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ACTION OF HECKE ALGEBRA ON THE DOUBLE FLAG VARIETY

OF TYPE AIII

LUCAS FRESSE AND KYO NISHIYAMA

Abstract. Consider a connected reductive algebraic group G and a symmetric sub-
group K. Let X = K/BK ×G/P be a double flag variety of finite type, where BK is a
Borel subgroup of K, and P a parabolic subgroup of G. A general argument shows that
the orbit space CX/K inherits a natural action of the Hecke algebra H = H (K,BK)
of double cosets via convolutions. However, it is a quite different problem to find out the
explicit structure of the Hecke module.

In this paper, for the double flag variety of type AIII, we determine the explicit action
of H on CX/K in a combinatorial way using graphs. As a by-product, we also get the
description of the representation of the Weyl group on CX/K as a direct sum of induced
representations.
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1. Double flag varieties and Hecke algebra actions

Let G be a connected reductive algebraic group with an involutive automorphism θ.
We denote by K = Gθ the subgroup of fixed points of θ in G. We assume K is connected
for simplicity. Note that this assumption holds if G is simply connected.

2020 Mathematics Subject Classification. Primary 20C08; Secondary 14M17, 14M15, 20G05.
K. N. is supported by JSPS KAKENHI Grant Number #21K03184.

1

http://arxiv.org/abs/2206.10476v2


2 LUCAS FRESSE AND KYO NISHIYAMA

Let us consider a double flag variety X = K/BK ×G/P , where BK is a Borel subgroup
of K and P is a parabolic subgroup of G. We assume X is of finite type, i.e., there are
finitely many orbits with respect to the diagonal K action on X (see [12] and [7]). Since
X/K ≃ BK\G/P , this is equivalent to saying that there are finitely many BK-orbits
on the partial flag variety G/P , or in other words, the natural action of K on G/P is
spherical.

Let us denote the Hecke algebra of (K,BK) by H = H (K,BK). Then there exists a
general recipe to define an action of H on the space of K-orbits CX/K in the double
flag variety X by using the convolution product and the following double fibration maps
(see [2], for example).

K/BK×K/BK×G/P
p12

��✝✝
✝✝
✝✝ p23

��
✽✽

✽✽
✽✽

K/BK×K/BK K/BK×G/P = X

In this diagram, K acts diagonally, and all the maps respect the K action.
However, in practice we prefer a simpler picture with the left BK action:

K ×BK
G/P

p1

��✆✆
✆✆
✆✆ p2

��
✾✾

✾✾
✾✾

K/BK G/P = X

More generally, if X is a spherical K-variety, Hecke algebra actions are considered by
Mars-Springer [11] and Knop [10].

Thus there exists an action of the Hecke algebra on the orbit space of X/K ≃ BK\G/P
so that the orbit space CX/K is a Hecke module. However, there is no definite way to
determine this module structure, and it seems difficult to describe the module structure
even for a given explicit double flag variety.

Here in this paper, we will describe the explicit and concrete module structure of the
Hecke algebra H for the case of the double flag variety of type AIII. The action is very
explicit in terms of certain graphs, which represent K-orbits. See Theorem 7.5, which
is the main theorem of this paper. From this theorem, we can also deduce the precise
module structure of CX/K as a representation of the Weyl group WK of K, which is
isomorphic to Sp×Sq in our situation. The representation is described in terms of a sum
of induced representations. See Theorem 8.1.

To state the results in detail, let us first explain what is our double flag variety, and
the structure of the orbit space.



ACTION OF HECKE ALGEBRA ON THE DOUBLE FLAG VARIETY OF TYPE AIII 3

2. Double flag variety of type AIII

In this section, the base field will be any field of characteristic other than 2. Later, we
will consider the double flag varieties over finite fields.

From now on, we concentrate on the case of the symmetric space of type AIII.

• G = GLn denotes the general linear group of order n.
• K = GLp × GLq is a symmetric subgroup diagonally embedded into G, where
p+ q = n.

• P = P(r,n−r) denotes a standard maximal parabolic subgroup in G consisting of
blockwise upper-triangular matrices with 2 diagonal blocks of size r and n− r.

• BK = Bp × Bq is a Borel subgroup in K, where Bp denotes the subgroup of GLp

consisting of upper-triangular matrices.

Thus we have

X = K/BK ×G/P =
(

GLp/Bp ×GLq/Bq

)

×GLn/P(r,n−r)

≃
(

Fℓ(V +)× Fℓ(V −)
)

×Grr(V ),

where

• V is an n-dimensional vector space with a polar decomposition V = V +⊕V − and
dimV + = p, dimV − = q.

• Grr(V ) is the Grassmannian of r-dimensional subspaces of V , and
• Fℓ(V ±) denote the complete flag varieties of V ±.

It is not difficult to see

Lemma 2.1. #X/K < ∞, i.e., X is of finite type.

