convolution identity of the form (2.4) and (2.8) , we have

Dn+pDn+q −DnDn+p+q = (−QDp−1Dn +DpDn+1)Dn+q

−Dn (−QDp−1Dn+q +DpDn+q+1)

= Dp (Dn+1Dn+q −DnDn+q+1)

= QnDpDq.

�

The following lemma is a consequence of the Vajda’s identity (2.9).
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Lemma 2.3. By (2.9), for the second-order linear sequence (Tn), identity

Tn+pTn+q − TnTn+p+q = cQnDpDq, (2.10)

for any (p, q, n) ∈ Z
3, is valid, where c = Qt20 − Pt0t1 + t21.

Proof. This is proved by direct calculation. A little difficulty can only be to prove the

identity

(Dn+p−1Dn+q +Dn+pDn+q−1)− (Dn−1Dn+p+q +DnDn+p+q−1) = PQn−1DpDq.

But, having (2.9) in hand, we can rewrite the left-hand side of this relation as QnDp−1Dq+

Qn−1Dp+1Dq and after that the identity becomes obvious by virtue of the definition of

the Lukas sequence. �

3. Four-linear identity associated to the Vajda’s identity

Let n = a− c, p = b+ c, q = c− b. With (2.3) we can reformulate Lemma 2.2 as

Lemma 3.1. For any triple of numbers (a, b, c) ∈ Z
3 the Lukas sequence (Dn) satisfies

the identity
Da−bDa+b

Qa
+

Db−cDb+c

Qb
+

Dc−aDc+a

Qc
= 0. (3.1)

Let us underline that relation (3.1) represents the Wajda’s identity (2.9) but only in

symmetrical form. Looking at the symmetrical form of Wajda’s identity (3.1), only the

blind will not notice how it can be generalized. So, let us formulate a corresponding

proposition that deviates somewhat from the main content and can rather be considered

as a remark.

Proposition 3.2. For any (a1, . . . , ad) ∈ Z
d, where d ≥ 2, the Lukas sequence (Dn)

satisfies the identity
d

∑

j=1

Daj−aj+1
Daj+aj+1

Qaj
= 0, ad+1 = a1. (3.2)

Proof. We prove this proposition by induction. Let us denote, for convenience, the symbol

{a, b} = Da−bDa+b/Q
a. Note that, due to (2.3), the skew-symmetry relation {a, b} =

−{b, a} holds. Let us suppose we have proved the identity (3.2) for some value of d. Let

us write the relation
d+1
∑

j=1

{aj , aj+1} = 0, ad+2 = a1

and then add and subtract {ad, a1} to it. Taking into account our assumption, the last

relation reduces to the relation

{ad, ad+1} − {ad, a1}+ {ad+1, a1} = 0

and it, in turn, is an identity due to the skew-symmetry of {a, b} and (3.1). The induction

base is given by (3.1). �
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Next we would like to show necessary for us three-term four-linear identity associated

in a sense to the Vajda’s identity (3.1).

Lemma 3.3. By (3.1), for any (a1, a2, a3, b) ∈ Z
4, the sequence (Dn) satisfies the identity

Db−a3Db+a3Da1−a2Da1+a2

Qa1
+

Db−a1Db+a1Da2−a3Da2+a3

Qa2
+

Db−a2Db+a2Da3−a1Da3+a1

Qa3
= 0.

(3.3)

Proof. Using symbol {a, b}, we rewrite relation (3.3) that need to be proven as

{b, a3}{a1, a2}+ {b, a1}{a2, a3}+ {b, a2}{a3, a1} = 0. (3.4)

We already have, for any (a, b, c) ∈ Z
3, two identities

{a, b} + {b, a} = 0 and {a, b} + {b, c} + {c, a} = 0. (3.5)

Subtracting from (3.4) the relation

{b, a3} ({a1, a2}+ {a2, a3}+ {a3, a1}) = 0,

we get the following one:

{a2, a3} ({b, a1} − {b, a3}) + {a3, a1} ({b, a2} − {b, a3}) = 0.

