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Abstract

It is well known that in q-matroids, axioms for independent spaces, bases,

and spanning spaces differ from the classical case of matroids, since the

straightforward q-analogue of the classical axioms does not give a q-matroid.

For this reason, a fourth axiom has been proposed. In this paper we show how

we can describe these spaces with only three axioms, providing two alterna-

tive ways to do that. As an application, we show direct cryptomorphisms

between independent spaces and circuits and between independent spaces

and bases. This version contains corrections to the published version.

1 Introduction

The study of q-matroids originates in [6], but has been re-discovered in [10] be-

cause of its link to network coding. Many notions in network coding are q-analogues

of notions associated to error-correcting codes in the Hamming metric. Generally

speaking, a q-analogue in combinatorics is a generalisation from a finite set to a

finite dimensional vector space. The q-analogue of codes in the Hamming metric

are codes in the rank metric. The q-analogue of a combinatorial design, called a

subspace design, is a special case of a code in the subspace metric. Both types of

codes are of interest for network coding. An overview of the foundational work in

this area can be found in [9].

Just as matroids are related to codes and designs, their q-analogues are related as

well. As mentioned, q-(poly)matroids are a generalisation of rank-metric codes

[7, 8, 10, 12]. Furthermore, q-matroids can be used to find new (weighted) sub-

space designs [2, 3]. These applications motivate the study of q-matroids from a

theoretical point of view.
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In the classical case of matroids independent sets need three axioms. For q-matroids,

the straightforward q-analogue of these three axioms are not strong enough to get a

q-matroid with a semimodular rank function. Therefore, a fourth axiom was added

(see [10]).

This unexpected fourth axiom raises some questions. Why would we need this ex-

tra axiom for independent spaces, bases, and spanning spaces, but not for things

like dependent spaces, circuits, flats, and hyperplanes? Can’t we find a better way

to describe the axioms for independent spaces, bases, and spanning spaces, using

only three axioms?

In this paper we present a positive answer to this question. We propose two ways

to define independent spaces, bases, and spanning spaces with only three axioms.

The first one is to remove the third axiom, because it is implied by the fourth one

(where we have to be a bit careful for independent spaces to pick the right variation

of the fourth axiom). The second one is an alternative for the third axiom that is

still a q-analogue of the classical case, but that obliterates the need for the fourth

axiom.

As an application of this restriction of the number of axioms, we prove two crypto-

morphisms. The first one is a direct cryptomorphism between independent sets and

circuits that was not shown before. The second one is a cryptomorphism between

independent spaces and bases. This was done in [10], but we believe there was a

gap in the proof that we will fix here.

2 Preliminaries

Throughout this paper, n denotes a fixed positive integer and E a fixed n-dimensional

vector space over an arbitrary field F. The notation L(E) indicates the lattice of

subspaces of E. For any A, B ∈ L(E) with A ⊆ B we denote by [A, B] the interval

between A and B, that is, the lattice of all subspaces X with A ⊆ X ⊆ B. For A ⊆ E

we use the notation L(A) to denote the interval [{0}, A]. For more background on

lattices, see for example Birkhoff [1].

We use the following definition of a q-matroid.

Definition 1. A q-matroid M is a pair (E, r) where r is an integer-valued function

defined on the subspaces of E with the following properties:

(R1) For every subspace A ∈ L(E), 0 ≤ r(A) ≤ dim A.

(R2) For all subspaces A ⊆ B ∈ L(E), r(A) ≤ r(B).

(R3) For all A, B ∈ L(E), r(A + B) + r(A ∩ B) ≤ r(A) + r(B).

The function r is called the rank function of the q-matroid and the vector space E

is called the ground space of the q-matroid.
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In order to make notation more compact, we use the following ways to describe

families of subspaces.

Definition 2. LetA ⊆ L(E). We define the following family of subspaces of E:

max(A) := {X ∈ A : X * A for any A ∈ A, A , X},

min(A) := {X ∈ A : A * X for any A ∈ A, A , X}.

For any subspace X ∈ L(E), we define then the collection of maximal subspaces

of X in A to be the collection of subspaces

max(X,A) := {A ∈ A : A ⊆ X and B ⊂ X, B ∈ A =⇒ dim(B) ≤ dim(A)}.

In other words, max(X,A) is the set of subspaces of X in A that have maximal

dimension over all such choices of subspaces. Similarly, we define the minimal

subspaces containing X in A to be the collection of subspaces

min(X,A) := {A ∈ A : X ⊆ A and X ⊂ B, B ∈ A =⇒ dim(B) ≥ dim(A)}.

Finally, by slight abuse of notation, we write

X ∩A := {X ∩ A : A ∈ A}.

We define several specific subspaces in a q-matroid.

Definition 3. Let M = (E, r) be a q-matroid. A subspace A of E is called an

independent space of M if r(A) = dim A. A subspace that is not an independent

space is called a dependent space. A minimal dependent space (w.r.t. inclusion) is

called a circuit. A spanning space of M is a subspace S such that r(S ) = r(E). A

loop of M is a 1-dimensional subspace ℓ ⊆ E such that r(ℓ) = 0.

A q-matroid can be equivalently defined by its independent spaces, bases, spanning

spaces and circuits. See [4] for an overview of these cryptomorphic definitions and

many others.

Definition 4. Let I ⊆ L(E). We define the following independence axioms.

(I1) I , ∅.

(I2) For all I, J ∈ L(E), if J ∈ I and I ⊆ J, then I ∈ I.

