Block-counting sequences are not purely morphic

Antoine Abram ${ }^{1}$, Yining Hu^{2}, and Shuo Li^{1}
1 Laboratoire de Combinatoire et d'Informatique Mathématique, Université du Québec à Montréal, Montréal (QC), Canada,
abram.antoine@lacim.ca, li.shuo@lacim.ca
${ }^{2}$ Institute for Advanced Study in Mathematics Harbin Institute of Technology, Harbin, PR China huyining@protonmail.com

Abstract

Let m be a positive integer larger than 1 , let w be a finite word over $\{0,1, \ldots, m-1\}$ and let $a_{m ; w}(n)$ be the number of occurrences of the word w in the m-expansion of $n \bmod p$ for any non-negative integer n. In this article, we first give a fast algorithm to generate all sequences of the form $\left(a_{m ; w}(n)\right)_{n \in \mathbf{N}}$; then, under the hypothesis that m is a prime, we prove that all these sequences are m-uniformly but not purely morphic, except for $w=1,2, \ldots, m-1$; finally, under the same assumption of m as before, we prove that the power series $\sum_{i=0}^{\infty} a_{m ; w}(n) t^{n}$ is algebraic of degree m over $\mathbb{F}_{m}(t)$.

1 Introduction, definitions and notation

Given a positive integer m larger than 1 and a finite word w over $\{0,1,2, \ldots, m-1\}$, the block-counting sequence $\left(e_{m ; w}(n)\right)_{n \in \mathbf{N}}$ counts the number of occurrences of the word w in the m-expansion of n for each non-negative integer n. Let us define $\left(a_{m ; w}(n)\right)_{n \in \mathbf{N}}$ to be a sequence over $\{0,1,2, \ldots, m-1\}$ such that $a_{m ; w}(n) \equiv$ $e_{m ; w}(n) \bmod (m)$ for all non-negative integer n. The analytical as well as the combinatorial properties of these sequences have been studied since 1900's after Thue and some well-known sequences are strongly related to this notion. Recall that the 0,1-Thue-Morse sequence can be defined as $\left(a_{2 ; 1}(n)\right)_{n \in \mathbf{N}}$ (see, for example, Page 15 in (4) and the 0, 1-Rudin-Shapiro sequence can also be defined as $\left(a_{2 ; 11}(n)\right)_{n \in \mathbf{N}}$ (see, for example, Example 3.3.1 in [4]). In this article, we review some common properties of usual block-counting sequences and generalize them to all block-counting sequences.

To be able to announce our results, here we recall some definitions and notation. Let A be a finite set. It will be called an alphabet and its elements will be called letters. Let A^{*} denote the free monoid generated by A under concatenations and let $A^{\mathbf{N}}$ denote the set of infinite concatenations of elements in A. Let $A^{\infty}=A^{*} \cup A^{\mathbf{N}}$. A finite word over the alphabet A is an element in A^{*} and an infinite word over A is an element in $A^{\mathbf{N}}$. Particularly, the empty word is an element in A^{*} and it is denoted by ϵ. The length of a word w, denoted by $|w|$, is the number of letters that it contains. The length of the empty word is 0 and the length of any infinite word is infinite. For any non-empty word $w \in A^{\infty}$, it
can be denoted by $w[0] w[1] w[2] \ldots$, where $w[i]$ are elements in A. A word x is called a factor of w if there exist two integers $0 \leq i \leq j \leq|w|-1$ such that $x=w[i] w[i+1] \ldots w[j]$, this factor can also be denoted by $w[i . . j]$. A factor x is called a prefix (resp. a suffix) of the word w if there exists a positive integer i such that $0 \leq i \leq|w|$ and $x=w[0 . . i]$ (resp. $x=w[i . .|w|-1]$). For any finite word w and any positive integer n, let w^{n} denote the concatenation of n copies of w, i.e. $w^{n}=w w \ldots w n$ times. Particularly, $w^{0}=\epsilon$. For any pair of words w, v such that v is a factor of w, let $|w|_{v}$ denote the number of occurrences of v in w.

Let A and B be two alphabets, a morphism ϕ from A to B is a map from A^{∞} to B^{∞} satisfying $\phi(x y)=\phi(x) \phi(y)$ for any pair of elements x, y in A^{∞}. The morphism ϕ is called k-uniform if for all elements $a \in A,|\phi(a)|=k$ and it is called non-uniform otherwise. A morphism ϕ is called a coding function if it is 1-uniform and it is called non-erasing if $\phi(a) \neq \epsilon$ for all $a \in A$.

Let A be a finite alphabet and let $\left(a_{n}\right)_{n \in \mathbf{N}}$ be an infinite sequence over A, it is called morphic if there exists an alphabet B, an infinite sequence $\left(b_{n}\right)_{n \in \mathbf{N}}$ over B, a non-erasing morphism ϕ from B^{∞} to B^{∞} and a coding function ψ from B^{∞} to A^{∞}, such that $\left(b_{n}\right)_{n \in \mathbf{N}}$ is a fixed point of ϕ and $\left(a_{n}\right)_{n \in \mathbf{N}}=\psi\left(\left(b_{n}\right)_{n \in \mathbf{N}}\right)$. Moreover, the sequence $\left(a_{n}\right)_{n \in \mathbf{N}}$ is called uniformly morphic if ϕ is k-uniform for some integer k, and it is called non-uniformly morphic otherwise. The sequence $\left(a_{n}\right)_{n \in \mathbf{N}}$ is called purely morphic if $A=B$ and $\psi=I d$.

For any positive integer m, let $\llbracket m \rrbracket=\{0,1,2, \ldots, m-1\}$. For any $t \in \llbracket m \rrbracket$ let $t^{+} \equiv t+1 \bmod m$; for any $w \in \llbracket m \rrbracket^{*}$, let $w^{+}=w[0]^{+} w[1]^{+} \ldots w[|w|-1]^{+}$.

