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Can a single migrant per generation rescue a
dying population? *

Iddo Ben-Arif Rinaldo B. Schinazi ¥
April 14, 2023

Abstract

We introduce a population model to test the hypothesis that even a
single migrant per generation may rescue a dying population. Let (cx :
k € N) be a sequence of real numbers in (0,1). Let X, be a size of
the population at time n > 0. Then, X,+1 = X, — Yo41 + 1, where
the conditional distribution of Y, 41 given X,, = k is a binomial random
variable with parameters (k,c(k)). We assume that limg_o kc(k) = p
exists. If p < 1 the process is transient with speed 1 — p (so yes a single
migrant per generation may rescue a dying population!) and if p > 1
the process is positive recurrent. In the critical case p = 1 the process is
recurrent or transient according to how kc(k) converges to 1. When p = 0
and under some regularity conditions, the support of the increments is
eventually finite.

1 The model

A long standing subject in ecology is the preservation of endangered popula-
tions. Many populations are endangered by the continuing fragmentation of
their habitat. This may trigger low fertility due to the lack of genetic flow be-
tween different populations of the same species. In this work we introduce a
population model to test the hypothesis that even a single migrant per genera-
tion may rescue a dying population.

We now describe our model. Consider a discrete-time stochastic population
dynamics process X = (X,, : n € Z,). Here X, represents the number of
individuals alive at time n and is a positive integer. Conditioned on X, = k,
at time n + 1: (i) each individual is alive with probability 1 — ¢(k) or dies with
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probability ¢(k), independently of each other; (ii) We add a single individual
(i.e. a migrant) to the population. Hence,

Xn+1 = Xn - YnJrl + 17 (1)

where the conditional distribution of Y, 41 given X,, = k is a binomial random
variable with parameters (k, c(k)) that we denote by Bin(k, c(k)).

Observe that X is a Markov chain on N. We will assume that 0 < ¢(k) < 1
for all £ € N. This makes X an irreducible Markov chain. We will also assume
that the following (possibly infinite) limit exists,

kl;r& ke(k) = p € [0, +00]. (2)

Note that individuals die with a probability which depends on the size of the
population. When p € (0,00), the Poisson limit for a binomial distribution
implies that the distribution of the increments from & converges to 1 — Pois(p)
as k — oo. This limit suggests that when p < 1 the process is transient and
when p > 1 the process is recurrent and plays a central role in some of our
proofs. Yet, our results require a much more refined analysis. The critical case
p = 1, may be recurrent or transient depending on the sequence (c(k) : k € N)
and a good example to keep in mind is
1

c(k) = k1

where a > 0 is a parameter. In this case X is positive recurrent for ¢ < 1 and
transient for a > 1 while null recurrence is achieved for no value of a. See Section
[ and Figure[5] We would like to point out that the notion of “one migrant per
generation” appears in theoretical ecology as a rule to maintain genetic diversity
in a population, see [8]. Our model does not track the genetic make up of the
population but our results will show that one migrant per generation may be
enough to rescue a population demographically, see Figure[5l Along these lines,
laboratory experiments with insects have been performed to shed light between
the interplay of genetic and demographic rescues, see [6].

Mathematically, the process is in the same class as birth and death mod-
els with catastrophes, see [3] and [4]. It is also closely related to population-
dependent branching processes [7], and branching processes with immigration,
see [5], [I0] and [II]. Specifically, this model is a generalization of random walks
with catastrophes first introduced by [9], see also [I]. In the latter two works
the probability of dying is independent of the population size. The introduction
of population-dependent probability of death leads to a variety of behaviors.
For instance, the model with constant c is always positive recurrent while the
present model can be recurrent or transient.

2 Recurrence and Transience

Our first result provides a coarse description of the process according to the
value of p:



Theorem 1. 1. If p > 1 then X is positive recurrent.
2. If p <1 then X is transient.

The proof of positive recurrence is obtained through a Lyapunov function.
The proof of transience uses stochastic domination and a coupling.