(I3) For all I, J ∈ I satisfying dim I < dim J, there exists a 1-dimensional sub-

space x ⊆ J, x * I such that I + x ∈ I.

(I4) For all A, B ∈ L(E) and I, J ∈ L(E) such that I ∈ max(I ∩ L(A)) and

J ∈ max(I∩L(B)), there exists K ∈ max(I∩L(A+B)) such that K ⊆ I + J.

If I satisfies the independence axioms (I1)-(I4) we say that (E,I) is a collection

of independent spaces.
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Definition 5. Let B ⊆ L(E). We define the following basis axioms.

(B1) B , ∅

(B2) For all B1, B2 ∈ B, if B1 ⊆ B2, then B1 = B2.

(B3) For all B1, B2 ∈ B and for every subspace A of codimension 1 in B1 satisfying

B1 ∩ B2 ⊆ A, there is a 1-dimensional subspace y of B2 such that A + y ∈ B.

(B4) For all A, B ∈ L(E) and I, J ∈ L(E) such that I ∈ max(E, A ∩ B) and

J ∈ max(E, B∩B), there exists K ∈ max(E, (A+B)∩B) such that K ⊆ I+ J.

If B satisfies the bases axioms (B1)-(B4) we say that (E,B) is a collection of bases.

Definition 6. Let S ⊆ L(E). We define the following spanning space axioms.

(S1) E ∈ S.

(S2) For all I, J ∈ L(E), if J ∈ S and J ⊆ I, then I ∈ S.

(S3) For all I, J ∈ S such that dim J < dim I, there exists some X ∈ L(E) of

codimension 1 in E satisfying J ⊆ X, I * X, and I ∩ X ∈ S.

(S4) For all A, B ∈ L(E) and I, J ∈ L(E) such that I ∈ min(S ∩ [A, E]) and

J ∈ min(S∩[B, E]), there exists K ∈ min(S∩[A∩B, E]) such that I∩ J ⊆ K.

If S satisfies the independence axioms (S1)-(S4) we say that (E,S) is a collection

of spanning spaces.

Definition 7. Let C ⊆ L(E). We define the following circuit axioms.

(C1) {0} < C.

(C2) For all C1,C2 ∈ C, if C1 ⊆ C2 C1 = C2.

(C3) For distinct C1,C2 ∈ C and any X ∈ L(E) of codimension 1 there is a circuit

C3 ∈ C such that C3 ⊆ (C1 +C2) ∩ X.

If C satisfies the circuit axioms (C1)-(C3), we say that (E,C) is a collection of

circuits.

Note that the axiom (C3) listed here is different from the axiom (C3) as defined in

[10, Theorem 64]. An explanation of this can be found in [4, Section 11].

A lattice isomorphism between a pair of lattices (L1,≤1,∨1,∧1) and (L2,≤2,∨2,∧2)

is a bijective function ϕ : L1 −→ L2 that is order-preserving and preserves the

meet and join, that is, for all x, y ∈ L1 we have that ϕ(x ∧1 y) = ϕ(x) ∧2 ϕ(y) and

ϕ(x ∨1 y) = ϕ(x) ∨2 ϕ(y). A lattice anti-isomorphism between a pair of lattices is

a bijective function ψ : L1 −→ L2 that is order-reversing and interchanges the

meet and join, that is, for all x, y ∈ L1 we have that ψ(x ∧1 y) = ψ(x) ∨2 ψ(y) and

ψ(x ∨1 y) = ψ(x) ∧2 ψ(y). We hence define a notion of equivalence and duality

between q-matroids.
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Definition 8. Let E1, E2 be vector spaces over the same field F. Let M1 = (E1, r1)

and M2 = (E2, r2) be q-matroids. We say that M1 and M2 are lattice-equivalent or

isomorphic if there exists a lattice isomorphism ϕ : L(E1) −→ L(E2) such that

r1(A) = r2(ϕ(A)) for all A ⊆ E1. In this case we write M1 � M2.

Fix an anti-isomorphism ⊥: L(E) −→ L(E) that is an involution. For any subspace

X ∈ L(E) we denote by X⊥ the dual of X in E with respect to ⊥.

Important operations on q-matroids are restriction, contraction and duality. We give

a short summary here and refer to [2, 10] for details.

Definition 9. Let M = (E, r) be a q-matroid. Then M∗ = (E, r∗) is also a q-matroid,

called the dual q-matroid, with rank function

r∗(A) = dim(A) − r(E) + r(A⊥).

Theorem 10 ([10], Theorem 45). The subspace B is a basis of M if and only if B⊥

is a basis of M∗.

Definition 11. Let M = (E, r) be a q-matroid. The restriction of M to a subspace

X is the q-matroid M|X with ground space X and rank function rM|X (A) = rM(A).

The contraction of M of a subspace X is the q-matroid M/X with ground space

E/X and rank function rM/X(A/X) = rM(A) − rM(X).

3 Redundancy in the axiom systems

In this section we show that (I3), (B3) and (S3) are implied by the other axioms.

In case of (I4) this is actually a bit subtle, since the exact statement of (I4) has a

somewhat vague history.

3.1 A discussion on variations of (I4)

The axiom (I4) was first stated in [10]. It was formulated using the ambiguous

term “maximal independent space inside A” for some A ⊆ E. It was not clarified if

this maximality was taken with respect to inclusion or dimension. However, if one

carefully reads the proofs in [10], especially Proposition 15, it becomes clear that

maximality is taken with respect to dimension. Intuitively this also follows from

the fact that for the cryptomorphism between independence and rank the following

rank function in terms of independence is defined:

rI(A) = max{dim I : I ∈ I, I ⊆ A}.