which, we can rewrite, by virtue of (3.5), as

{a2, a3}{a3, a1}+ {a3, a1}{a3, a2} = 0

that is obviously an identity. �

Remark 3.4. One sees that the proved identity (3.3) is, in a certain sense, attached to

the identity (3.1), which in turn is a special case of identity (3.2) for d = 3. There are in

fact an infinite number of identities of the form

d
∑

j=1

Db−aλj
Db+aλj

Daj−aj+1
Daj+aj+1

Qaj
= 0, ad+1 = a1, (3.6)

where λj ∈ (1, . . . , d), attached to identities (3.2) with d ≥ 3. The proof of each is similar

to the proof of Proposition 3.3. As we already found out, we have solution (λ1, λ2, λ3) =

(3, 1, 2). The following problem appears here: some suitable sets can be equivalent. Indeed,

if (λ1, . . . , λd) is a suitable set, then so is (λd + 1, λ1 + 1, . . . , λd−1 + 1). One need to keep

in mind that if appears d + 1, it must be replaced by 1. In the case of d = 3, the set

(λ1, λ2, λ3) = (3, 1, 2) by a permutation with a shift is translated into itself. In the case

d = 4, we have four equivalent sets, namely, (4, 4, 1, 3) → (4, 1, 1, 2) → (3, 1, 2, 2) →
(3, 4, 2, 3), and therefore in the case d = 4, we have only one identity of the form (3.6)

with (λ1, λ2, λ3, λ4) = (4, 4, 1, 3). One can pose the task of listing identities of the form

(3.6), but the discussion of this problem will take us far from the main content of the

paper.
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4. Linear second-order sequence as a particular solution of the Somos-4

equation

Let n = a1 − b, u = a2 − b, m = a3 − b, s = 2b. With these new variables, the proved

identity (3.3) can be rewritten in the following form:

QuDmDm+sDn−uDn+u+s +QmDnDn+sDu−mDu+m+s +QnDuDu+sDm−nDm+n+s = 0.

(4.1)

Remark 4.1. If we put s = 0 and r = 1, then (4.1) reduced to the form

Qq−1Dn−uDn+u = D2
qDn−1Dn+1 −Du−1Du+1D

2
n. (4.2)

This identity has been presented and used in [12] by Éduard Lukas (see also [1]).

With (2.3) let us slightly correct the identity (4.1) to have it in the following form:

QmDuDu+sDn−mDn+m+s −QuDmDm+sDn−uDn+u+s +QuDm−uDu+m+sDnDn+s = 0.

(4.3)

Lemma 4.2. By (4.3), identity

QmDuDu+sTn−mTn+m+s−QuDmDm+sTn−uTn+u+s+QuDm−uDu+m+sTnTn+s = 0. (4.4)

holds.

Proof. This lemma can be proven by direct calculation. Let us substitute (2.2) into (4.4).

It is obvious that collecting terms at t21 we get the proven identity (4.3), while at t20, we

get again this identity but with shifted n. It remains to see what we have at t0t1. Only

at this stage there are some difficulties. Namely we have the following relation:

QmDuDu+s (Dn−mDn+m+s−1 +Dn−m−1Dn+m+s)

−QuDmDm+s (Dn−uDn+u+s−1 +Dn−u−1Dn+u+s)

+QuDm−uDu+m+s (DnDn+s−1 +Dn−1Dn+s) = 0 (4.5)

that needs a proof. Let us first prove that

QmDuDu+sDn−mDn+m+s−1 −QuDmDm+sDn−uDn+u+s−1 +QuDm−uDu+m+sDnDn+s−1

= −Qn+u+s−1DuDmDm−u. (4.6)

By Vajda’s identity (2.9), we can rewrite the left-hand side of relation (4.6) as

LHS(4.6) = (QmDuDu+s −QuDmDm+s +QuDm−uDu+m+s)DnDn+s−1

+Qm+nDuDu+sD−mDm+s−1 −Qu+nDmDm+sD−uDu+s−1

= Qm+nDuDu+sD−mDm+s−1 −Qu+nDmDm+sD−uDu+s−1

= QnDuDm (Dm+sDu+s−1 −Dm+s−1Du+s)
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Here we take into account that, due to Wajda’s identity (2.9), the sum in parentheses at

DnDn+s−1 is equal to zero. With the identity

Dm+sDu+s−1 −Dm+s−1Du+s = Qm+s−1Du−m,

that follows from (2.8), we get (4.6).

