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Abstract

We introduce a population model to test the hypothesis that even a
single migrant per generation may rescue a dying population. Let (ck :
k ∈ N) be a sequence of real numbers in (0, 1). Let Xn be a size of
the population at time n ≥ 0. Then, Xn+1 = Xn − Yn+1 + 1, where
the conditional distribution of Yn+1 given Xn = k is a binomial random
variable with parameters (k, c(k)). We assume that limk→∞ kc(k) = ρ
exists. If ρ < 1 the process is transient with speed 1 − ρ (so yes a single
migrant per generation may rescue a dying population!) and if ρ > 1
the process is positive recurrent. In the critical case ρ = 1 the process is
recurrent or transient according to how kc(k) converges to 1. When ρ = 0
and under some regularity conditions, the support of the increments is
eventually finite.

1 The model

A long standing subject in ecology is the preservation of endangered popula-
tions. Many populations are endangered by the continuing fragmentation of
their habitat. This may trigger low fertility due to the lack of genetic flow be-
tween different populations of the same species. In this work we introduce a
population model to test the hypothesis that even a single migrant per genera-
tion may rescue a dying population.

We now describe our model. Consider a discrete-time stochastic population
dynamics process X = (Xn : n ∈ Z+). Here Xn represents the number of
individuals alive at time n and is a positive integer. Conditioned on Xn = k,
at time n+ 1: (i) each individual is alive with probability 1− c(k) or dies with
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probability c(k), independently of each other; (ii) We add a single individual
(i.e. a migrant) to the population. Hence,

Xn+1 = Xn − Yn+1 + 1, (1)

where the conditional distribution of Yn+1 given Xn = k is a binomial random
variable with parameters (k, c(k)) that we denote by Bin(k, c(k)).

Observe that X is a Markov chain on N. We will assume that 0 < c(k) < 1
for all k ∈ N. This makes X an irreducible Markov chain. We will also assume
that the following (possibly infinite) limit exists,

lim
k→∞

kc(k) = ρ ∈ [0,+∞]. (2)

Note that individuals die with a probability which depends on the size of the
population. When ρ ∈ (0,∞), the Poisson limit for a binomial distribution
implies that the distribution of the increments from k converges to 1− Pois(ρ)
as k → ∞. This limit suggests that when ρ < 1 the process is transient and
when ρ > 1 the process is recurrent and plays a central role in some of our
proofs. Yet, our results require a much more refined analysis. The critical case
ρ = 1, may be recurrent or transient depending on the sequence (c(k) : k ∈ N)
and a good example to keep in mind is

c(k) =
1

ka + 1
,

where a > 0 is a parameter. In this case X is positive recurrent for a < 1 and
transient for a ≥ 1 while null recurrence is achieved for no value of a. See Section
5 and Figure 5. We would like to point out that the notion of “one migrant per
generation” appears in theoretical ecology as a rule to maintain genetic diversity
in a population, see [8]. Our model does not track the genetic make up of the
population but our results will show that one migrant per generation may be
enough to rescue a population demographically, see Figure 5. Along these lines,
laboratory experiments with insects have been performed to shed light between
the interplay of genetic and demographic rescues, see [6].

Mathematically, the process is in the same class as birth and death mod-
els with catastrophes, see [3] and [4]. It is also closely related to population-
dependent branching processes [7], and branching processes with immigration,
see [5], [10] and [11]. Specifically, this model is a generalization of random walks
with catastrophes first introduced by [9], see also [1]. In the latter two works
the probability of dying is independent of the population size. The introduction
of population-dependent probability of death leads to a variety of behaviors.
For instance, the model with constant c is always positive recurrent while the
present model can be recurrent or transient.

2 Recurrence and Transience

Our first result provides a coarse description of the process according to the
value of ρ:
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Theorem 1. 1. If ρ > 1 then X is positive recurrent.

2. If ρ < 1 then X is transient.

The proof of positive recurrence is obtained through a Lyapunov function.
The proof of transience uses stochastic domination and a coupling.