In following papers, notably [4], the ambiguity in (I4) was solved by assuming

maximality was taken with respect to inclusion. This did not lead to any problems,

since by (I3), both notions are equivalent. It is only in cases where (I3) is not

assumed (or proven) that the difference in maximality matters.

In this section we discuss the relations between the following variations of the

axiom (I4).
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(oI4) For all A, B ∈ L(E) and I, J ∈ L(E) such that I ∈ max(A,I) and J ∈

max(B,I), there exists K ∈ max(A + B,I) such that K ⊆ I + J.

(I4) For all A, B ∈ L(E) and I, J ∈ L(E) such that I ∈ max(I ∩ L(A)) and

J ∈ max(I∩L(B)), there exists K ∈ max(I∩L(A+B)) such that K ⊆ I + J.

(I4’) Let A ∈ L(E) and let I ∈ max(A,I). Let B ∈ L(E). Then there exists

J ∈ max(A + B,I) such that J ⊆ I + B.

(I4”) Let A ∈ L(E) and let I ∈ max(A,I). Let x ∈ L(E) be a 1-dimensional space.

Then there exists J ∈ max(x + A,I) such that J ⊆ x + I.

We use the notation (oI4) for the version of (I4) as implied in [10] and we reserve

(I4) for the version that appears in other papers. The following relation among these

alternatives of (I4) were proven.

Theorem 12 (Theorem 26 of [4]). Let I be a collection of subspaces satisfying

(I1)-(I3). Then the axiom systems (I1)-(I4), (I1)-(I4’) and (I1)-(I4”) are pairwise

equivalent.

The next result is a variation of this theorem, involving (oI4) instead of (I4) and not

depending on (I3). In fact, this proof is already implicit in the proof of [4, Theorem

26]. This result will be of use in the next section.

Proposition 13. Let I be a collection of subspaces satisfying (I1) and (I2). Then

the axiom systems (I1), (I2), (oI4); (I1), (I2), (I4’); and (I1), (I2), (I4”) are pairwise

equivalent.

Proof. In [4, Theorem 26] it is proven that I satisfies (I4’) if and only if it satisfies

(I4”): the axiom (I3) is not used there. It is straightforward that if I satisfies (oI4)

then it satisfies (I4’). For the implication in the other direction, exactly the same

proof as in [4, Theorem 26] holds and this does not use (I3). In fact, what is proven

there is that if I satisfies (I4’), then it satisfies (oI4). �

Remark 14. By the previous discussion, it is now clear that the axiom (I4) is weaker

with respect to the other variations. Indeed, if we observe (oI4), as well as (I4’) and

(I4”), they actually don’t need (I3) in proving their equivalence. Things change if

we want to prove their equivalence with (I4): in that proof (I3) becomes crucial.

This will be made clearer in the next section.

3.2 Redundancy of (I3)

In this section we prove that the axiom (I3) is redundant, provided we use any

variant of the fourth independence axiom that is not (I4). We do this by showing

that given (I1) and (I2), the axioms (I3) and (I4) together are equivalent to the

axiom (I4”) (or (I4’) or (oI4)).
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Theorem 15. Let (E,I) be a q-matroid. Then, for the set I, the axiom (oI4) holds

true.

Proof. This is a direct consequence of Proposition 13. �

Theorem 16. Let E be a vector space and let Ĩ be a collection of subspaces satis-

fying the axioms (I1), (I2) and (oI4). Then (E, Ĩ) is a q-matroid.

Proof. We have to show that Ĩ satisfies the axioms (I1), (I2), (I3) and (I4). The

first two axioms are satisfied by definition and (I4) follows from Proposition 13

and Theorem 12. So it is left to prove (I3).

Let I, J ∈ Ĩ with dim I < dim J. Assume, towards a contradiction, that for all 1-

dimensional spaces x ⊆ J, x * I we have that I + x < Ĩ. Let xi be 1-dimensional

spaces in J such that we can write I+ J = I⊕ x1⊕· · ·⊕ xh. Note that, by (I2), xi ∈ Ĩ

for all i.

By Proposition 13, Ĩ satisfies (I4”). We apply (I4”) to I and x1: there is a maximal

member of Ĩ (w.r.t. dimension) contained in I + x1. By assumption, I + xi < Ĩ,

so I is such a maximal member of Ĩ in I + x1. Next, we apply (I4”) to I + x1 and

x2: there is a maximal member of Ĩ in I + x1 + x2 contained in I + x2. Again by

assumption, I + x2 < Ĩ so I is such a maximal member of Ĩ. Continuing like this,

we find that I is a maximal member of Ĩ in I + x1 + · · ·+ xh = I + J. However, this

is a contradiction, since J ⊆ I + J, J ∈ Ĩ, and dim I < dim J. We conclude that (I3)

has to hold and thus (E, Ĩ) is a q-matroid. �

The proof of (I3) is similar to Proposition 6 of [10], only written in terms of inde-

pendence instead of rank. Also, note that the last part of this proof does not hold

with (I4) instead of (I4”). This supports Remark 14.

