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Abstract

Gross, Mansour and Tucker introduced the partial-twuality polynomial of a
ribbon graph. Chumutov and Vignes-Tourneret posed a problem: it would
be interesting to know whether the partial duality polynomial and the related
conjectures would make sense for general delta-matroids. In this paper we
consider analogues of partial-twuality polynomials for delta-matroids. Var-
ious possible properties of partial-twuality polynomials of set systems are
studied. We discuss the numerical implications of partial-twualities on a sin-
gle element and prove that the intersection graphs can determine the partial-
twuality polynomials of bouquets and normal binary delta-matroids, respec-
tively. Finally, we give a characterization of vf-safe delta-matroids whose
partial-twuality polynomials have only one term.
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1. Introduction

In [16], Wilson found that the two long-standing duality operators § (ge-
ometric duality) and 7 (Petrie duality) generate a group of six ribbon graph
operators, that is, every other composition of § and 7 is equivalent to one of
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the five operators §, 7, 7, 76, 676, or to the identity operator. Abrams and
Ellis-Monaghan [1] called the five operators twualities. The partial (geomet-
ric) dual with respect to a subset of edges of a ribbon graph was introduced
by Chmutov [7] in order to unify various connections between the Jones-
Kauffman and Bollobas-Riordan polynomials. Ellis-Monaghan and Moffatt
[12] generalized this partial-duality construction to the other four operators,
which they called partial-twualities.

Gross, Mansour and Tucker [13, 14] introduced the partial-twuality poly-
nomial for 0, 7,07, 70, and 679. Various basic properties of partial-twuality
polynomials were studied, including interpolation and log-concavity. Re-
cently, Chumutov and Vignes-Tourneret [8] posed the following question:

Question 1. [8] Ribbon graphs may be considered from the point of view
of delta-matroid. In this way the concepts of partial (geometric) duality
and genus can be interpreted in terms of delta-matroids [9, 10]. It would
be interesting to know whether the partial-0 polynomial and the related
conjectures would make sense for general delta-matroids.

In [18], we showed that the partial-0 polynomials have delta-matroid ana-
logues. We introduced the twist polynomials of delta-matroids and discussed
their basic properties for delta-matroids. Chun et al. [9] showed that the
loop complemenation is the delta-matroid analogue of partial Petriality. In
this paper we consider analogues of other partial-twuality polynomials for
delta-matroids.

This paper is organised as follows. In Section 2 we recall the definition
of partial-twuality polynomials of ribbon graphs. Analogously, we introduce
the partial-twuality polynomials of set systems. In Section 3, various pos-
sible properties of partial-twuality polynomials of set systems are studied.
In Section 4 we discuss the numerical implications of partial-twualities on a
single element and the interpolation. In Section 5, we prove that the inter-
section graphs can determine the partial-twuality polynomials of bouquets
and normal binary delta-matroids, respectively. Here we provide an answer
to the question [17]: can one derive something from bouquets that could
determine the partial-twuality polynomial completely. In Section 6 we give a
characterization of vf-safe delta-matroids whose partial-twuality polynomials
have only one term.



2. Preliminaries

2.1. Set systems and widths

A set system is a pair D = (E,F) of a finite set £ together with a
collection F of subsets of E. The set E is called the ground set and the
elements of F are the feasible sets. We often use F(D) to denote the set of
feasible sets of D. D is proper if F # (), and is normal (respectively, dual
normal) if the empty set (respectively, the ground set) is feasible. The direct
sum of two set systems D = (E,F) and D = (E,F) with disjoint ground
sets F and E , written D @ 5, is defined to be

D®D:=(EUE {FUF:FecFandF cF)})

As introduced by Bouchet in [3], a delta-matroid is a proper set system
D = (E,F) such that if X,Y € F and u € XAY, then there is v € XAY
(possibly v = u ) such that XA{u,v} € F. Here

XAY = (XUY)—(XNY)

is the usual symmetric difference of sets. Note that the maximum gap in the
collection of sizes of feasible sets of a delta-matroid is two [15].