It remains to prove the identity

QmDuDu+sDn−m−1Dn+m+s −QuDmDm+sDn−u−1Dn+u+s +QuDm−uDu+m+sDn−1Dn+s

= Qn+u+s−1DuDmDm−u, (4.7)

but this is done by analogy with the proof of the identity (4.6). And now summing the

left and right sides of the identities (4.6) and (4.7), we get (4.5). �

Putting m = 2, u = 1 and s = 0, in the identity (4.4), we obtain the fact that the

second-order linear sequence (Tn) satisfies an identity

TnTn+4 =
P 2

Q
Tn+1Tn+3 −

P 2 −Q

Q
T 2
n+2 (4.8)

which, in turn, means that this sequence is a particular solution of the Somos-4 recurrence

(1.1) with coefficients

α =
P 2

Q
, β = −P 2 −Q

Q
(4.9)

and initial data

(t0, t1, t2, t3) =
(

t0, t1,−t0Q+ t1P,−t0QP + t1
(

P 2 −Q
))

. (4.10)

Now we would like to see what companion elliptic sequence corresponding to the sequence

(Tn) is. Direct calculation gives

H =
P 2 + 2Q

Q
and I = α2 + βH = −P 2 − 2Q

Q
.

Then, by (1.7), we have

W2 =
√
α =

P√
Q
, W3 = −β =

P 2 −Q

Q
, W4 = −I

√
α =

P
(

P 2 − 2Q
)

3
√
Q

.

One sees that for n, from zero to four,

Wn =
Dn

Q(n−1)/2
. (4.11)

Inspired by this we substitute Dn = Q(n−1)/2Wn into (4.1), to get the following relation:

WmWm+sWn−uWn+u+s +WnWn+sWu−mWu+m+s +WuWu+sWm−nWm+n+s = 0. (4.12)

But it is known that this relation is satisfied by the elliptic sequence [18]. In particular,

putting s = 0 and m = 1, we get well-known equation

Wn−uWn+u = W 2
uWn−1Wn+1 −Wu−1Wu+1W

2
n

for elliptic sequences [24].

Let us now summarize all of the above in the following theorem.
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Theorem 4.3. Linear sequence of the second order (Tn) is a particular solution of the

Somos-4 recurrence (1.1) with the coefficients α and β given by (4.9) and the initial data

given by (4.10). This sequence satisfies also

WuWu+stn−mtn+m+s −WmWm+stn−utn+u+s +Wm−uWu+m+stntn+s = 0, (4.13)

where Wn is given by (4.11).

Remark 4.4. It should be noted that formula (4.11) can be found on the first page of the

Morgan Ward’s paper [24]. Together with others, it gives there an example of degenerate

elliptic sequence.

With the help of (1.4) and (1.5), we calculate the invariants of the elliptic curve. In

this case, they look like this:

g2 =
(P 2 − 4Q)2

12Q2
and g3 = −(P 2 − 4Q)3

216Q3
.

Moreover, in this case, the degeneracy relation g32 − 27g23 = 0 is satisfied. In turn, the

equation of a degenerate elliptic curve is as follows:

y2 = 4

(

x− P 2 − 4Q

12Q

)2(

x+
P 2 − 4Q

6Q

)

.

5. Theorem that every Somos-4 sequence is a Gale-Robinson one

So we have proved Theorem 4.3 that any second-order linear sequence is a solution of

the Somos-4 recurrence and moreover, it satisfies relation (4.13) in which its companion

degenerate elliptic sequence is involved. Now it is natural to assume that all this takes

place in the non-degenerate case. The following theorem says that this is so.

Theorem 5.1. The general solution of the Somos-4 equation (1.1) satisfy

Wq−pWN−p−qtntn+N = WqWN−qtn+ptn+N−p −WpWN−ptn+qtn+N−q. (5.1)

for any (N, p, q, n) ∈ Z
4, where (Wn) is the companion elliptic sequence defined above.