Proof of Theorem 1-1. We first prove part 1 of the Theorem. Suppose ρ > 1 is
finite. We will apply Foster’s Theorem see [2] [Theorem 1.1, p. 167] with the
function h(x) = x and F = {i : ic(i) ≤ ρ− ε}∪{1} where ε = (ρ−1)/2. Clearly
F is non-empty and finite. Next,

Ei[h(X1)] =E[1 + Bin(i, 1− c(i))]
=1 + i(1− c(i))
=h(i)− (ic(i)− 1).

For all i this expectation is finite, and for all i 6∈ F ,

Ei[h(X1)] ≤ h(i)− (ρ− ε− 1) = h(i)− ε.

Thus the conditions of Foster’s Theorem hold, completing the proof for ρ > 1
finite. It is easy to adapt the proof to the case ρ = +∞. We use the same h.
For fixed k > 1 we define F = {i : ic(i) < k}. As above we get for i 6∈ F

Ei[h(X1)] = h(i)− (ic(i)− 1) ≤ h(i)− ε,

where ε = k − 1 > 0. This completes the proof that X is positive recurrent for
all ρ > 1.

To prove Theorem 1-2, we first introduce a family of probability distributions
indexed by ρ̄ and ε > 0. Fix ρ̄ in (ρ, 1). Let ε be such that (1 + ε)ρ̄ < 1. Note
that

(1 + ε)e−ρ̄ >(1 + ε)(1− ρ̄)

=1 + ε− (1 + ε)ρ̄

>1 + ε− 1

=ε

Hence, (1 + ε)e−ρ̄ > ε. Let

µρ̄,ε(k) =

{
(1 + ε)e−ρ̄ − ε k = 0
1+ε
k! ρ̄

ke−ρ̄ k ≥ 1

Then
∞∑
k=0

µρ̄,ε(k) = (1 + ε)e−ρ̄ + (1 + ε)(1− e−ρ̄)− ε = 1.

Moreover, by comparison with Pois(ρ̄), the expectation with respect to µρ̄,ε is
equal to (1 + ε)ρ̄. We have the following:
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Lemma 2. Suppose ρ < 1 and let ρ̄ ∈ (ρ, 1). For j ≥ 1, let Zj be a binomial
random variable with parameters (j, c(j)). Then there exist ε > 0 and J ∈ N
such that for all j ≥ J ,

P (Zj = 0) ≥ µρ̄,ε(0)

P (Zj = k) ≤ µρ̄,ε(k) for all k ≥ 1.

Proof of Lemma 2. For any k ≥ 1, and j large enough so that jc(j) < 1

P (Zj = k) =

(
j

k

)
c(j)k(1− c(j))j−k

=
1

k!
j(j − 1)× · · · × (j − k + 1)(

c(j)

1− c(j)
)k(1− c(j))j

=
1

k!

j

j − jc(j)
× j − 1

j − jc(j)
× · · · × j − k + 1

j − jc(j)
(jc(j))k(1− c(j))j

≤ 1

k!

1

1− c(j)
(jc(j))k(1− c(j))j .

We use the fact that jc(j) < 1 for j large enough to get the last inequality.
Fixing any ρ̄ ∈ (ρ, 1). Now since

ln(1− c(j)) ≤ −c(j),
it follows that (1 − c(j))j ≤ e−jc(j). Since also 1

1−c(j) ≤ 1 + 2c(j) for j large

enough, there exists some j0 such that for k ≥ 1, j ≥ j0,

P (Zj = k) ≤(1 + 2/j)P (Pois(jc(j)) = k)

≤(1 + ε)P (Pois(jc(j)) = k),

where Pois(λ) is a Poisson random variable with parameter λ. Moreover, for
each k ≥ 1, the function λ → λke−λ is increasing on (0, 1), and so for every
ρ̄ ∈ (ρ, 1), there exists some j1 which may depend on ρ so that for k ≥ 1,

P (Pois(jc(j)) = k) ≤ P (Pois(ρ̄) = k).