For a set system D = (E, F), let 02 (D) and Fpnin (D) be the collections
of maximum and minimum cardinality feasible sets of D, respectively. Let
Doz = (B, Frae(D)) and Doy := (E, Fin(D)). Let r(Dinae) and 7( Do)
denote the sizes of largest and smallest feasible sets of D, respectively. The
width of D, denote by w(D), is defined by

w(D) = 1(Dmaz) — 7(Dimin,)-
For all non-negative integers i < w(D), let
Finaz—i(D) ={F € F : |F| =1(Dpaz) — i}

and
Finei(D) ={F € F: |F| = r(Dpin) + i}

2.2. Partial-twualities of set systems

We will consider the operations of twisting and loop complementation on
set systems. Twisting was introduced by Bouchet in [3], and loop comple-
mentation by Brijder and Hoogeboom in [5].
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Let D = (E,F) be a set system. For A C E, the twist of D with respect
to A, denoted by D*I4, is given by

(B, {AAX : X € F}).

The *-dual of D, written D*, is equal to D*I”. Note that x-duality preserves
width. Throughout the paper, we will often omit the set brackets in the case
of a single element set. For example, we write D*/ instead of D*/{¢}.

Let D = (E,F) be a set system and e € E. Then D*I¢ is defined to be
the set system (F,F’), where

F'=FA{FUe:F e Fande¢ F}.
If e1,e5 € E then
(Dx\q)x\ez _ (D><|62>><‘61.

This means that if A = {ey, -+ ,e,} € F we can unambiguously define the
loop complementation [5] of D on A, by

D><|A = ( . (Dx|el>><\ez . )x\em.

It is straightforward to show that the twist of a delta-matroid is a delta-
matroid [3], but the set of delta-matroids is not closed under loop com-
plementation (see, for example, [9]). Thus, we often restrict our attention
to a class of delta-matroids that is closed under loop complementation. A
delta-matroid D = (E, F) is said to be vf-safe [9] if the application of every
sequence of twists and loop complementations results in a delta-matroid.

In [5] it was shown that twists and loop complementations give rise to an
action of the symmetric group S3, with the presentation

S3 2 Bi=< %, x | #2, x%, (¥x)% >,

on set systems. If D = (E, F) is a set system, e € F and a = ayas---a, is a
word in the alphabet {x, x}, then

Da\e = ( . (Da1|e>a2|e L )an|e'

Note that the operators * and x on different elements commute [5]. If A =
{e1,-++ ,em} C E, we can unambiguously define

DAA i (... (Dleryales .. yolem.

Let Dy = (E, F) and Dy be set systems. For @ € {, X, %X, xX*, %X %}, we say
that D5 is a partial-e dual of Dy if there exists A C E such that Dy = D1'|A.
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2.3. Partial-twualities of ribbon graphs

Ribbon graphs are well-known to be equivalent to cellularly embedded
graphs. The reader is referred to [11, 12] for further details about ribbon
graphs. A quasi-tree is a ribbon graph with one boundary component. Let
G = (V, E) be a ribbon graph and let

F :={F C E(G) : F is the edge set of a spanning quasi-tree of G}.

We call D(G) =: (E, F) the delta-matroid [10] of G. We say a delta-matroid
is ribbon-graphic if it is equal to the delta-matroid of some ribbon graph.
Note that ribbon-graphic delta-matroids are vf-safe [9].

For a ribbon graph G and a subset A of its edge-ribbons F(G), the partial
dual G°4 [7] of G with respect to A is a ribbon graph obtained from G by
gluing a disc to G along each boundary component of the spanning ribbon
subgraph (V(G), A) (such discs will be the vertex-discs of G°4), removing
the interiors of all vertex-discs of G and keeping the edge-ribbons unchanged.

Let G be a ribbon graph and A C E(G). Then the partial Petrial G™4
[11] of G with respect to A is the ribbon graph obtained from G by adding
a half-twist to each of the edges in A.

In [11] it was shown that the partial dual, §, and the partial Petrial, 7,
give rise to an action of the symmetric group Sz, with the presentation

S 2R =< 4,7 |67 (07) >,

on ribbon graphs. If G is a ribbon graph, e € E(G) and a = ajay---a, is a
word in the alphabet {4, 7}, then

Ga|e = ( . (Gal\e)aﬂe . )an|e.