3.3 Redundancy of (B3) and (S3)

For the basis axioms we have a similar result. Even though it is not specified, it is

implied that in (B4) a maximal intersection of a space with a basis is an intersection

of maximal dimension. Therefore, the subtleties we had with (I4) and (oI4) distin-

guishing between maximal w.r.t. inclusion and w.r.t. dimension, do not appear for

bases.

Theorem 17. Let B be a family of subspaces of E that satisfies the axioms (B1),

(B2) and (B4). Then B satisfies (B3).

Proof. Let B1, B2 ∈ B and let A ⊆ B1 be a codimension 1 subspace such that

B1 ∩ B2 ⊆ A. Assume, towards a contradiction, that for all 1-dimensional spaces

x ⊆ B2 we have that A + x < B. Since B1 ∩ B2 ⊆ A, we will never have that

A + x = B1. Let xi be 1-dimensional spaces in B2 such that we can write A + B2 =

A ⊕ x1 ⊕ · · · ⊕ xh. Note that max(E, xi ∩ B) = {xi}, since xi ⊆ B2.

Now apply (B4) to A and x1: there is a J1 ∈ max(E, (A + x1) ∩ B) such that J1 ⊆

A+ x1. Since by assumption, A + x1 < B, we can take J1 = A. Next, we apply (B4)

7



to A + x1 and x2: there is a J2 ∈ max(E, (A + x1 + x2) ∩ B) such that J2 ⊆ A + x2.

Again by assumption, A + x2 < B so we can take J2 = A. Continuing like this, we

find that A ∈ max(E, (A + x1 + · · · + xh) ∩ B) = max(E, (A + B2) ∩ B). However,

this is a contradiction, since B2 ⊆ A + B2 and dim A < dim B2. We conclude that

(B3) has to hold. �

We finish with the result for spanning spaces, that can be proven by taking the dual

arguments to the proofs for independent spaces.

Theorem 18. Let S be a family of subspaces of E. Define the following spanning

axiom.

(oS4) For all A, B ∈ L(E) and I, J ∈ L(E) such that I ∈ min(A,S) and J ∈

min(B,S), there exists K ∈ min(A ∩ B,S) such that I ∩ J ⊆ K.

If S satisfies the axioms (S1), (S2) and (oS4), then S satisfies (S3).

4 An alternative for the axiom (I3)

In this section, we propose a new version for the axiom (I3), that we will call (nI3)

and we will prove that it subsumes both the (I3) and the (I4) axioms for a q-matroid.

4.1 Motivation

Before we state the axiom (nI3), we will give some motivation for this statement.

Let us look at a small example. Let E = F2
2

and let x, y and z be the three 1-

dimension spaces of E. If we let I = {x, {0}}, we have a family satisfying the

axioms (I1), (I2) and (I3), but not (I4). The latter can be seen by applying (I4) to

y and z: they are both not in I, so a maximal member of I should be inside {0}.

However, this is a contradiction because x ⊆ y + z and x ∈ I.

Define a rank function for all A ⊆ E as r(A) = dim(max{I ⊆ A : I ∈ I}). Then the

rank function in our example is not semimodular, i.e., does not satisfy axiom (R3):

r(y + z) + r(y ∩ z) = r(E) + r(0) = 1 + 0 > r(y) + r(z) = 0.

We want the rank function to be that of a q-matroid. How can we achieve this with

little change to I? Note that we can still ask z < I if then we let y ∈ I. This gives

a mixed diamond, as explained in Appendix A.3 of [5].

Lemma 19. If a q-matroid M has loops, then they are exactly all 1-dimensional

subspaces of a subspace L ⊆ E.

Proof. This is a direct consequence of Lemma 11 in [10], that says that if x and

y are loops, then x + y has rank 0. Applying this iteratively, we find that the sum

of any number of loops has rank 0. Then axiom (r2) implies that all 1-dimensional

subspaces of this sum of loops have rank 0, hence are loops themselves. �
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Definition 20. The subspace of E containing all loops is called the loop space of

M. We usually denote it by L.

What goes wrong in our small example has to do with the loop space. If you have

one 1-dimensional space that is independent, then all other 1-dimensional spaces

that are not in the loop space L have to be independent. This applies to other di-

mensions as well, by applying contraction.

Let I, J ∈ I with dim I < dim J. Then (I3) tells us that there is a 1-dimensional

space x ⊆ J, x * I such that I+ x ∈ I. If we consider M/I, we find that (I+ x)/I is a

1-dimensional independent space in M/I. So, outside the loop space L of M/I, all 1-

dimensional spaces in M/I have to be independent. Since not every 1-dimensional

space in M/I is a loop, the space L has at least codimension 1 in E/I.

Now we will translate this to M. The independent 1-dimensional spaces (I + x)/I

in M/I correspond to 1-dimensional spaces x outside the space L ⊕ I := X of codi-

mension 1 in E, and for all of them, I + x has to be independent. We summarise

this in a proposed new axiom (nI3).

Definition 21. Let E be a vector space and I a family of subspaces. We define the

following property (axiom) of I.

(nI3) For all I, J ∈ I satisfying dim I < dim J, there exists a codimension 1 sub-

space X ⊆ E with I ⊆ X, J * X such that I + x ∈ I for all 1-dimensional

x ⊆ E, x * X.

Remark 22. Because J * X, there is an x ⊆ J such that x * X and thus I + x ∈ I.

This shows that (nI3) implies (I3). Also, (nI3) becomes (I3) in the classical case,

since there is only one element x outside X that, by construction, is in J.

Looking back at the small example we started with, we see that letting x ∈ Iwould

imply, by applying (nI3) to 0 and x, that at least on of y and z should also be in I.