Proof. One can say that the idea of the proof of Theorem 5.1 presented below follows the

lines proposed in [9]. Given any quadruple of numbers (s,m, u, n) ∈ Z
4, we define

f =
σ(κ)2g

A2B2n+s
,

where g = n2+m2+u2+s2+s (n+m+ u) and then substitute (1.2) and Ward’s expression

(1.9) for the terms of the companion elliptic sequence into the relation

f · (WuWu+stn−mtn+m+s −WmWm+stn−utn+u+s +Wm−uWu+m+stntn+s) = 0.

As a result of rather tedious transformations we get not such a terrible expression, namely,

σ(uκ)σ((s + u)κ)σ(z0 + (n−m)κ)σ(z0 + (n+ s+m)κ)

−σ(mκ)σ((s +m)κ)σ(z0 + (n − u)κ)σ(z0 + (n+ s+ u)κ)

+σ((m− u)κ)σ((m + s+ u)κ)σ(z0 + nκ)σ(z0 + (n+ s)κ) = 0. (5.2)
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Let us now define

a = z0 +
(

n+
s

2

)

κ, b =
(

m+
s

2

)

κ, c =
(

u+
s

2

)

κ, d = −s

2
κ.

This gives us the opportunity to rewrite (5.2) as

σ(c+ d)σ(c− d)σ(a + b)σ(a− b)− σ(b+ d)σ(b− d)σ(a + c)σ(a− c)

+σ(b+ c)σ(b − c)σ(a + d)σ(a− d) = 0.

But this last relation is the well-known identity for the Weierstrass sigma function. To

prove Theorem 5.1, it remains to make the substitution u = q− p, s = N − 2q, m = q and

shift n → n+ q. �

It should be noted that, in two special cases N = 2p and N = 2p + 1, with q = p + 1

in both cases, from (5.1), we immediately obtain the following two formulas which are

contained in Theorem 3 of the paper [16]:

W 2
1 tn−ptn+p = W 2

p tn−1tn+1 −Wp−1Wp+1t
2
n

and

W1W2tn−ptn+p+1 = WpWp+1tn−1tn+2 −Wp−1Wp+2tntn+1.

Let us now show a consequence of this theorem.

Corollary 5.2. Given any solution of Somos-4 recurrence, let us define a sequence (td,n)

by td,n = tdn+r, where d is an arbitrary nonzero positive integer and r = 0, . . . , d−1. Then

the sequence (td,n) satisfies Somos-4 recurrence

td,ntd,n+4 = αdtd,n+1td,n+3 + βdt
2
d,n+2. (5.3)

Proof. Let N = 4d, p = d and q = 2d. Substituting these value into (5.1), we get

W 2
d tntn+4d = W 2

2dtn+dtn+3d −WdW3dt
2
n+2d = 0

and now replacing n → dn+ r we get (5.3), where

αd =
W 2

2d

W 2
d

and βd =
W3d

Wd
. (5.4)

�

For example, calculating, with the help of (1.7), (1.8) and (5.4), yields

α2 = I
2, β2 = β

(

I
2 + J

)

and

α3 = α
(

I2 + J
)2

, β3 = α2I3
(

I2 + J
)

+ J3,

where, by definition, J = α2I− β3.
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6. Three-term Somos-N equation related equation

In a particular case p = 1 and q = 2, the Gale-Robinson recurrence (1.2) becomes

tntn+N = αN tn+1tn+N−1 + βN tn+2tn+N−2, N ≥ 4. (6.1)

We are forced to number the constants α and β in (6.1), as it is convenient for the formu-

lation of further statements. We will call relation (6.1) a three-term Somos-N equation.

Further we will show that any solution of the Somos-N equation gives a solution to some

other equation, which in turn represents a relation consistent with a Volterra lattice equa-

tion.

The following lemma can be proven by direct calculation.