For general double flag varieties of finite type, we refer the readers to [7].
Write X = Grr(V ) ≃ G/P(r,n−r), then K acts on X spherically, i.e., the action BK

y X
has finitely many orbits.

Lemma 2.2. There is a natural bijection

X/K
≃

// X/BK
∋ ∋

K · ([τ ],F+
0 ,F

−
0 )

✤ // BK · [τ ]

where [τ ] ∈ Grr(V ), and F±
0 denote the standard flags of V ± stabilized by Bp and Bq,

respectively.

In the following, we will often identify X/K and X/BK via the above explicit bijection.
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3. Description of K-orbits on X

Here we summarize the structure of the double flag variety and K-orbits on it from our
previous works. For details we refer the readers to [3, 4, 5, 6].

3.1. Partial permutations. A partial permutation of size p × r is a matrix τ1 ∈ Mp,r

with entries in {0, 1}, in which the number of 1’s is less than or equal to 1 for any row
and any column. (If p = r, we recover the set of partial permutation matrices considered
in [4].) Let us denote by Tp,r the set of all the partial permutations in Mp,r. Put

T = T(p,q),r :=

{

τ =

(

τ1
τ2

)

∈ Tp,r × Tq,r

∣

∣

∣
rank τ = r

}

⊂ Mp+q,r,

which is the set of pairs of partial permutations arranged vertically which are of full rank.
Note that the symmetric group Sr of order r acts on this set from the right: TxSr, and
we denote by T = T/Sr the quotient by the symmetric group action.

Let [τ ] := Im τ ∈ Grr(V ) denote the r-dimensional subspace generated by the column
vectors of τ .

Theorem 3.1 ([5, Theorem 2.2]). The map T ∋ τ 7→ [τ ] ∈ Grr(V ) factors through to a
bijection

T = T/Sr
≃

−−→ X/BK ≃ X/K

so that we get the parametrization of the K-orbits in the double flag variety X/K ≃ T.

If there is no confusion, we will identify a matrix τ ∈ T with its representative in T.
Thus τ often represents a K-orbit in X. Note also that the Weyl group WK = Sp ×Sq

acts on T on the left in a natural way.

3.2. Graphs. There exists a convenient presentation of τ ∈ T by using graphs. Let us
explain it.

For τ ∈ T, we consider a graph Γ(τ) determined by the following rule.

• It has two kinds of vertices : “positive” vertices V+
p = {1+, . . . , p+} and “negative”

vertices V−
q = {1−, . . . , q−}, both being displayed along two horizontal lines.

• Draw edges between i+ ∈ V+
p and j− ∈ V−

q if τ contains two 1’s in the same
column, at rows i+ and j−.

• There are marked vertices: mark the vertex i+ (or j−) if τ contains only one 1 at
row i+ (or j−) in a column.

• As a result we get #(edges) + #(marked vertices) = r.
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Example 3.2. To understand the graphs, let us give an example. When (p, q) = (5, 3)
and r = 4, we get

τ =

























0 0 0 0
1 0 0 0
0 0 0 0
0 1 0 0
0 0 1 0

0 1 0 0
0 0 0 1
1 0 0 0

























7→ Γ(τ) =
• • • • •
1+ 2+ 3+ 4+ 5+

• • •

1− 2− 3−

❅
❅❅

✏✏✏✏✏✏

❣

❣
(3.1)

The set of graphs of this type will be denoted by G((p, q), r) = {Γ(τ) | τ ∈ T}. The
graphs are characterized by the properties listed above. Note that every vertex is incident
with at most one edge or mark, and that there is no edge joining two distinct vertices of
the same sign.

We summarize the description of orbits using graphs into the following lemma.

Lemma 3.3. The graphs classify K-orbits in X.

X/K ≃ X/BK
oo

≃
T

≃
// G((p, q), r)

∋ ∋ ∋

BK · [τ ] oo ✤ τ ✤ // Γ(τ)

3.3. Orbital invariants: a±(τ), b(τ), c(τ) and R(τ) = (ri,j(τ)).
For the graph Γ(τ) we define:

• We set the degree of vertices as deg i± := 0, 1, 2, depending on whether it is
not incident with an edge nor marked, the end point of an edge, or marked,
respectively.

• a±(τ) := #{(i±, j±) | i < j and deg(i±) < deg(j±)}
• b(τ) := #{edges}
• c(τ) := #{crossings of edges}, i.e., the number of pairs of edges (i+, j−) and
(k+, ℓ−) such that i < k and j > ℓ.

• ri,j(τ) := #(edges) + #(marked vertices) with vertices among {1+, . . . , i+} ×
{1−, . . . , j−}.

• R(τ) := (ri,j(τ))0≤i≤p, 0≤j≤q
∈ Mp+1,q+1 : the “rank matrix”.

We need a±(τ), b(τ), c(τ) to give a dimension formula for the K-orbits in X below,
while the matrices R(τ) are to be used to describe the closure relations of orbits.