4.2 The independence axioms are equivalent to (I1), (I2), (nI3)

In this section we prove that the axiom system (I1), (I2), (I3), (I4) is equivalent to

the axiom system (I1), (I2), (nI3). First we show that the axioms (I1), (I2), (I3) and

(I4), together, imply the new axiom (nI3).

Theorem 23. Let (E,I) be a q-matroid. Then, for the set I, the axiom (nI3) holds

true.

Proof. Let I, J ∈ I, dim(I) < dim(J). Consider all 1-spaces y not in I such that

I ∈ max{I ∩ L(I + y)}. Let A be the sum of all such I + y. We claim that I ∈

max{I ∩L(A)}. This can be seen by applying (I4) multiple times. Let y1 and y2 be

such that I ∈ max{I ∩ L(I + y1)} and I ∈ max{I ∩ L(I + y2)}. Then, by (I4), I ∈

max{I∩L((I+y1)+(I+y2))}. Iterating this argument shows that I ∈ max{I∩L(A)}

and that, moreover, all I + y with y ⊆ A, y * I are not in I.

On the other hand, for all 1-spaces z ⊆ E, z * A we have that I + z ∈ I. We
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know from (I3) that there is at least one such z, namely the x ∈ J, x * I such that

I + x ∈ I. This means that dim A ≤ dim E − 1 = n − 1. Now take a space X of

codimension 1 in E with A ⊆ X and x * X. Then for all z ⊆ E, z * X we have that

I + z ∈ I and this proves (nI3). �

Next we show that the axiom (nI3), together with (I1) and (I2), implies the axioms

(I3) and (I4). Before doing that, we prove a small lemma about restriction.

Lemma 24. Let E be a vector space and let Ĩ be a collection of subspaces of E

satisfying the axioms (I1), (I2) and (nI3). Let F ⊆ E and let Ĩ|F = {I ∈ Ĩ : I ⊆ F}.

Then Ĩ|F satisfies the axioms (I1), (I2) and (nI3).

Proof. It is clear that Ĩ|F satisfies (I1) (because {0} ∈ Ĩ) and (I2). Let I, J ∈ Ĩ|F
with dim I < dim J. Let X be the codimension 1 space in E defined by axiom (nI3).

Then F * X, because J * X and J ⊆ F. Therefore, X ∩F is a codimension 1 space

in F that satisfies (nI3). �

Theorem 25. Let E be a vector space and let Ĩ be a collection of subspaces satis-

fying the axioms (I1), (I2) and (nI3). Then (E, Ĩ) is a q-matroid.

Proof. We have to show that Ĩ satisfies the axioms (I1), (I2), (I3) and (I4). The

first two axioms are satisfied by definition and (nI3) implies (I3) as was noted in

Remark 22, so it is left to prove (I4). By Theorem 12 it is enough to prove the

axiom (I4”):

(I4”) Let A ∈ L(E) and let I ∈ max(A,I). Let x ∈ L(E) be a 1-dimensional space.

Then there exists J ∈ max(x + A,I) such that J ⊆ x + I.

Thanks to Lemma 24 we can let n = dim(A + x) and restrict to A + x. (I4”) is

direct if x ⊆ A or if I ∈ max(Ĩ, A + x), so suppose both are not the case. Then

there is a J ∈ max(Ĩ, A + x) with dim J > dim I. Moreover, J * A because that

would contradict the maximality of I. By (nI3), there is a codimension 1 space X

in A + x such that I ⊆ X, J * X and for all y * X we have I + y ∈ Ĩ. We now

claim that X = A. If not, there would be a y * X, y ⊆ A such that I + y ∈ Ĩ. Since

I + y ⊆ A, this contradicts the maximality of I. So, X = A and by (nI3) we have

that I + x ∈ Ĩ. Moreover, I + x ∈ max(A + x, Ĩ) because if there is a member of Ĩ

of bigger dimension in A+ x, its intersection with A would have dimension strictly

bigger then dim I, which contradicts, again, I ∈ max(A, Ĩ). That proves (I4”) and

shows that (E, Ĩ) is a q-matroid. �

5 A new bases axiom

As a consequence of our introduction of (nI3), we could define a new basis axiom

(nB3), which again avoids the presence of the fourth axiom (B4).

Definition 26. Let E be a vector space and B a family of subspaces. We define the

following property (axiom) of B.
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(nB3) For all B1, B2 ∈ B, and for each subspace A that has codimension 1 in B1

containing B1 ∩ B2 there exists X ⊆ E of codimension 1 in E such that

X ⊇ A, X + B2 and A + x ∈ B for all 1-dimensional x ⊆ E, x * X.

Remark 27. Note that contrarily to (B3), it is possible that B1 = B2. Also, we drop

the requirement that B1 ∩ B2 ⊆ A. This requirement was needed in (B3) to make

sure that A + x was different from B1. In (nB3), many bases are produced: some

of them might be equal to B1, but some are new. (Unless B1 = E, but then there is

only one basis anyway.) Because B2 * X, there is an x ⊆ B2 such that x * X and

thus A + x ∈ B. This shows that (nB3) implies (B3). Also, (nB3) becomes (B3) in

the classical case, since there is only one element x outside X that, by construction,

is in B2.