Observe that the partial dual and the partial Petrial commute when applied
to different edges [11]. If A ={ey, -+ ,en} C E, we define

GoA = (.. (Geleryalez . yalem.

Let G1 and G5 be ribbon graphs. For e € {0, 7,07, 70,070}, we say that G
is a partial-e dual [11] of G if there exists A C E(G) such that Gy = G4



2.4. Partial-twuality polynomials of ribbon graphs and set systems

Gross, Mansour and Tucker [14] introduced the concept of partial-twuality
polynomials of ribbon graphs as follows.

Definition 2 ([14]). For e € R, we define the partial-e polynomial for any
ribbon graph G to be the generating function

9t (2) == Z 2#(E

ACE(Q)
that enumerates all partial-e duals of G by Euler genus.

Analogously, we define the partial-twuality polynomials of set systems as
follows.

Definition 3. For e € B, the partial-e polynomial of any set system D =
(E, F) is defined to be the generating function

Ywp(z) = 3

ACE

that enumerates all partial-e duals of D by width.

2.5. Binary and intersection graphs

For a finite set F, let C' be a symmetric |E| by |E| matrix over GF(2),
with rows and columns indexed, in the same order, by the elements of F.
Let C[A] be the principal submatrix of C' induced by the set A C E. We
define the set system D(C) = (E, F) with

F :={AC E:C[A] is non-singular}.

By convention C[()] is non-singular. Then D(C') is a delta-matroid [4]. A
delta-matroid is said to be binary if it has a twist that is isomorphic to D(C)
for some symmetric matrix C' over GF(2).

Let D = (E,F) be a normal binary delta-matroid. Then there exists
a unique symmetric |E| by |E| matrix C' over GF(2) such that D = D(C')
[15, 18]. The intersection graph Gp of D is the graph with vertex set £ and
in which two vertices v and v of Gp are adjacent if and only if C,, = 1.
A bouquet is a ribbon graph with only one vertex. If B is a bouquet, then
D(B) is a normal binary delta-matroid [10]. The intersection graph I(B) of
a bouquet B is the graph G pg).



Conversely, recall that a looped simple graph [15] is a graph obtained
from a simple graph by adding (exactly) one loop to some of its vertices.
The adjacency matrix A(G) of a looped simple graph G is the matrix over
GF(2) whose rows and columns correspond to the vertices of G; and where,
A(G)y, = 1if and only if u and v are adjacent in G and A(G),, = 1 if
and only if there is a loop at u. Let D be a normal binary delta-matroid. It
obvious that D = D(A(Gp)).

2.6. Primal and dual types

Let D = (FE,F) be a proper set system. An element e € E contained in
no feasible set of D is said to be a loop.

Definition 4 ([10]). Let D = (E,F) be a set system and e € E. Then
(1) eis a ribbon loop if e is a loop in D,yn;

(2) A ribbon loop e is non-orientable if e is a ribbon loop in D*l¢ and is
orientable otherwise.

Let D = (E,F) be a set system and e € E. The primal type of e is p, u,
or t in D, if e is a non-ribbon loop, an orientable loop, or a non-orientable
loop, respectively, in D. The primal type of e in D* is called the dual type of
e in D. In combination, the primal and dual types of e in D are called the
type of e in D, which is denoted by a juxtaposed pair of letters representing
the primal and dual types of e in D. For example, the type pu means that
the primal and dual types of e are p and u, respectively, in D. We observe
that

(1) The primal type of e is p in D if and only if there exists A € F,,n(D)
such that e € A,

(2) The dual type of e is p in D if and only if there exists A € F,,..(D) such
that e ¢ A;

(3) The primal type of e is w in D if and only if for any A € F,,;,(D) U
fmin-l—l(D)u € ¢ Aa

(4) The dual type of e is w in D if and only if for any A € Fpu(D) U
fmax—l(D)u ec Aa



(5) The primal type of e is t in D if and only if for any A € F,,;,(D), e ¢ A,
and there exists B € Fins1(D) such that e € B;

(6) The dual type of e is ¢t in D if and only if for any A € F,,..(D), e € A,
and there exists B € F.—1(D) such that e ¢ B.