We also define a decomposition

V+
p = {1, . . . , p} = I ⊔ L ⊔ L′,

where I (resp. L, resp. L′) denotes the set of elements i ∈ {1, . . . , p} such that i+ is a
vertex of Γ(τ) of degree 1 (resp. 2, resp. 0).
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A decomposition

V−
q = {1, . . . , q} = J ⊔M ⊔M ′

is defined similarly. Namely, J (resp. M , resp. M ′) consists of the elements j such that
j− has degree 1 (resp. 2, resp. 0)

Let σ : J → I be the bijection defined by σ(j) = i if (i+, j−) is an edge in Γ(τ).
Note that τ is characterized by the subsets I, L, L′, J , M , M ′ and the bijection

σ : J → I. Also note that we have b(τ) = #I = #J , and c(τ) is the number of inversions
of σ.

Example 3.4. Let e±
i be a standard basis vector of V ±. For τ as in (3.1), the associated

graph is given as

τ =
(

τ1
τ2

)

=

(

e
+
2 e

+
4 e

+
5 0

e
−
3 e

−
1 0 e

−
2

)

 Γ(τ) =
• • • • •
1+ 2+ 3+ 4+ 5+

• • •

1− 2− 3−

❅
❅❅

✏✏✏✏✏✏

❣

❣
then

a+(τ) = 7, a−(τ) = 1, b(τ) = 2, c(τ) = 1, R(τ) =

















0 0 1 1
0 0 1 1
0 0 1 2
0 0 1 2
0 1 2 3
1 2 3 4

















I = {2, 4}, L = {5}, L′ = {1, 3},

J = {1, 3}, M = {2}, M ′ = ∅, σ =

(

1 3
4 2

)

∈ Bij(J, I)

[τ ] = 〈e+
2 + e

−
3 , e

+
4 + e

−
1 , e

+
5 , e

−
2 〉.

3.4. Dimensions and closure relations of orbits. Recall the base point ([τ ],F+
0 ,F

−
0 )

in X = Grr(V )× Fℓ(V +)× Fℓ(V −).

Theorem 3.5 ([5, Theorem 2.2]). Denote a K-orbit in X by Oτ := K · ([τ ],F+
0 ,F

−
0 ).

(1) dimOτ =
p(p− 1)

2
+

q(q − 1)

2
+ a+(τ) + a−(τ) +

b(τ)(b(τ) + 1)

2
+ c(τ).

(2) Oτ = {(W,F+,F−) | dimW ∩ (F+
i + F−

j ) = ri,j(τ)

for any (i, j) ∈ {0, . . . , p} × {0, . . . , q}}.

(3) Oτ ⊂ Oτ ′ ⇐⇒ ri,j(τ) ≥ ri,j(τ
′) for any (i, j) ∈ {0, . . . , p} × {0, . . . , q}.

We can describe the cover relation of the closure of orbits, which is not presented here
(see [5, Theorem 2.3]). Taking this for granted, we have

Corollary 3.6. If Oτ ′ covers Oτ then dimOτ ′ = dimOτ + 1 holds.
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Figure 1. Closure relations of K-orbits for p = q = r = 2
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3.5. The number of orbits. Let (k, s, t) be nonnegative integers which satisfy

p ≥ k + s, q ≥ k + t, r = k + s+ t.

Put s′ = p− k− s and t′ = q− k− t. Consider the subgroup Hk,s,t ⊂ Sp×Sq defined by

Hk,s,t = {(a1, a2, a3; a1, b2, b3) ∈ (Sk×Ss×Ss′)×(Sk×St×St′)}
∼= ∆Sk×Ss×Ss′×St×St′ ,

where ∆Sk ⊂ S2
k stands for the diagonal subgroup.

Theorem 3.7 ([5, Corollary 2.13]). The total number of K-orbits in X is given by

#X/K =
∑

(k,s,t)

dim Ind
Sp×Sq

Hk,s,t
1 =

∑

(k,s,t)

(

p

k, s, s′

)(

q

k, t, t′

)

k!,

where the sums are running over triples (k, s, t) as above.

4. Setting over finite fields

Based on the classification of orbits, we will calculate the Hecke algebra action on the
orbit space. For this, we follow the classical recipe of Iwahori [8], and we will consider
everything over the finite field F = Fq of q-elements from now on. (The letter q is already
used to denote the size of the second block for K. But the number of elements of a finite
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field is customary denoted also by the letter “q”. To distinguish them, we will use q

instead of q for the finite field Fq.)
Summary of the notation over the finite fields:

G GLn(F)
K GLp(F)×GLq(F) a symmetric subgroup of G
BK Bp(F)× Bq(F) a Borel subgroup of K
WK Sp ×Sq the Weyl group of K
G/P GLn(F)/P(r,n−r)(F) ≃ Grr(F

n) Grassmannian of r-spaces in Fn

BK\G/P T = T(p,q;r)/Sr the space of partial permutations

In addition to this, we also use the following notation.

