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Abstract

Gross, Mansour and Tucker introduced the partial-twuality polynomial of a
ribbon graph. Chumutov and Vignes-Tourneret posed a problem: it would
be interesting to know whether the partial duality polynomial and the related
conjectures would make sense for general delta-matroids. In this paper we
consider analogues of partial-twuality polynomials for delta-matroids. Var-
ious possible properties of partial-twuality polynomials of set systems are
studied. We discuss the numerical implications of partial-twualities on a sin-
gle element and prove that the intersection graphs can determine the partial-
twuality polynomials of bouquets and normal binary delta-matroids, respec-
tively. Finally, we give a characterization of vf-safe delta-matroids whose
partial-twuality polynomials have only one term.
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1. Introduction

In [16], Wilson found that the two long-standing duality operators δ (ge-
ometric duality) and τ (Petrie duality) generate a group of six ribbon graph
operators, that is, every other composition of δ and τ is equivalent to one of
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the five operators δ, τ , δτ , τδ, δτδ, or to the identity operator. Abrams and
Ellis-Monaghan [1] called the five operators twualities. The partial (geomet-
ric) dual with respect to a subset of edges of a ribbon graph was introduced
by Chmutov [7] in order to unify various connections between the Jones-
Kauffman and Bollobás-Riordan polynomials. Ellis-Monaghan and Moffatt
[12] generalized this partial-duality construction to the other four operators,
which they called partial-twualities.

Gross, Mansour and Tucker [13, 14] introduced the partial-twuality poly-
nomial for δ, τ, δτ, τδ, and δτδ. Various basic properties of partial-twuality
polynomials were studied, including interpolation and log-concavity. Re-
cently, Chumutov and Vignes-Tourneret [8] posed the following question:

Question 1. [8] Ribbon graphs may be considered from the point of view
of delta-matroid. In this way the concepts of partial (geometric) duality
and genus can be interpreted in terms of delta-matroids [9, 10]. It would
be interesting to know whether the partial-δ polynomial and the related
conjectures would make sense for general delta-matroids.

In [18], we showed that the partial-δ polynomials have delta-matroid ana-
logues. We introduced the twist polynomials of delta-matroids and discussed
their basic properties for delta-matroids. Chun et al. [9] showed that the
loop complemenation is the delta-matroid analogue of partial Petriality. In
this paper we consider analogues of other partial-twuality polynomials for
delta-matroids.

This paper is organised as follows. In Section 2 we recall the definition
of partial-twuality polynomials of ribbon graphs. Analogously, we introduce
the partial-twuality polynomials of set systems. In Section 3, various pos-
sible properties of partial-twuality polynomials of set systems are studied.
In Section 4 we discuss the numerical implications of partial-twualities on a
single element and the interpolation. In Section 5, we prove that the inter-
section graphs can determine the partial-twuality polynomials of bouquets
and normal binary delta-matroids, respectively. Here we provide an answer
to the question [17]: can one derive something from bouquets that could
determine the partial-twuality polynomial completely. In Section 6 we give a
characterization of vf-safe delta-matroids whose partial-twuality polynomials
have only one term.
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2. Preliminaries

2.1. Set systems and widths

A set system is a pair D = (E,F) of a finite set E together with a
collection F of subsets of E. The set E is called the ground set and the
elements of F are the feasible sets. We often use F(D) to denote the set of
feasible sets of D. D is proper if F 6= ∅, and is normal (respectively, dual
normal) if the empty set (respectively, the ground set) is feasible. The direct

sum of two set systems D = (E,F) and D̃ = (Ẽ, F̃) with disjoint ground

sets E and Ẽ, written D ⊕ D̃, is defined to be

D ⊕ D̃ := (E ∪ Ẽ, {F ∪ F̃ : F ∈ F and F̃ ∈ F̃}).

As introduced by Bouchet in [3], a delta-matroid is a proper set system
D = (E,F) such that if X, Y ∈ F and u ∈ X∆Y , then there is v ∈ X∆Y
(possibly v = u ) such that X∆{u, v} ∈ F . Here

X∆Y := (X ∪ Y )− (X ∩ Y )

is the usual symmetric difference of sets. Note that the maximum gap in the
collection of sizes of feasible sets of a delta-matroid is two [15].

For a set system D = (E,F), let Fmax(D) and Fmin(D) be the collections
of maximum and minimum cardinality feasible sets of D, respectively. Let
Dmax := (E,Fmax(D)) and Dmin := (E,Fmin(D)). Let r(Dmax) and r(Dmin)
denote the sizes of largest and smallest feasible sets of D, respectively. The
width of D, denote by w(D), is defined by

w(D) := r(Dmax)− r(Dmin).