In Section2 we give a fast algorithm to generate all block-counting sequences. It is well-known that the Thue-Morse sequence can be generated by the following algorithm (see, for example, [12, A008277]):

Example 1 Let $\left(w_{n}\right)_{n \in \mathbf{N}}$ be a sequence of words over the $\llbracket 2 \rrbracket^{*}$ such that $w_{0}=0$ and that $w_{i+1}=w_{i} w_{i}^{+}$for all i, then the Thue-Morse sequence $\left(a_{2 ; 1}(n)\right)_{n \in \mathbf{N}}$ satisfies $\left(a_{2 ; 1}(n)\right)_{n \in \mathbf{N}}=\lim _{i \rightarrow \infty} w_{i}$.

In Section2, we prove that the Rudin-Shapiro sequence can also be generalized by a similar algorithm, see 4 More generally, we find fast algorithms to generate all block-counting sequences. These algorithms are given by 3 and 5 in Section 2 ,

From the definitions recalled as above, any morphic word can be classified as either a uniformly morphic word or a non-uniformly morphic word. However, from a recent article [5], Allouche and Shallit proved that all uniformly morphic sequences are also non-uniformly morphic. This result implies that all sequences in the family of morphic sequences are also in its subfamily of non-uniformly morphic sequences. Indeed, many works can be found in the literature in the direction of characterizing all those non-uniformly morphic sequences which are not uniformly morphic, for example, one can find [2 [13] 7, 1] 8] 9] 6. However, in [5], it is proved actually that all uniformly morphic sequences are also nonuniformly non-purely morphic. In other words, from the construction of the proof given in [5], a nontrivial coding function is required. In Section 3] we investigate all those uniformly morphic sequences which are not purely morphic. It is already known that the Rudin-Shapiro sequence is in this case (Example 26 in [3]). In
section 3 we prove that all other sequences in the form of $\left(a_{m, w}(n)\right)_{n \in \mathbf{N}}$ have the same property when $|w| \neq 1$ and m is a prime. The result is announced as follows:

Theorem 2 Let p be a prime number and $w \in \llbracket p \rrbracket^{*}$. The sequence $\left(a_{p ; w}(n)\right)_{n \in \mathbf{N}}$ is a p-uniformly morphic. Moreover, if $|w|=1$ and $w \neq 0$, this sequence is purely morphic and if not is it non-purely morphic.

In Section 4. under the assumption that p is a prime number, we prove that the formal power series $f_{p ; w}=\sum_{i=0}^{\infty} a_{m ; w}(n) t^{n}$ is algebraic and of degree p over $\mathbb{F}_{p}(t)$. Indeed, from Christol's theorem [11], we know that the power series $f_{p ; w}$ is algebraic over $\mathbb{F}_{p}(t)$. In Section 4, we prove that f is algebraic of degree p.

2 Windows functions and $\left(a_{p ; w}(n)\right)_{n \in \mathrm{~N}}$

For any positive integer m and non-negative integer n, let $[n]_{m}$ denote the expansion of n in the base m. For a given word $w \in \llbracket m \rrbracket^{*}=\{0,1, \cdots, m-$ $1\}^{*}, w=w[0] w[1] \ldots w[|w|-1]$, let $(w)_{m}=\sum_{i=0}^{|w|-1} w[i] m^{|w|-1-i}$ and let $w^{\prime}=$ $w[1] w[2] \cdots w[|w|-1]$. A word w is called a x-word if $w[0]=x$. For a given string w, let $\alpha_{w}=\frac{\left(w^{\prime}\right)_{m}}{m^{|w|-1}}, \beta_{w}=\frac{\left(w^{\prime}\right)_{m}+1}{m^{|w|-1}}$ and let $\phi_{w}: \llbracket m \rrbracket^{*} \rightarrow \llbracket m \rrbracket^{*}$ be a function such that for any $v \in \llbracket m \rrbracket^{*}, \phi_{w}(v)$ satisfies the following propriety:

$$
\phi_{w}(v)[i]=\left\{\begin{array}{l}
v[i]+1 \bmod m \text { if } \alpha_{w}|v| \leq i<\beta_{w}|v| \\
v[i] \text { otherwise } .
\end{array}\right.
$$

2.1 Block-counting sequences for non-0-words

Proposition 3 Let m a positive number, let $x \in \llbracket m \rrbracket \backslash\{0\}$, let $w \in \llbracket m \rrbracket^{*}$ be a x-word and let $t=(v)_{m}$. If we let $\left(u_{i}\right)_{i \in \mathbb{N}}$ be a sequence of words such that $\left|u_{0}\right|=m^{|w|}$, that

$$
u_{0}[i]= \begin{cases}1 & \text { if } i=t \\ 0 & \text { otherwise },\end{cases}
$$

and that $u_{k+1}=u_{k}^{x} \phi_{w}\left(u_{k}\right) u_{k}^{m-x-1}$, then $\lim _{k \rightarrow \infty} u_{k}=\left(a_{m ; w}(n)\right)_{n \in \mathbb{N}}$.
Proof. First, it is obvious that u_{0} is a prefix of $\left(a_{m ; w}(n)\right)_{n \in \mathbf{N}}$. Now let $y \in$ $\llbracket m \rrbracket \backslash\{0\}$. For any integers r and m^{k} such that $0 \leq r<m^{k}, 0 \leq e_{m ; w}\left(r+y m^{k}\right)-$ $e_{m ; w}(r) \leq 1$. Indeed, since $y \neq 0,\left[r+y m^{k}\right]_{m}=y 0 . .0[r]_{m}$, thus, $\left[r+y m^{k}\right]_{m}$ has exactly one more x-factor of length $|v|$ than $[r]_{p}$ only if $y=x$, and this factor can be w or not. Moreover, $e_{m ; w}\left(r+y m^{k}\right)-e_{m ; w}(r)=1$ only if w is a prefix of $\left[r+y m^{k}\right]_{m}$. Consequently, $e_{m ; w}\left(r+y m^{k}\right) \stackrel{=}{=} e_{m ; w}(r)+1$ only if $\alpha_{w} m^{k} \leq r<\beta_{w} m^{k}$ and $y=x$. Hence, for any $t \in \llbracket m \rrbracket \backslash\{x\}$,

$$
\begin{aligned}
\left(a_{m ; w}(n)\right)_{t m^{k} \leq n<(t+1) m^{k}} & =\left(a_{m ; w}(n)\right)_{0 \leq n<m^{k}} \\
\left(a_{m ; w}(n)\right)_{x m^{k} \leq n<(x+1) m^{k}} & =\phi_{w}\left(\left(a_{m ; w}(n)\right)_{0 \leq n<m^{k}}\right) .
\end{aligned}
$$