3. Some properties of partial-twuality polynomials

Various possible properties of partial-twuality polynomials of ribbon graphs
were studied by Gross, Mansour and Tucker in [13, 14]. In this section we
discuss the analogous results on set systems or delta-matroids.

Proposition 5. Let D = (E,F) and D = (E, F) be set systems. Then for
any e € B,

(1) Pwp (1) = 21F;
(2) 2w} (2) has degree at most |E|;

(3) %wy, 5(2) = “wh(2) 7w} (2).

Proof. For (1), the value %w$,(1) counts the total number of partial-e duals
of D, which is 2/Pl. For any subset A C E, if B € F(D**), then ) C B C E.
We have r(D*4,,;,) > 0 and r(D*4,,,,) < |E]. Thus 0 < w(D*?) < |E|
and (2) then follows. For any subset C' C £ U E, we have
(D@ 5).|C — DelCNE) o DelCnE)
Then
Pup, 5(2) = w2 wiy(2),

by the additivity of width over the direct sum, from which (3) follows. O

Proposition 6. Let D = (E,F) be a set system and A C E. Then

Twh(2) = Cwhea(2)

for e € {x, X, % x *}.

Proof. This is because the set of all loop complementations of D is the same
as that of D*I4. The same reasoning applies to the operators * and % x*. [



Remark 7. Proposition 6 is not true for the operators *x and xx. For
example, let D = (E, F) with £ = {1} and F = {0, {1}}. Then D**I' =
({1},{0}) and D*** = ({1}, {{1}}). We have

Qi (2) = Qwy(2) =1+ 2

and
W (2) = Cwpt(2) = 2.
Obviously, Yw}y(2) aw}ﬁxu(z) and 2w S*(2) # awgi*“(z).

Lemma 8 ([5]). Let D = (E,F) be a set system and A C E. Then

and
fmax(D) = ‘Fmax(D*X*lA) = fmax(DX*XlA).

Proposition 9. Let D = (E,F) be a set system and A € Fpin(D),B €
Fmin(D*). Then

(1) D*4 is normal for @ € {, %X, X*, % X *};
(2) D*IB is dual normal.

Proof. (1) We may assume that A # (), otherwise the conclusion is trivial.
For any e € A, since A € Fpin(D), it follows that A € F,;,(D*1¢) by
Lemma 8 and A — e € Fin(D*¢). Then A — e € Frpin(D**l¢) by Lemma 8
and A — e € Frin(D**¢). Thus A — e € Fppin(D>***I¢) by Lemma 8. From
the above, we have A — ¢ € Fin(D®l) for @ € {,%x, xx,% x *}. In the
same manner we can see that () € F,,,;,(D*4) for @ € {#,%x, x*, % x *} and
conclusion (1) then follows.

(2) Since B € F (D), it follows that £ — B € Fe:(D). Then E —
B € Fpae(D***IB) by Lemma 8, that is, £ — B € F(D***IB). Thus E €
F(D****1B)  Obviously,

E e ‘/—_-max(Dx*x*\B) _ fmam((DX‘B)*XHB)-

Then E € Fpoe(D*1P) by Lemma 8, that is, £ € F(D*IP). Thus D" is
dual normal. O



Remark 10. For investigation of partial-e polynomials of set systems for e €
{*, % x x}, Propositions 6 and 9 motivate us to focus on normal set systems,
and for @ = X, to focus on dual normal set systems. But for xx or xx, we
cannot just focus on normal set systems. For example, let D = ({1}, {{1}}).
We have w}*(2) = 2. Observe that all normal set systems With ground

set {1} are Dl ({1}, {0}) and D, = ({1},{0,{1}}). Since “wj*(z) =

I Da(2) = 1+ z, it follows that there is no normal set system D’ such that
Yy (z) = "wp'(2).

The following theorem provides a link between partial-* e x and partial-e
polynomials of set systems.

Theorem 11. Let D = (E,F) be a set system. Then for any e € B3,
“wiy*(2) = Cwi. ().

Proof. For any A C F, we observe that doing partial-x e x on A is the same
as first doing % to F, then doing e to A, and then doing * to E again, that
is,
D*o*|A _ ((D*)Q\A)*
Since x-duality preserves width, it follows that
WD) = w((D)H)) = w((D*)M).