• si = (i, i + 1): simple reflection (a transposition in WK), and Ti = Tsi is the
corresponding generator in the Hecke algebra H = H (K,BK).

• Recall pairs of partial permutations τ =
(

τ1
τ2

)

∈ T = T/Sr of full rank r. The

matrix τ is identified with its image [τ ] ∈ X = Grr(F
n) (thus we often omit [ ]

below).
• Let Oτ = BK · τ be a BK-orbit in the Grassmannian X . Then ξτ denotes the
characteristic function of the orbit Oτ .

We are interested in the action of Ti, Ti ∗ ξτ for τ ∈ T. To calculate it, we recall some
basic facts on the action of Hecke algebras.

5. Hecke algebra of double cosets

In this section, we consider a general finite group and review some general properties
of a Hecke algebra of double cosets. For that reason, we will denote by K a general finite
group. This notation is effective only in this section, but there is no harm to consider it
as the already defined K (over a finite field) above.

Let us take a subgroup B ⊂ K (again B does not necessarily mean a Borel subgroup)
and consider the convolution algebra of B-spherical functions on K. Note that these
functions are C-valued functions. This algebra is called the Hecke algebra of double
cosets and we denote it as H = H (K,B). Namely,

H (K,B) = {f : K → C | f(h1kh2) = f(k) for h1, h2 ∈ B and k ∈ K}

and the convolution product is defined by

a ∗ b(x) =

∫

K

a(k)b(k−1x)dk =
1

#K

∑

k∈K

a(k)b(k−1x)

where the integral
∫

K
dk is taken with respect to the normalized Haar measure of the

finite group K. As written above, the integral is just the pointwise sum divided by the
whole volume #K, but we prefer the notation using integral

∫

K
.
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Put W = B\K/B = {w}, identified with the set of representatives in K, which we
pick and fix once and for all. Let us consider characteristic functions on the double cosets
BwB ⊂ K so that they form a basis of H . However, since we would like to get an identity
element for the double coset B = BeB, we will normalize the characteristic functions by
#K/#B. Thus we put

Tw =
#K

#B
· 1BwB (w ∈ W ).

Then {Tw}w∈W forms a basis of H over C.
Let X be a finite set and assume K acts on X from the left. We consider the space of

functions FunB(X) on X which are B-invariant. The Hecke algebra H acts on FunB(X)
via the convolution again:

f ∗ ξ(x) :=

∫

K

f(k)ξ(k−1x)dk (f ∈ H , ξ ∈ FunB(X)).

We denote by T = X/B identified with the set of representatives in X .
We denote by ξτ the characteristic function on a B-orbit Bτ ⊂ X so that {ξτ}τ∈T is a

basis of FunB(X).
Let us calculate the convolution:

Tw ∗ ξτ (x) =

∫

K

Tw(g)ξτ(g
−1x)dg

=
1

#K

∑

g∈K

Tw(g)ξτ(g
−1x)

=
1

#K

∑

g∈BwB

Tw(g)ξτ(g
−1x). (5.1)

For this sum, only g ∈ BwB ∩ aKτB contributes, where a ∈ K is chosen as x = aτ
(we assume that x ∈ Kτ , otherwise the sum is zero), and Kτ = StabK(τ) denotes the
stabilizer of τ ∈ X . In fact, ξτ (g

−1x) 6= 0 iff g−1x ∈ Bτ . Since x = aτ , we get

g−1x = bτ ⇐⇒ g−1aτ = bτ ⇐⇒ τ = a−1gbτ

which means a−1gb ∈ Kτ = StabK(τ). Thus we get g ∈ aKτB.
Since Tw ∗ ξτ ∈ FunB(X), it is a linear combination of various ξτi ’s for τi ∈ T. From the

last expression (5.1), it is easy to see that if g ∈ BwB contributes to the sum nontrivially
then

g−1x ∈ Bτ ⇐⇒ x ∈ gBτ ⇐⇒ Bx ⊂ BwBτ.

Let us decompose

BwBτ = ⊔N
i=1Bτi (5.2)

Thus we only have to consider the cases x = τi (1 ≤ i ≤ N). If we choose ai’s which
satisfy τi = aiτ , then the above consideration tells us
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Theorem 5.1. The Hecke operator Tw (w ∈ W ) acts on FunB(X) by

Tw ∗ ξτ =

N
∑

i=1

#(aiKτB ∩ BwB)

#B
ξτi.

Proof. This theorem follows from the discussion above. Note that Tw is normalized by
the constant #K/#B. �

We shall apply this formula to our situation. (It’s still interesting to consider vector
bundle case in general. We postpone it as future study.)

6. Double cosets multiplications

Let us return to the setting of §4, however we make the assumption that the ground
field F is algebraically closed, of characteristic 6= 2, which will take place only in this
section.