This implies that

$$
\left(a_{m ; w}(n)\right)_{0 \leq n<m^{k+1}}=u_{k}^{x} \phi_{w}\left(u_{k}\right) u_{k}^{m-x-1}
$$

which concludes the proof.
Example 4 Let us compute the Rudin-Shapiro sequence using windows function. From Example 3.3 .1 in [4], the Rudin-Shapiro sequence can be defined as $\left(a_{2 ; 11}(n)\right)_{n \in \mathbf{N}}$. From Proposition 3, set $\alpha_{11}=\frac{1}{2}, \beta_{11}=\frac{2}{2}$ and $s_{0}=0,0,0,1$. For any words $w \in\{0,1\}^{*}$ such that $w=w_{1} w_{2}$ with $\left|w_{1}\right|=\left|w_{2}\right|, \phi_{s}(w)=w_{1}\left(w_{2}^{+}\right)$. Thus, one can compute

$$
\begin{gathered}
s_{1}=0,0,0,1,0,0,1,0 ; \quad s_{2}=0,0,0,1,0,0,1,0,0,0,0,1,1,1,0,1 \\
s_{3}=0,0,0,1,0,0,1,0,0,0,0,1,1,1,0,1,0,0,0,1,0,0,1,0,1,1,1,0,0,0,1,0
\end{gathered}
$$

$\left(e_{s}(n)\right)_{n \in \mathbf{N}}$ is the limit of s_{n} when n tends to infinite.

2.2 Block-counting sequences for 0-words

Proposition 5 Let m be a positive number, let $w \in \llbracket m \rrbracket^{*} a 0$-word and let $t=(w)_{m}$. Let u_{0} be such that $\left|u_{0}\right|=m^{|w|}$ and

$$
u_{0}[i]= \begin{cases}1 & \text { if } i=t \\ 0 & \text { otherwise }\end{cases}
$$

and let $u_{k+1}=\phi_{w}\left(u_{k}\right) u_{k}^{m-1}$.
By letting $w_{-1}=u_{0}$ if $w=0^{|w|}$ and $w_{-1}=0^{m^{|w|}}$ if not, $w_{k}=u_{k}^{m-1}$ for $k \geq 0$, then

$$
\left(a_{m ; w}(n)\right)_{n \in \mathbb{N}}=w_{-1} w_{0} w_{1} w_{2} \cdots w_{n} \cdots
$$

Lemma 6 Let m be a positive number, $y \in \llbracket m \rrbracket \backslash\{0\}$, $w \in \llbracket m \rrbracket^{*}$ a 0 -word and let $t=(w)_{m}$, then for any integer r satisfying $t<m^{k} \leq r<m^{k+1}$:

1) $e_{m ; w}\left(r+y m^{k+1}\right)=e_{m ; w}(r)$;
2) $0 \leq e_{m ; w}\left(r+m^{k}\right)-e_{m ; w}(r) \leq 1$;
3) $e_{m ; w}\left(r+m^{k}\right)-e_{m ; w}(r)=1$ only if $[r]_{m}$ is a $m-1$-word and $\alpha_{w} m^{k} \leq r<$ $\beta_{w} m^{k}$.

Proof. For any integer r satisfying $t<m^{k} \leq r<m^{k+1}$, we first remark that $\left[r+y m^{k+1}\right]_{m}=y[r]_{m}$. Since $\left[r+y m^{k+1}\right]_{m}$ and $y[r]_{m}$ have the same set of 0 factors, $e_{m ; w}\left(r+y m^{k+1}\right)=e_{m ; w}(r)$. Second, if $[r]_{m}$ is not a $m-1$-word than $[r]_{m}$ and $\left[r+m^{k}\right]_{m}$ has the same set of 0 -factors. But if $[r]_{m}$ is a $m-1$-word, then $\left[r+m^{k}\right]_{m}=10[r]_{m}^{\prime}$ and thus, can have at most one more 0 factors of length $|w|$ than $[r]_{m}$. Consequently, $0 \leq e_{m ; w}\left(r+m^{k}\right)-e_{m ; w}(r) \leq 1$. Moreover, in the latter case, $e_{m ; w}\left(r+m^{k}\right)-e_{m ; w}(r)=1$ only if $1 w$ is a prefix of $\left[r+m^{k}\right]_{m}$. So $e_{m ; w}\left(r+m^{k}\right)=e_{m ; w}(r)+1$ only if $\alpha_{w} m^{k}<r \leq \beta_{w} m^{k}$.

Proof (of Proposition (5). We first remark that $w_{-1} w_{0}$ is a prefix of $\left(a_{m ; w}(n)\right)_{n \in \mathbf{N}}$.
Further, for any integer k satisfying $(w)_{m}<m^{k}$ and $x \in \llbracket m \rrbracket \backslash\{0\}$, from Lemma 6

$$
\begin{aligned}
\left(a_{m ; w}(n)\right)_{x m^{k} \leq n<(x+1) m^{k}} & =\left(a_{m ; w}(n)\right)_{m^{k} \leq n<2 m^{k}} \\
\left(a_{m ; w}(n)\right)_{m^{k+1} \leq n<m^{k+1}+m^{k}} & \left.=\left(\phi\left(a_{m ; w}(n)\right)_{(p-1) m^{k} \leq n<m^{k+1}}\right)\right) .
\end{aligned}
$$

