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POSITIVITY OF NARAYANA POLYNOMIALS AND EULERIAN

POLYNOMIALS

SHI-MEI MA, HAO QI, JEAN YEH, AND YEONG-NAN YEH

Abstract. Gamma-positivity appears frequently in finite geometries, combinatorics and num-

ber theory. Motivated by the recent work of Sagan and Tirrell (Adv. Math., 374 (2020), 107387),

we study the relationships between gamma-positivity and alternating gamma-positivity. As

applications, we derive several alternatingly gamma-positive polynomials related to Narayana

polynomials and Eulerian polynomials. In particular, we show the alternating gamma-positivity

and Hurwitz stability of a combination of the modified Narayana polynomials of types A and

B. By using colored 2× n Young diagrams, we present a unified combinatorial interpretations

of three identities involving Narayana numbers of type B. A general result of this paper is

that every gamma-positive polynomial is also alternatingly semi-gamma-positive. At the end

of this paper, we pose two conjectures, one concerns the Boros-Moll polynomials and the other

concerns the enumerators of permutations by descents and excedances.
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1. Introduction

Let ∆ be a simplicial complex of dimension n − 1. The f -vector of ∆ is the sequence of

integers (f−1, f0, f1, . . . , fn−1), where fi is the number of faces with i + 1 vertices in ∆. For

example, f−1 = 1, corresponding to the empty face. The f -polynomial and h-polynomial of ∆

are respectively defined as f(x) =
∑n

i=0 fi−1x
i, and

h(x) = (1− x)nf

(
x

1− x

)
=

n∑

i=0

fi−1x
i(1− x)n−i =

n∑

i=0

hix
i.

The sequence of integers (h0, h1, . . . , hn) is called the h-vector of ∆. It is known that the h-

polynomial of a simple polytope is positive and symmetric [40]. In [23], Fomin and Zelevinsky

defined the (generalized) Narayana numbers Nk(Φ) for an arbitrary root system Φ as the entries

of the h-vector of the simplicial complex dual to the corresponding generalized associahedron.

Let N(Φ, x) =
∑n

k=0Nk(Φ)x
k. For the classical Weyl groups, the generating polynomials for

the Narayana numbers are given as follows:

N(An, x) =

n∑

k=0

1

n+ 1

(
n+ 1

k + 1

)(
n+ 1

k

)
xk,

N(Bn, x) =

n∑

k=0

(
n

k

)2

xk,

N(Dn, x) = N(Bn, x)− nxN(An−2, x),

where An is group of permutations of {1, 2, . . . , n + 1}, Bn is the group of signed permutations

of {±1,±2, . . . ,±n} and Dn is the group of even-signed permutations in Bn. Narayana polyno-

mials possess many of the same properties as Eulerian polynomials, including real-rootedness,

symmetry property and γ-positivity, and there are several combinatorial and geometric inter-

pretations. For example, Nn(An, x) is the enumerator of 231-avoiding permutations in Sn+1 by
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descents, and Nn(Bn, x) is the enumerator of (1342, 3142, 3412, 3421)-avoiding permutations in

Sn+1 by descents, see [13, 39, 42] for details.

Given a Coxeter system (W,S) and σ ∈ W , we denote by ℓW (σ) the length of σ in W . The

number of W -descents of σ is defined by dW (σ) = #{s ∈ S : ℓW (σs) < ℓW (σ)}. The Eulerian

polynomial of a finite Coxeter group W is

P (W,x) =
∑

σ∈W

xdW (σ).

This polynomial is also the h-polynomial of the Coxeter complex associated to (W,S). For

Coxeter groups of types An and Bn, one has P (An, x) = An+1(x) and P (Bn, x) = Bn(x). The

types A and B Eulerian polynomials respectively satisfy the following recurrence relations:

An(x) = (nx+ 1− x)An−1(x) + x(1− x)
d

dx
An−1(x),

Bn(x) = (2nx+ 1− x)Bn−1(x) + 2x(1 − x)
d

dx
Bn−1(x),

(1)

with the initial conditions A0(x) = B0(x) = 1 (see [10, 16, 50] for instance). Let D = d
dx be

the differential operator. The Eulerian polynomials first appearance in series summation or

successive differentiation:

(xD)n
1

1− x
=

∞∑

k=0

knxk =
xAn(x)

(1− x)n+1
.

Using (1), one can easily verify that

(xD)n
1

1− x2
=

2nx2An(x
2)

(1− x2)n+1
, (xD)n

x

1− x2
=

xBn(x
2)

(1− x2)n+1
.

Since (xD)n 1
1−x = (xD)n 1

1−x2 + (xD)n x
1−x2 , one has

(1 + x)n+1An(x) = Bn(x
2) + 2nxAn(x

2), (2)

which frequently appeared in literatures, see [33, Theorem 3] for instance.

As usual, we use Sn to denote the symmetric group of all permutations of [n] = {1, 2, . . . , n}.
Let π = π(1)π(2) · · · π(n) ∈ Sn. In this paper, we always assume that π(0) = π(n + 1) = ∞
(except where explicitly stated). If i ∈ [n], then π(i) is called

• a descent if π(i) > π(i+ 1);

• an ascent if π(i) < π(i+ 1);

• a peak if π(i− 1) < π(i) > π(i+ 1);

• a valley if π(i− 1) > π(i) < π(i+ 1),

• a double descent if π(i− 1) > π(i) > π(i+ 1);

• a double ascent if π(i− 1) < π(i) < π(i+ 1).

Let des (π) (resp. asc (π), pk (π), val (π), ddes (π), dasc (π)) be the number of descents (resp. as-

cents, peaks, valleys, double descents, double ascent) of π. The following expansion of the

Eulerian polynomials An(x) was first observed by Foata and Schützenberger [21]:

An(x) =

⌊(n−1)/2⌋∑

k=0

γn,kx
k(1 + x)n−1−2k for n > 1, (3)
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where γn,k = #{π ∈ Sn : pk (π) = k, ddes (π) = 0}. Recently there has been considerable

interest in the refinements and generalizations of (3), see [1, 35, 39, 50] and references therein.

Assume that f(x) =
∑n

i=0 fix
i is a symmetric polynomial of degree n, i.e., fi = fn−i for any

0 6 i 6 n. Then f(x) can be expanded uniquely as

f(x) =

⌊n/2⌋∑

k=0

γkx
k(1 + x)n−2k.

We call {γk}⌊n/2⌋k=0 the γ-vector of f(x). If γk > 0 for 0 6 k 6 ⌊n/2⌋, then f(x) is said to

be γ-positive (see [24]). Notably, γ-positivity of a polynomial implies that its coefficients are

symmetric and unimodal, and the coefficients of γ-positive polynomials often have nice geometric

and combinatorial interpretations, see [1, 39] for details. If the γ-vector of f(x) alternates in

sign, then we say that f(x) is alternatingly γ-positive (see [11, 31, 45] for instance). For example,

(1 + x2)n is alternatingly γ-positive, since

(1 + x2)n = [(1 + x)2 − 2x]n =
n∑

k=0

(
n

k

)
2k(−x)k(1 + x)2n−2k,

where the alternating γ-coefficients
(n
k

)
2k count k-simplices in the n-cube (see [48, A013609]).

There has been considerable recent interest in the study alternatingly γ-positive polynomials,

see [11, 31, 34, 45] for instance. For example, Lin etal. [31] showed the alternating γ-positivity

of alternating Eulerian polynomials.

The Lucas polynomials {n} := {n}s,t are defined by {n} = s{n−1}+ t{n−2} with the initial

conditions {0} = 0, {1} = 1. When s = 1 + q, t = −q, one has

{n} = 1 + q + q2 + · · ·+ qn−1. (4)

The reader is referred to (8) for the alternating γ-expansion of {n + 1}. Sagan and Tirrell [45]

introduced a sequence of polynomials Pn(s, t) by using the factorization of {n}:

{n} = Πd|nPd(s, t).

The polynomials Pn(s, t) are called Lucas atoms. Motivated by (4), Sagan and Tirrell [45] first

established a connection between cyclotomic polynomials and Lucas atoms, and then proved

the alternating γ-positivity of cyclotomic polynomials. They also wrote in their paper [45,

p. 24]:“it might also be interesting to look at gamma expansions where the coefficients alternate

in sign. Very little work has been done in this direction”. Motivated by the work of Sagan and

Tirrell [45], it is natural to consider the following problem.