Thus the partial-* e polynomial of D is identical to the partial-e polynomial
of D*. !

4. Partial-twuality for a single element

In this section, we discuss the numerical implications of partial-twualities
on a single element e, depending on the type of e.

Lemma 12 ([6]). Let D = (E,F) be a delta-matroid and e € E such that
7(Dpin) = 7(D*05). Then Foin(D) = Foin(D*).

Remark 13. Lemma 12 is not true for set systems. For example, let
= ({1,2,3}, {{1}.{2,3}}).

We know 7(Dinin) = 7(D*?,,:,) = 1. But

and

Fuin(D™?) = {{3}}.
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Table 1: The difference w(D*!¢) — w(D) for any e € B.

Type of e * X % X X % * X %
pp +2 +1 +2 +2 +1
uu —2 0 —1 —1 0
pU 0 0 +1 0 +1
up 0 +1 0 +1 0
tp +1 +1 +1 0 —1
tu —1 0 0 —2 —1
pt +1 ~1 0 +1 +1
ut —1 —1 -2 0 0
tt 0 —1 —1 —1 —1

Lemma 14. Let D = (E,F) be a delta-matroid and e € E. If e is a non-
orientable loop, then for any A € Fpin(D), AUe € F(D).

Proof. Since the primal type of e is ¢ in D, it follows that e ¢ A and there
exists B € Frnini1(D) such that e € B. Then B — e € Fpin(D*¢). We have
7(Dpin) = r(D*,:,) and hence Frpin(D) = Fonin(D*1€) by Lemma 12. Then
A € Fpin(D¥), that is, A € F(D*). Thus, AUe € F(D). O

Lemma 15 ([2]). If X is any feasible set in a delta-matroid D, then there
exist A € Fin(D) and B € Fpae(D) such that A C X C B.

Theorem 16. Let D = (E,F) be a vf-safe delta-matroid and e € E. Table
1 gives the value of w(D*®) —w(D) for any e € B.

Proof. The three possible primal types (and dual types) of e in D are as
follows:

Case 1. If the primal type of e is p in D, there exists A € F,,;,(D) such
that e € A. Then A — e € Fypip(D*1¢). Thus

T(D*lemin) - T(Dmin) -1
and the primal types of e are u and p in D*l¢ and D>, respectively.

Case 2. If the primal type of e is w in D, then for any A € Fin(D) U
fmin-{—l(D), € ¢ A. Thus

T(D*lemin) - T(szn) +1

and the types of e are p and t in D*l® and D*I¢, respectively.
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Table 2: A summary of Cases 1, 2 and 3.
Primal type of e

D D*le Dxle T(D*|emin)
U P t 7(Dpin) + 1

Case 3. If the primal type of e is t in D, then for any A € F,,;n(D), e ¢ A,
and there exists B € Fuins1(D) such that e € B. Thus

T(D*‘emin> - T(Dmm)

and the primal types of e is ¢ in D**. By Lemma 14, we have AUe €
Fmins1(D) for any A € Fpin(D). Then AUe ¢ F(D*I®). Furthermore,
we know that for any B € Fine1(D) containing e, B — e € Fpin(D),
otherwise there is no A" € F,;,(D) such that A C B, contradicting
Lemma 15. Since Fyuipn(D*1¢) = Frin(D), it follows that there is no
B' € Frin(D*1®) U Frpins1(D*1€) such that e € B’. Then the primal
type of e is u in D*Ie,

Here, we give a summary of Cases 1, 2 and 3 as shown in Table 2.

Case 4. If the dual type of e is p in D, there exists A € Fq.(D) such that
ed¢ A. Then AUe € Frae(D) N Frnge(D*1€). Thus

T(D*lemax) - T(Dx‘emax) - T(Dma:c) +1
and the dual types of e are u and ¢ in D*¢ and D>, respectively.