Let si = (i, i + 1) be a simple reflection (a transposition in WK), and put Ti = Tsi be
the corresponding element in the Hecke algebra. We are interested in Ti ∗ξτ for τ ∈ T. As
in §3, τ ∈ T is often identified with a graph with two subsets of vertices V+

p and V−
q (of p

and q elements respectively) which are equipped with several edges and marked vertices.
Recall that WK ≃ Sp ×Sq acts on T by the matrix multiplication from the left, which

descends to the action on T, the set of parameters of orbits. This action can be identified
with the natural action of WK on the graphs, induced by that on the vertices.

The following key lemma corresponds to Equation (5.2) in the present situation.

Lemma 6.1. A double coset BKsiBK generates at most two BK-orbits on the Grassman-
nian X = Grr(F

n). Namely we have

BKsiBK · τ =











BKsiτ = BKτ if siτ = τ case (I)

BKsiτ ∪ BKτ if siτ 6= τ and τ is among (∗) case (II)

BKsiτ if siτ 6= τ and τ is among (∗∗) case (III)

where (∗) denotes the case of (1), (3), (6), (8) in Table 9 in Appendix §9, and (∗∗) denotes
the case of (2), (4), (5), (7) (ibid.).

Proof. Let BK ·τ be a BK-orbit of the Grassmannian X = Grr(F
n). Let i ∈ {1, . . . , p−1}

and let Pi = BK ⊔ BKsiBK be the corresponding minimal parabolic subgroup (si is the
corresponding simple reflection).

In Appendix §9, we compute the isotropy subgroup P τ
i := {g ∈ Pi : g · τ = τ} ⊂ Pi.

More precisely, let Ui be the unipotent radical of Pi and let Li be the standard Levi
subgroup of Pi. The quotient Li/Z(Li) is isomorphic to PGL2(F). By considering the
Levi decomposition Pi = Li ⋉ Ui, we get a morphism of groups

πi : Pi → Li → Li/Z(Li) ∼= PGL2(F)
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and a morphism of Lie algebras

dπi : pi = Lie(Pi) → sl2(F).

In concrete terms, any element in Pi (resp. pi) is a blockwise upper triangular matrix
with one block X of size 2 and the other blocks of size 1, and the map πi (resp. dπi) is
obtained by considering the projection of X to PGL2(F) (resp. sl2(F)). In Appendix §9,
we have calculated the image of P τ

i (in fact, of pτi = Lie(P τ
i )) by πi (in fact, dπi). The

calculations show the following alternative:

(A) siτ = τ , in which case dπi(p
τ
i ) = sl2(F);

(B) siτ 6= τ , in which case dπi(p
τ
i ) is a Borel subalgebra of sl2(F).

One can be more precise. There are in fact three cases. Here we refer to i, i+1 as vertices
in the graphic representation of τ .

(I) If i, i+ 1 are both of degree 0 or both of degree 2, then we are in case (A).
(II) If degτ (i) < degτ (i+1) or i, i+1 are end points of two edges which have a crossing,

then we are in case (B) and, moreover, dπi(p
τ
i ) is the subalgebra of lower triangular

matrices in sl2(F);
(III) If degτ (i) > degτ (i+1) or i, i+1 are end points of two edges which do not have a

crossing, then we are in case (B) and, moreover, dπi(p
τ
i ) is the subalgebra of upper

triangular matrices in sl2(F).

In the language of Knop’s paper [9, §3]:

• In case (A), Φ(Pi) is of type G0;
• In case (B), Φ(Pi) is of type S · U0.

Types T0 and N0 of [9, §3] do not appear in our situation. We can check this if we consider
the type of the stabilizer and consider the claims just after [9, Lemma 3.1].

In particular, the information on isotropy subgroups/subalgebras can be used in com-
bination with [9, table on p. 295] in order to determine BKsiBK · τ . First, we note that
Pi · τ always contains the orbits BK · τ and BK · (siτ), which can be the same. In case
(B), where Φ(Pi) is of type S · U0, we also know from [9] that Pi · τ contains exactly two
orbits, namely

Pi · τ = BK · τ ∪BK · siτ.

In this case, BKsiBK · τ contains at most two orbits, hence we have either BKsiBK · τ =
BK · siτ or BKsiBK · τ = BK · τ ∪BK · siτ . It remains to determine in which case we have
indeed two orbits.

Let BK = TU where T is the standard maximal torus and U ⊂ BK is the unipotent
radical. Let X±

i := {u±
i (t)}t∈F be the one parameter subgroup of unipotent matrices

attached to the root ±αi. Thus

U = UiX
+
i and siX

+
i s

−1
i = X−

i .

Hence
BKsiBK = BKsiUiX

+
i = BKsiX

+
i = BKX

−
i si.
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Whence

BKsiBK · τ = BKX
−
i · siτ.