Problem 1. Are there some connections between γ-positivity and alternating γ-positivity?

In this paper, we present various results concerning Problem 1. Among other things, in Sec-

tion 6, we show that every γ-positive polynomial is also alternatingly semi-γ-positive. Moreover,

in Section 7, we present two conjectures, one concerns the Boros-Moll polynomials, the other

concerns the enumerators of permutations by descents and excedances. The main results of this

paper are Theorems 4, 5, 11, 14 and 19.
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2. Properties of the modified Foata-Strehl action

In [7] Brändén introduced the following modified Foata-Strehl action (MFS -action for short),

which can be used to show the γ-positivity of various enumerative polynomials.

MFS-action ([7]). Let π ∈ Sn and x = π(i). The modified Foata-Strehl action ϕx on Sn is

defined as follows:

(i) If x is a double descent, then ϕx is obtained by deleting x and then inserting x between

π(j) and π(j+1), where j is the smallest index satisfying i < j and π(j) < x < π(j+1);

(ii) If x is a double ascent, then ϕx is obtained by deleting x and then inserting x between

π(j) and π(j + 1), where j is the largest index satisfying j < i and π(j) > x > π(j + 1);

(iii) If x is a peak or a valley, then let ϕx(π) = π.

Let Orb(π) = {g(π) : g ∈ Z
n
2} be the orbit of π under the MFS -action. Brändén noted that

the following result follows from the work in [22], and he proved it by using the MFS -action.

Proposition 2 ([7, Theorem 3.1]). For any π ∈ Sn, one has

∑

σ∈Orb(π)

xdes (σ) = xdes (π̂)(1 + x)n−1−2des (π̂) = xpk (π)(1 + x)n−1−2pk (π), (5)

where π̂ to denote the unique element in Orb(π) with no double descents.

An immediate consequence of (5) is the following identity:

∑

σ∈Orb(π)

x2des (σ) =

n−1−2pk (π)∑

i=0

(
n− 1− 2pk (π)

i

)
2i(−x)2pk (π)+i(1 + x)2n−2−2(2pk (π)+i). (6)

In the following, we shall give a combinatorial proof of (6). As illustrated in subsection 4.2, along

the same lines, one can derive alternating γ-expansions of various enumerative polynomials.

Let π ∈ Sn. We can draw a permutation as a mountain range such that peaks and valleys

form the upper and lower limits of decreasing runs. Since we set π(0) = π(n + 1) = ∞, we put

points at infinity on the far left and far right. We say that

• π(i)π(i + 1) is a descent segment if π(i) > π(i+ 1), where i ∈ [n− 1];

• π(i)π(i + 1) is an ascent segment if π(i) < π(i+ 1), where i ∈ [n− 1];

• π(i)π(i + 1) is a double descent segment if π(i− 1) > π(i) > π(i+ 1), where i ∈ [n− 1];

• π(i− 1)π(i) is a double ascent segment if π(i− 1) < π(i) < π(i+ 1), where i ∈ [n];

• π(i− 1)π(i) an ascent segment of peak if π(i− 1) < π(i) > π(i+ 1), where i ∈ [n− 1];

• π(i)π(i + 1) a descent segment of peak if π(i− 1) < π(i) > π(i+ 1), where i ∈ [n− 1].

We use U andD to denote an ascent segment of peak and a descent segment of peak, respectively.

For any c ∈ N, we define a c-colored permutation to be a permutation with the double descent

segments must be colored by one of c colors. When c = 1, the c-colored permutations reduce to

ordinary permutations. When c = 3, a double descent segment may be colored by B,R or G, we

use B,R and G to stand for a blue segment, a red segment and a green segment, respectively.

Let Corb(π) be the set of 3-colored permutations generated by all the permutations in Orb(π).
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As usual, the weight of a permutation is the product of the weights of its values, and the weight

of a set of permutations is the sum of the weights of permutations.

Combinatorial interpretation of the identity (6):

For any σ ∈ Orb(π), we assign the weight x2 to each descent segment and the weight 1 to each

ascent segment. Then the left-hand side of (6) equals the weight of Orb(π).

For any permutation in Corb(π), we first assign the weight x2 to each of the D segments and

the weight 1 to each of the ascent segments. We then reassign the weights of double descent

segments: assign x2 to each of the B segments, the weight 2x to each of the R segments, the

weight −2x to each of the G segments. Since x2 = x2 + 2x − 2x, the weight of Corb(π) equals

that of Orb(π). Let O(i) the subset of Corb(π), where each permutation has i G segments and

has the G segments in given positions. By using the MFS -action, the weight of O(i) equals

(x2)pk (π)(−2x)i(1 + x2 + 2x)n−1−2pk (π)−i = 2i(−x)2pk (π)+i
(
(1 + x)2

)n−1−2pk (π)−i
.

Since there are
(n−1−2pk (π)

i

)
ways to choose G segments, the weight of Corb(π) equals the

right-hand side of (6). �

3. Gamma-positivity and alternating gamma-positivity

Let f(x) =
∑n

i=0 fix
i ∈ R[x]. Consider the linear operator Am : R[x] → R[x] defined by

Am(f(x)) = f(xm). The operator Am appears frequently in the study of field theory, number

theory and polynomials (see [25, 26, 37, 44]). For example, Roberts [44] studied fractalized

cyclotomic polynomials by using Am. As illustrations, there are two reduction formulas of

cyclotomic polynomials (see [44, 45]):

Φp(x) = 1 + x+ x2 + · · ·+ xp−1, Φpn(x) =
Φn(x

p)

Φn(x)
,

where n ∈ N and p is a prime not dividing n. Moreover, the Hermite-Biehler decomposition of

f(x) is given as follows:

f(x) =

⌊n/2⌋∑

k=0

f2kx
2k + x

⌊(n−1)/2⌋∑

k=0

f2k+1x
2k = fE(x2) + xfO(x2) = A2f

E(x) + xA2f
O(x).

Let us now recall two well known formulas:

pn + qn =

⌊n/2⌋∑

k=0

(−1)k
n

n− k

(
n− k

k

)
(pq)k(p+ q)n−2k; (7)

n∑

i=0

piqn−i =

⌊n/2⌋∑

k=0

(−1)k
(
n− k

k

)
(pq)k(p + q)n−2k. (8)

In the past decades, these formulas frequently appeared in combinatorics and number theory,

see [11, Section 3], [18, p. 156]), [28, p. 1068], [40, Example 6.11] for instance. Based on the

structure of matchings on path and cycle graphs, Brittenham, Carroll, Petersen, and Thomas [11]

provided combinatorial interpretations for the alternating γ-expansions of 1 + qn,
∑n

i=0 q
i and

the q-binomial coefficients.

The following simple result will be used in our discussion.
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Lemma 3. The product of two alternatingly γ-positive polynomials is alternatingly γ-positive.

Proof. Let f(x) and g(x) be two alternatingly γ-positive polynomials. Suppose that

f(x) =

⌊n/2⌋∑

k=0

γk(−x)k(1 + x)n−2k, g(x) =

⌊m/2⌋∑

ℓ=0

ηℓ(−x)ℓ(1 + x)m−2ℓ,

where γk > 0 for 0 6 k 6 ⌊n/2⌋ and ηℓ > 0 for 0 6 ℓ 6 ⌊m/2⌋. Then

f(x)g(x) =

⌊(n+m)/2⌋∑

i=0

i∑

k=0

γkηi−k(−x)i(1 + x)n+m−2i,

as desired. This completes the proof. �

As a partial answer to Problem 1, we present the following result.

Theorem 4. Assume that f(x) =
∑n

i=0 fix
i =

∑⌊n/2⌋
i=0 γix

i(1 + x)n−2i.

(i) If f(x) is γ-positive, then A2m(f(x)) = f(x2m) is alternatingly γ-positive, where m ∈ N.