For all non-negative integers i ≤ w(D), let

Fmax−i(D) = {F ∈ F : |F | = r(Dmax)− i}

and
Fmin+i(D) = {F ∈ F : |F | = r(Dmin) + i}.

2.2. Partial-twualities of set systems

We will consider the operations of twisting and loop complementation on
set systems. Twisting was introduced by Bouchet in [3], and loop comple-
mentation by Brijder and Hoogeboom in [5].
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Let D = (E,F) be a set system. For A ⊆ E, the twist of D with respect
to A, denoted by D∗|A, is given by

(E, {A∆X : X ∈ F}).

The ∗-dual of D, written D∗, is equal to D∗|E. Note that ∗-duality preserves
width. Throughout the paper, we will often omit the set brackets in the case
of a single element set. For example, we write D∗|e instead of D∗|{e}.

Let D = (E,F) be a set system and e ∈ E. Then D×|e is defined to be
the set system (E,F ′), where

F ′ = F∆{F ∪ e : F ∈ F and e /∈ F}.

If e1, e2 ∈ E then
(D×|e1)×|e2 = (D×|e2)×|e1.

This means that if A = {e1, · · · , em} ⊆ E we can unambiguously define the
loop complementation [5] of D on A, by

D×|A := (· · · (D×|e1)×|e2 · · · )×|em.

It is straightforward to show that the twist of a delta-matroid is a delta-
matroid [3], but the set of delta-matroids is not closed under loop com-
plementation (see, for example, [9]). Thus, we often restrict our attention
to a class of delta-matroids that is closed under loop complementation. A
delta-matroid D = (E,F) is said to be vf-safe [9] if the application of every
sequence of twists and loop complementations results in a delta-matroid.

In [5] it was shown that twists and loop complementations give rise to an
action of the symmetric group S3, with the presentation

S3
∼= B :=< ∗,× | ∗2,×2, (∗×)3 >,

on set systems. If D = (E,F) is a set system, e ∈ E and a = a1a2 · · ·an is a
word in the alphabet {∗,×}, then

Da|e := (· · · (Da1|e)a2|e · · · )an|e.

Note that the operators ∗ and × on different elements commute [5]. If A =
{e1, · · · , em} ⊆ E, we can unambiguously define

Da|A := (· · · (Da|e1)a|e2 · · · )a|em .

Let D1 = (E,F) and D2 be set systems. For • ∈ {∗,×, ∗×,×∗, ∗×∗}, we say
that D2 is a partial-• dual of D1 if there exists A ⊆ E such that D2 = D1

•|A.
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2.3. Partial-twualities of ribbon graphs

Ribbon graphs are well-known to be equivalent to cellularly embedded
graphs. The reader is referred to [11, 12] for further details about ribbon
graphs. A quasi-tree is a ribbon graph with one boundary component. Let
G = (V,E) be a ribbon graph and let

F := {F ⊆ E(G) : F is the edge set of a spanning quasi-tree of G}.

We call D(G) =: (E,F) the delta-matroid [10] of G. We say a delta-matroid
is ribbon-graphic if it is equal to the delta-matroid of some ribbon graph.
Note that ribbon-graphic delta-matroids are vf-safe [9].

For a ribbon graph G and a subset A of its edge-ribbons E(G), the partial
dual Gδ|A [7] of G with respect to A is a ribbon graph obtained from G by
gluing a disc to G along each boundary component of the spanning ribbon
subgraph (V (G), A) (such discs will be the vertex-discs of Gδ|A), removing
the interiors of all vertex-discs of G and keeping the edge-ribbons unchanged.

Let G be a ribbon graph and A ⊆ E(G). Then the partial Petrial Gτ |A

[11] of G with respect to A is the ribbon graph obtained from G by adding
a half-twist to each of the edges in A.

In [11] it was shown that the partial dual, δ, and the partial Petrial, τ ,
give rise to an action of the symmetric group S3, with the presentation

S3
∼= R :=< δ, τ | δ2, τ 2, (δτ)3 >,

on ribbon graphs. If G is a ribbon graph, e ∈ E(G) and a = a1a2 · · · an is a
word in the alphabet {δ, τ}, then

Ga|e := (· · · (Ga1|e)a2|e · · · )an|e.

Observe that the partial dual and the partial Petrial commute when applied
to different edges [11]. If A = {e1, · · · , em} ⊆ E, we define

Ga|A := (· · · (Ga|e1)a|e2 · · · )a|em.