Proof of Theorem[1}1. We first prove part 1 of the Theorem. Suppose p > 1 is
finite. We will apply Foster’s Theorem see [2] [Theorem 1.1, p. 167] with the
function h(x) = z and F = {i : ic(i) < p—e}U{1} where e = (p—1)/2. Clearly
F' is non-empty and finite. Next,
Eih(X1)] =B[1 + Bin(i, 1 - c(i))
=1+i(1 — e(i))
=h(i) — (ic(i) — 1).
For all 4 this expectation is finite, and for all i & F,
Ei[n(X1)] < h(i) = (p—€—1) = h(i) — €.

Thus the conditions of Foster’s Theorem hold, completing the proof for p > 1
finite. It is easy to adapt the proof to the case p = +00. We use the same h.
For fixed k > 1 we define F' = {i : ic(i) < k}. As above we get for i ¢ F'

Eh(X,)] = h(i) - (ic(i) — 1) < (i) — €,

where ¢ = k — 1 > 0. This completes the proof that X is positive recurrent for
all p > 1. O

To prove Theorem[I}2, we first introduce a family of probability distributions
indexed by p and € > 0. Fix p in (p,1). Let € be such that (14 €)p < 1. Note
that

(1+ee”>1+e)(1—p)
=l+e—(1+€)p
>1+e—1

Hence, (1 +¢€)e ? > €. Let

Then

Zum(k) =(1l+ee”+(1+e)(l—e?)—e=1.
k=0

Moreover, by comparison with Pois(p), the expectation with respect to pj . is
equal to (1 + €)p. We have the following;:



Lemma 2. Suppose p < 1 and let p € (p,1). For j > 1, let Z; be a binomial
random variable with parameters (j,c(j)). Then there exist € > 0 and J € N
such that for all j > J,

P(Z; = 0) = p5,(0)
P(Z; = k) < ppe(k) for all k> 1.
Proof of Lemma[d For any k > 1, and j large enough so that je(j) < 1

Pz =) = ()l (1 - iy

=IO <k G f_‘i@’“(l — )y
T X T X e e = )y

< e el (1= )

We use the fact that je(j) < 1 for j large enough to get the last inequality.
Fixing any p € (p,1). Now since

In(1 - ¢(4)) < =),

it follows that (1 — c(j))? < e7°U). Since also %c@) < 1+ 2¢(j) for j large

enough, there exists some jo such that for £ > 1,5 > jo,
P(Z; = k) <(1+2/j)P(Pois(je(j)) = k)
<(1+ )P (Pois(je(j)) = k),

where Pois()) is a Poisson random variable with parameter A. Moreover, for
each k > 1, the function A — A¥e™* is increasing on (0,1), and so for every
p € (p,1), there exists some j; which may depend on p so that for & > 1,

P(Pois(je(j)) = k) < P(Pois(p) = k).
Let J = max(jo,j1). Then, for £ > 1 and j > J,
P(Z; = k) < (1+ €)P(Pois(p) = k) = i (k).
This proves the Lemma for £ > 1. We now turn to k£ = 0. Since
P(Pois(p) > 1) =1—e"",
it follows that
P(Z;=0)=1-Y P(Z; =k)

E>1

>1—(1+¢€) > P(Pois(p) = k)
E>1

=(1+4+ee”—¢



Proof of Theorem[1}2. We will prove the transience of X through a coupling
with a random walk Y defined as follows Yy = 0 and Y41 =Y, +1 — R, 1
where (R, : n € N) is an IID sequence of random variables with distribution
tp,e. Observe that,

1. Y is transient because its IID increments have expectation 1—(1+4€)p > 0.
Consequently, the probability that j+Y will ever go below any given level
L tends to 0 as j — oo.