• In case (I), we have siτ = τ and X−
i ∈ P τ

i , hence BKsiBK · τ = BK · τ in this case.
• In case (II), we have that the projection πi(P

siτ
i ) of the isotropy group of siτ

consists of upper triangular matrices (since by applying si to τ , we switch the
configuration of the vertices i, i + 1). This means X−

i 6⊂ P siτ
i , and hence there

exists g ∈ X−
i such that g · siτ 6= siτ . We claim that g · siτ /∈ BK · siτ , so that

g · siτ ∈ BK · τ and we must have BKsiBK · τ = BK · τ ∪ BK · siτ (as asserted
in the lemma) in this case. Arguing by contradiction assume that g · siτ = b · siτ
with some b ∈ BK . Then g−1b ∈ P siτ

i , which implies that πi(g
−1b) must be upper

triangular. But this is not the case, hence the claim is verified.
• In case (III), the projection πi(P

siτ
i ) of the isotropy group of siτ consists of lower

triangular matrices. Hence X−
i ⊂ P siτ

i . Whence BKsiBK · τ = BKX
−
i · siτ =

BK · siτ in this case (as asserted in the lemma).

The proof of Lemma 6.1 is complete for i associated to Sp, i.e., 0 < i < p. The case for
si ∈ Sq can be argued similarly. �

7. Explicit action of Hecke algebra on the double flag variety

In this section, F is a finite field of characteristic 6= 2 again. As before we denote
q = #F. Note that Lemma 6.1 is still valid in this context (by considering fixed points
of the Frobenius map).

Recall that the Hecke algebra H = H (K,BK) acts on the space of K-orbits CX/K
and the action is given by the general theory of spherical functions discussed in §5.

According to the theory, by Theorem 5.1 and Lemma 6.1, we get

Ti ∗ ξτ = αξτ + βξsiτ

for some coefficients α, β ∈ Q (one of which might be zero). Let us determine them.

7.1. Calculation of α. Note that α 6= 0 only if we are in Cases (I) or (II) in Lemma 6.1.
To compute it, we use the formula in Theorem 5.1 with ai = e (identity). The numerator

becomes (before counting the number)

KτBK ∩ BKsiBK , where Kτ = K ∩ P[τ ],

and P[τ ] = StabG([τ ]) is the stabilizer of the r-dimensional space [τ ] ∈ Grr(F
n) generated

by the columns of τ . From a general argument,

BKsiBK = X+
i siBK with X+

i = Uαi
≃ F

where Uαi
⊂ BK denotes the one parameter subgroup generated by a root vector xαi

corresponding to si = sαi
.



ACTION OF HECKE ALGEBRA ON THE DOUBLE FLAG VARIETY OF TYPE AIII 13

Lemma 7.1.

KτBK ∩BKsiBK = {usib ∈ X+
i siBK | siu

−1τ ∈ BKτ}.

The expression usib is unique.

Proof. Write usib ∈ BKsiBK = X+
i siBK for u ∈ X+

i and b ∈ BK .

usib ∈ KτBK ⇐⇒ usi ∈ KτBK ⇐⇒ (usi)
−1 ∈ BKKτ ⇐⇒ siu

−1τ ∈ BKτ.

�

Lemma 7.2. Assume we are in Case (I) so that siτ = τ . Then

KτBK ∩ BKsiBK = X+
i siBK ≃ F× BK .

This means α = #F = q.

Proof. We will apply Lemma 7.1. Since siτ = τ , if we denote by v = siusi, a generator of
the one parameter subgroup corresponding to the negative root −αi, we get

siu
−1τ = (siusi)

−1siτ = v−1τ

and v−1τ ∈ BKτ holds for any v (according to Lemma 9.1(1)). Thus u ∈ X+
i is arbitrary.

�

Lemma 7.3. Assume we are in Case (II) so that siτ 6= τ . Then

KτBK ∩ BKsiBK = (X+
i \ {e})siBK ≃ F× × BK .

This means α = #F− 1 = q − 1.

Proof. As in the proof of Lemma 7.2, we denote v = siusi. We get

siu
−1τ = (siusi)

−1siτ = v−1siτ.

Since siτ 6= τ , this is in BKτ iff v−1siτ 6∈ BKsiτ , iff v 6= e (this follows from a similar
arguments as in the end of the proof of Lemma 6.1. See Lemma 9.1(2) also). This proves
the lemma. �

7.2. Calculation of β. The case β 6= 0 only occurs for the cases (II) and (III) in Lemma
6.1. Thus we can assume siτ 6= τ .

To compute β, as in the case of α, we use the formula in Theorem 5.1 with ai = si.
The numerator becomes (before counting the number)

siKτBK ∩ BKsiBK = siKτBK ∩X+
i siBK .

Let us denote X−
i = siX

+
i si. Thus, we need to compute the number of elements in

KτBK ∩ siX
+
i siBK = KτBK ∩X−

i BK .