To show that (nB3) holds, we use a similar approach to what was done for inde-

pendent spaces. We prove that the axiom system (B1), (B2), (B4) is equivalent to

the axiom system (B1), (B2), (nB3). Since we showed in Theorem 17 that (B4)

implies (B3), we can freely use (B3) within the proofs for convenience. First we

show that the axioms (B1), (B2) and (B4), together, imply the new axiom (nB3).

Theorem 28. Let (E,B) be a q-matroid. Then, for the set B, the axiom (nB3) holds

true.

Proof. Let B1, B2 ∈ B and let A ⊆ B1 of codimension 1 such that B1 ∩ B2 ⊆ A.

Consider all 1-spaces y not in A such that A ∈ max(E, (A + y) ∩ B). Let C be the

sum of all such A + y A and all such y. We claim that A ∈ max(E,C ∩ B). This

can be seen by applying (B4) multiple times. Since A ∈ max(E, (A + y1) ∩ B) and

A ∈ max(E, (A + y2)∩B), by (B4) A ∈ max(E, ((A + y1) + (A + y2))∩B). Iterating

this argument shows that A ∈ max(E,C ∩ B) and moreover, all A + y with y ⊆ C,

y * A are not in B.

On the other hand, for all 1-spaces z ⊆ E, z * C we have that A + z ∈ B. We

know from (B3) that there is at least one such z, namely the x ∈ B2, x * B1 such

that A + x ∈ B. We know such z exists, for example any z with z ⊆ B1, z * A. This

means that dim C ≤ dim E − 1 = n − 1. Now take a space X of codimension 1 in E

with C ⊆ X and x * X. Then for all z ⊆ E, z * X we have that A + z ∈ B and this

proves (nB3). �

Now we work towards the converse of this theorem. For this we will use the fol-

lowing two variations of the axiom (B4).

(B4’) Let A, B ⊆ E and I ∈ max(E, A∩B). Then there exists J ∈ max(E, (A+B)∩B)

such that J ⊆ I + B.

(B4”) Let A ⊆ E and I ∈ max(E, A ∩ B). Let x ⊆ E be a one-dimensional space.

Then, there exists J ∈ max(E, (A + x) ∩ B) such that J ⊆ x + I.

The next result shows that we can in fact take these axioms to define a q-matroid.

It is the statement of Proposition 13 but for bases instead of independent spaces,

and the proof is similar to to proof for independence axioms in [4, Theorem 26].
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Theorem 29. Let B be a collection of subspaces satisfying (B1) and (B2). Then

the axiom systems (B1), (B2), (B4); (B1), (B2), (B4’) and (B1), (B2), (B4”) are

pairwise equivalent.

Proof. First, we assume that (B4) holds for the collection B and we show that this

implies that (B4’) and (B4”) also hold. Let A, B ⊆ E and let I ∈ max(E, A∩B) and

J ∈ max(E, B ∩ B). By (B4) there is a K ∈ max(E, (A + B) ∩ B) with K ⊆ I + J.

Since J ⊆ B, K is also contained in I+B. This shows (B4’). We get (B4”) by taking

B = x.

Suppose that (B4”) holds. We will show that (B4’) holds. Let A, B ⊆ E and let

I ∈ max(E, A ∩ B). Suppose that (B4’) holds for all subspaces of dimension less

than dim(B). Let C be a subspace of B of codimension 1 in B and write B = x +C.

By hypothesis, there exists J ∈ max(E, (A + C) ∩ B) such that J ⊆ I + C. By

(B4”) there exists J′ ∈ max(E, (A + C + x) ∩ B) = max(E, (A + B) ∩ B) such that

J′ ⊆ J + x ⊆ I +C + x = I + B. This proves (B4’).

Now suppose that (B4’) holds. Let A, B ⊆ E and let I ∈ max(E, A ∩ B) and J ∈

max(E, B ∩ B). We claim there is a K ∈ max(E, (A + B) ∩ B) with K ⊆ I + J.

Since J ∈ max(E, B ∩ B), applying (B4’) to B and I gives that these exists N ∈

max(E, (I + B) ∩ B) such that N ⊆ I + J.

Again by (B4’), there exists M ∈ max(E, (A + B) ∩ B) such that M ⊆ I + B. But

then M ∈ max(E, (I + B) and hence M and N have the same dimension. It follows

that N ∈ max(E, (A + B) ∩ B) and N ⊆ I + J and so (B4’) implies (B4). The result

follows. �

We now prove the converse of Theorem 28.

Theorem 30. Let E be a vector space and let B̃ be a collection of subspaces

satisfying the axioms (B1), (B2) and (nB3). Then (E, B̃) is a q-matroid.

Proof. We have to show that B̃ satisfies the axioms (B1), (B2), and (B4), since then

(B3) is implied by Theorem 17. The first two axioms are satisfied by definition, so

it is left to prove (B4). By Theorem 29, it is enough to prove the axiom (B4”).

Let A ⊆ E and I ∈ max(E, A ∩ B̃). Let x ⊆ E be a 1-dimensional space. (B4”) is

direct if x ⊆ A or if I ∈ max(E, (A+ x)∩B̃), so suppose both are not the case. Then

there is a J ∈ max(E, (A + x) ∩ B̃) with dim J > dim I. Moreover, J * A because

that would contradict the maximality of I.

Since I and J are intersections of members of B̃ with A and A+ x, respectively, we

can find B1, B2 ∈ B̃ such that I = B1∩A and J = B2∩ (A+ x). Moreover, there is a

codimension 1 subspace C ⊆ B1 such that C ∩ (A + x) = I and B1 ∩ B2 ⊆ C. Now

we apply (nB3) to B1, B2 and C. This gives a codimension 1 space X ⊆ E such that

C ⊆ X, B2 * X and C + y ∈ B̃ for all 1-dimensional y ⊆ E, y * X.