(ii) We have

f(x2) =
n∑

k=0

ηk(−x)k(1 + x)2n−2k, (9)

where ηk =
∑⌊k/2⌋

i=0

(
n−2i
k−2i

)
2k−2iγi. Since x2 = (−x)2, an equivalent formula of (9) is

given as follows:

f(x2) =

n∑

k=0

ηkx
k(1− x)2n−2k,

Moreover, the following two identities are equivalent:

n∑

i=0

fix
2i =

n∑

k=0

ηk(−x)k(1 + x)2n−2k,

n∑

i=0

fix
2i(1 + x)2n−2i =

n∑

k=0

ηkx
k(1 + x)k;

(iii) Setting ξk =
∑⌊k/2⌋

i=0

(n−2i
k−2i

)
γi, we have two equivalent identities:

n∑

k=0

ηkx
k =

⌊n/2⌋∑

i=0

γix
2i(1 + 2x)n−2i, (10)

n∑

k=0

ηkx
k =

n∑

k=0

ξkx
k(1 + x)n−k. (11)

(iv) The modified γ-coefficient polynomial of f(x) has two equivalent expansions:

⌊n/2⌋∑

i=0

γix
2i =

n∑

k=0

ξk(−x)k(1 + x)n−k =
n∑

k=0

ξkx
k(1− x)n−k. (12)
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Proof. (i) By using (7), we get 1 + x2m =
∑m

j=0 a2m,j(−x)j(1 + x)2m−2j , where am,j =
m

m−j

(m−j
j

)
. This yields

f(x2m) =

⌊n/2⌋∑

i=0

γix
2mi[1 + x2m]n−2i =

⌊n/2⌋∑

i=0

γix
2mi





m∑

j=0

a2m,j(−x)j(1 + x)2m−2j





n−2i

.

By using Lemma 3, we obtain

f(x2m) =

⌊n/2⌋∑

i=0

γix
2mi

m(n−2i)∑

ℓ=0

bm,ℓ(−x)ℓ(1 + x)2mn−4mi−2ℓ

=

⌊n/2⌋∑

i=0

m(n−2i)∑

ℓ=0

γibm,ℓ(−x)2mi+ℓ(1 + x)2mn−2(2mi+ℓ)

=

mn∑

k=0

( ∑

2mi+ℓ=k

γibm,ℓ

)
(−x)k(1 + x)2mn−2k,

where bm,ℓ =
∑

(i0,i1,i2,...,im)
(n−2i)!

i0!i1!i2!···im!a
i0
2m,0a

i1
2m,1a

i2
2m,2 · · · aim2m,m, and the summation is over

all sequences of nonnegative integers (i0, . . . , im) such that
∑m

j=1 jij = ℓ and
∑m

j=0 ij = n − 2i.

Thus f(x2m) is alternatingly γ-positive.

(ii) Note that

f(x2) =

⌊n/2⌋∑

i=0

γix
2i[(1 + x)2 − 2x]n−2i

=

⌊n/2⌋∑

i=0

n−2i∑

ℓ=0

2ℓ
(
n− 2i

ℓ

)
γi(−x)2i+ℓ(1 + x)2n−2(2i+ℓ)

=

n∑

k=0

⌊k/2⌋∑

i=0

(
n− 2i

k − 2i

)
2k−2iγi(−x)k(1 + x)2n−2k.

Then we obtain

(1 + x)2n
n∑

i=0

fi

(
x

1 + x

)2i

= (1 + x)2n
⌊n/2⌋∑

i=0

γi

(
x

1 + x

)2i(
1 +

x2

(1 + x)2

)n−2i

=

⌊n/2⌋∑

i=0

γi(x(1 + x))2i(1 + 2x(1 + x))n−2i

=

⌊n/2⌋∑

i=0

n−2i∑

ℓ=0

(
n− 2i

ℓ

)
2ℓγi(x(1 + x))2i+ℓ

=
n∑

k=0





⌊k/2⌋∑

i=0

(
n− 2i

k − 2i

)
2k−2iγi



xk(1 + x)k

=

n∑

k=0

ηkx
k(1 + x)k,

and vice versa.
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(iii) On the one hand, we have

⌊n/2⌋∑

i=0

γix
2i(1 + 2x)n−2i =

⌊n/2⌋∑

i=0

n−2i∑

ℓ=0

(
n− 2i

ℓ

)
2ℓγix

2i+ℓ =

n∑

k=0

ηkx
k.

On the other hand,

n∑

k=0

ηkx
k =

⌊n/2⌋∑

i=0

γix
2i(1 + x+ x)n−2i

=

⌊n/2⌋∑

i=0

n−2i∑

ℓ=0

(
n− 2i

ℓ

)
γix

2i+ℓ(1 + x)n−2i−ℓ

=

n∑

k=0

ξkx
k(1 + x)n−k,

as desired. Thus
∑n

k=0 ηkx
k has two equivalent expansions.

(iv) Making the substitution x
1+2x = y, it follows from (10) and (11) that

⌊n/2⌋∑

i=0

γiy
2i =

n∑

k=0

ηky
k(1− 2y)n−k

= (1− 2y)n
n∑

k=0

ξk

(
y

1− 2y

)k ( 1− y

1− 2y

)n−k

=
n∑

k=0

ξky
k(1− y)n−k.

Since y2 = (−y)2, it follows that

⌊n/2⌋∑

i=0

γiy
2i =

n∑

k=0

ξk(−y)k(1 + y)n−k.

This completes the proof. �

If f(x) is γ-positive, then A2m+1(f(x)) = f(x2m+1) may be not alternatingly γ-positive. For

example, if f(x) = 1 + 4x+ x2, then f(x) = (1 + x)2 + 2x and

f(x3) = (1 + x)6 − 6x(1 + x)4 + 9x2(1 + x)2 + 2x3,

and so f(x) is γ-positive, while f(x3) is not alternatingly γ-positive.

4. Narayana polynomials

4.1. Identities involving Narayana polynomials.

Let Cn = 1
n+1

(2n
n

)
be the Catalan numbers. It is well known that Catalan numbers and the

central binomial coefficients have the following expressions (see [12, 17, 42]):

Cn =
n−1∑

k=0

1

n

(
n

k + 1

)(
n

k

)
,

(
2n

n

)
=

n∑

k=0

(
n

k

)2

.
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Using generating functions and Lagrange inversion formula, Coker [17] derived that

n∑

k=0

1

n+ 1

(
n+ 1

k + 1

)(
n+ 1

k

)
xk =

⌊n/2⌋∑

k=0

Ck

(
n

2k

)
xk(1 + x)n−2k,

n∑

k=0

1

n+ 1

(
n+ 1

k + 1

)(
n+ 1

k

)
x2k(1 + x)2n−2k =

n∑

k=0

Ck+1

(
n

k

)
xk(1 + x)k. (13)

Chen, Yan and Yang [13] have given combinatorial interpretations of these two identities based

on a bijection between Dyck paths and 2-Motzkin paths, which was first discovered by Delest

and Viennot [19, p. 179]. By using generating functions, Riordan [43] derived that

n∑

k=0

(
n

k

)2

xk =

⌊n/2⌋∑

k=0

(
n

2k

)(
2k

k

)
xk(1 + x)n−2k. (14)

In [12], using weighted type B noncrossing partitions as the underlying combinatorial structure,

Chen, Wang and Zhao obtained the following identities:

n∑

k=0

(
n

k

)2

x2k(1 + x)2n−2k =

n∑

k=0

(
n

k

)(
2k

k

)
xk(1 + x)k, (15)

Combining (13), (15) and Theorem 4, we get the following result.

Theorem 5. For n > 0, one has

N(An, x
2) =

n∑

k=0

Ck+1

(
n

k

)
(−x)k(1 + x)2n−2k, (16)

N(Bn, x
2) =

n∑

k=0

(
n

k

)(
2k

k

)
(−x)k(1 + x)2n−2k, (17)

n∑

k=0

Ck+1

(
n

k

)
xk =

⌊n/2⌋∑

k=0

Ck

(
n

2k

)
x2k(1 + 2x)n−2k,

n∑

k=0

(
n

k

)(
2k

k

)
xk =

⌊n/2⌋∑

k=0

(
n

2k

)(
2k

k

)
x2k(1 + 2x)n−2k,

Corollary 6. For any n > 2, one has

N(Dn, x
2) = (1 + x)2n +

n∑

i=1

((
n

i

)(
2i

i

)
− nCi−1

(
n− 2

i− 2

))
(−x)i(1 + x)2n−2i,

and hence N(Dn, x
2) is alternatingly γ-positive.