2. Regardless of whether X is recurrent or transient, limsup,, . X, = oo
a.s.

3. As shown by Lemma [2|if X is above J its increments dominate those of
Y.

These three facts imply that for every L > J and n > 0 there exists some
j =43j(n,L) > J such that with probability 1 —»n X will never drop below L. As
n and L are arbitrary, it follows that liminf,,_, . X, = co a.s. O

3 Ballistic Regime, p < 1

In this section we obtain refinements to Theorem [I}2.

3.1 Law of Large Numbers

Theorem 3. If p < 1 then lim,_, % = 1—p in probability. If p =1 and the
process X is transient then the result holds as well.

A sufficient condition for X to be transient when p = 1 will be given in
Section [d] The proof of the theorem is obtained by showing that the process is
well-approximated by the random walk with increments 1 — Pois(p).

Proof. First, recall that a pair of random variables Z ~ Bin(n,p) and L ~
Pois(np) can be constructed in such a way that

E|Z — L| < np?, (3)
where we use the notation X ~ Y to indicate that X and Y have the same

distribution. Next, observe that

n—1
Xn—Xo=n- Y Binj1 (X, c(X;)).
§=0
For each j, let Lj;1 ~ Pois(X;c(X;)) coupled with Binji;(X;,c(X;)) so
that the respective bound from holds. As a result, we have that

n—1
X, — Xo=n—Y_ Pois;1(X;e(X;)) + Di(n), (4)
§=0



where

|
-

n

Di(n) = >  (Poisj4+1(X;e(X;)) — Binj1(Xj, ¢(X;))) -

<.
I
o

Hence,
1 1 n—1
~E|Di(n)] < ~BY" X;e(X;)?).
j=0

Next, use the fact that if L ~ Pois(A\) and L’ ~ Pois(\'), where X' < A, they
can be coupled in such a way that

L-L=1r" (5)
where L” is Pois(A — A’), independent of L’. Define an IID sequence (L;);>1

with distribution Pois(p). Using the last observation we can rewrite as

n—1
X’I’L_XO:n_ZLj+1+D1(n>+D2(n)7 (6)
=0

where

iy

n—

Ds(n) = Z (Lj+1 — Poisj1(Xe(X;))) -

7=0
From , we have
1 1 n—1
~EllD2(n)] < B~ D lIXje(X5) = pll- (7)
§=0

By Theorem [I] the chain X is transient when p < 1. The proof below works
also for p = 1 provided X is transient. In both cases, X,, — oo a.s. It fol-
lows that |X;e(X;) —p| — 0 as. as j — oo. Therefore, the Cesaro sums
i Z;:(} | X,c(X;)—p| = 0 asn — oo a.s. Since the sequence (Ic(l)) is bounded,
we apply the bounded convergence theorem to show that the righthand side of
tends to 0 as n — oo, proving

lim E[‘D2(")|

n— 00 n

J=o0. (8)

Since Xjc(X j)2 converges to 0 as j goes to infinity we use the bounded conver-
gence theorem again to show that,

D
tim g2
n—oo n
Observe that and ([9) imply that 1Ds(n) and 2D;(n) converge to zero
in probability. Applying the law of the large numbers to the partial sums

Z;:Ol Lj41 we obtain from (6]

]=0. (9)

Xn
lim — =1—-FE[L;]=1-p,

n—oo N



in probability. The proof of Theorem [3|is complete. O

3.2 Eventually Bounded Drops

The fastest linear rate of growth for the population size is the trivial rate, one,
attained when p = 0 as stated in Theorem [3] In this section we provide a
finer analysis by looking at the size of drops under some regularity condition on
(c(k) : k € N). We assume that the sequence (c(k)) of real numbers in (0,1)
satisfies

Z(kc(k))p” < oo for some v > 0 and (10)
k
lim sup clk—1) < 00 (11)

k—oco C(k)

Note that under assumption we have p = 0 and therefore by Theorem
X, /n — 1 in probability. The results in this section will give a finer description
of the paths of X. Recall that for n > 0,

XnJrl - Xn — I'n41 + 1;

where the conditional distribution of Y, 411 given X,, = k is a binomial random
variable with parameters (k, c(k)) that we denote by Bin(k, c¢(k)).