Lemma 6.1. One of the first integral for the Somos-N equation (6.1) is

HN =

N−4
∑

j=0

tjtj+3

tj+1tj+2
+ αN

t1tN−3

t0tN−2
+ αN

t2tN−2

t1tN−1
+ βN

t2tN−3

t0tN−1
. (6.2)

On the other hand, given any integer N ≥ 4, let us consider an equation

yn+1





N−3
∑

j=0

yn+j −HN



 = yn+N−2





N−3
∑

j=0

yn+j+2 −HN



 , (6.3)

where HN are supposed to be some constant.

Remark 6.2. It may be puzzling to the fact that now and further we use the same

notations that we have already used above for another objects, like HN , βN etc. But one

have to be a little patient because it will later turn out that these notations are used in

fact for the same things.

We would like to spend some lines to show how equation (6.3) is related to the Somos-N

equation (6.1). From the very form of the equation, it is clear that it has the following

first integral:

βN =
N−3
∏

j=1

yn+j





N−2
∑

j=0

yn+j −HN



 . (6.4)

Moreover we write down one more not obvious the first integral [20], [10].

Lemma 6.3. A quantity

IN =
N−2
∏

j=0

yn+j +
N−3
∑

j=1

yn+j





N−2
∑

j=0

yn+j −HN





N−3
∏

j=1

yn+j.

is the first integral for equation (6.3).

We have every right to consider relation (6.4) as an equation with two constants HN

and βN . With a substitution yn = fnfn+1, it becomes

N−2
∑

j=0

fn+jfn+j+1 =
βN

∏N−3
j=1 fn+jfn+j+1

+HN . (6.5)
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Lemma 6.4. A function

αN,n =

N−2
∏

j=0

fn+j −
βN

∏N−3
j=1 fn+j

. (6.6)

is a 2-integral for equation (6.5). Moreover, we have

αN,n+1 =

N−3
∏

j=1

fn+j



HN −
N−3
∑

j=0

fn+jfn+j+1



 . (6.7)

Of course, the product α
(k)
n α

(k)
n+1 is the first integral.

Lemma 6.5. We have a relation αN,0αN,1 = IN −HNβN .

Let us now rewrite (6.6) as

αN,n

N−3
∏

j=1

fn+j =

N−3
∏

j=0

fn+jfn+j+1 − βN .

Finally, substituting, fn = tntn+2/t
2
n+1, into the latter, we get relation

tntn+N = αN,ntn+1tn+N−1 + βN tn+2tn+N−2. (6.8)

One sees that the last relation is nothing more than the Somos-N equation (6.1), only

with a 2-periodic coefficient αN . So, summing up the above, we conclude the following:

Theorem 6.6. Given any solution of equation (6.8), a sequence (yn) defined by a substi-

tution yn = tntn+3/(tn+1tn+2) is a solution of equation (6.3).

It goes without saying that in the case of a constant coefficient αN we have the same

relationship between the Somos-N equation and equation (6.3). From (6.7), we get

HN =

N−3
∑

j=0

fjfj+1 +
αN,1

∏N−3
j=1 fj

=

N−3
∑

j=0

tjtj+3

tj+1tj+2
+ αN,1

t2tN−2

t1tN−1

=

N−4
∑

j=0

tjtj+3

tj+1tj+2
+ αN,0

t1tN−3

t0tN−2
+ αN,1

t2tN−2

t1tN−1
+ βN

t2tN−3

t0tN−1
. (6.9)

Here, for simplicity of notation, we set n = 0. One sees, that (6.9) generalizes expression

(6.2) for non-autonomous case.

Remark 6.7. The proof of Theorem 6.6 is actually contained in the paper [10] except

that equation (6.4) is considered instead of equation (6.3).
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7. Volterra lattice and its solutions

The Volterra lattice (1.10), at one time was noted by physicists and used by them as

a simplified model in some processes of plasma physics [14], [25]. In [14], the method of

the inverse scattering problem was applied to this equation. Due to this, the Volterra

lattice can be considered as an integrable differential-difference equation. Later it was

found that this equation is in the list of equations sharing a property of having an infinite

number of higher symmetries and local conservation laws. It was shown in [19] that the

Volterra lattice and many other integrable evolution equations and systems of equations

can be obtained using an appropriate constraint on bi-infinite sequence of Kadomtsev-

Petviashvili (KP) hierarchies.