Let G1 andG2 be ribbon graphs. For • ∈ {δ, τ, δτ, τδ, δτδ}, we say thatG2

is a partial-• dual [11] of G1 if there exists A ⊆ E(G1) such that G2 = G1
•|A.
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2.4. Partial-twuality polynomials of ribbon graphs and set systems

Gross, Mansour and Tucker [14] introduced the concept of partial-twuality
polynomials of ribbon graphs as follows.

Definition 2 ([14]). For • ∈ R, we define the partial-• polynomial for any
ribbon graph G to be the generating function

∂ε•G(z) :=
∑

A⊆E(G)

zε(G
•|A)

that enumerates all partial-• duals of G by Euler genus.

Analogously, we define the partial-twuality polynomials of set systems as
follows.

Definition 3. For • ∈ B, the partial-• polynomial of any set system D =
(E,F) is defined to be the generating function

∂w•
D(z) :=

∑

A⊆E

zw(D•|A)

that enumerates all partial-• duals of D by width.

2.5. Binary and intersection graphs

For a finite set E, let C be a symmetric |E| by |E| matrix over GF (2),
with rows and columns indexed, in the same order, by the elements of E.
Let C[A] be the principal submatrix of C induced by the set A ⊆ E. We
define the set system D(C) = (E,F) with

F := {A ⊆ E : C[A] is non-singular}.

By convention C[∅] is non-singular. Then D(C) is a delta-matroid [4]. A
delta-matroid is said to be binary if it has a twist that is isomorphic to D(C)
for some symmetric matrix C over GF (2).

Let D = (E,F) be a normal binary delta-matroid. Then there exists
a unique symmetric |E| by |E| matrix C over GF (2) such that D = D(C)
[15, 18]. The intersection graph GD of D is the graph with vertex set E and
in which two vertices u and v of GD are adjacent if and only if Cu,v = 1.
A bouquet is a ribbon graph with only one vertex. If B is a bouquet, then
D(B) is a normal binary delta-matroid [10]. The intersection graph I(B) of
a bouquet B is the graph GD(B).
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Conversely, recall that a looped simple graph [15] is a graph obtained
from a simple graph by adding (exactly) one loop to some of its vertices.
The adjacency matrix A(G) of a looped simple graph G is the matrix over
GF (2) whose rows and columns correspond to the vertices of G; and where,
A(G)u,v = 1 if and only if u and v are adjacent in G and A(G)u,u = 1 if
and only if there is a loop at u. Let D be a normal binary delta-matroid. It
obvious that D = D(A(GD)).

2.6. Primal and dual types

Let D = (E,F) be a proper set system. An element e ∈ E contained in
no feasible set of D is said to be a loop.

Definition 4 ([10]). Let D = (E,F) be a set system and e ∈ E. Then

(1) e is a ribbon loop if e is a loop in Dmin;

(2) A ribbon loop e is non-orientable if e is a ribbon loop in D∗|e and is
orientable otherwise.

Let D = (E,F) be a set system and e ∈ E. The primal type of e is p, u,
or t in D, if e is a non-ribbon loop, an orientable loop, or a non-orientable
loop, respectively, in D. The primal type of e in D∗ is called the dual type of
e in D. In combination, the primal and dual types of e in D are called the
type of e in D, which is denoted by a juxtaposed pair of letters representing
the primal and dual types of e in D. For example, the type pu means that
the primal and dual types of e are p and u, respectively, in D. We observe
that

(1) The primal type of e is p in D if and only if there exists A ∈ Fmin(D)
such that e ∈ A;

(2) The dual type of e is p in D if and only if there exists A ∈ Fmax(D) such
that e /∈ A;

(3) The primal type of e is u in D if and only if for any A ∈ Fmin(D) ∪
Fmin+1(D), e /∈ A;

(4) The dual type of e is u in D if and only if for any A ∈ Fmax(D) ∪
Fmax−1(D), e ∈ A;
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(5) The primal type of e is t in D if and only if for any A ∈ Fmin(D), e /∈ A,
and there exists B ∈ Fmin+1(D) such that e ∈ B;

(6) The dual type of e is t in D if and only if for any A ∈ Fmax(D), e ∈ A,
and there exists B ∈ Fmax−1(D) such that e /∈ B.

3. Some properties of partial-twuality polynomials

Various possible properties of partial-twuality polynomials of ribbon graphs
were studied by Gross, Mansour and Tucker in [13, 14]. In this section we
discuss the analogous results on set systems or delta-matroids.