This implies that

$$
\left(a_{m ; w}(n)\right)_{m^{k} \leq n<m^{k+1}}=\left(\phi_{w}\left(\left(a_{m ; w}(n)\right)_{m^{k-1} \leq n<m^{k}}\right)\left(a_{m ; w}(n)\right)_{m^{k-1} \leq n<m^{k}}^{m-1}\right)^{m-1}
$$

which concludes the proof.
Example 7 Let us compute the sequence $\left(a_{2 ; 01}(n)\right)_{n \in \mathbf{N}}$ with. From the previous theorem, set $\alpha_{01}=\frac{1}{2}, \beta_{01}=\frac{2}{2}, s_{-1}=0,0,0,0$ and $s_{0}=0,1,0,0$. For any words $w \in\{0,1\}^{*}$ such that $w=w_{1} w_{2}$ with $\left|w_{1}\right|=\left|w_{2}\right|=k$ for some integer k, $\phi_{s}(w)=w_{1} w_{2}^{+}$. Thus, one can compute

$$
\begin{gathered}
s_{1}=0,1,1,1,0,1,0,0 ; s_{2}=0,1,1,1,1,0,1,1,0,1,1,1,0,1,0,0 \\
s_{3}=0,1,1,1,1,0,1,1,1,0,0,0,1,0,1,1,0,1,1,1,1,0,1,1,0,1,1,1,0,1,0,0
\end{gathered}
$$

$\left(a_{2 ; 01}(n)\right)_{n \in \mathbf{N}}$ is the limit of $s_{-1} s_{0} s_{1} s_{2} s_{3} \ldots s_{n}$ when n tends to infinite.

$3\left(a_{p ; w}(n)\right)_{n \in \mathrm{~N}}$ are not purely morphic

From now on, we work with p a prime number.
We first prove that $\left(a_{p ; w}(n)\right)_{n \in \mathbf{N}}$ is not purely morphic when $|w|>1$. We will need a simple notation, for $w=w[0] \cdots w[|w|-1]$, let $w^{\diamond}=w[0] \cdots w[|w|-2]$.

Proposition 8 For any prime number p and for any $w \in \llbracket p \rrbracket^{*}$, the sub-sequences of the form $\left(a_{p ; w}(p n+i)\right)_{0 \leq i \leq p-1}$ are either constant (called type 1) or of the form

$$
a_{p ; w}(p n+i)=\left\{\begin{array}{l}
t^{+} \quad \text { if } i=w[|w|-1] \\
t \quad \text { otherwise }
\end{array}\right.
$$

for some integer $t \in \llbracket p \rrbracket$ (called type 2). Moreover, $\left(a_{p ; w}(p n+i)\right)_{0 \leq i \leq p-1}$ is of type 2 if and only if w^{\diamond} is a suffix of $[n]_{p}$.

For the sequence $\left(a_{p ; w}(n)\right)_{n \in \mathbf{N}}$, let us define a p-block to be a sub-sequence of the form $\left(a_{p ; w}(p n+i)\right)_{0 \leq i \leq p-1}$ for some integer n. From the previous proposition, a p-block is either of type 1 or type 2 . For a p-block $\left(a_{p ; w}(p n+i)\right)_{0 \leq i \leq p-1}$ of type 2 , let us define its index to be an integer $i \in \llbracket p \rrbracket$ such that $a_{p ; w}(p n+i) \neq$ $a_{p ; w}(p n+j)$ for all $j \neq i$.

Proposition 9 For any prime number p and any $w \in \llbracket p \rrbracket^{*}$, if there exists a word v such that v^{p+1} is a prefix of $\left(a_{p ; w}(n)\right)_{n \in \mathbf{N}}$ and that $|v| \geq 2 p^{|w|}$, then $|v|$ is a multiple of $p^{|w|-1}$.

Proof. If $|v| \geq 2 p^{|w|}$, then, from Proposition 3 and 5 v contains a p-block of the form

$$
a_{p ; w}(p m+i)=\left\{\begin{array}{l}
1 \text { if } i=w[|w|-1], \\
0 \text { otherwise }
\end{array}\right.
$$

for some m. Since v^{p+1} is a prefix of $\left(a_{p ; w}(n)\right)_{n \in \mathbf{N}},\left(a_{p ; w}(p m+p|v|+i)\right)_{0 \leq i \leq p-1}=$ $\left(a_{p ; w}(p m+i)\right)_{0 \leq i \leq p-1}$, which is also a p-factor of type 2. From Proposition 8 , w^{\diamond} is a suffix of both $[m]_{p}$ and $[m+|v|]_{p}$. Thus, $m+|v|-m$ is a multiple of $p^{|w|-1}$.

Proposition 10 For any prime integer p and any $w \in \llbracket p \rrbracket^{*}$, the sequence $\left(a_{p ; w}(n)\right)_{n \in \mathbf{N}}$ cannot have a prefix v^{p+1} such that $|v|=i p^{|w|-1}$ for some positive integer $i \geq p+1$.

This proposition will be proved with the help of the following lemmas.
Lemma 11 Let $w \in \llbracket p \rrbracket^{*}$, then for any words $a, b \in \llbracket p \rrbracket^{*}$ and for any positive integer ℓ, there exists a word u such that $|u|=l,|a u|_{w}=|a|_{w}$ and $|b u|_{w}=|b|_{w}$.

Proof. Let $x \in \llbracket p \rrbracket \backslash\{w[|w|-1]\}$ and $u=x^{\ell}$. It is clear that $|a u|_{w}=|a|_{w}$ and $|b u|_{w}=|b|_{w}$ because none of the added factor of size $|w|$ ends with x.

Lemma 12 Let w be a word in $\llbracket p \rrbracket^{*}$ such that $|w|>1$. Let $a, b \in \llbracket p \rrbracket^{*}$ such that $a_{w} \neq b_{w}$ where a_{w} and b_{w} are the longest suffixes of respectively a and b that are prefixes of w. Then there exists a word u such that $|u| \leq|w|-1$ and that $|a u|_{w} \not \equiv|b u|_{w} \bmod p$.