Case 5. If the dual type of e is u in D, then for any A € Fu.(D) U
fmaz—l(D), e c A Thus

T(D*‘emax) - T(Dmax) -1

and
T(Dx‘emax> = T(Dmam)

and the dual types of e are p and u in D*I¢ and D*I¢, respectively.
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Table 3: A summary of Cases 4, 5 and 6
Dual type of e .
: r(D% ) (D)

D D*\e D><|e

D U t "(Dmaz) + 1 7(Diaz) + 1
u P u "(Dmaz) =1 7(Dimagz)

t t P T(Dmax) T(Dmax) —1

Table 4: The the widths of D*I¢ and D*l¢

Type Of e ’/’(D*Iemm) T(D*‘emam) T<Dxlemax> w(D*|5) w(DXIE)

pp T(Dimin) =1 | 7(Dmaz) + 1 | 7(Dpaz) +1 | w(D) +2 | w(D) + 1
uu 7(Dimin) + 1 | 7(Dmaz) — 1 | 7(Diaz) w(D) =2 | w(D)

pu T(Dpmin) — 1 | 7(Dpaz) — 1 | 7(Dinaz) w(D) w(D)

up 7(Dimin) +1 | 7(Dimaz) +1 | 7(Diaz) + 1 | w(D) w(D) +1
tp 7(Dmin) 7(Dmaz) +1 | 7(Dimaa) +1 | w(D)+1 | w(D) +1
tu 7(Dinin) 7(Dmaz) — 1 | 7(Dimaz) w(D) =1 | w(D)

pt 7(Dmin) — 1 | 7(Dinaz) T(Dmaz) —1 [ w(D)+1 | w(D) -1
ut 7(Dmin) + 1 | 7(Dinaz) T(Dmaz) —1 | w(D) =1 | w(D) —1
tt 7(Dinin) 7(Dimaz) 7(Dimaz) — 1 | w(D) w(D) —1

Case 6. If the dual type of e is ¢t in D, then for any A € F,,..(D), e € A.
Thus £ — A € Fin(D*) and (E — A) Ue € F(D*) by Lemma 14. It
follows that A — e € Fpae—1(D). We have

T(D*lema:c) - T(Dmax)

and the dual type of e is ¢t in D*/*. Moreover, we observe that for any
B € Fpae—1(D) not containing e, BU e € Fpa.(D), otherwise there
is no B" € Fu:(D) such that B C B’, contradicting Lemma 15. It
follows that

T(Dx‘emam) =1 (Dpaz) — 1

and the dual type of e is p in D*l¢, respectively.

Here, we provide a summary of Cases 4, 5 and 6 as shown in Table 3.
Then the the widths of D*l¢ and D*I¢ can be calculated by Tables 2 and 3
as shown in Table 4. Hence, the columns 2 and 3 of Table 1 are computed.
If the type of e is pp in D, then

w(D*¢) = w(D) + 2
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and
w(DX‘e) =w(D)+1,

and the types of e are uu and pt in D*I® and D*I¢, respectively. Thus
w(D*X|e) _ w((D*\e)x|e> _ w(D*‘e) _ w(D) + 2,
and
w(D*) = w((DX1)1e) = w(D*) + 1 = w(D) + 2,
and the type of e is tu in D**I¢. We have
w(DVHE) = w((D*1€)"e) = w(D™1¢) — 1 = w(D) + 1.

The other entries in columns 4, 5 and 6 of Table 1 are computed similarly. [

The polynomial p(z) = Y ¢;2" is said to have a gap of size k [14] at
i=0
coefficient ¢; if ¢;_1¢;0p # 0 but ¢; = ¢4 = -+ = cyp1 = 0. If the

polynomial p(z) is nonzero and has no gaps, we call it interpolating.

Proposition 17. For any vf-safe delta-matroid D, the following statements
hold:

(1) 2wt (2) is interpolating for @ = X or * X x;
(2) 2wt (2) has no gaps of size 2 or more for any e € B.