Proposition 5. Let D = (E,F) and D̃ = (Ẽ, F̃) be set systems. Then for

any • ∈ B,

(1) ∂w•
D(1) = 2|E|;

(2) ∂w•
D(z) has degree at most |E|;

(3) ∂w•
D⊕D̃

(z) = ∂w•
D(z)

∂w•
D̃
(z).

Proof. For (1), the value ∂w•
D(1) counts the total number of partial-• duals

of D, which is 2|E|. For any subset A ⊆ E, if B ∈ F(D•|A), then ∅ ⊆ B ⊆ E.
We have r(D•|A

min) ≥ 0 and r(D•|A
max) ≤ |E|. Thus 0 ≤ w(D•|A) ≤ |E|

and (2) then follows. For any subset C ⊆ E ∪ Ẽ, we have

(D ⊕ D̃)•|C = D•|(C∩E) ⊕ D̃•|(C∩Ẽ).

Then
∂w•

D⊕D̃
(z) = ∂w•

D(z)
∂w•

D̃
(z),

by the additivity of width over the direct sum, from which (3) follows.

Proposition 6. Let D = (E,F) be a set system and A ⊆ E. Then

∂w•
D(z) =

∂w•
D•|A(z)

for • ∈ {∗,×, ∗ × ∗}.

Proof. This is because the set of all loop complementations of D is the same
as that of D×|A. The same reasoning applies to the operators ∗ and ∗×∗.
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Remark 7. Proposition 6 is not true for the operators ∗× and ×∗. For
example, let D = (E,F) with E = {1} and F = {∅, {1}}. Then D∗×|1 =
({1}, {∅}) and D×∗|1 = ({1}, {{1}}). We have

∂w∗×
D (z) = ∂w×∗

D (z) = 1 + z

and
∂w∗×

D∗×|1(z) =
∂w×∗

D×∗|1(z) = 2.

Obviously, ∂w∗×
D (z) 6= ∂w∗×

D∗×|1(z) and
∂w×∗

D (z) 6= ∂w×∗
D×∗|1(z).

Lemma 8 ([5]). Let D = (E,F) be a set system and A ⊆ E. Then

Fmin(D) = Fmin(D
×|A)

and

Fmax(D) = Fmax(D
∗×∗|A) = Fmax(D

×∗×|A).

Proposition 9. Let D = (E,F) be a set system and A ∈ Fmin(D), B ∈
Fmin(D

∗). Then

(1) D•|A is normal for • ∈ {∗, ∗×,×∗, ∗ × ∗};

(2) D×|B is dual normal.

Proof. (1) We may assume that A 6= ∅, otherwise the conclusion is trivial.
For any e ∈ A, since A ∈ Fmin(D), it follows that A ∈ Fmin(D

×|e) by
Lemma 8 and A− e ∈ Fmin(D

∗|e). Then A− e ∈ Fmin(D
∗×|e) by Lemma 8

and A − e ∈ Fmin(D
×∗|e). Thus A − e ∈ Fmin(D

×∗×|e) by Lemma 8. From
the above, we have A − e ∈ Fmin(D

•|e) for • ∈ {∗, ∗×,×∗, ∗ × ∗}. In the
same manner we can see that ∅ ∈ Fmin(D

•|A) for • ∈ {∗, ∗×,×∗, ∗ × ∗} and
conclusion (1) then follows.

(2) Since B ∈ Fmin(D
∗), it follows that E − B ∈ Fmax(D). Then E −

B ∈ Fmax(D
×∗×|B) by Lemma 8, that is, E − B ∈ F(D×∗×|B). Thus E ∈

F(D×∗×∗|B). Obviously,

E ∈ Fmax(D
×∗×∗|B) = Fmax((D

×|B)∗×∗|B).

Then E ∈ Fmax(D
×|B) by Lemma 8, that is, E ∈ F(D×|B). Thus D×|B is

dual normal.
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Remark 10. For investigation of partial-• polynomials of set systems for • ∈
{∗, ∗× ∗}, Propositions 6 and 9 motivate us to focus on normal set systems,
and for • = ×, to focus on dual normal set systems. But for ∗× or ×∗, we
cannot just focus on normal set systems. For example, let D = ({1}, {{1}}).
We have ∂w×∗

D (z) = 2. Observe that all normal set systems with ground
set {1} are D1 = ({1}, {∅}) and D2 = ({1}, {∅, {1}}). Since ∂w×∗

D1
(z) =

∂w×∗
D2
(z) = 1 + z, it follows that there is no normal set system D′ such that

∂w×∗
D′ (z) = ∂w×∗

D (z).

The following theorem provides a link between partial-∗ • ∗ and partial-•
polynomials of set systems.