Proof. If $|a|_{w} \not \equiv|b|_{w} \bmod p$, then let $v=\epsilon$.
If $|a|_{w} \equiv|b|_{w} \bmod p$, because have $a_{w} \neq b_{w}$, then $|a|_{w} \neq\left|b_{w}\right|$ because w doesn't have multiple suffixes of the same length. Suppose that a_{w} is the longest. It is clear that $\left|a_{w}\right|>0$. We define v to be a word satisfying $a_{w} v=w$. In this case, $|v| \leq|w|-1,|a v|_{w}=|a|_{w}+1$ and $|b v|_{w}=|b|_{w}$.

Now we are able to prove Proposition 10
Proof (of Proposition (10). We only need to prove that there exist $k, k^{\prime} \in \llbracket p \rrbracket$ such that

$$
\left(a_{p ; w}(n)\right)_{k i p|w|-1} \leq n<(k+1) i p^{|w|-1} \mid \neq\left(a_{p ; w}(n)\right)_{k^{\prime} i p^{|w|-1} \leq n<\left(k^{\prime}+1\right) i p^{|w|-1}}
$$

i.e. there exists some j such that $0 \leq j<|v|$ and

$$
a_{p ; w}\left(k i p^{|w|-1}+j\right) \neq a_{p ; w}\left(k^{\prime} i p^{|w|-1}+j\right) .
$$

For $1 \leq k \leq p$, let $t_{k}=\left[k i p^{|w|-1}\right]_{p}$. One has $t_{k}=u_{k} x_{k} 0^{j}$ for some word u_{k}, some letter $x_{k} \in \llbracket p \rrbracket \backslash\{0\}$ and some non-negative integer $j \geq|w|-1$. Note that $u_{1} \neq 0$. Since p is prime, one has $x_{k} \neq x_{k^{\prime}}$ if $k \neq k^{\prime}$. Thus, there exists $k \in \llbracket p \rrbracket$ such that $x_{k}=w[0]$.

Now, let $k^{\prime} \in \llbracket p \rrbracket \backslash\{k\}$ and let v_{k} and v_{k}^{\prime} be the longest suffixes of respectively $u_{k} x_{k}$ and $u_{k^{\prime}} x_{k^{\prime}}$ that are prefixes of w. Because $x_{k}=w[0], v_{k} \neq \epsilon$ and thus $v_{k} \neq v_{k^{\prime}}$. Therefore, by Lemma 12 and Lemma 11 there exists u such that $\left|v_{k} u\right|_{w} \not \equiv\left|v_{k^{\prime}} u\right|_{w} \bmod p$ and that $|u|=|w|-1$. Let $j=[u]_{p}$, clearly $j<i p^{|w|-1}$ and one has

$$
a_{p ; w}\left(k i p^{|w|-1}+j\right) \neq a_{p ; w}\left(k^{\prime} i p^{|w|-1}+j\right),
$$

which proves the result.
Now we are able to prove the principle theorem in most cases:
Theorem 13 For any prime number p and any $w \in \llbracket p \rrbracket^{*}$, the sequence $\left(a_{p ; w}(n)\right)_{n \in \mathbf{N}}$ is p-uniformly morphic for any w and non-purely morphic when $|w|>1$ and $w \neq 10$.

Proof. First, the fact that $\left(a_{p ; w}(n)\right)_{n \in \mathbf{N}}$ is p-automatic for any word w follows from the Proposition 3.1 in [10], Page 7 and Theorem 16.1.5 in [4].

Now, if $w \neq 10$ and $|w|>1$ and the sequence $\left(a_{p ; w}(n)\right)_{n \in \mathbf{N}}$ is purely morphic, then 0^{p+1} is a prefix of $\left(a_{p ; w}(n)\right)_{n \in \mathbf{N}}$. Thus, $\left(a_{p ; w}(n)\right)_{n \in \mathbf{N}}$ will have infinitely many prefix of type v^{p+1}. However, from Proposition 9 and $10\left(a_{p ; w}(n)\right)_{n \in \mathbf{N}}$ can only have finitely many prefix of the form v^{p+1}. We conclude.

Here we prove the p particular cases.
Proposition 14 For any prime number p and for any $w \in \llbracket p \rrbracket \backslash\{0\}$, the sequence $\left(a_{p, w}(n)\right)_{n \in \mathbf{N}}$ is purely morphic.

Proof. It is easy to check that for any non-negative integer $m,\left(a_{p ; w}(p m+\right.$ $i))_{0 \leq i \leq p-1}$ satisfies the following property:

$$
a_{p ; w}(p m+i)=\left\{\begin{array}{l}
a_{p ; w}(m)^{+} \text {if } i=w, \\
a_{p ; w}(m) \text { otherwise }
\end{array}\right.
$$

Thus, it is easy to check that $\left(a_{p ; w}(p m+i)\right)_{0 \leq i \leq p-1}$ is the fixed point of the morphism: $i \rightarrow v_{i}$ for all $i \in \llbracket p \rrbracket$, where,

$$
v_{i}[k]=\left\{\begin{array}{l}
i^{+} \text {if } k=w, \\
i \text { otherwise }
\end{array}\right.
$$

Proposition 15 The sequence $\left(a_{2,0}(n)\right)_{n \in \mathbf{N}}$ is non-purely morphic.
Proof. The sequence $\left(a_{2,0}(n)\right)_{n \in \mathbf{N}}$ begins with $1,0,1,0$. Thus, if this sequence is purely morphic, then this sequence has infinitely many prefixes of the form v^{2}. Here we prove that $\left(a_{2,0}(n)\right)_{n \in \mathbf{N}}$ cannot have a prefix of the form v^{2} with $|v| \geq 5$.

If $\left(a_{2,0}(n)\right)_{n \in \mathbf{N}}$ has a prefix of the form v^{2} with $|v| \geq 5$. Let us suppose that $|v|=4 k+i$ for some non-negative integers k, i such that $i=0,1,2,3$ and $k \geq 1$. First note that $a_{2,0}(r)=a_{2,0}(4 k+i+r)$ for any r satisfying $0 \leq r<4 k+i$.