Theorem 4. Assume that and hold and let v be the smallest v € 7.+
satisfying . Then almost surely,

1. There exists some ng such that 'Y, <~y for all n > ng.
2. Y,=kio. foralk<~y.

As one may expect, the theorem is obtained through Borel-Cantelli. We
need the following:

Lemma 5. Assume that p =0 and that holds. Let k € Z. Forl >k let
Sk be the event that starting from [ the process X hits [ + 1 before any of the
Y -s hitting a value larger than k. Then there exists a positive constant Hy, such

P(Si) > 1— Hy(le(l))*! (12)
for alll > k.
We will prove this lemma in Section [6}

Proof of Theorem [l We first prove part 1 of Theorem [4 For any fixed k and
m > k, let A,, be the event that from the first time X hits m the process X
hits m + 1 before any Y is larger than k, then hits m + 2 before any Y is larger
than k, etc... By the Markov property,

P(Anm) =[] P(Sie)-

I>m



Then by the Lemma

P(An) > [] (1 = He(le(@) ).

I>m

Now take k = vo. By and the definition of 7y the product on the RHS
converges which in turn implies that lim,, ,~, P(A4,,) = 1. Since the sequence
of events (A4,,) is increasing, it follows that

P(LTJ Ap) = lim P(Ap) =1.
As a result, a.s. the values of the Y-s are eventually < k = ~y. This proves
statement 1 of Theorem [

Now we turn to the proof of statement 2 of Theorem [l Let 7} be the first
time that the chain X visits . For k < g, let B;; be the event that Y7,;1 = k.
Note that by the strong Markov property B i, is independent of By j for I < I.
Moreover, we have the lower bound

P50 = ()1 - ey~

(- b

> Cy(le(1))*

Observe that since k < 70, Y, P(Brx) = o0, and so because of indepen-
dence of the events By, it follows from the second Borel-Cantelli Lemma that
P(By i.0.) = 1. In particular, a.s. Y attains the value k i.0. This completes
the proof of Theorem O

4 Critical Regime, p=1

In this section we assume: ) L
efh) = L2

where n(k) — 0 as k — oo.
Theorem 6. 1. If n is eventually nonnegative, then X is recurrent.
2. Suppose that n(x) < fﬁ eventually then X is transient.

We first prove Theorem [G}1.

Lemma 7. For N > 0 let uy(k) = ﬁ Suppose n > 0. Then un(Xt) is a
sub-martingale.



Proof of Lemma[7 To show the conclusion it is enough to show for all z that
EI[UN(X1>] > UN(.’E)

Now,
Eglun (X1)] = un (Ez[X1]),

by Jensen’s inequality, as uy is convex. However,

E.[X1] = E[1+Bin(z,1 — c(z))] =14+ 2(1 — ¢(x)).

Therefore,
1
E X1)| > .
plun (X)) = N+4+1+4+2z(1—c(x))
Observe that, N+1+z%176(z)) > Nlﬂp if and only if zc(z) > 1, proving the
result. O

Proof of Theorem[6F1. Without loss of generality we may assume that n(z) > 0
for all z.

Let 7, = inf{t : X; = «}. Since uy(X:) is a submartingale we can apply the
optional stopping theorem to obtain for every M > 1,

un(z) < Eplun (Xoyary )] = Po(m < 7ar)un (1) + (1= Po(y < ) )un (M).

This is equivalent to
P, (Tl < TM) >

By taking M — oo on both sides, we have

uy(z) N+1
P.(m <o0) > = .
(l ) N(]-

The result follows by taking N — oo. O

<
=
+
5]

Proof of Theorem[6-2. Without loss of generality, we may assume that

1
1+2x

n(z) <

for all z € N. Let u(z) = 1. We show that under the given assumptions, u(X;)
is a supermartingale. Indeed,

1

By [u(X1)] = E[l + Bin(z,1 - ¢)

]

Note that for any finite variable Z taking values in Z,

1
E[H%] - /0 E7]d).



In the case of Z ~ Bin(x,1 — ¢(z)), we get

1— c(x)+!