Theorem 11. Let D = (E,F) be a set system. Then for any • ∈ B,

∂w∗•∗
D (z) = ∂w•

D∗(z).

Proof. For any A ⊆ E, we observe that doing partial-∗ • ∗ on A is the same
as first doing ∗ to E, then doing • to A, and then doing ∗ to E again, that
is,

D∗•∗|A = ((D∗)•|A)∗.

Since ∗-duality preserves width, it follows that

w(D∗•∗|A) = w(((D∗)•|A)∗) = w((D∗)•|A).

Thus the partial-∗•∗ polynomial of D is identical to the partial-• polynomial
of D∗.

4. Partial-twuality for a single element

In this section, we discuss the numerical implications of partial-twualities
on a single element e, depending on the type of e.

Lemma 12 ([6]). Let D = (E,F) be a delta-matroid and e ∈ E such that

r(Dmin) = r(D∗|e
min). Then Fmin(D) = Fmin(D

∗|e).

Remark 13. Lemma 12 is not true for set systems. For example, let

D = ({1, 2, 3}, {{1}, {2, 3}}).

We know r(Dmin) = r(D∗|2
min) = 1. But

Fmin(D) = {{1}}

and
Fmin(D

∗|2) = {{3}}.
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Table 1: The difference w(D•|e)− w(D) for any • ∈ B.

Type of e ∗ × ∗ × × ∗ ∗ × ∗
pp +2 +1 +2 +2 +1
uu −2 0 −1 −1 0
pu 0 0 +1 0 +1
up 0 +1 0 +1 0
tp +1 +1 +1 0 −1
tu −1 0 0 −2 −1
pt +1 −1 0 +1 +1
ut −1 −1 −2 0 0
tt 0 −1 −1 −1 −1

Lemma 14. Let D = (E,F) be a delta-matroid and e ∈ E. If e is a non-

orientable loop, then for any A ∈ Fmin(D), A ∪ e ∈ F(D).

Proof. Since the primal type of e is t in D, it follows that e /∈ A and there
exists B ∈ Fmin+1(D) such that e ∈ B. Then B − e ∈ Fmin(D

∗|e). We have
r(Dmin) = r(D∗|e

min) and hence Fmin(D) = Fmin(D
∗|e) by Lemma 12. Then

A ∈ Fmin(D
∗|e), that is, A ∈ F(D∗|e). Thus, A ∪ e ∈ F(D).

Lemma 15 ([2]). If X is any feasible set in a delta-matroid D, then there

exist A ∈ Fmin(D) and B ∈ Fmax(D) such that A ⊆ X ⊆ B.

Theorem 16. Let D = (E,F) be a vf-safe delta-matroid and e ∈ E. Table

1 gives the value of w(D•|e)− w(D) for any • ∈ B.

Proof. The three possible primal types (and dual types) of e in D are as
follows:

Case 1. If the primal type of e is p in D, there exists A ∈ Fmin(D) such
that e ∈ A. Then A− e ∈ Fmin(D

∗|e). Thus

r(D∗|e
min) = r(Dmin)− 1

and the primal types of e are u and p in D∗|e and D×|e, respectively.

Case 2. If the primal type of e is u in D, then for any A ∈ Fmin(D) ∪
Fmin+1(D), e /∈ A. Thus

r(D∗|e
min) = r(Dmin) + 1

and the types of e are p and t in D∗|e and D×|e, respectively.

11



Table 2: A summary of Cases 1, 2 and 3.

Primal type of e
r(D∗|e

min)D D∗|e D×|e

p u p r(Dmin)− 1
u p t r(Dmin) + 1
t t u r(Dmin)

Case 3. If the primal type of e is t in D, then for any A ∈ Fmin(D), e /∈ A,
and there exists B ∈ Fmin+1(D) such that e ∈ B. Thus

r(D∗|e
min) = r(Dmin)

and the primal types of e is t in D∗|e. By Lemma 14, we have A ∪ e ∈
Fmin+1(D) for any A ∈ Fmin(D). Then A∪ e /∈ F(D×|e). Furthermore,
we know that for any B ∈ Fmin+1(D) containing e, B − e ∈ Fmin(D),
otherwise there is no A′ ∈ Fmin(D) such that A′ ⊆ B, contradicting
Lemma 15. Since Fmin(D

×|e) = Fmin(D), it follows that there is no
B′ ∈ Fmin(D

×|e) ∪ Fmin+1(D
×|e) such that e ∈ B′. Then the primal

type of e is u in D×|e.

Here, we give a summary of Cases 1, 2 and 3 as shown in Table 2.