Also note that, for $k \geq 0, a_{2,0}(k)=a_{2,0}(4 k)=a_{2,0}(4 k+3)=a_{2,0}(2 k+1)=x$ and $a_{2,0}(4 k+1)=a_{2,0}(4 k+2)=a_{2,0}(2 k)=x^{+}$for some $x \in\{0,1\}$. This is because if $[k]_{2}=u$, then $[2 k]_{2}=u 0,[2 k+1]_{2}=u 1,[4 k]_{2}=u 00,[4 k+1]_{2}=u 01$, $[4 k+2]_{2}=u 10$ and $[4 k+3]_{2}=u 11$.

Finally, note that $a_{2,0}\left(2^{t} k-1\right)=a_{2,0}(k-1)$, because, we know that $k \geq 1$ so if $[k-1]_{2}=u$ then $\left[2^{t} k-1\right]_{2}=u 1^{t}$. Similarly, $a_{2,0}\left(2^{t} k-2^{s}-1\right)=a_{2,0}\left(2^{t} k-1\right)^{+}$ if $1<s<t$.

Now if $i=0$, then $|v|=4 k$ and $a_{2,0}(1)=a_{2,0}(4 k+1)=0, a_{2,0}(2)=$ $a_{2,0}(4 k+2)=1$ which contradicts to $a_{2,0}(4 k+1)=a_{2,0}(4 k+2)$.

If $i=1$, then $|v|=4 k+1$ and $a_{2,0}(0)=a_{2,0}(4 k+1)=1, a_{2,0}(1)=$ $a_{2,0}(4 k+2)=0$ which contradicts to $a_{2,0}(4 k+2)=a_{2,0}(4 k+2)$.

If $i=2$, then $|v|=4 k+2$ and $a_{2,0}(k-1)=a_{2,0}(4 k-1)$ but $a_{2,0}(k-1)=$ $a_{2,0}(8 k-1)=a_{2,0}(4 k-3)=a_{2,0}(4 k-1)^{+}$.

If $i=3$, then $|v|=4 k+3$ and $a_{2,0}(2(2 k+1))=a_{2,0}(4 k+2)=a_{2,0}(4 k+$ $3)^{+}=a_{2,0}(0)^{+}=0$. Thus, we have $a_{2,0}(2 k+1)=1$. But on the other hand, $a_{2,0}(2 k+1)=a_{2,0}(4(2 k+1))=a_{2,0}(8 k+4)=a_{2,0}(4 k+1)=a_{2,0}(4 k+2)=0$, which is a contradiction.

In all cases, $\left(a_{2,0}(n)\right)_{0 \leq n<|v|} \neq\left(a_{2,0}(n)\right)_{|v| \leq n<2|v|}$.
Proposition 16 For any prime number $p \geq 3$, the sequence $\left(a_{p, 0}(n)\right)_{n \in \mathbf{N}}$ is non-purely morphic.
Proof. The sequence $\left(a_{p, 0}(n)\right)_{n \in \mathbf{N}}$ begins with $\left(10^{p-1}\right)^{p}$. Thus, if this sequence is purely morphic, then this sequence has infinitely many prefixes of the form v^{2}. Here we prove that $\left(a_{p, 0}(n)\right)_{n \in \mathbf{N}}$ cannot have a prefix of the form v^{2} with $|v| \geq p^{2}$.

First, let us prove that if v^{2} is a prefix of $\left(a_{p, 0}(n)\right)_{n \in \mathbf{N}}$, then $|v|$ is a multiple of p. It is easy to check that v^{2} is not a prefix of $\left(a_{p, 0}(n)\right)_{n \in \mathbf{N}}$ when $|v|=1,2$. Let us suppose that $|v| \geq 3$. In this case, v begins with $1,0,0$. Thus, $a_{p, 0}(|v|)=$ $1, a_{p, 0}(|v|+1)=a_{p, 0}(|v|+2)=0$.

Let us suppose that $|v|=k p+t$ for some nonnegative integers k, t such that $0 \leq t \leq k-1$. We first prove that $t \neq k-1$. If it is the case, then $|v|+1$ is a multiple of p and $a_{p, 0}(|v|+1) \neq a_{p, 0}(|v|+2)=0$ since $|v|+2$ has one 0 less than $|v|+1$ in their p-expansions. this contradicts the fact that $a_{p, 0}(|v|+1)=a_{p, 0}(|v|+2)=0$.

Now let us suppose that $t \neq k-1$. In this case, $\left(a_{p, 0}(n)\right)_{k p \leq n \leq(k+1) p-1}$ contains the factor $a_{p, 0}(|v|) a_{p, 0}(|v|+1)=1,0$. Thus, $\left(a_{p, 0}(n)\right)_{k p \leq n \leq(k+1) p-1}$ is a factor of type 2 announced in proposition 8 . But the word $\left(a_{p, 0}(n)\right)_{0 \leq n \leq p-1}=10^{p-1}$ is also a word of type 2 and the word $\left(a_{p, 0}(n)\right)_{n \in \mathbf{N}}$ cannot have two different factors of type 2 such that the special letters are at different positions. Thus, $a_{p, 0}(|v|) a_{p, 0}(|v|+1)$ should be a prefix of $\left(a_{p, 0}(n)\right)_{k p \leq n \leq(k+1) p-1}$ and consequently $|v|$ is a multiple of p.

Second, $|v|$ is not a multiple of p^{2}. Because, if it is in this case, $a_{p, 0}(|v|)=$ $a_{p, 0}(0)=1$ and $a_{p, 0}(|v|+p)=a_{p, 0}(|v|)-1=0$. But $a_{p, 0}(p)=1$, thus, $a_{p, 0}(|v|+$ $p) \neq a_{p, 0}(p)$. Consequently, $\left(a_{p, 0}(n)\right)_{0 \leq n<|v|-1} \neq\left(a_{p, 0}(n)\right)_{|v| \leq n<2|v|-1}$.

Third, if $|v|$ is not a multiple of p^{2} but larger than $p^{2}+1$, let us suppose that $|v|=k p^{2}+t p$ for some positive integers k, t such that $1 \leq t \leq p-1$. Let $x=$ $(p-t) p$, we then have $a_{p, 0}(|v|+x)=a_{p, 0}(x)=1$. But in this case, $a_{p, 0}(x+p)=1$ or 2 , but $a_{p, 0}(|v|+x+p)=0$. Thus, $\left(a_{p, 0}(n)\right)_{0 \leq n<|v|-1} \neq\left(a_{p, 0}(n)\right)_{|v| \leq n<2|v|-1}$.