Let J = max(j0, j1). Then, for k ≥ 1 and j ≥ J ,

P (Zj = k) ≤ (1 + ε)P (Pois(ρ̄) = k) = µρ̄,ε(k).

This proves the Lemma for k ≥ 1. We now turn to k = 0. Since

P (Pois(ρ̄) ≥ 1) = 1− e−ρ̄,
it follows that

P (Zj = 0) =1−
∑
k≥1

P (Zj = k)

≥1− (1 + ε)
∑
k≥1

P (Pois(ρ̄) = k)

=(1 + ε)e−ρ̄ − ε
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Proof of Theorem 1-2. We will prove the transience of X through a coupling
with a random walk Y defined as follows Y0 = 0 and Yn+1 = Yn + 1 − Rn+1

where (Rn : n ∈ N) is an IID sequence of random variables with distribution
µρ̄,ε. Observe that,

1. Y is transient because its IID increments have expectation 1−(1+ε)ρ̄ > 0.
Consequently, the probability that j+Y will ever go below any given level
L tends to 0 as j →∞.

2. Regardless of whether X is recurrent or transient, lim supn→∞Xn = ∞
a.s.

3. As shown by Lemma 2 if X is above J its increments dominate those of
Y.

These three facts imply that for every L > J and η > 0 there exists some
j = j(η, L) > J such that with probability 1− η X will never drop below L. As
η and L are arbitrary, it follows that lim infn→∞Xn =∞ a.s.

3 Ballistic Regime, ρ < 1

In this section we obtain refinements to Theorem 1-2.

3.1 Law of Large Numbers

Theorem 3. If ρ < 1 then limn→∞
Xn

n = 1− ρ in probability. If ρ = 1 and the
process X is transient then the result holds as well.

A sufficient condition for X to be transient when ρ = 1 will be given in
Section 4. The proof of the theorem is obtained by showing that the process is
well-approximated by the random walk with increments 1− Pois(ρ).

Proof. First, recall that a pair of random variables Z ∼ Bin(n, p) and L ∼
Pois(np) can be constructed in such a way that

E|Z − L| ≤ np2, (3)

where we use the notation X ∼ Y to indicate that X and Y have the same
distribution. Next, observe that

Xn −X0 = n−
n−1∑
j=0

Binj+1(Xj , c(Xj)).

For each j, let Lj+1 ∼ Pois(Xjc(Xj)) coupled with Binj+1(Xj , c(Xj)) so
that the respective bound from (3) holds. As a result, we have that

Xn −X0 = n−
n−1∑
j=0

Poisj+1(Xjc(Xj)) +D1(n), (4)
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where

D1(n) =

n−1∑
j=0

(Poisj+1(Xjc(Xj))− Binj+1(Xj , c(Xj))) .

Hence,

1

n
E|D1(n)| ≤ 1

n
E[

n−1∑
j=0

Xjc(Xj)
2].

Next, use the fact that if L ∼ Pois(λ) and L′ ∼ Pois(λ′), where λ′ ≤ λ, they
can be coupled in such a way that

L− L′ = L′′ (5)

where L′′ is Pois(λ − λ′), independent of L′. Define an IID sequence (Lj)j≥1

with distribution Pois(ρ). Using the last observation we can rewrite (4) as

Xn −X0 = n−
n−1∑
j=0

Lj+1 +D1(n) +D2(n), (6)

where

D2(n) =

n−1∑
j=0

(Lj+1 − Poisj+1(Xjc(Xj))) .