Case 4. If the dual type of e is p in D, there exists A ∈ Fmax(D) such that
e /∈ A. Then A ∪ e ∈ Fmax(D

∗|e) ∩ Fmax(D
×|e). Thus

r(D∗|e
max) = r(D×|e

max) = r(Dmax) + 1

and the dual types of e are u and t in D∗|e and D×|e, respectively.

Case 5. If the dual type of e is u in D, then for any A ∈ Fmax(D) ∪
Fmax−1(D), e ∈ A. Thus

r(D∗|e
max) = r(Dmax)− 1

and
r(D×|e

max) = r(Dmax)

and the dual types of e are p and u in D∗|e and D×|e, respectively.
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Table 3: A summary of Cases 4, 5 and 6

Dual type of e
r(D∗|e

max) r(D×|e
max)D D∗|e D×|e

p u t r(Dmax) + 1 r(Dmax) + 1
u p u r(Dmax)− 1 r(Dmax)
t t p r(Dmax) r(Dmax)− 1

Table 4: The the widths of D∗|e and D
×|e

Type of e r(D∗|e
min) r(D∗|e

max) r(D×|e
max) w(D∗|e) w(D×|e)

pp r(Dmin)− 1 r(Dmax) + 1 r(Dmax) + 1 w(D) + 2 w(D) + 1
uu r(Dmin) + 1 r(Dmax)− 1 r(Dmax) w(D)− 2 w(D)
pu r(Dmin)− 1 r(Dmax)− 1 r(Dmax) w(D) w(D)
up r(Dmin) + 1 r(Dmax) + 1 r(Dmax) + 1 w(D) w(D) + 1
tp r(Dmin) r(Dmax) + 1 r(Dmax) + 1 w(D) + 1 w(D) + 1
tu r(Dmin) r(Dmax)− 1 r(Dmax) w(D)− 1 w(D)
pt r(Dmin)− 1 r(Dmax) r(Dmax)− 1 w(D) + 1 w(D)− 1
ut r(Dmin) + 1 r(Dmax) r(Dmax)− 1 w(D)− 1 w(D)− 1
tt r(Dmin) r(Dmax) r(Dmax)− 1 w(D) w(D)− 1

Case 6. If the dual type of e is t in D, then for any A ∈ Fmax(D), e ∈ A.
Thus E − A ∈ Fmin(D

∗) and (E − A) ∪ e ∈ F(D∗) by Lemma 14. It
follows that A− e ∈ Fmax−1(D). We have

r(D∗|e
max) = r(Dmax)

and the dual type of e is t in D∗|e. Moreover, we observe that for any
B ∈ Fmax−1(D) not containing e, B ∪ e ∈ Fmax(D), otherwise there
is no B′ ∈ Fmax(D) such that B ⊆ B′, contradicting Lemma 15. It
follows that

r(D×|e
max) = r(Dmax)− 1

and the dual type of e is p in D×|e, respectively.

Here, we provide a summary of Cases 4, 5 and 6 as shown in Table 3.
Then the the widths of D∗|e and D×|e can be calculated by Tables 2 and 3
as shown in Table 4. Hence, the columns 2 and 3 of Table 1 are computed.
If the type of e is pp in D, then

w(D∗|e) = w(D) + 2
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and
w(D×|e) = w(D) + 1,

and the types of e are uu and pt in D∗|e and D×|e, respectively. Thus

w(D∗×|e) = w((D∗|e)×|e) = w(D∗|e) = w(D) + 2,

and
w(D×∗|e) = w((D×|e)∗|e) = w(D×|e) + 1 = w(D) + 2,

and the type of e is tu in D∗×|e. We have

w(D∗×∗|e) = w((D∗×|e)∗|e) = w(D∗×|e)− 1 = w(D) + 1.

The other entries in columns 4, 5 and 6 of Table 1 are computed similarly.

The polynomial p(z) =
n∑

i=0

ciz
i is said to have a gap of size k [14] at

coefficient ci if ci−1ci+k 6= 0 but ci = ci+1 = · · · = ci+k−1 = 0. If the
polynomial p(z) is nonzero and has no gaps, we call it interpolating.

Proposition 17. For any vf-safe delta-matroid D, the following statements

hold:

(1) ∂w•
D(z) is interpolating for • = × or ∗ × ∗;

(2) ∂w•
D(z) has no gaps of size 2 or more for any • ∈ B.

Proof. For any element e and subset A of E, we observe that w(D•|A∆e)
and w(D•|A) differ by at most one for • ∈ {×, ∗×∗}, and by at most two for
• ∈ {∗, ∗×,×∗} by Theorem 16. This yields statements (1) and (2).