It is clear that the solution of the Cauchy problem for the Volterra lattice in the case

of general initial conditions is an unbearable task, but nevertheless, some special cases

can be noted when the problem can be solved exactly, especially if the initial data itself

is a solution of some integrable equation. As was shown in [19], equation (6.3) arises as

a result of further invariant restriction of the sequence of KP hierarchies and therefore is

consistent with the Volterra lattice equation (1.10). This means the following. Given some

N ≥ 4, let Yn(0) = yn be an initial data satisfying recurrence (6.3) with fixed constant

HN . Then a corresponding solution of the Cauchy problem Yn(x) must satisfy (6.3) for

any x ∈ R. Thus it makes sense to look for the solution of the Volterra chain in the form

Yn(x) = yn +
∑

j≥1

Yn,j
xj

j!
,

where (yn) is a solution of some of equations (6.3) hoping to sum it up later.

The following fact is useful for our aim.

Lemma 7.1. Let (τn(x)) satisfies bi-linear differential-difference equation

τn
∂τn+1

∂x
− τn+1

∂τn
∂x

= τn−1τn+2. (7.1)

then

Yn =
τnτn+3

τn+1τn+2
(7.2)

satisfies the Volterra lattice (1.10).

In other words, instead of looking for solution to the Volterra lattice, we look for solution

of bi-linear equation (7.1) of the form

τn(x) = tn +
∑

j≥1

τn,j
xj

j!
, (7.3)

where (tn) is any sequence satisfying the non-autonomous Somos-N equation (6.8). With

a solution (7.3), due to what we got in Section 6, formula (7.2) gives the corresponding

solution of the Volterra lattice.

Unfortunately we do not have a clear algorithm for finding a solution, and so far we

can only show the following result obtained by trial and error.
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Theorem 7.2. Let (Tn) be any second-order linear sequence. Let B = B(x) be a solution

of the Riccati equation

B′ =
P

Q
B (B − P ) + P (7.4)

with the initial condition B(0) = 0. Then

τn(x) = (Tn − Tn−1B(x)) enx. (7.5)

is a solution of the differential-difference equation (7.1) with the condition τn(0) = Tn.

Proof. This theorem can be proved by direct calculation. Substituting (7.5) into (7.1), we

get the relation

(Tn − Tn−1B)
(

(n+ 1)Tn+1 − (n+ 1)TnB − TnB
′
)

− (Tn+1 − TnB)
(

nTn − nTn−1B − Tn−1B
′
)

− (Tn−1 − Tn−2B) (Tn+2 − Tn+1B) = 0

which needs to be proven. Since B = B(x) is supposed to be a solution of the Riccati

equation (7.4), we can reduce the last relation to the form

−
(

P

Q
B(B − P ) + P

)

(

T 2
n − Tn−1Tn+1) +B2(Tn−1Tn − Tn−2Tn+1

)

−B
(

T 2
n − Tn−2Tn+2

)

+ TnTn+1 − Tn−1Tn+2 = 0. (7.6)

Using Vajda’s identity (2.10) for the second-order linear sequence, we can write

T 2
n − Tn−1Tn+1 = cQn−1D2

1, Tn−1Tn − Tn−2Tn+1 = cQn−2D1D2,

T 2
n − Tn−2Tn+2 = cQn−2D2

2, TnTn+1 − Tn−1Tn+2 = cQn−1D1D2,

where c = Qt20 − Pt0t1 + t21. With these relations we bring (7.6) to the following form:

−
(

P

Q
B(B − P ) + P

)

Qn−1D2
1 +B2Qn−2D1D2 −BQn−2D2

2 +Qn−1D1D2 = 0.