We now claim that X ∩ (A + x) = A. If not, there would be a z * X, z ⊆ A such that

C + z ∈ B̃. Then (C + z)∩ (A+ x) = I + z and this contradicts the maximality of I in

A. So, X∩ (A+ x) = A and in particular x * X, so by (nB3) we have that C + x ∈ B̃.

Moreover, I + x ∈ max(E, (A + x) ∩ B̃) because if there is a bigger intersection
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with a member of B̃ in A + x, its intersection with A would have dimension strictly

bigger then dim I, which contradicts, again, that I ∈ max(E, A ∩ B̃). That proves

(B4”) and shows that (E, B̃) is a q-matroid. �

6 A new spanning spaces axiom

In this section we state and prove that it is possible to define spanning spaces

with three axioms, this being an easy consequence of what we did for indepen-

dent spaces.

Definition 31. Let E be a vector space and S a family of subspaces. We define the

following property (axiom) of S.

(nS3) For all S 1, S 2 ∈ S satisfying dim S 2 < dim S 1, there exists a 1-dimension

subspace x ⊆ S 1, x * S 2 such that for all codimension-one X ⊆ E with

X + x we have X ∩ S 1 ∈ S.

Theorem 32. Let E be a vector space and let S be a family of subspaces satisfying

(S1), (S2) and (nS3). Then S is the family of spanning spaces of a q-matroid.

Proof. This follows directly from the fact that spanning spaces are the dual spaces

of the independent spaces of the dual q-matroid, and the axiom (nS3) is the dual

statement of (nI3). �

7 Two new q-cryptomorphisms

In this section we apply our results on new axioms for independent spaces and

bases to derive two new cryptomorphisms: between circuits and independent spaces,

and between independent spaces and bases. The latter was already done in [10] but

as we will discuss, we believe there is a gap in that proof.

We will see that while (nI3) might feel like a natural q-analogue of the third axiom

for matroids, it turns out that (oI4) or (I4”) is much more practical in proofs.

7.1 Circuits and independent spaces

Here we prove that the axioms (C1), (C2) and (C3) are equivalent to the axioms

(I1), (I2) and (I4”). We follow Lemma 1.1.3 and Theorem 1.1.4 of [11].

Theorem 33. Let (E,I) be a q-matroid. Define

CI = {C ⊆ E : C < I, I ∈ I for all I ( C}.

Then C is a family of circuits, that is, it satisfies the axioms (C1), (C2) and (C3).

13



Proof. The axioms (C1) and (C2) follow directly from the definition of C. We will

prove (C3) by making use of the independence axiom (oI4).

Let C1,C2 ∈ C, C1 , C2 and X ⊆ E a codimension one space. Suppose to-

wards a contradiction (C1 + C2) ∩ X does not contain any circuit, this making

it an independent space. Let I1 ⊆ C1 and I2 ⊆ C2 be of codimension 1 such

that C1 ∩ C2 = I1 ∩ I2. Note that I1 and I2 are independent and since they have

codimension 1 they are maximal with respect to both dimension and inclusion.

By (oI4) there is an I ∈ max{C1 + C2,I} such that I ⊆ I1 + I2. Let F ⊆ E a

codimension 1 space containing C1 + I2 but not containing C2 and G ⊆ E a codi-

mension 1 space containing C2 + I1 but not containing C1. Clearly F , G, so

dim((C1 +C2) ∩ F ∩G) = dim(C1 +C2) − 2. Now, I ⊆ ((C1 +C2) ∩ F ∩G), so

dim(I) ≤ dim(C1 +C2) − 2 < dim((C1 +C2) ∩ X).

However, by assumption (C1 + C2) ∩ X is an independent space, this giving a

contradiction with the maximality of I. We conclude that (C3) needs to hold. �

Theorem 34. Let (E,C) be a q-matroid. Define

IC = {I ⊆ E : C * I for all C ∈ C}.

Then I is a family of independent spaces, that is, it satisfies the axioms (I1), (I2)

and (I4”).

Proof. The axioms (I1) and (I2) follow directly from the definition of I. For (I4”),

let A ⊆ E and let I ⊆ A be a maximal independent subspace. (Throughout this

proof, maximality is always taken with respect to dimension.) Let x ⊆ E be a 1-

dimensional space. If x ⊆ A, (I4”) clearly holds. If I = A, we also get that (I4”)

holds: either I is a maximal independent space in A + x, or I + x = A + x is

independent itself. So assume x * A and I , A.

Towards a contradiction, suppose (I4”) does not hold for A and x. Let J be a max-

imal independent subspace in A + x. If dim J = dim I, we have that I is also a

maximal independent space in A+ x, contradicting that there are no maximal inde-

pendent spaces in I + x. So we have that dim J > dim I. In fact, dim J = dim I + 1,

because otherwise J ∩ A, that is independent and has dimension at least dim J − 1,

contradicts the maximality of I in A.

There might be several choices for J: pick one such that I∩ J is maximal. We claim

that I cannot be contained in J. If this was the case, we can write J = I + y ∈ I

but I + x < I by construction. This implies x * J hence J + x < I. Thus I + x

and J + x both contain a circuit. Apply (C3) to these circuits with a codimension 1

space Y such that A ⊆ Y , A + y * Y . This yields a circuits inside J ∩ A, which is a

contradiction because J ∩ A is independent by (I2). So, I * J.