Proof. The alternating γ-expansion of N(Dn, x
2) follows from the fact that

N(Dn, x
2) = N(Bn, x

2)− nx2N(An−2, x
2).

When i = 1,
(n
i

)(2i
i

)
− nCi−1

(n−2
i−2

)
= 2n, and for any 2 6 i 6 n, we have

(n
i

)(2i
i

)

nCi−1

(n−2
i−2

) =
2(n − 1)(2i − 1)

i(i− 1)
= 2(n− 1)

(
1

i
+

1

i− 1

)
> 0.

�
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4.2. The combinatorial proofs of (14), (15), (16), (17).

A Motzkin path is a lattice path starting at (0, 0), ending at (n, 0), and never going below

the x-axis, with three possible steps (1, 1), (1, 0) and (1,−1). As usual, we use U,D and H to

denote an up step (1, 1), a down step (1,−1) and a horizontal step (1, 0), respectively. For any

c ∈ N, a c-Motzkin path is a Motzkin path with the horizontal steps can be colored by one of c

colors. When c = 0, there are no horizontal steps and 0-Motzkin paths reduce to Dyck paths.

When c = 1, c-Motzkin paths reduce to Motzkin paths. When c = 2, a horizontal step may

be B or R, where B and R stand for a blue step and a red step, respectively. When c = 3, a

horizontal step may be B,R or G, where G denotes a green step. The length of a lattice path

is defined to be the number of steps. The weight of a path is defined to be the product of the

weights of its steps, and the weight of a set of paths equals the sum of weights of its paths.

The following lemma is fundamental.

Lemma 7 ([13]). Let CMn denote the set of 2-Motzkin paths of length n. Then one has

1

n+ 1

(
n+ 1

k + 1

)(
n+ 1

k

)
= #{P ∈ CMn : UB (P ) = k},

where UB(P ) counts U and B steps on P . Thus #CMn = Cn+1.

Combinatorial proof of the identity (16):

For any path in CMn, we assign the weight x2 to each U or B step and the weight 1 to any other

step. By Lemma 7, the left-hand side of (16) equals the weight of CMn. It should be noted

that the U ’s and D’s must be matched on any path of CMn. We use S(k) to denote any subset

of CMn with k up steps and has the up and down steps in given positions. Then the weight of

S(k) is x2k(1 + x2)n−2k, since a blue step has the weight x2 and a red step has the weight 1.

Let TMn denote the set of 3-Motzkin paths of length n. For any path in TMn, we assign the

weight (−x) to each of the U , D, B and R steps, and the weight (1 + x)2 to each G step. We

use Ŝ(k) to denote any subset of TMn with k up steps and has the up and down steps in given

positions. Since x2 = (−x)(−x), 1 + x2 = (1 + x)2 − x− x, the weight of Ŝ(k) equals

x2k
(
(1 + x)2 − x− x

)n−2k
= x2k(1 + x2)n−2k,

which says that Ŝ(k) and S(k) have the same weight. It remains to show that the weight TMn

coincides with the right-hand side of (16). To construct a path of TMn with n− k G steps, we

may insert the G steps into 2-Motzkin paths of CMk, where all the U , D, B and R steps have

the same weight (−x). Clearly, there are
( n
n−k

)
=
(n
k

)
ways to insert the G steps. It follows from

Lemma 7 that CMk = Ck+1. Therefore, the weight of TMn equals

n∑

k=0

(
n

k

)(
(1 + x)2

)n−k
Ck+1(−x)k =

n∑

k=0

Ck+1

(
n

k

)
(−x)k(1 + x)2n−2k.

This completes the proof.

For any partition λ = (λ1, . . . , λr) ⊢ n, we draw a left-justified array of n cells in the i-th

row. This array is called the Young diagram of λ. The partition that is represented by such a

diagram is said to be the shape of the diagram. As usual, we will identify a partition λ with its

Young diagram. Let c be a fixed positive integer. A c-colored 2× n Young diagram is a Young
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Figure 1. Four cases of coloring of columns

U: D: B: N:

diagram of shape (n, n) such that each cell may be colored by one of c colors. When c = 1, we

get an ordinary 2×n Young diagram. When c = 2, a cell may be colored by black or white. As

illustrated in Figure 1, for any 2-colored 2×n Young diagram, we use U,D,B and N to denote

a column with a black cell on the top and a white cell at the bottom, a column with a white

cell on the top and a black cell at the bottom, a column with two black cells and a column with

two white cells, respectively. When c = 3, a cell may be colored by black, white or green. The

weight of a Young diagram is defined to be the product of the weights of its cells, and the weight

of a set of Young diagrams is the sum of the weights of its Young diagrams.

Definition 8. We use CYn to denote the subset of 2-colored 2 × n Young diagrams such that

the top row and bottom row have the same number of black cells.

It should be noted that the U ’s and D’s must be matched on any Young diagram of CYn.

Combinatorial proof of the identity (14):

For any Young diagram in CYn, we assign the weight x
1

2 to each black cell and the weight 1 to

each white cell. Consider the subset of CYn consisting of all Young diagrams with exactly 2k

black cells, i.e., the top row and bottom row both have exactly k black cells. Since x = x
1

2x
1

2

and there are
(n
k

)
ways to choose black cells from each row, the weight of this subset equals(

n
k

)2
xk. Thus the left-hand side of (14) equals the weight of CYn. In particular, we have

#CYn =

(
2n

n

)
(18)

As illustrated in Figure 1, each column of Young diagrams in CYn may be colored with the

same color or different colors. Consider a subset of CYn consisting of all Young diagrams having

exactly k U ’s. Since the U ’s and D’s must be matched, there are
(
n
2k

)(
2k
k

)
ways to locate all the

U ’s and D’s. The weight of the other columns is given by (1 + x)n−2k. Therefore, the weight of

this subset equals (
n

2k

)(
2k

k

)
xk(1 + x)n−2k,

which is the summand of the right-hand side of (14). The completes the proof.

Definition 9. Let TYn be the subset of 3-colored 2× n Young diagram such that

(i) The top row and bottom row have the same number of black cells;

(ii) There are only five cases of coloring of columns, in addition to U,D,B and N , and a

column may be two green cells and we use G to denote it.

Combinatorial proof of the identity (15):

For any Young diagram in CYn, we first assign the weight x to each black cell and the weight

1 + x to each white cell. Note that there are
(n
k

)
ways to choose black cells in each row. Then
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the weight of CYn equals

n∑

k=0

((
n

k

)
xk(1 + x)n−k

)2

=

n∑

k=0

(
n

k

)2

x2k(1 + x)2n−2k.

Let E(k) be the subset of CYn, where each Young diagram has k U ’s and has the U ’s and D’s

in given positions. Since the U ’s and D’s must be matched, the weight of E(k) equals

(x(1 + x))2k(x2 + (1 + x)2)n−2k.

For any path in TYn, we assign the weight x(1 + x) to each of the U , D, B and N columns,

and the weight 1 to each G column. Let Ê(k) the subset of TYn, where each Young diagram

has k U ’s and has the U ’s and D’s in given positions. The weight of Ê(k) equals

(x(1 + x))2k(1 + x(1 + x) + x(1 + x))n−2k.

Hence E(k) and Ê(k) has the same weight. For any Young diagram in TYn with n − k G

columns, the remains k columns form a new Young diagram in CYk. It follows from (18) that

the weight of the subset of Young diagrams in TYn with n− k G’s equals

(
n

n− k

)
1n−k

(
2k

k

)
(x(1 + x))k =

(
n

k

)(
2k

k

)
xk(1 + x)k,

which is the summand of the right-hand side of (15). This completes the proof.

Combinatorial proof of the identity (17):

For any Young diagram in CYn, we reassign the weight x to each black cell and the weight 1 to

each white cell. In the same way as the combinatorial proof of (14), we see that the left-hand

side of (17) equals the weight of CYn. We use H(k) to denote any subset of CYn, where each

Young diagram with k U ’s and has the U ’s and D’s in given positions. The weight of H(k)

equals x2k(1 + x2)n−2k.