Lemma 7.4.

β = #{v ∈ X−
i | vτ ∈ BKτ} =

{

q if τ is in Case (II),

1 if τ is in Case (III).
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Proof. Let V = {v ∈ X−
i | v ∈ KτBK}. Note that the mapping

V × BK → KτBK ∩X−
i BK , (v, b) 7→ vb

is bijective. (It is clearly well defined.) It is injective since, if vb = v′b′ for vv′ ∈ V
and bb′ ∈ BK , then we get v′−1v = b′b−1 ∈ X−

i ∩ BK = {e} hence (v, b) = (v′, b′). It
is surjective since any element in KτBK ∩ X−

i BK can be written vb with v ∈ X−
i and

b ∈ BK , and we have v = (vb)b−1 ∈ KτBK , hence v ∈ V . This observation combined with
Theorem 5.1 (and the discussion above the statement of this lemma) implies that

β =
#(V ×BK)

#BK

= #V.

Next, for v ∈ X−
i , we note that

v ∈ V ⇔ v ∈ KτBK ⇔ v−1 ∈ BKKτ ⇔ v−1τ ∈ BKτ.

This yields a well-defined bijection V → {v ∈ X−
i | vτ ∈ BKτ}, v 7→ v−1. Hence

β = #{v ∈ X−
i | vτ ∈ BKτ}

as asserted in the lemma.
It remains to show the second equality in Lemma 7.4. First assume that τ is in Case

(II). In this case, as recalled in Section 6 we have X−
i ⊂ Kτ , hence vτ = τ ∈ BKτ for all

v ∈ X−
i . This implies that {v ∈ X−

i | vτ ∈ BKτ} = X−
i , hence β = #X−

i = q in this
case.

Finally assume that τ is in Case (III). In this case, we claim that {v ∈ X−
i | vτ ∈

BKτ} = {e}, and this will imply that β = 1 as asserted. Thus it remains to establish the
claim. To this end, let v ∈ X−

i be such that vτ ∈ BKτ . Let us write vτ = bτ with b ∈ BK .
This implies that v−1b ∈ P τ

i where Pi = BKsiBK ⊔ BK and P τ
i = Pi ∩Kτ (notation of

Section 6). Hence πi(v
−1b) ∈ πi(P

τ
i ) (where, as in Section 6, πi denotes the projection to

the (i, i + 1)-block). As used in Section 6, the fact that τ is in Case (III) implies that
πi(P

τ
i ) is formed by upper-triangular matrices. But πi(v

−1b) is upper triangular if and
only if v = e. Whence v = e, and the claim is established. �

7.3. Action of simple reflections. Let us recall Cases (I)–(III) from §6.

Theorem 7.5. The Hecke algebra H = H (K,BK) acts on the space of K-orbits CX/K
and the action is explicitly given by the formula:

Ti ∗ ξτ =











qξτ (siτ = τ) in Case (I),

(q − 1)ξτ + qξsiτ (siτ 6= τ) in Case (II),

ξsiτ (siτ 6= τ) in Case (III),

(7.1)

where {Ti} are the generators of H corresponding to the simple reflections.
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Note that the Borel-Moore homology of the conormal variety Y has its basis consisting
of the closures of conormal bundles of K-orbits on X. So the above theorem tells that the
space of top Borel-Moore homology has a natural Hecke module structure.

8. Representation of the Weyl group

We get the action of Hecke algebra in terms of generators Tsi ’s. If we specialize the
action by putting q = 1, then we get an action of the Weyl group WK = Sp ×Sq.

From Theorem 7.5, a simple reflection si ∈ WK acts on τ simply by the multiplication
siτ , which causes the transposition of i-th and (i + 1)-th rows of the (p + q) × r-matrix
τ . So the action of the Weyl group on τ is simply by the multiplication of permutation
matrices from the left on the space of partial permutations.

In the graphical notation of τ , w ∈ WK acts on τ as a permutation of V+
p × V−

q . Thus
we can easily see what kind of representations of WK we get.

Theorem 8.1. The Weyl group WK = Sp ×Sq acts on the orbit space CX/K, and we
have the following equivalence as representations of WK .

CX/K ≃
⊕

(k,s,t)

Ind
Sp×Sq

Hk,s,t
1,

where the sums are running over triples (k, s, t) given in §3.5, and the subgroup Hk,s,t =
∆Sk×Ss×Ss′×St×St′ is defined in the same place.

Since the dimension of the representation coincides with the number of orbits, we
retrieve the formula of the number of orbits (Theorem 3.7).

9. Appendix: Calculation of the stabilizer

Let τ ∈ T and we consider the orbit BK · [τ ] ⊂ Grr(V ). Let Pα ⊂ K be a standard
minimal parabolic subgroup associated to a simple root α. Then Pα/BK can be identified
with P1, in fact BK = Stab(F+

0 ,F
−
0 ), where F

±
0 are the standard flags of V ± respectively.