We pick a codimension 1 space X ⊆ E and a 1-dimensional space e such that J ⊆ X,

I * X, e ⊆ I and e * X. This implies that (J + e) ∩ X = J. For any codimension

1 space F ⊆ E with I ⊆ F, J * F we can now construct the following. Define
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TF = (J + e) ∩ F. Since e * J and J * F we have that dim TF = dim J. However,

dim TF ∩ I > dim J∩ I, so by assumption on our choice of J we have that TF is not

independent, hence contains a circuit CF . We cannot have that CF ⊆ X, because

that would imply CF ⊆ (J + e) ∩ F ∩ X = J ∩ F ⊆ J and the latter is independent.

Let G,H ⊆ E be two distinct codimension 1 spaces with I ⊆ G,H and J * G,H.

These exist, because dim J − dim(J ∩ I) ≥ dim J − (dim I − 1) = 2. We can also

assume that J − G , J − H. Now we apply the construction as above to obtain

CG and CH. From our last assumption it follows that CG , CH . Now apply (C3) to

CG,CH and X. This gives a circuit C ⊆ (CG+CH)∩X. Note that since CG,CH * X,

C , CG,CH. Now CG+CH ⊆ (J+e)∩G+(J+e)∩H ⊆ J+e so C ⊆ (CG+CH)∩X ⊆

(J + e)∩X = J. This is a contradiction because J is independent. We conclude that

(I4”) needs to hold. �

Corollary 35. Let (E,I) be a collection of independent spaces and let (E,C) be a

collection of circuits.

1. (E,I) determines a q-matroid with collection of independent spaces I and

collection of circuits CI.

2. (E,C) determines a q-matroid with collection of circuits C and collection of

independent spaces IC.

Proof. It was shown in [4] that (E,I) determines a q-matroid with collection of

independent space I and that (E,C) determines a q-matroid with collection of cir-

cuits C. The statements now follow from Theorems 33 and 34 and the straightfor-

ward result that ICI = I and CIC = C. �

7.2 Bases and independent spaces

A cryptomorphism between independent spaces and bases was proven in [10, The-

orem 37]. However, we believe that there is a gap in that proof. In [10, Theorem 37],

one of the steps is assuming a collection of bases, defining IB = {I ⊆ B : B ∈ B},

and proving I satisfies the axioms (I1)-(I4). In the proof of (I3), truncation is used.

It was proven earlier in [10] that the truncation of a q-matroid, defined by its rank

function, is again a q-matroid. However, when assuming a collection of bases, this

result is not valid: it only becomes valid once a cryptomorphism between bases and

the rank function is established. This is not yet the case – in fact, a cryptomorphism

between bases and the rank function would be a corollary of the cryptomorphism

between bases and independent spaces, which is the goal of [10, Theorem 37].

In order to fix this issue, we can use our results from Section 3 that show the

redundancy of the axioms (I3) and (B3). As was also mention in [10], the axioms

(I4) and (B4) are easily related to each other. The next lemma makes this precise.

Lemma 36. 1. Let B be a collection of subspaces of E satisfying (B1) and

(B2). Define IB = {I ⊆ B : B ∈ B}. Then for all A ⊆ E, max(E, A ∩ B) =

max(A,IB).
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2. Let I be a collection of subspaces of E satisfying (I1) and (I2). Define BI =

max(I). Then for all A ⊆ E, max(A,I) = max(E, A ∩ BI).

Proof. 1. Let I ∈ max(E, A ∩ B). Then by definition, I ∈ IB. Suppose there

is an I′ ∈ max(A,IB) with dim(I) < dim(I′). Then there would be a B ∈ B

such that I′ ⊆ B, hence I′ ∈ max(E, A ∩ B), contradicting the maximality

of I. For the reverse inclusion, let I ∈ max(A,IB). Then there is a B ∈ B

such that I = B ∩ A. Suppose there is a B′ ∈ B such that dim(B′ ∩ A) >

dim(I). Then B′ ∩ A ∈ IB, contradicting the maximality of I. This proves

that max(E, A ∩ B) = max(A,IB).

2. It was proven in [10, Theorem 37] thatBI satisfies the axioms (B1) and (B2).

Also, it was shown that BIB = B and that IBI = I. Applying the first part of

this lemma toBI gives that max(E, A∩BI) = max(A,IBI) = max(A,I). �

Corollary 37. Let (E,I) be a collection of independent spaces and let (E,B) be a

collection of bases.

1. (E,I) determines a q-matroid with collection of independent spaces I and

collection of bases BI.

2. (E,B) determines a q-matroid with collection of bases B and collection of

independent spaces IB.

Proof. By Theorem 16, a collection of independent spaces is completely deter-

mined by the axioms (I1), (I2) and (oI4) and moreover, (E,I) defines a q-matroid.

By Theorems 17 and 29, a collection of bases is completely determined by the

axioms (B1), (B2) and (B4).

Assume I satisfies (I1), (I2), (I4). By [10, Theorem 37], BI satisfies (B1) and (B2)

and by Lemma 36 it satisfies (B4). For the converse, assume B satisfies (B1), (B2)

and (B4). Again by [10], IB satisfies (I1) and (I2) and by Lemma 36 it satisfies

(oI4). Finally, BIB = B and IBI = I is also proven in [10, Theorem 37]. �
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