For any Young diagram in TYn, we assign the weight (−x) to each of the U , D, B and N

columns, and the weight (1 + x)2 to each G column. We use Ĥ(k) to denote any subset of

TYn, where each Young diagram with k U ’s and has the U ’s and D’s in given positions. Since

x2 = (−x)(−x), 1 + x2 = (1 + x)2 − x− x, the weight of Ĥ(k) equals

x2k
(
(1 + x)2 − x− x

)n−2k
= x2k(1 + x2)n−2k.

Hence Ĥ(k) and H(k) have the same weight. It remains to show that the weight TYn coincides

with the right-hand side of (17). For any Young diagram in TYn with n − k G columns, the

remains k columns form a new Young diagram in CYk. It follows from (18) that the weight of

the subset of Young diagrams in TYn with n− k G’s equals

(
n

n− k

)(
(1 + x)2

)n−k
(
2k

k

)
(−x)k =

(
n

k

)(
2k

k

)
(−x)k(1 + x)2n−2k,

which is the summand of the right-hand side of (17). This completes the proof. �
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4.3. Hurwitz stability and alternating gamma-positivity.

Let RZ denote the set of real polynomials with only real zeros. Following [26], we say that a

polynomial p(x) ∈ R[x] is standard if its leading coefficient is positive. Suppose that p(x), q(x) ∈
RZ, and the zeros of p(x) are ξ1 6 · · · 6 ξn, and that those of q(x) are θ1 6 · · · 6 θm. We say

that p(x) interlaces q(x) if deg q(x) = 1 + deg p(x) and the zeros of p(x) and q(x) satisfy

θ1 6 ξ1 6 θ2 6 ξ2 6 · · · 6 ξn 6 θn+1.

We say that p(x) alternates left of q(x) if deg p(x) = deg q(x) and the zeros of them satisfy

ξ1 6 θ1 6 ξ2 6 θ2 6 · · · 6 ξn 6 θn.

Let C[x] denote the set of all polynomials in x with complex coefficients. A polynomial p(x) ∈
C[x] is Hurwitz stable if every zero of p(x) is in the open left half plane, and p(x) is weakly

Hurwitz stable if every zero of p(x) is in the closed left half of the complex plane, see [3, 4] for

details. The classical Hermite-Biehler theorem is given as follows.

Hermite-Biehler Theorem ([26, Theorem 3]). Let f(x) = fE(x2) + xfO(x2) be a standard

polynomial with real coefficients. Then f(x) is weakly Hurwitz stable if and only if both fE(x)

and fO(x) are standard, have only nonpositive zeros, and fO(x) interlaces or alternates left of

fE(x). Moreover, f(x) is Hurwitz stable if and only if f(x) is weakly Hurwitz stable, f(0) 6= 0

and gcd(fE(x), fO(x)) = 1.

We now define

N̂(n, k) = (n+ 1)!
1

n

(
n

k

)(
n

k − 1

)
, M̂(n, k) = n!

(
n

k

)2

.

Following [35, Lemma 7], the numbers M̂(n, k) and N̂(n, k) satisfy the following recurrences:

M̂(n + 1, k) = (n+ 1 + 2k)M̂ (n, k) + (3n+ 3− 2k)M̂ (n, k − 1),

N̂(n + 1, k) = (n+ 2k)N̂ (n, k) + (3n + 4− 2k)N̂ (n, k − 1).

Lemma 10. For n > 1, we have
(

x2

1− x2
D

)n
1

1− x2
=

(n+ 1)!xn+2N(An−1, x
2)

(1− x2)2n+1
,

(
x2

1− x2
D

)n
x

1− x2
=

n!xn+1N(Bn, x
2)

(1− x2)2n+1
.

Therefore, we have
(

x2

1− x2
D

)n
1

1− x
=

n!xn+1
(
N(Bn, x

2) + (n+ 1)xN(An−1, x
2)
)

(1− x2)2n+1
. (19)

Proof. Note that

x2

1− x2
D

1

1 − x2
=

2x3

(1− x2)3
,

(
x2

1− x2
D

)2
1

1− x2
=

3!x4(1 + x2)

(1− x2)5
,

x2

1− x2
D

x

1 − x2
=

x2(1 + x2)

(1− x2)3
,

(
x2

1− x2
D

)2
x

1− x2
=

2x3(1 + 4x2 + x4)

(1− x2)5
.



POSITIVITY OF NARAYANA POLYNOMIALS AND EULERIAN POLYNOMIALS 15

Thus the identities hold for n = 1, 2. So we proceed to the inductive step. Assume that the two

identities hold for n = m. Then when n = m+ 1, we obtain
(

x2

1− x2
D

) ∑m
k=1 N̂(m,k)x2k+m

(1− x2)2m+1

=

∑m
k=1(2k +m)N̂(m,k)x2k+m+1(1− x2) + 2(2m+ 1)

∑m
k=1 N̂(m,k)x2k+m+3

(1− x2)2m+3
,

(
x2

1− x2
D

) ∑m
k=0 M̂(m,k)x2k+m+1

(1− x2)2m+1

=

∑m
k=0(2k +m+ 1)M̂ (m,k)x2k+m+2(1− x2) + 2(2m+ 1)

∑m
k=0 M̂(m,k)x2k+m+4

(1− x2)2m+3
.

Combining the above two expressions with the recurrences of M̂(n, k) and N̂(n, k), we get
(

x2

1− x2
D

)m+1
1

1− x2
=

xm+1
∑m+1

k=1 N̂(m+ 1, k)x2k

(1− x2)2m+3
,

(
x2

1− x2
D

)m+1
x

1− x2
=

xm+2
∑m+1

k=0 M̂(m+ 1, k)x2k

(1− x2)2m+3
,

as desired. Since
(

x2

1− x2
D

)n
1

1− x
=

(
x2

1− x2
D

)n
1

1− x2
+

(
x2

1− x2
D

)n
x

1− x2
,

the proof of (19) follows. This completes the proof. �

When n = 2 and n = 3, the polynomials N(Bn, x
2) + (n + 1)xN(An−1, x

2) are

1 + 3x+ 4x2 + 3x3 + x4 = (1 + x)2(1 + x+ x2),

1 + 4x+ 9x2 + 12x3 + 9x4 + 4x5 + x6 = (1 + x)2(1 + 2x+ 4x2 + 2x3 + x4),

respectively. We can now present the following result.

Theorem 11. For any n > 1, the polynomial N(Bn, x
2)+ (n+1)xN(An−1, x

2) is alternatingly

γ-positive, Hurwitz stable, and has a factor (1 + x)2.

Proof. Immediate from Theorem 5, we then get

N(Bn, x
2) + (n + 1)xN(An−1, x

2)

= (1 + x)2n +

n∑

k=1

((
n

k

)(
2k

k

)
− (n+ 1)Ck

(
n− 1

k − 1

))
(−x)k(1 + x)2n−2k.

(20)

For 1 6 k 6 n, we see that
(
n
k

)(
2k
k

)

(n+ 1)Ck

(n−1
k−1

) =
n
k

(n−1
k−1

)(2k
k

)

n+1
k+1

(2k
k

)(n−1
k−1

) =
n(k + 1)

(n+ 1)k
> 1.

In particular, when k = n, one has
(
n

k

)(
2k

k

)
= (n+ 1)Ck

(
n− 1

k − 1

)
.

So N(Bn, x
2) + (n+ 1)xN(An−1, x

2) is alternatingly γ-positive and has a factor (1 + x)2.
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Recall that

N(An, x) =

n∑

k=0

1

n+ 1

(
n+ 1

k + 1

)(
n+ 1

k

)
xk, N(Bn, x) =

n∑

k=0

(
n

k

)2

xk.

Then we have

d

dx
(xN(An, x)) =

n∑

k=0

k + 1

n+ 1

(
n+ 1

k + 1

)(
n+ 1

k

)
xk

=
n∑

k=0

(
n

k

)(
n+ 1

k

)
xk

=
n∑

k=0

(
n

k

)2

xk +
n∑

k=1

(
n

k

)(
n

k − 1

)
xk

= N(Bn, x) + nxN(An−1, x),

d

dx
(N(Bn, x) + nxN(An−1, x)) =

n∑

k=1

(
n

k

)(
n+ 1

k

)
kxk−1 = n(n+ 1)N(An−1, x).