From (5), we have

1

n
E[|D2(n)|] ≤ E 1

n

n−1∑
j=0

[|Xjc(Xj)− ρ|]. (7)

By Theorem 1 the chain X is transient when ρ < 1. The proof below works
also for ρ = 1 provided X is transient. In both cases, Xn → ∞ a.s. It fol-
lows that |Xjc(Xj) − ρ| → 0 a.s. as j → ∞. Therefore, the Cesaro sums
1
n

∑n−1
j=0 |Xjc(Xj)−ρ| → 0 as n→∞ a.s. Since the sequence (lc(l)) is bounded,

we apply the bounded convergence theorem to show that the righthand side of
(7) tends to 0 as n→∞, proving

lim
n→∞

E[
|D2(n)|

n
] = 0. (8)

Since Xjc(Xj)
2 converges to 0 as j goes to infinity we use the bounded conver-

gence theorem again to show that,

lim
n→∞

E[
|D1(n)|

n
] = 0. (9)

Observe that (8) and (9) imply that 1
nD2(n) and 1

nD1(n) converge to zero
in probability. Applying the law of the large numbers to the partial sums∑n−1
j=0 Lj+1 we obtain from (6)

lim
n→∞

Xn

n
= 1− E[L1] = 1− ρ,

6



in probability. The proof of Theorem 3 is complete.

3.2 Eventually Bounded Drops

The fastest linear rate of growth for the population size is the trivial rate, one,
attained when ρ = 0 as stated in Theorem 3. In this section we provide a
finer analysis by looking at the size of drops under some regularity condition on
(c(k) : k ∈ N). We assume that the sequence (c(k)) of real numbers in (0, 1)
satisfies ∑

k

(kc(k))1+γ <∞ for some γ ≥ 0 and (10)

lim sup
k→∞

c(k − 1)

c(k)
<∞ (11)

Note that under assumption (10) we have ρ = 0 and therefore by Theorem 3,
Xn/n→ 1 in probability. The results in this section will give a finer description
of the paths of X. Recall that for n ≥ 0,

Xn+1 = Xn − Yn+1 + 1,

where the conditional distribution of Yn+1 given Xn = k is a binomial random
variable with parameters (k, c(k)) that we denote by Bin(k, c(k)).

Theorem 4. Assume that (10) and (11) hold and let γ0 be the smallest γ ∈ Z+

satisfying (10). Then almost surely,

1. There exists some n0 such that Yn ≤ γ0 for all n ≥ n0.

2. Yn = k i.o. for all k ≤ γ0.

As one may expect, the theorem is obtained through Borel-Cantelli. We
need the following:

Lemma 5. Assume that ρ = 0 and that (11) holds. Let k ∈ Z+. For l ≥ k let
Sl,k be the event that starting from l the process X hits l + 1 before any of the
Y -s hitting a value larger than k. Then there exists a positive constant Hk such

P (Sl,k) ≥ 1−Hk(lc(l))k+1 (12)

for all l ≥ k.

We will prove this lemma in Section 6.

Proof of Theorem 4. We first prove part 1 of Theorem 4. For any fixed k and
m ≥ k, let Am be the event that from the first time X hits m the process X
hits m+ 1 before any Y is larger than k, then hits m+ 2 before any Y is larger
than k, etc... By the Markov property,

P (Am) =
∏
l≥m

P (Sl,k).

7



Then by the Lemma 5

P (Am) ≥
∏
l≥m

(1−Hk(lc(l))k+1).

Now take k = γ0. By (10) and the definition of γ0 the product on the RHS
converges which in turn implies that limm→∞ P (Am) = 1. Since the sequence
of events (Am) is increasing, it follows that

P (
⋃
m

Am) = lim
m→∞

P (Am) = 1.

As a result, a.s. the values of the Y -s are eventually ≤ k = γ0. This proves
statement 1 of Theorem 4.

Now we turn to the proof of statement 2 of Theorem 4. Let Tl be the first
time that the chain X visits l. For k ≤ γ0, let Bl,k be the event that YTl+1 = k.
Note that by the strong Markov property Bl,k is independent of Bl′,k for l′ < l.
Moreover, we have the lower bound

P (Bl,k) =

(
l

k

)
c(l)k(1− c(l))l−k

≥ (l − k)k

k!
c(l))k(1− c(l))l

=
(1− c(l))l

k!