Let us follow the notation of Bourbaki for root systems ([1]). In our case, the root
system of K is Ap−1 + Aq−1, and thus α = αi = εi − εi+1 (0 < i < p or p < i < p+ q).

If α = αi (0 < i < p) then writing F+
0 = (F+

0,0, . . . , F
+
0,p), we have:

Pα/BK ≃ {W | F+
0,i−1 ⊂ W ⊂ F+

0,i+1} ≃ P(F+
0,i+1/F

+
0,i−1) ≃ P1.

Thus we conclude

Aut(Pα/BK) = PGL(Vα), where Vα := F+
0,i+1/F

+
0,i−1.

Any element g ∈ Pα determines g ∈ PGL(Vα).
Let us write this more precisely. We have a Levi decomposition Pα = LαUα, where

Uα denotes the unipotent radical, and Lα is the standard Levi subgroup isomorphic to
GL(Vα)×Gp−2

m ×Gq
m. Thus any g ∈ Pα can be written in the form

g = (gα, t1, t2) · u ∈ (GL(Vα)×Gp−2
m ×Gq

m)⋉ Uα.
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We define ϕα(g) = gα ∈ GL(Vα), the projection to the GL(Vα)-component.
For τ ∈ T, we have to consider the stabilizer P τ

α of [τ ] in Pα and its Lie algebra pτα, and
their images by ϕα and dϕα respectively.

Lemma 9.1. (1) If sατ = τ then dϕα(p
τ
α) = gl2 holds.

(2) If sατ 6= τ then dϕα(p
τ
α) is a Borel subalgebra of gl2.

Proof. We use the notation of §3.3.
(1) If sατ = τ then either the vertices i and i + 1 are both in the set L′ of unmarked

vertices; or i and i+ 1 are both marked belonging to the set L.
In the first case, we have [τ ] ⊂ 〈e+

s | s 6∈ {i, i + 1}〉 ⊕ V −. In the second case,
〈e+

i , e
+
i+1〉 ⊂ [τ ]. In both cases, for any h ∈ GL2, g := diag(1, . . . , 1, h, 1, . . . , 1) ∈ P τ

α ,
where h appears in the diagonal block of i-th and (i+1)-th rows. Whence ϕα(P

τ
α ) = GL2

in this case.
(2) Assume sατ 6= τ . A general description of the Lie algebra of the stabilizer tells

kτ = {x ∈ k | x([τ ]) ⊂ [τ ]}.

Write x ∈ k as x = diag(x+, x−) and

[τ ] = 〈e+
s | s+ is marked〉 ⊕ 〈e−

t | t− is marked〉

⊕ 〈e+
s + e

−
t | there is an edge (s+, t−)〉.

Note the followings hold for x ∈ kτ .

• If s ∈ L′ and t ∈ M ′, then we have x+
s,k = 0 (k ∈ L∪ I) and x−

t,ℓ = 0 (ℓ ∈ M ∪J).

• If s ∈ I and t ∈ J , then we have x+
s,k = 0 (k ∈ L) and x−

t,ℓ = 0 (ℓ ∈ M).

• If (s+, t−) and (k+, ℓ−) are edges, then we have x+
s,k = x−

t,ℓ.

In fact these conditions exactly characterizes the stabilizer kτ .
Based on these conditions, we can compute dϕα(p

τ
α) explicitly. We divide the cases into

eight, and examine each case. These eight cases are listed in Figure 9 below, where we
denote the upper/lower triangular Borel subalgebras by b±2 .

�
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Figure 2. Table: α-component of the stabilizer in Case (2), where α = εi − εi+1.

condition graphical notation dϕα(p
τ
α)

(1) i ∈ L′, i+ 1 ∈ L
i

•

i+1

•© b−2

(2) i ∈ L, i+ 1 ∈ L′
i

•©

i+1

• b+2

(3) i ∈ L′, i+ 1 ∈ I
i

•

i+1

•

•

b−2

(4) i ∈ I, i+ 1 ∈ L′
i

•

•

i+1

• b+2

(5) i ∈ L, i+ 1 ∈ I
i

•©

i+1

•

•

b+2

(6) i ∈ I, i+ 1 ∈ L
i

•

•

i+1

•© b−2

(7)
i, i+ 1 ∈ I, k < ℓ

(i, k) and (i+ 1, ℓ) are edges

i i+1

•

•

•

•

k < ℓ

b+2

(8)
i, i+ 1 ∈ I, ℓ < k

(i, k) and (i+ 1, ℓ) are edges

i i+1

• •

• •

❅
❅
�

�
ℓ < k

b−2

Note that in Cases (7) and (8), we must have x+
i,i+1 = x−

k,ℓ and x+
i+1,i = x−

ℓ,k, respectively.

Moreover, in Case (7), we have x−
ℓ,k = 0, and in Case (8), x−

k,ℓ = 0.
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