Proof. For any element e and subset A of E, we observe that w(D*44¢)
and w(D*4) differ by at most one for ® € {x,* x x}, and by at most two for
o € {x,%x, xx} by Theorem 16. This yields statements (1) and (2). O

Remark 18. There exists a vf-safe delta-matroid D such that %w$,(2) is not
interpolating for @ € {x,xx, xx*}. For example, let

D, = ({17 2}7 {Q)v {17 2}})

and
Dy = ({1,2},{0,{1},{1,2}}).
We have
Qwp, (2) =2+ 227
and

Ywig(2) = wis(z) = 1+ 32
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5. Partial-twuality polynomials and intersection graphs

In [17], we showed that two bouquets with the same intersection graph
have the same partial-6 polynomial. In this section, we prove that the inter-
section graphs can determine the partial-twuality polynomials of bouquets
and normal binary delta-matroids, respectively. Let n: R — B be the group
isomorphism induced by n(d) = *, and n(7) =

Lemma 19 ([10]). If G is a ribbon graph, A C E and ¢ € R. Then
D(G*) = D(G)"®4

and

e(G) = w(D(G)).
Proposition 20. Let G = (V, E) be a ribbon graph and ¢ € R. Then
Pwiil (2) = e (2).
Proof. By Lemma 19, for any A C E,
w(D(G)"M) = w(D(G)) = e(G*1).

Hence w "D((é)(z) et (2). O

Theorem 21. If two normal binary delta-matroids D and D have the same
intersection graph, then 2w$,(z) = %w? %(z) for any e € B.

Proof. Since Gp = G5, D = D(Ag,,) and D= D(Ag), we have D = D.
Thus 2w}, (2) = w? %(z) for any e € B. O

Theorem 22. Let B and B be two bouquets. If Gpi) = GD(E), then
9e%(2) = 8ét'é(z) for any e € R.

Proof. Since Gpp) = G, it follows that D(B) = D(B). For any A C
E(B), we denote its corresponding subset of F(B) by A, then
D(B**) = D(B)"* = D(B)"®* = D(B*4),
by Lemma 19. We have
w(D(B)) = w(D(B*)).
Since w(D (B"A)) = &(B*4) and w(D(B*4)) = ¢(B*M), it follows that

g(B*14) = e(B*4). Thus %%(z) = Oe%.(2). O
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6. Partial-twuality monomials

We [18, 19] showed that a normal binary delta-matroid whose partial-x*
polynomials have only one term if and only if each connected component of
the intersection graph of the delta-matroid is either a complete graph of odd
order or a single vertex with a loop. In this section, we give a characterization
of vf-safe delta-matroids whose partial-x and * X * polynomials have only
one term.

Lemma 23 ([5]). Let D = (E,F) be a set system and X,Y C E. We have
Y € F(D*X) if and only if |{Z € F(D) | Y — X C Z C Y}| is odd.

Theorem 24. Let D = (E,F) be a vf-safe delta-matroid. Then
(1) %wji(z) = 2™ if and only if F(D) = {E};
(2) 2wy *(2) = cz™ if and only if F(D) = {0}.

Proof. (1) Suppose that w)(z) = cz™. Then for any e € E, the dual
type of e is u in D, otherwise applying x|e changes the width according
to Theorem 16. Then for any A € Fu:(D) U Fraze—1(D), we have e € A.
Thus Free(D) = {E} and Frae—1(D) = 0. Suppose Fraz—2(D) # 0. Let
B € Fpawo(D) and f € E— B. Then BU f, E € F(D*/) by Lemma 23.
Observe that BUf € Fpap_1(D*If) and E € Fypor (D*V). Let g € E—(BUY).
Then there exists BU f € Fraz_1(D*) U Frae (D7) such that g ¢ B U f.
Thus the dual type of g is not v in D*I¥. We have w(DX‘f) # w((D*1F)*x19)
by Theorem 16. Then “wy, . (z) # cz™. Note that “wy  .(z) = %wj(z)
by Proposition 6. It follows that wj(z) # cz™, a contradiction. Then
Fnar—2(D) = 0. Since the maximum gap in the collection of sizes of feasible
sets of a delta-matroid is two, it follows that F(D) = {E'}.
Conversely, for any X C F,

fmzn(DX‘X> mzn( ) { }
by Lemma 8. Then F(D*IX) = {E} Thus w( X)) =0 and w)(z) = 2/EL.

(2) For x x %, by Theorem 11, 9w} *(z) = ; (z) = cz™ if and only if
F(D*) ={E} if and only if F(D) = {0}. O
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