Since N(An, x) and N(Bn, x) are both real-rooted (see [8, 32]), the polynomial N(An−1, x)

interlaces N(Bn, x)+nxN(An−1, x). Let rn−1 < rn−2 < · · · < r1 < 0 be the zeros of N(An−1, x).

The sign of N(Bn, ri) is (−1)i for i = 1, 2, . . . , n−1. Note that N(Bn, x) is monic, N(Bn, 0) = 1

and sgnN(Bn,−∞) = (−1)n. Hence N(Bn, x) has precisely one zero in each of the n intervals

(−∞, rn−1), (rn−1, rn−2), . . . , (r2, r1), (r1, 0). Thus N(An−1, x) interlaces N(Bn, x). Combining

this with the Hermite-Biehler theorem, we get that N(Bn, x
2)+(n+1)xN(An−1, x

2) are Hurwitz

stable. This completes the proof. �

Inductively define the polynomials Ln(x) and L̂n(x) by

(
x2

1− x2
D

)n
1

1− x
=

n!xn+1(1 + x)2Ln(x)

(1− x2)2n+1
=

n!xn+1(1 + x)L̂n(x)

(1− x2)2n+1
,

By induction, it is routine to deduce the following result.

Proposition 12. For n > 1, we have

nLn(x) = (n+ 2x+ (3n − 4)x2)Ln−1(x) + x(1− x2)L′
n−1(x),

nL̂n(x) = (n+ x+ (3n− 3)x2)L̂n−1(x) + x(1− x2)L̂′
n−1(x),

with the initial conditions L1(x) = 1 and L̂0(x) = 1.

By Theorem 11, we immediately get the following result.

Corollary 13. Both Ln(x) and L̂n(x) are alternatingly γ-positive and Hurwitz stable.

Note that nLn(1) = (4n − 2)Ln−1(1). Thus

2Ln(1) = L̂n(1) =

(
2n

n

)
.
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Below are the polynomials Ln(x) for n 6 5:

L1(x) = 1, L2(x) = 1 + x+ x2, L3(x) = 1 + 2x+ 4x2 + 2x3 + x4,

L4(x) = 1 + 3x+ 9x2 + 9x3 + 9x4 + 3x5 + x6,

L5(x) = 1 + 4x+ 16x2 + 24x3 + 36x4 + 24x5 + 16x6 + 4x7 + x8.

It should be noted that the sequences {L(n, k)}2n−2
k=0 and {L̂(n, k)}2n−1

k=0 appear as A088855

in [48], which count symmetric Dyck paths by their number of peaks. These sequences have

been discussed recently by Cho, Huh and Sohn [15, Lemma 3.8]. Explicitly, we have

L(n, k) =

(
n− 1

⌈k2⌉

)(
n− 1

⌊k2⌋

)
, L̂(n, k) =

(
n

⌈k2⌉

)(
n− 1

⌊k2⌋

)

which can be directly verified by using Proposition 12.

5. Identities involving Eulerian polynomials

For π ∈ Sn, we say that an entry π(i) is a left peak if π(i − 1) < π(i) > π(i + 1), where

i ∈ [n − 1] and π(0) = 0. Let lpk (π) be the number of left peaks of π. The peak polynomials

(also known as interior peak polynomials, see [29, 33]) and left peak polynomials are defined by

Pn(x) =
∑

π∈Sn

xpk (π) =

⌊(n−1)/2⌋∑

k=0

P (n, k)xk, P̂n(x) =
∑

π∈Sn

xlpk (π) =

⌊n/2⌋∑

k=0

P̂ (n, k)xk,

respectively. They satisfy the following recurrence relations

Pn+1(x) = (nx− x+ 2)Pn(x) + 2x(1− x)
d

dx
Pn(x), (21)

P̂n+1(x) = (nx+ 1)P̂n(x) + 2x(1− x)
d

dx
P̂n(x), (22)

with the initial values P1(x) = P̂1(x) = 1, P2(x) = 2, P̂2(x) = 1 + x, P3(x) = 4 + 2x and

P̂3(x) = 1 + 5x. The polynomials Pn(x) and P̂n(x) arise often in algebra, combinatorics and

other branches of mathematics, see [29, 33, 38, 49, 50] and references therein. In particular, by

using the theory of enriched P -partitions, Stembridge [49, Remark 4.8] found that

An(x) =
1

2n−1

⌊(n−1)/2⌋∑

k=0

4kP (n, k)xk(1 + x)n−1−2k. (23)

It should be noted that by combining (3) and (9), we arrive at

An(x
2) =

n−1∑

k=0

⌊k/2⌋∑

i=0

(
n− 1− 2i

k − 2i

)
2k−2iγn,i(−x)k(1 + x)2n−2−2k.

According to [38, Observation 3.1.2], we have

Bn(x) =
∑

k>0

4kP̂ (n, k)xk(1 + x)n−2k.

Let An(x) =
∑n−1

k=0

〈n
k

〉
xk and Bn(x) =

∑n
k=0B(n, k)xk. We call

〈n
k

〉
and B(n, k) the types A

and B Eulerian numbers, respectively. By Theorem 4, we get the following two results.
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Theorem 14. (i) For n > 1, both An(x
2) and Bn(x

2) are alternatingly γ-positive. More

precisely, there exist nonnegative integers a(n, k) and b(n, k) such that

n−1∑

k=0

〈
n

k

〉
x2k =

n−1∑

k=0

a(n, k)(−x)k(1 + x)2n−2−2k,

n∑

k=0

B(n, k)x2k =
n∑

k=0

b(n, k)(−x)k(1 + x)2n−2k.

(ii) There are two identities:

n−1∑

k=0

〈
n

k

〉
x2k(1 + x)2n−2−2k =

n−1∑

k=0

a(n, k)xk(1 + x)k,

n∑

k=0

B(n, k)x2k(1 + x)2n−2k =

n∑

k=0

b(n, k)xk(1 + x)k.

(iii) Setting an(x) =
∑n−1

k=0 a(n, k)x
k and bn(x) =

∑n
k=0 b(n, k)x

k, we get

an(x) =
1

2n−1

⌊(n−1)/2⌋∑

k=0

4kP (n, k)x2k(1 + 2x)n−1−2k =

(
1 + 2x

2

)n−1

Pn

((
2x

1 + 2x

)2
)
,

bn(x) =

⌊n/2⌋∑

k=0

4kP̂ (n, k)x2k(1 + 2x)n−2k = (1 + 2x)nP̂n

((
2x

1 + 2x

)2
)
.

(iv) We have an(x) =
∑n−1

i=0 α(n, i)xi(1 + x)n−1−i, bn(x) =
∑n

i=0 β(n, i)x
i(1 + x)n−i,

1

2n−1

⌊(n−1)/2⌋∑

k=0

4kP (n, k)x2k =

n−1∑

i=0

α(n, i)(−x)i(1 + x)n−1−i, (24)

⌊n/2⌋∑

k=0

4kP̂ (n, k)x2k =
n∑

i=0

β(n, i)(−x)i(1 + x)n−i. (25)

We now define

αn(x) =
n−1∑

i=0

α(n, i)xi, βn(x) =
n∑

i=0

β(n, i)xi.

Setting y = −x
1+x in (24) and (25), we immediately get the following.

Corollary 15. For n > 1, one has

αn(x) =
1

2n−1

⌊(n−1)/2⌋∑

k=0

4kP (n, k)x2k(1 + x)n−1−2k =

(
1 + x

2

)n−1

Pn

((
2x

1 + x

)2
)
, (26)

βn(x) =

⌊n/2⌋∑

k=0

4kP̂ (n, k)x2k(1 + x)n−2k = (1 + x)nP̂n

((
2x

1 + x

)2
)
.