(l − k)k

lk
(lc(l))k

≥ Ck(lc(l))k

Observe that since k ≤ γ0,
∑
l P (Bl,k) = ∞, and so because of indepen-

dence of the events Bl,k, it follows from the second Borel-Cantelli Lemma that
P (Bl,k i.o.) = 1. In particular, a.s. Y attains the value k i.o. This completes
the proof of Theorem 4.

4 Critical Regime, ρ = 1

In this section we assume:

c(k) =
1 + η(k)

k
,

where η(k)→ 0 as k →∞.

Theorem 6. 1. If η is eventually nonnegative, then X is recurrent.

2. Suppose that η(x) ≤ − 1
1+x eventually then X is transient.

We first prove Theorem 6-1.

Lemma 7. For N ≥ 0 let uN (k) = 1
N+k . Suppose η ≥ 0. Then uN (Xt) is a

sub-martingale.
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Proof of Lemma 7. To show the conclusion it is enough to show for all x that

Ex[uN (X1)] ≥ uN (x).

Now,
Ex[uN (X1)] ≥ uN (Ex[X1]),

by Jensen’s inequality, as uN is convex. However,

Ex[X1] = E[1 + Bin(x, 1− c(x))] = 1 + x(1− c(x)).

Therefore,

Ex[uN (X1)] ≥ 1

N + 1 + x(1− c(x))
.

Observe that, 1
N+1+x(1−c(x)) ≥

1
N+x if and only if xc(x) ≥ 1, proving the

result.

Proof of Theorem 6-1. Without loss of generality we may assume that η(x) ≥ 0
for all x.

Let τx = inf{t : Xt = x}. Since uN (Xt) is a submartingale we can apply the
optional stopping theorem to obtain for every M > 1,

uN (x) ≤ Ex[uN (Xτ1∧τM )] = Px(τ1 < τM )uN (1) + (1− Px(τ1 < τM ))uN (M).

This is equivalent to

Px(τ1 < τM ) ≥ uN (x)− uN (M)

uN (1)− uN (M)
.

By taking M →∞ on both sides, we have

Px(τ1 <∞) ≥ uN (x)

uN (1)
=
N + 1

N + x
.

The result follows by taking N →∞.

Proof of Theorem 6-2. Without loss of generality, we may assume that

η(x) ≤ − 1

1 + x

for all x ∈ N. Let u(x) = 1
x . We show that under the given assumptions, u(Xt)

is a supermartingale. Indeed,

Ex[u(X1)] = E[
1

1 + Bin(x, 1− c)
].

Note that for any finite variable Z taking values in Z+,

E[
1

1 + Z
] =

∫ 1

0

E[λZ ]dλ.
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In the case of Z ∼ Bin(x, 1− c(x)), we get

Ex[u(X1)] =
1− c(x)x+1

(x+ 1)(1− c(x))
.

Thus Ex[u(X1)] ≤ u(x) = 1
x if and only if

(x+ 1)(1− c(x)) ≥ x(1− c(x)x+1).

After simplifying the expression, this inequality is equivalent to

(x+ 1)c(x) ≤ 1 + c(x)x+1.

This inequality will hold whenever c(x)(x+ 1) ≤ 1 which is equivalent to

η(x) ≤ − 1

1 + x
.

Hence, under this condition on η, u(Xt) is a supermartingale.
Then, an analysis analogous to the one in the proof of Theorem 6-1 with the

appropriate changes gives

Px(τ1 <∞) ≤ u(x)

u(1)
=

1

x
.

In particular, X is transient.

5 A particular case

In this section, we set for any natural number k,

c(k) =
1

ka + 1
,

where a > 0 is a fixed parameter. Note that with our definition of c(1), X is an
irreducible Markov chain on the natural numbers.

We will show that the process X is positive recurrent for a < 1 and transient
for a ≥ 1. Hence, for no value of a is X null recurrent.