(z+ 1)1 —c(z))
Thus E,[u(X1)] < u(z) =1 if and only if

By [u(Xy)] =

(2 + 1)1 = ef@)) > a1 — c(@)™).
After simplifying the expression, this inequality is equivalent to
(x+ De(z) <1+ c(x)™
This inequality will hold whenever ¢(z)(x 4+ 1) < 1 which is equivalent to

1
1+z

n(x) <

Hence, under this condition on 7, u(X;) is a supermartingale.
Then, an analysis analogous to the one in the proof of Theorem [6}1 with the
appropriate changes gives

u(x)
Px(T1<OO)SW1)—;.

In particular, X is transient. O

5 A particular case

In this section, we set for any natural number k,

1

k) = 1y

where a > 0 is a fixed parameter. Note that with our definition of ¢(1), X is an
irreducible Markov chain on the natural numbers.

We will show that the process X is positive recurrent for a < 1 and transient
for a > 1. Hence, for no value of a is X null recurrent.

5.1 Positive recurrence
e If a < 1 then X is a positive recurrent Markov chain.

Note that limy ke(k) = +o00 when a < 1. Hence, by Theorem [1f the process
X is positive recurrent.

10
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Figure 1: Simulations for c(k) = 1/(1 + k*) for a = 0.99 (positive recurrent,
red) and a = 1.01 (transient, blue). In both simulations, X, = 100.

5.2 Transience

e If @ > 1 then the process X is transient.

Note that limg kc(k) = 0 when a > 1. Hence, by Theorem [I| the process X
is transient.

For the next result we apply Theorem [

e If ¢ > 2 then a.s. there exists a time ng such that if n > ng then

Xn+1 == Xn + 1

This is so because if a > 2 then the corresponding 7y in Theorem [4]is 0. The
result above follows.

e If 1 < a < 2 there exists a unique natural number k, such that

ko +2 a<l€a+1

bl S TR

The corresponding 7o in Theorem [ is then k,.

We now prove this claim. The series

> (ke(k)

E>1

11



converges if and only if

1

>—-1+—.
K + a—1

On the other hand,

1

ke —1< -1+ —— <k,.
a—1

Hence, the smallest integer v for which the series above converges is k,. This
proves the claim.

5.3 Critical case

e If a=1 the process X is transient.

If a =1 then . .
ke = =1- .
Ttk 1+k
In the notation of Theorem |§|7 n(k) = —H%k. Hence, this theorem applies and

X is transient.

6 Proof of Lemma [5

6.1 Preliminaries

Let | € Z4. In what follows we write Z; for a Bin(l, ¢(1))-distributed random
variable.

Lemma 8. Letl € Z,. Then for every fized k <1
P(Zy 2 k) — P(Zy = k) < le() f()P(Z1 = k),
where f(1) = eW (1 — ¢(1))~.

Proof. For this proof we need the following bound for integers 0 < k < j < I:

C)zlthyna—k)”U—j+U

J) !
A [
Siu—k-nt (13)

12



Next,

l I . -
P(Z>k)-P(Zi=k) = > () () (1 =)™

jekr1 M

) I Lokl
< >ty

(l—k-1) Pt J!
I P ,
STRo D ey’

Jj=k+1

< le(d) ! (c(l))F+!

(—k—1) (k+1)

where the last line was obtained from the Lagrange remainder term for the
Taylor series for x — e®. Hence,

l

P(Z, > k) — P(Z; = k) < <O
(z_) (z )_6 k41

>C(Z)k+1

_ elc(l)c(l)% (;) c(l)k(l — c(l))l—k(l — c(l))k—l

l—k
k41
< e Oei(1 — ()™ P(Z; = k).