Corollary 16. The polynomials an(x), bn(x), αn(x) and βn(x) satisfy the recurrence relations

an+1(x) = (1 + 3x− nx)an(x) +
1

2
x(1 + 4x)

d

dx
an(x), (27)

bn+1(x) = (1 + 2x− 2nx)bn(x) + x(1 + 4x)
d

dx
bn(x), (28)
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αn+1(x) =

(
1 + x+

1

2
(n − 1)x(3x− 1)

)
αn(x) +

1

2
x(1− x)(1 + 3x)

d

dx
αn(x), (29)

βn+1(x) = (1 + x− nx+ 3nx2)βn(x) + x(1− x)(1 + 3x)
d

dx
βn(x), (30)

with the initial conditions a1(x) = α1(x) = b0(x) = β0(x) = 1. In particular,

an(−1) =
(−1)n−1

2n−1
Pn(4), bn(−1) = (−1)nP̂n(4), αn(1) = n!, βn(1) = 2nn!.

Proof. Differentiation of

Pn

((
2x

1 + 2x

)2
)

=

(
2

1 + 2x

)n−1

an(x)

gives

d

dx
Pn

((
2x

1 + 2x

)2
)

=
2n−4(1 + 2x) d

dxan(x)− 2n−3(n− 1)an(x)

x(1 + 2x)n−3
.

Substituting the above two expressions into (21) and simplifying, we get (27). Differentiation of

P̂n

((
2x

1 + 2x

)2
)

=
bn(x)

(1 + 2x)n
,

gives

d

dx
P̂n

((
2x

1 + 2x

)2
)

=
(1 + 2x) d

dxbn(x)− 2nbn(x)

8x(1 + 2x)n−2
.

Substituting the above two expressions into (22) and simplifying, we obtain (28).

Differentiation of

Pn

((
2x

1 + x

)2
)

=

(
2

1 + x

)n−1

αn(x)

gives

d

dx
Pn

((
2x

1 + x

)2
)

=
2n−4(1 + x) d

dxαn(x)− 2n−4(n− 1)αn(x)

x(1 + x)n−3
.

Substituting the above two expressions into (21) and simplifying, we get (29). Differentiation of

P̂n

((
2x

1 + x

)2
)

=
βn(x)

(1 + x)n
,

gives

d

dx
P̂n

((
2x

1 + x

)2
)

=
(1 + x) d

dxβn(x)− nβn(x)

8x(1 + x)n−2
.

Substituting the above two expressions into (22) and simplifying, we arrive at (30). �

For convenience, we list the first few an(x)’s, bn(x)’s,αn(x)’s and βn(x)’s:

a1(x) = 1, a2(x) = 1 + 2x, a3(x) = 1 + 4x+ 6x2, a4(x) = 1 + 6x+ 20x2 + 24x3;

b1(x) = 1 + 2x, b2(x) = 1 + 4x+ 8x2, b3(x) = 1 + 6x+ 32x2 + 48x3;

α1(x) = 1, α2(x) = 1 + x, α3(x) = 1 + 2x+ 3x2, α4(x) = 1 + 3x+ 11x2 + 9x3;

β1(x) = 1 + x, β2(x) = 1 + 2x+ 5x2, b3(x) = 1 + 3x+ 23x2 + 21x3.
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Recall that αn(1) = n!. We shall provide a combinatorial interpretation for αn(x). Define

α̂n(x) = xn−1αn

(
1

x

)

for n > 1, and α̂0(x) = 1. Combining (3), (23) and (26), we see that

α̂n(x) =

(
1 + x

2

)n−1

Pn

((
2

1 + x

)2
)

=
1

2n−1

⌊(n−1)/2⌋∑

k=0

4kP (n, k)(1 + x)n−1−2k

=

⌊(n−1)/2⌋∑

k=0

γn,k(1 + x)n−1−2k,

where γn,k = #{π ∈ Sn : pk (π) = k, ddes (π) = 0}. By using the MFS -action defined by 2,

one can immediately get that

α̂n(x) =
∑

π∈Sn

xdasc (π),

since each double ascent of π can be transformed to a double descent. It is well known [48,

A008303] that the exponential generating function of peak polynomials is given as follows:

P (x; z) :=

∞∑

n=1

Pn(x)
zn

n!
=

sinh(z
√
1− x)√

1− x cosh(z
√
1− x)− sinh(z

√
1− x)

, (31)

Note that

α̂(x; z) :=
∞∑

n=0

α̂n(x)
zn

n!
= 1 +

2

1 + x
P

((
2

1 + x

)2

;
(1 + x)z

2

)
. (32)

Set u =
√

(x+ 3)(x− 1). Combining (31) and (32), it is routine to verify that

α̂(x; z) =
u cosh

(
1
2uz
)
+ (1− x) sinh

(
1
2uz
)

u cosh
(
1
2uz
)
− (1 + x) sinh

(
1
2uz
) ,

which was also recently studied by Zhuang [50, Theorem 13]. In conclusion, we can now restate

Corollary 15.

Proposition 17. For n > 1, one has

αn(x) =
∑

π∈Sn

xn−1−dasc (π) =
∑

π∈Sn

xpk (π)+des (π),

βn(x) =
∑

π∈Sn

(2x)2lpk (π)(1 + x)n−2lpk (π).
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6. Gamma-positivity and alternating semi-gamma-positivity

Following [36, Definition 15], if f(x) has the expansion

f(x) = (1 + x)ν
n∑

k=0

λkx
k(1 + x2)n−k, (33)

and λk > 0 for all 0 6 k 6 n, then we say that f(x) is semi-γ-positive, where ν = 0 or ν = 1.

Rewriting f(x) in the form f(x) = (1 + x)ν
(
f1(x

2) + xf2(x
2)
)
, we see that f(x) is semi-γ-

positive if and only if f1(x) and f2(x) are both γ-positive polynomials (see [36, Proposition 16]).

The γ-positivity implies semi-γ-positivity, but not vice versa.

Assume that f(x) has the expansion (33). If f(x) is semi-γ-positive, then it follows from (9)

that there exist nonnegative integers ξk and ζk such that

f(x)

(1 + x)ν
=

⌊n/2⌋∑

k=0

λ2kx
2k(1 + x2)n−2k + x

⌊n/2⌋∑

k=0

λ2k+1x
2k(1 + x2)n−2k−1

=

n∑

k=0

ξk(−x)k(1 + x)2n−2k + x

n−1∑

k=0

ζk(−x)k(1 + x)2n−2−2k.

Thus

f(x) =

n∑

k=0

(ξk − ζk−1)(−x)k(1 + x)2n−2k+ν ,

where ζ−1 = 0. Hence f(x) may be not alternatingly γ-positive, but the following result holds.

Lemma 18. If f(x) is semi-γ-positive, then it can be written as a linear combination of two

alternatingly γ-positive polynomials, i.e., there exist nonnegative integers ξk and ζk such that

f(x) =
n∑

k=0

ξk(−x)k(1 + x)2n−2k+ν + x
n−1∑

k=0

ζk(−x)k(1 + x)2n−2k−2+ν . (34)

We say that f(x) is alternatingly semi-γ-positive if it can be written as the linear combina-

tion (34). Since γ-positivity implies semi-γ-positivity, we get the following result.

Theorem 19. If f(x) is a γ-positive polynomial, then it is also alternatingly semi-γ-positive.

Here we provide two examples, one is γ-positive, the other is not γ-positive.

Example 20. Consider A6(x) = 1 + 57x + 302x2 + 302x3 + 57x4 + x5, which is the Eulerian

polynomial for the symmetric group S6. Then

A6(x) = (1 + x)(1 + 56x+ 246x2 + 56x3 + x4)

= (1 + x)5 − 4x(1 + x)3 + 248x2(1 + x) + x
(
56(1 + x)3 − 112x(1 + x)

)
.

Example 21. Consider f(x) = 1 + 7x+ 29x2 + 31x3 + 29x4 + 7x5 + x6. We have

f(x) = (1 + x)6 + x(1 + x)4 + 10x2(1 + x)2 − 15x3

= (1 + x2)3 + 7x(1 + x2)2 + 26x2(1 + x2) + 17x3

= (1 + x)6 − 6x(1 + x)4 + 38x2(1 + x)2 − 60x3 + x
(
7(1 + x)4 − 28x(1 + x)2 + 45x2

)
.