5.1 Positive recurrence

• If a < 1 then X is a positive recurrent Markov chain.

Note that limk kc(k) = +∞ when a < 1. Hence, by Theorem 1 the process
X is positive recurrent.
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Figure 1: Simulations for c(k) = 1/(1 + ka) for a = 0.99 (positive recurrent,
red) and a = 1.01 (transient, blue). In both simulations, X0 = 100.

5.2 Transience

• If a > 1 then the process X is transient.

Note that limk kc(k) = 0 when a > 1. Hence, by Theorem 1 the process X
is transient.

For the next result we apply Theorem 4.

• If a > 2 then a.s. there exists a time n0 such that if n ≥ n0 then

Xn+1 = Xn + 1.

This is so because if a > 2 then the corresponding γ0 in Theorem 4 is 0. The
result above follows.

• If 1 < a ≤ 2 there exists a unique natural number ka such that

ka + 2

ka + 1
< a ≤ ka + 1

ka
.

The corresponding γ0 in Theorem 4 is then ka.

We now prove this claim. The series∑
k≥1

(kc(k))1+γ

11



converges if and only if

γ > −1 +
1

a− 1
.

On the other hand,

ka − 1 ≤ −1 +
1

a− 1
< ka.

Hence, the smallest integer γ for which the series above converges is ka. This
proves the claim.

5.3 Critical case

• If a=1 the process X is transient.

If a = 1 then

kck =
k

1 + k
= 1− 1

1 + k
.

In the notation of Theorem 6, η(k) = − 1
1+k . Hence, this theorem applies and

X is transient.

6 Proof of Lemma 5

6.1 Preliminaries

Let l ∈ Z+. In what follows we write Zl for a Bin(l, c(l))-distributed random
variable.

Lemma 8. Let l ∈ Z+. Then for every fixed k ≤ l

P (Zl ≥ k)− P (Zl = k) ≤ lc(l)f(l)P (Zl = k),

where f(l) = elc(l)(1− c(l))−l.

Proof. For this proof we need the following bound for integers 0 ≤ k < j ≤ l:(
l

j

)
=

1

j!
l(l − 1) . . . (l − k) . . . (l − j + 1)

≤ 1

j!

l!

(l − k − 1)!
lj−k−1. (13)
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Next,

P (Zl ≥ k)− P (Zl = k) =

l∑
j=k+1

(
l

j

)
c(l)j(1− c(l))l−j

(13)

≤ l!

(l − k − 1)!

l∑
j=k+1

lj−k−1

j!
c(l)j

≤ l!

(l − k − 1)!
l−k−1

∞∑
j=k+1

lj

j!
c(l)j

≤ elc(l) l!

(l − k − 1)!

(c(l))k+1

(k + 1)!

where the last line was obtained from the Lagrange remainder term for the
Taylor series for x→ ex. Hence,

P (Zl ≥ k)− P (Zl = k) ≤ elc(l)
(

l

k + 1

)
c(l)k+1

= elc(l)c(l)
l − k
k + 1

(
l

k

)
c(l)k(1− c(l))l−k(1− c(l))k−l

= elc(l)c(l)
l − k
k + 1

(1− c(l))k−lP (Zl = k)

≤ elc(l)c(l)l(1− c(l))−lP (Zl = k).

The following corollary is an immediate consequence of Lemma 8.

Corollary 9. For k such that 0 ≤ k ≤ l

P (Zl ≥ k) ≤ (lc(l))k

k!
(1 + lc(l)f(l)) ,

where f(l) = elc(l)(1− c(l))−l.

6.2 Proof of Lemma 5

Recall that Sl,k is the event that starting from l the process X hits l+1 before any
of the Y -s hitting a value larger than k where l ≥ k ≥ 0 are two positive integers.
For notational convenience we fix k and write Sl for Sl,k. By conditioning on
the first step and using the Markov property we obtain the following master
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formula:

P (Sl) = P (Zl = 0)

+ P (Zl = 1)P (Sl)

+ P (Zl = 2)P (Sl−1)P (Sl)

+ . . .