= el“We(]) (1—c()*'P(Z, = k)

The following corollary is an immediate consequence of Lemma [§]

Corollary 9. For k such that 0 < k <1

(le(1))*

P(Z > k) < X

(1 +1e@)f(1),
where f(1) = e (1 —¢(1)).

6.2 Proof of Lemma [5

Recall that S 1 is the event that starting from [/ the process X hits /41 before any
of the Y-s hitting a value larger than k& where [ > k > 0 are two positive integers.
For notational convenience we fix k£ and write S; for S; ;. By conditioning on
the first step and using the Markov property we obtain the following master

13



formula:
P(S) =P(Z,=0)
+ P(Z1=1)P(S)
+ P(Z; = 2)P(S-1)P(S))

+.. (14)
k—1

+P(Z = k) [[ P(Si—)-
j=0

We will apply a bootstrapping argument on this formula in order to obtain sharp
lower bounds on P(S;).

Let I > @ be an integer. Note that under this condition, I > k. Let

k(k—1)
2
and we continue inductively, letting £;41 = £;+4, 7 =0,...,k—1. Specifically,

Ly =1
We will prove by induction that for every j =0, ..., k there exists a constant
Hj; > 0 such that

Lo=1-— > 0.

P(Sp) >1—(le(l)y’™ Hj for all £; <m <. (15)

Base case j = 0. By using only the first term on the RHS of and
applying Corollary [9] we obtain

P(Sy) >P(Z, =0)
=1-P(Zy, >1)
>1 —me(m) (1 4+ me(m) f(m))

Setting

where the maximum is over all m in the finite range {Lo, ..., [} whose cardinality
is bounded above by k2. It follows from that lim sup;_, ., Ko(l) < co. Using
also that f is a bounded function and that mc(m) is a convergent sequence,
1+ me(m) f(m) is bounded. Hence, there exists a constant Hy such that

P(S;,) > 1 —lc()Hy for Lo <m <.

The induction statement for j = 0 holds true.

Induction step. Assume that the induction statement holds for j. We
will prove it for j+1. Using up to the term corresponding to P(Z,, = j+1),
we have that for every k <m < :

j+1
P(Sm> > P(Zm = O) + ZP(Zm = Z) H P(Smfh)'
i=1 0<h<i

14



In order to apply the induction hypothesis to this inequality the differences
m — h in our range must fall in the range {£;,...,l}. That is, we must have

,ngm—hgl

As by assumption m <[ and h > 0, the inequality on the right holds for all h.
The largest value h attains is j,

m—h>m-—j
2Ljr1—J

Thus, applying the induction hypothesis with m in the range {£;1,...,l} we
obtain

j+1 , ,

P(Sp) = P(Zy =0)+ > P(Zy =) (1 - (lc()) ' Hy)'
i=1
j+1 '
> P(Zin = 0) + Y P(Zn =) (1 —i(le(1)71H;)
i=1

where we used the inequality (1 — x)® > 1 — iz which is valid for any real

0 <z <1 and any natural number . Hence,

j+1 J+1
P(Sm) 2> P(Zm = i) = (le(l)) T H; Y iP(Zy = i)
i=0 =1
>1—P(Zy >5+2) = (le()) " HyE(Z,y,)
>1- M(l +me(m) f(m)) — (Ie(1))? T Hyme(m)
= (+2)! ’

To finish this induction step we use the two same observations as in the base
step. First, 1+ mc(m)f(m) is a bounded function. Second, it follows from
and the fact that m is in the finite range £;...[, that there exists a constant
K; such that

me(m) < Kjle(l).

Using these two observations yield the existence of a constant H;; such that
P(Sm) = 1= i (Ie(1)+2.

Now that the induction is complete, we note that for j = k, £ = [. Hence, the
induction statement for 7 = k reads

P(S)) > 1 — Hy(le(l))" 1.

This proves the lemma for all [ larger than k(k — 1)/2. To complete the proof,
we may need to increase Hj to satisfy the inequality for all [ > k.

15
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