Hence f(x) is not γ-positive, but it is semi-γ-positive and alternatingly semi-γ-positive.
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Stirling permutations were introduced by Gessel and Stanley [27]. A Stirling permutation of

order n is a permutation of the multiset {1, 1, 2, 2, . . . , n, n} such that for each i, 1 6 i 6 n,

all entries between the two occurrences of i are larger than i. Denote by Qn the set of Stirling

permutations of order n. Let σ = σ1σ2 · · · σ2n ∈ Qn. An occurrence of an ascent-plateau of

σ ∈ Qn is an index i such that σi−1 < σi = σi+1, where i ∈ {2, 3, . . . , 2n− 1}. An occurrence of

a left ascent-plateau is an index i such that σi−1 < σi = σi+1, where i ∈ {1, 2, . . . , 2n − 1} and

σ0 = 0. Let ap (σ) (resp. lap (σ)) be the number of ascent-plateaus (resp. left ascent-plateaus)

of σ, see [36, 37] for details.

The flag ascent-plateau polynomials are defined by

Fn(x) =
∑

σ∈Qn

xfap (σ), F0(x) = 1,

where fap (σ) = ap (σ) + lap (σ). They satisfy the recurrence relation

Fn+1(x) = (x+ 2nx2)Fn(x) + x(1− x2)
d

dx
Fn(x).

Combining [36, Corollary 20] and [51, Theorem 4.13], we get

2x(1 + x)n−1An(x) =

n∑

k=0

(
n

k

)
Fk(x)Fn−k(x)

for n > 1, where An(x) are the Eulerian polynomials. Below are Fn(x) for n 6 5:

F1(x) = x, F2(x) = x+ x2 + x3, F3(x) = x+ 3x2 + 7x3 + 3x4 + x5,

F4(x) = x+ 7x2 + 29x3 + 31x4 + 29x5 + 7x6 + x7.

According to [36, Proposition 18, Theorem 19], the polynomials Fn(x) are not γ-positive, but

they are semi-γ-positive. By Lemma 18, we immediately get the following result.

Proposition 22. The flag ascent-plateau polynomials are alternatingly semi-γ-positive.

7. Two conjectures

We shall present two conjectures for future research. We now recall an elementary result.

Proposition 23 ([2, 9]). Let f(x) be a polynomial of degree n. There is a unique decomposition

f(x) = a(x) + xb(x), where

a(x) =
f(x)− xn+1f(1/x)

1− x
, b(x) =

xnf(1/x)− f(x)

1− x
.

Clearly, a(x) and b(x) are symmetric polynomials. The ordered pair of polynomials (a(x), b(x))

is called the symmetric decomposition of f(x). We say that f(x) is bi-γ-positive (resp. alternat-

ingly bi-γ-positive) if a(x) and b(x) are both γ-positive (resp. alternatingly γ-positive).
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7.1. On the Boros-Moll polynomials.

Boros and Moll [5, 6] have shown that for any x > −1 and m ∈ N, there exists a sequence of

polynomials Mm(x) satisfying
∫ ∞

0

1

(1 + 2xy2 + y4)m+1
dy =

π

2m+3/2(x+ 1)m+1/2
Mm(x),

where Mm(x) are called the Boros-Moll polynomials. Explicitly, Mm(x) =
∑m

i=0 di(m)xi, where

di(m) = 2−2m
m∑

k=i

2k
(
2m− 2k

m− k

)(
m+ k

k

)(
k

i

)
.

For any m > 1, Boros and Moll [6] showed that the polynomial Mm(x) is unimodal and the

model of it appears in the middle. For example,

M5(x) =
4389

256
+

8589

128
x+

7161

64
x2 +

777

8
x3 +

693

16
x4 +

63

8
x5.

Using the RISC package MultiSum, Kauers and Paule [30, Eq. (6)] found that for 0 6 i 6 m+1,

the numbers di(m) satisfy the recurrence relation

2(m+ 1)di(m+ 1) = 2(m+ i)di−1(m) + (4m+ 2i+ 3)di(m). (35)

The Boros-Moll polynomials have been extensively studied, see [14] and references therein.

We now define

Qm(x) = 2mm!xmMm

(
1

x

)
=

m∑

i=0

ci(m)xi, Q0(x) = 1.

Then ci(m) = 2mm!dm−i(m). It follows from (35) that the numbers ci(m) satisfy the recurrence

ci(m+ 1) = (4m− 2i+ 2)ci(m) + (6m− 2i+ 5)ci−1(m), (36)

with the initial conditions c0(0) = 1 and ci(0) = 0 for all i 6= 0. Multiplying both sides of (36)

by xi and summing over i, we obtain

Qm+1(x) = (2m+ 1)(2 + 3x)Qm(x)− 2x(1 + x)
d

dx
Qm(x).

Below are the symmetric decompositions of the polynomials Qm(x) for m 6 4:

Q1(x) = 2 + 3x = 2(1 + x) + x, Q2(x) = 3(4 + 7x+ 4x2) + 9x(1 + x),

Q3(x) = 120 + 420x+ 516x2 + 231x3

=4(40 + 103x + 103x2 + 40x3) + 3x(37 + 69x+ 37x2),

Q4(x) = 1680 + 7560x + 13140x2 + 10620x3 + 3465x4

= 105(16 + 55x+ 79x2 + 55x3 + 16x4) + 255x(1 + x)(7 + 12x+ 7x2),

Q5(x) = 30240 + 166320x + 372960x2 + 429660x3 + 257670x4 + 65835x5

= 315(96 + 415x + 781x2 + 781x3 + 415x4 + 96x5)+

315x(113 + 403x + 583x2 + 403x3 + 113x4).

Based on empirical evidence, we propose the following.



24 S.-M. MA, HAO QI, JEAN YEH, AND YEONG-NAN YEH

Conjecture 24. The polynomial Qm(x) has a decomposition Qm(x) = am(x) + xbm(x) for any

m > 1, where am(x) and bm(x) are both symmetric and unimodal polynomials. Moreover, Qm(x)

is alternatingly bi-γ-positive. So Mm(x) is also alternatingly bi-γ-positive.

7.2. On the enumerators of permutations by descents and excedances.

Let π ∈ Sn. The major index of π is the defined by

maj (π) =
∑

π(i)>π(i+1)

i.

An excedance of π is an index i ∈ [n − 1] such that π(i) > i. Let exc (π) denote the number of

excedacnes of π. In [46], Shareshian and Wachs studied the trivariate Eulerian polynomials

Amaj ,des ,exc
n (q, p, q−1t) =

∑

π∈Sn

qmaj (π)−exc (π)pdes (π)texc (π).

They noted that these polynomials are not t-symmetric and studied the unimodality of several

associated polynomials, see [46, p. 2951] for details.

We now consider the following bivariate Eulerian polynomials

An(s, t) =
∑

π∈Sn

sdes (π)texc (π).

According to [20, Eq (1.15), Eq. (1.18)], we have

∑

n>0

An(s, t)
un

(1 − s)n+1
=
∑

r>0

sr
1− t

(1− u)r+1(1− ut)−r − t(1− u)
. (37)

Below are the polynomials An(s, t) for 1 6 n 6 5:

A1(s, t) = 1, A2(s, t) = 1 + st = 1 + t+ (s − 1)t,

A3(s, t) = 1 + (3s+ s2)t+ st2 = (1 + (1 + s)2t+ t2) + (s− 1)t(1 + t),

A4(s, t) = 1 + (6s+ 5s2)t+ (4s + 6s2 + s3)t2 + st3

=(1 + t)(1 + 5s(1 + s)t+ t2) + (s− 1)t(1 + (1 + s)2t+ t2),

A5(s, t) = 1 + (10s + 15s2 + s3)t+ (10s + 36s2 + 19s3 + s4)t2+

(5s + 15s2 + 6s3)t3 + st4

=(1 + (1 + 9s+ 15s2 + s3)t+ (1 + 14s + 36s2 + 14s3 + s4)t2+

(1 + 9s+ 15s2 + s3)t3 + t4) + (s− 1)t(1 + t)(1 + 5s(1 + s)t+ t2).

We end this paper by giving the following conjecture.

Conjecture 25. Let s > 1 be a given real number. For any n > 2, the polynomial An(s, t) has

the following symmetric decomposition:

An(s, t) = an(s, t) + (s− 1)tan−1(s, t),

where an(s, t) is γ-positive. Thus An(s, t) is unimodal with mode in the middle.
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