Finally, substituting D1 = 1 and D2 = P into the last relation, we make sure that this is

an identity. �

Corollary 7.3. A solution of the Cauchy problem for the Volterra lattice (1.10) with

initial data Yn(0) = TnTn+3/(Tn+1Tn+2) is given by

Yn(x) =
(Tn − Tn−1B(x)) (Tn+3 − Tn+2B(x))

(Tn+1 − TnB(x)) (Tn+2 − Tn+1B(x))
. (7.7)

Formula (7.7) gives an infinite set of solutions parametrized by (t0, t1, P,Q) ∈ R
4. We

do not discuss here the physical meaning of this solution, if it exists at all. In any case,

the physical solution must at least satisfy positivity condition Yn(x) > 0 in the domain of

its definition, and we leave it as a separate task to identify such solutions. It is possible

that solution of the form (7.7) may be of interest from the point of view of number theory.
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8. On Maclaurin series for B(x)

Let us discuss some technical details. Namely, let us discuss the Maclaurin series for

the function B(x) that is, by definition, a solution of the Riccati equation (7.4). The first

few terms of this series have the following form:

B(x) = Px− P 3

Q

x2

2!
+

P 3
(

P 2 + 2Q
)

Q2

x3

3!
− P 5

(

P 2 + 8Q
)

Q3

x4

4!

+
P 5

(

P 4 + 22P 2Q+ 16Q2
)

Q4

x5

5!
− · · · (8.1)

Defining new variables

A = −P

Q
B, z = −P 2

Q
x and q =

Q

P 2
,

from (8.1), we get

A(z) = z +
z2

2!
+ (1 + 2q)

z3

3!
+ (1 + 8q)

z4

4!
+ (1 + 22q + 16q2)

z5

5!
+ . . .

It is easy to check that this function, by (7.4), satisfies an equation

dA

dz
= 1 +A+ qA2.

From [15] http://oeis.org/A101280 it is known that this is the Riccati equation for the

bi-variate generating function for a number triangle (en,j), where n ≥ 1 and 0 ≤ j ≤
⌊(n − 1)/2⌋. To be more exacty, these numbers are defined by the recurrence relation

en,j = (j + 1)en−1,k + (2n− 4j) en−1,j−1.

The triangle of numbers (en,j) has the following property: let (E(n, j)) be a triangle

of the first-order Euler numbers [15] http://oeis.org/A173018 that can be defined, for

example, by Worpitzky’s identity [6]

xn =

n−1
∑

j=0

E(n, j)

(

x+ j

n

)

.

They can also be defined by the recurrence relation

E(n, j) = (j + 1)E(n − 1, j) + (n− j)E(n − 1, j − 1).

The relationship of these two number triangles is determined by the following formula:

n−1
∑

j=0

E(n, j)xj =

⌊(n−1)/2⌋
∑

j=0

en,jx
j(1 + x)n−1−2j .

9. On Maclaurin series for τn(x)

It is easy to calculate the first few terms of the Maclaurin series (7.3). We have, for

example,

τn,1 = nTn − PTn−1, τn,2 = n2Tn −
(

2Pn− P 3

Q

)

Tn−1, . . .

http://oeis.org/A101280
http://oeis.org/A173018
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By direct substitution, one can check the following. The sequences (τn,1) and (τn,2) satisfy

linear recurrences

τn+4,1 = 2Pτn+3,1 −
(

P 2 + 2Q
)

τn+2,1 + 2QPτn+1,1 −Q2τn,1

and

τn+6,2 = 3Pτn+5,2 − 3
(

P 2 +Q
)

τn+4,2 + P
(

P 2 + 6Q
)

τn+3,2 − 3
(

P 2 +Q
)

Qτn+2,2

+3PQ2τn+1,2 −Q3τn,2,

respectively. Inspired by this observations, we can assume the following.

Conjecture 9.1. Given any r ≥ 0, let us define a set of polynomials {fr,j(P,Q) : j =

0, . . . , 2r + 2} by

F r+1 =

2r+2
∑

j=0

fr,j(P,Q)Xj ,

where F = X2 − PX +Q is a characteristic polynomial of a linear sequence (Tn). Then

the sequence (τn,r) satisfies (2r + 2)-order linear recurrence

2r+2
∑

j=0

fr,j(P,Q)τn+j,r = 0.
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