Proposition 17 The sequence $\left(a_{2 ; 10}(n)\right)_{n \in \mathbf{N}}$ is non-purely morphic.
Proof. The sequence $\left(a_{2 ; 10}(n)\right)_{n \in \mathbf{N}}$ begins with 0010 . Thus, if this sequence is purely morphic, then this sequence has infinitely many prefixes of the form v^{2}. We will prove that its only prefix of square shape is 00 .

Let v^{2} be a prefix of $\left(a_{p ; 10}(n)\right)_{n \in \mathbf{N}}$. Because of that, one can note that $\left.\left(a_{p ; 10}(n)\right)_{0 \leq n<|v|}=a_{p ; 10}(|v|+n)\right)_{0 \leq n<|v|}$, in particular, $\left(a_{p ; 10}(|v|+n)\right)_{0 \leq n \leq 4}=$ 0010. Using this, we will prove this proposition by proving all the different possibility for the word $[|v|]_{2}$.

For now on, u can be any word in $\llbracket p \rrbracket^{*}$ and s and t positive integer. Note that the computation is made in binary basis.
i) If $[|v|]_{2}=1^{t}$ with $t>1$, we have $a_{p ; 10}(|v|+1)=1 \neq 0$ because $1^{t}+1=10^{t}$.
ii) If $[|v|]_{2}=1^{t} 01$, one can simply note that $a_{p ; 10}(|v|)=1 \neq 0$.
iii) If $[|v|]_{2}=u 101^{t} 01$ then $a_{p ; 10}(|v|+3)=a_{p ; 10}(|v|)^{+}$because $u 101^{t} 01+11=$ $u 110^{s+2}$.
iv) If $[|v|]_{2}=u 101^{t}$ with $t>1$ then $a_{p ; 10}(|v|+2)=a_{p ; 10}(|v|)$, because $u 101^{t}+11=u 110^{t-1} 1$.
v) If $[|v|]_{2}=u 10^{s} 1^{t}$ with $s>1$ we have $a_{p ; 10}(|v|+1)=a_{p ; 10}(|v|)^{+}$, because $u 10^{s} 1^{t}+1=u 10^{s-1} 10^{t}$.
vi) Finally, if $[|v|]_{2}=u 10^{t}$ with $t>1$, we have on one hand $a_{p ; 10}(|v|+$ $\left.\left(1^{t-1} 0\right)_{2}\right)=a_{p ; 10}(|v|)=0$ because $u 10^{t}+1^{t-1} 0=u 1^{t} 0$. We also have $a_{p ; 10}(|v|+$ $\left.\left(1^{t-1} 0\right)_{2}\right)=a_{p ; 10}\left(\left(1^{t-1} 0\right)_{2}\right)=1$, which is a contradiction.

An attentive reader will remark that this cover all the number strictly bigger than 1.

Proposition 18 For any prime number $p \geq 3$ the sequence $\left(a_{p ; 10}(n)\right)_{n \in \mathbf{N}}$ is non-purely morphic.

Proof. The sequence $\left(a_{p ; 10}(n)\right)_{n \in \mathbf{N}}$ begins with $0^{p} 1$. Thus, if this sequence is purely morphic, then this sequence has infinitely many prefixes of the form v^{p}. It suffices to prove that if $|v|>p^{2}$ then v^{p} is not a prefix of $\left(a_{p ; 10}(n)\right)_{n \in \mathbf{N}}$.

Let v^{p} be a prefix of $\left(a_{p ; 10}(n)\right)_{n \in \mathbf{N}}$.
Suppose that $p \nmid|v|>p^{2}$. This means that $v=u y x$ for a word u and some letters y, x with $x \neq 0$. Because v^{2} is a prefix of $\left(a_{p ; 10}(n)\right)_{n \in \mathbf{N}}, v$ begins with the letters $0^{p} 1$ and $\left.\left(a_{p ; 10}(n)\right)_{0 \leq n \leq p}=a_{p ; 10}\left((v)_{p}+n\right)\right)_{0 \leq n \leq p}$. Thus $a_{p ; 10}\left((v)_{p}\right)=0$.

Let $c \in \llbracket p \rrbracket$ such that $x+c=p$; it exists because $x \neq 0$ and $p>2$. Thus, $\left[(v)_{p}+c\right]_{p}=u^{\prime} y^{\prime} 0$. Because $a_{p ; w}(c)=0, a_{p ; w}\left((v)_{p}+c\right)=0$ also and $a_{p ; w}\left((v)_{p}+\right.$ $p)=0$ or $p-1$ which is not equal to $a_{p ; w}(p)=1$. Therefore, v^{2} is not a prefix of $\left(a_{p ; 10}(n)\right)_{n \in \mathbf{N}}$.

Suppose now that $p||v| \geq p$. Let $| v \mid=s p^{t}$ for some positive integer s, t such that $t \geq 1$ and $p \nmid s$ and let $[v]_{p}=u x 0^{t}$ for some word u and some letter $x \in \llbracket p \rrbracket \backslash\{0\}$.

Since p is prime, there exists $k \in \llbracket p \rrbracket$ such that $[k v]_{p}=u^{\prime} 10^{t}$ for some word u^{\prime}. Let $m=p^{t+1}-1$, thus $[m]_{p}=(p-1)^{t}$ and $[k v+m]_{p}=u^{\prime} 1(p-1)^{t}$.

Since $\left(a_{p ; 10}(n)\right)_{k_{1}|v| \leq n \leq\left(k_{1}+1\right)|v|-1}=\left(a_{p ; 10}(n)\right)_{k_{2}|v| \leq n \leq\left(k_{2}+1\right)|v|-1}$, for any k_{1}, $k_{2} \in \llbracket p \rrbracket$ we have $a_{p ; 10}(0)=0=a_{p ; 10}(k v)$ thus $a_{p ; 10}\left(u^{\prime}\right)=p-1$ which means that $a_{p ; 10}(m)=0 \neq a_{p ; 10}(k v+m)=p-1$.