Remark 18. There exists a vf-safe delta-matroid D such that ∂w•
D(z) is not

interpolating for • ∈ {∗, ∗×,×∗}. For example, let

D1 = ({1, 2}, {∅, {1, 2}})

and
D2 = ({1, 2}, {∅, {1}, {1, 2}}).

We have
∂w∗

D1
(z) = 2 + 2z2

and
∂w∗×

D2
(z) = ∂w×∗

D2
(z) = 1 + 3z2.
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5. Partial-twuality polynomials and intersection graphs

In [17], we showed that two bouquets with the same intersection graph
have the same partial-δ polynomial. In this section, we prove that the inter-
section graphs can determine the partial-twuality polynomials of bouquets
and normal binary delta-matroids, respectively. Let η : R → B be the group
isomorphism induced by η(δ) = ∗, and η(τ) = ×.

Lemma 19 ([10]). If G is a ribbon graph, A ⊆ E and • ∈ R. Then

D(G•|A) = D(G)η(•)|A

and

ε(G) = w(D(G)).

Proposition 20. Let G = (V,E) be a ribbon graph and • ∈ R. Then

∂w
η(•)
D(G)(z) =

∂ε•G(z).

Proof. By Lemma 19, for any A ⊆ E,

w(D(G)η(•)|A) = w(D(G•|A)) = ε(G•|A).

Hence ∂w
η(•)
D(G)(z) =

∂ε•G(z).

Theorem 21. If two normal binary delta-matroids D and D̃ have the same

intersection graph, then ∂w•
D(z) =

∂w•
D̃
(z) for any • ∈ B.

Proof. Since GD = GD̃, D = D(AGD
) and D̃ = D(AG

D̃
), we have D = D̃.

Thus ∂w•
D(z) =

∂w•
D̃
(z) for any • ∈ B.

Theorem 22. Let B and B̃ be two bouquets. If GD(B) = GD(B̃), then
∂ε•B(z) =

∂ε•
B̃
(z) for any • ∈ R.

Proof. Since GD(B) = GD(B̃), it follows that D(B) = D(B̃). For any A ⊆

E(B), we denote its corresponding subset of E(B̃) by Ã, then

D(B•|A) = D(B)η(•)|A = D(B̃)η(•)|Ã = D(B̃•|Ã),

by Lemma 19. We have

w(D(B•|A)) = w(D(B̃•|Ã)).

Since w(D(B•|A)) = ε(B•|A) and w(D(B̃•|Ã)) = ε(B̃•|Ã), it follows that

ε(B•|A) = ε(B̃•|Ã). Thus ∂ε•B(z) =
∂ε•

B̃
(z).
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6. Partial-twuality monomials

We [18, 19] showed that a normal binary delta-matroid whose partial-∗
polynomials have only one term if and only if each connected component of
the intersection graph of the delta-matroid is either a complete graph of odd
order or a single vertex with a loop. In this section, we give a characterization
of vf-safe delta-matroids whose partial-× and ∗ × ∗ polynomials have only
one term.

Lemma 23 ([5]). Let D = (E,F) be a set system and X, Y ⊆ E. We have

Y ∈ F(D×|X) if and only if |{Z ∈ F(D) | Y −X ⊆ Z ⊆ Y }| is odd.

Theorem 24. Let D = (E,F) be a vf-safe delta-matroid. Then

(1) ∂w×
D(z) = czm if and only if F(D) = {E};

(2) ∂w∗×∗
D (z) = czm if and only if F(D) = {∅}.

Proof. (1) Suppose that ∂w×
D(z) = czm. Then for any e ∈ E, the dual

type of e is u in D, otherwise applying ×|e changes the width according
to Theorem 16. Then for any A ∈ Fmax(D) ∪ Fmax−1(D), we have e ∈ A.
Thus Fmax(D) = {E} and Fmax−1(D) = ∅. Suppose Fmax−2(D) 6= ∅. Let
B ∈ Fmax−2(D) and f ∈ E − B. Then B ∪ f, E ∈ F(D×|f) by Lemma 23.
Observe thatB∪f ∈ Fmax−1(D

×|f) and E ∈ Fmax(D
×|f). Let g ∈ E−(B∪f).