+ P (Zl = k)

k−1∏
j=0

P (Sl−j).

(14)

We will apply a bootstrapping argument on this formula in order to obtain sharp
lower bounds on P (Sl).

Let l > k(k−1)
2 be an integer. Note that under this condition, l ≥ k. Let

L0 = l − k(k − 1)

2
> 0.

and we continue inductively, letting Lj+1 = Lj+j, j = 0, . . . , k−1. Specifically,
Lk = l.

We will prove by induction that for every j = 0, . . . , k there exists a constant
Hj > 0 such that

P (Sm) ≥ 1− (lc(l))j+1Hj for all Lj ≤ m ≤ l. (15)

Base case j = 0. By using only the first term on the RHS of (14) and
applying Corollary 9 we obtain

P (Sm) ≥P (Zm = 0)

=1− P (Zm ≥ 1)

≥1−mc(m) (1 +mc(m)f(m))

Setting

K0(l) = max
mc(m)

lc(l)
,

where the maximum is over allm in the finite range {L0, . . . , l} whose cardinality
is bounded above by k2. It follows from (11) that lim supl→∞K0(l) <∞. Using
also that f is a bounded function and that mc(m) is a convergent sequence,
1 +mc(m)f(m) is bounded. Hence, there exists a constant H0 such that

P (Sm) ≥ 1− lc(l)H0 for L0 ≤ m ≤ l.

The induction statement for j = 0 holds true.
Induction step. Assume that the induction statement (15) holds for j. We

will prove it for j+1. Using (14) up to the term corresponding to P (Zm = j+1),
we have that for every k ≤ m ≤ l:

P (Sm) ≥ P (Zm = 0) +

j+1∑
i=1

P (Zm = i)
∏

0≤h<i

P (Sm−h).
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In order to apply the induction hypothesis to this inequality the differences
m− h in our range must fall in the range {Lj , . . . , l}. That is, we must have

Lj ≤ m− h ≤ l.

As by assumption m ≤ l and h ≥ 0, the inequality on the right holds for all h.
The largest value h attains is j,

m− h ≥ m− j
≥ Lj+1 − j
= Lj

Thus, applying the induction hypothesis with m in the range {Lj+1, . . . , l} we
obtain

P (Sm) ≥ P (Zm = 0) +

j+1∑
i=1

P (Zm = i)
(
1− (lc(l))j+1Hj

)i
≥ P (Zm = 0) +

j+1∑
i=1

P (Zm = i)
(
1− i(lc(l))j+1Hj

)
,

where we used the inequality (1 − x)i ≥ 1 − ix which is valid for any real
0 ≤ x ≤ 1 and any natural number i. Hence,

P (Sm) ≥
j+1∑
i=0

P (Zm = i)− (lc(l))j+1Hj

j+1∑
i=1

iP (Zm = i)

≥ 1− P (Zm ≥ j + 2)− (lc(l))j+1HjE(Zm)

≥ 1− (mc(m))j+2

(j + 2)!
(1 +mc(m)f(m))− (lc(l))j+1Hjmc(m)

To finish this induction step we use the two same observations as in the base
step. First, 1 +mc(m)f(m) is a bounded function. Second, it follows from (11)
and the fact that m is in the finite range Lj . . . l, that there exists a constant
Kj such that

mc(m) ≤ Kj lc(l).

Using these two observations yield the existence of a constant Hj+1 such that

P (Sm) ≥ 1−Hj+1(lc(l))j+2.

Now that the induction is complete, we note that for j = k, Lk = l. Hence, the
induction statement for j = k reads

P (Sl) ≥ 1−Hk(lc(l))k+1.

This proves the lemma for all l larger than k(k − 1)/2. To complete the proof,
we may need to increase Hk to satisfy the inequality for all l ≥ k.
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