Hence, v^{p} cannot be a prefix of $\left(a_{p ; 10}(n)\right)_{n \in \mathbf{N}}$ if $v>p^{2}$ which concludes the proof.

Proof (of Theorem (2). It is a direct result of Theorem 13, Proposition 14 Proposition 15, Proposition 16, Proposition 17 and Proposition 18.

4 Algebraicity

By Christol's theorem [11], we know that the power series $f=\sum_{i=0}^{\infty} a_{p ; w}(n) t^{n}$ is algebraic over $\mathbb{F}_{p}(t)$. Now we prove that f is algebraic of degree p. Indeed, if we let $[w]_{p}$ denote $w_{1} p^{k-1}+\cdots+w_{k}$, and write $a_{n}=a_{p ; w}(n)$ for short, then

$$
\begin{aligned}
& \left(1+t+\cdots+t^{p-1}\right) f^{p}-f \\
= & \sum_{n \geq 0} \sum_{j=0}^{p-1}\left(a_{n}-a_{p n+j}\right) t^{p n+j} \\
= & \sum_{n \geq 0}\left(a_{n}-a_{p n+w_{k}}\right) t^{p n+w_{k}} \\
= & \sum_{n \geq 0} \sum_{j=0}^{p-1}\left(a_{n p+j}-a_{n p^{2}+j p+w_{k}}\right) t^{n p^{2}+j p+w_{k}} \\
= & \sum_{n \geq 0}\left(a_{n p+w_{k-1}}-a_{n p^{2}+w_{k-1} p+w_{k}}\right) t^{n p^{2}+w_{k-1} p+w_{k}} \\
\cdots & \\
= & \sum_{n \geq 0}\left(a_{n p^{k-1}+w_{1} p^{k-2} \cdots+w_{k-1}}-a_{n p^{k}+w_{1} p^{k-1}+\cdots+w_{k}}\right) t^{n p^{k}+[w]_{p}} \\
= & \left\{\begin{array}{l}
\sum_{n \geq 0}-t^{n p^{k}+[w]_{p}}=t^{[w]_{p}} /\left(t^{p^{k}}-1\right), \quad \text { if } w_{1} \neq 0 \\
\sum_{n \geq 1}-t^{n p^{k}+[w]_{p}}=t^{p^{k}+[w]_{p}} /\left(t^{p^{k}}-1\right), \quad \text { if } w_{1}=0 .
\end{array}\right.
\end{aligned}
$$

The irreduciblity of the the above functional equations is straightforward from the Eisenstein's criterion. We thus have the following propriety:

Proposition 19 For any prime number p and any finite word w in $\llbracket p \rrbracket^{*}$, the power series $\sum_{i=0}^{\infty} a_{p ; w}(n) t^{n}$ is algebraic of degree p over $\mathbb{F}_{p}(t)$.

5 Final remarks

The authors remark that the fast algorithms introduced in Section 2 for 0-words and non- 0 -words are much different. However, the generating functions given in Section 4 for 0 -words and non-0-words are quite similar. Thus, we believe that the algorithms in Section 2 can be unified for both 0 -words and non- 0 -words.

References

1. Allouche, G., Allouche, J.P., Shallit, J.: Kolam indiens, dessins sur le sable aux îles Vanuatu, courbe de Sierpinski et morphismes de monoïde. Annales de l'Institut Fourier 56(7), 2115-2130 (2006), https://aif.centre-mersenne.org/articles/10.5802/aif.2235/
2. Allouche, J.P., Bétréma, J., Shallit, J.O.: Sur des points fixes de morphismes d'un monoïde libre. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 23(3), 235-249 (1989), http://www.numdam.org/item/ITA_1989__23_3_235_0/
3. Allouche, J.P., Cassaigne, J., Shallit, J., Zamboni, L.Q.: A taxonomy of morphic sequences (2017), https://arxiv.org/abs/1711.10807
4. Allouche, J.P., Shallit, J.: Automatic Sequences: Theory, Applications, Generalizations. Cambridge University Press (2003)
5. Allouche, J.P., Shallit, J.: Automatic Sequences Are Also Non-uniformly Morphic, pp. 1-6. Springer International Publishing, Cham (2020), https://doi.org/10.1007/978-3-030-55857-4_1
6. Allouche, J.P., Shallit, J., Wen, Z.X., Wu, W., Zhang, J.M.: Sumfree sets generated by the period- k-folding sequences and some sturmian sequences. Discrete Mathematics 343(9), 111958 (2020), https://www.sciencedirect.com/science/article/pii/S0012365X20301448
7. Bartholdi, L.: Endomorphic presentations of branch groups. Journal of Algebra 268(2), 419-443 (2003), https://www.sciencedirect.com/science/article/pii/S0021869303002680
8. Bartholdi, L., Siegenthaler, O.: The twisted twin of the Grigorchuk group. International Journal of Algebra and Computation 20(04), 465-488 (2010), https://doi.org/10.1142/S0218196710005728
9. Benli, M.G.: Profinite completion of Grigorchuk's group is not finitely presented. International Journal of Algebra and Computation 22(05), 1250045 (2012), https://doi.org/10.1142/S0218196712500452
10. Cateland, E.: Suites digitales et suites k-régulières. Theses, Université Sciences et Technologies - Bordeaux I (Jun 1992), https://tel.archives-ouvertes.fr/tel-00845511
11. Christol, G., Kamae, T., Mendès France, M., Rauzy, G.: Suites algébriques, automates et substitutions. Bull. Soc. Math. France 108(4), 401-419 (1980), http://www.numdam.org/item?id=BSMF_1980__108__401_0
12. OEIS Foundation Inc.: The On-Line Encyclopedia of Integer Sequences (2022), published electronically at http://oeis.org
13. Shallit, J.: Automaticity iv: sequences, sets, and diversity. Journal de Théorie des Nombres de Bordeaux 8(2), 347-367 (1996), http://www.jstor.org/stable/43974217