Then there exists B ∪ f ∈ Fmax−1(D
×|f) ∪Fmax(D

×|f) such that g /∈ B ∪ f .
Thus the dual type of g is not u in D×|f . We have w(D×|f) 6= w((D×|f)×|g)
by Theorem 16. Then ∂w×

D×|f (z) 6= czm. Note that ∂w×
D×|f (z) = ∂w×

D(z)

by Proposition 6. It follows that ∂w×
D(z) 6= czm, a contradiction. Then

Fmax−2(D) = ∅. Since the maximum gap in the collection of sizes of feasible
sets of a delta-matroid is two, it follows that F(D) = {E}.

Conversely, for any X ⊆ E,

Fmin(D
×|X) = Fmin(D) = {E}

by Lemma 8. Then F(D×|X) = {E}. Thus w(D×|X) = 0 and ∂w×
D(z) = 2|E|.

(2) For ∗ × ∗, by Theorem 11, ∂w∗×∗
D (z) = ∂w×

D∗(z) = czm if and only if
F(D∗) = {E} if and only if F(D) = {∅}.

Acknowledgements

This work is supported by NSFC (Nos. 12171402, 12101600) and the Fun-
damental Research Funds for the Central Universities (No. 2021QN1037).

16



References

[1] L. Abrams and J. Ellis-Monaghan, New dualities from old: generating
geometric, Petrie, and Wilson dualities and trialities of ribbon graphs,
Combin. Probab. Comput. 31 (2022) 4: 574–597.

[2] J. E. Bonin, C. Chun and S. D. Noble, Delta-matroids as subsystems of
sequences of Higgs lifts, Adv. in Appl. Math. 126 (2021) 101910.

[3] A. Bouchet, Greedy algorithm and symmetric matroids, Math. Program.

38 (1987) 147–159.

[4] A. Bouchet, Representability of ∆-matroids, Colloq. Math. Soc. János
Bolyai (1987) 167–182.

[5] R. Brijder and H. Hoogeboom, The group structure of pivot and loop
complementation on graphs and set systems, European J. Combin. 32
(2011) 1353–1367.

[6] R. Brijder and H. Hoogeboom, Nullity and loop complementation for
delta-matroids, SIAM J. Discrete Math. 27 (2013) 492–506.

[7] S. Chmutov, Generalized duality for graphs on surfaces and the signed
Bollobás-Riordan polynomial, J. Combin. Theory Ser. B 99 (2009) 617–
638.

[8] S. Chmutov and F. Vignes-Tourneret, On a conjecture of Gross, Mansour
and Tucker, European J. Combin. 97 (2021) 103368.

[9] C. Chun, I. Moffatt, S. D. Noble and R. Rueckriemen, On the interplay
between embedded graphs and delta-matroids, Proc. London Math. Soc.

118 (2019) 3: 675–700.

[10] C. Chun, I. Moffatt, S. D. Noble and R. Rueckriemen, Matroids, delta-
matroids and embedded graphs, J. Combin. Theory Ser. A 167 (2019)
7–59.

[11] J. A. Ellis-Monaghan and I. Moffatt, Twisted duality for embedded
graphs, Trans. Amer. Math. Soc. 364 (2012) 1529–1569.

[12] J. A. Ellis-Monaghan and I. Moffatt, Graphs on surfaces, Springer New
York, 2013.

17



[13] J. L. Gross, T. Mansour and T. W. Tucker, Partial duality for ribbon
graphs, I: Distributions, European J. Combin. 86 (2020) 103084.

[14] J. L. Gross, T. Mansour and T. W. Tucker, Partial duality for ribbon
graphs, II: Partial-twuality polynomials and monodromy computations,
European J. Combin. 95 (2021) 103329.

[15] I. Moffatt, Surveys in Combinatorics, 2019: Delta-matroids for graph
theorists, 2019.

[16] S. Wilson, Operators over regular maps, Pacific J. Math. 81 (1979)
559–568.

[17] Q. Yan and X. Jin, Partial-dual genus polynomials and signed intersec-
tion graphs, Forum Math. Sigma 10 (2022) e69.

[18] Q. Yan and X. Jin, Twist polynomials of delta-matroids, Adv. in Appl.

Math. 139 (2022) 102363.

[19] Q. Yan and X. Jin, Twist monomials of binary delta-matroids, Preprint
arXiv: 2205.03487v1 [math.CO].

18


	1 Introduction
	2 Preliminaries
	2.1 Set systems and widths
	2.2 Partial-twualities of set systems
	2.3 Partial-twualities of ribbon graphs
	2.4 Partial-twuality polynomials of ribbon graphs and set systems
	2.5 Binary and intersection graphs
	2.6 Primal and dual types

	3  Some properties of partial-twuality polynomials
	4 Partial-twuality for a single element
	5  Partial-twuality polynomials and intersection graphs
	6 Partial-twuality monomials

