
ar
X

iv
:2

30
4.

14
59

5v
1 

 [
m

at
h.

C
O

] 
 2

8 
A

pr
 2

02
3

Block-counting sequences are not purely morphic

Antoine Abram1, Yining Hu2, and Shuo Li1

1 Laboratoire de Combinatoire et d’Informatique Mathématique,
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Abstract. Let m be a positive integer larger than 1, let w be a finite
word over {0, 1, ..., m− 1} and let am;w(n) be the number of occurrences
of the word w in them-expansion of n mod p for any non-negative integer
n. In this article, we first give a fast algorithm to generate all sequences of
the form (am;w(n))n∈N; then, under the hypothesis that m is a prime, we
prove that all these sequences are m-uniformly but not purely morphic,
except for w = 1, 2, ..., m − 1; finally, under the same assumption of m
as before, we prove that the power series

∑
∞

i=0
am;w(n)t

n is algebraic of
degree m over Fm(t).

1 Introduction, definitions and notation

Given a positive integerm larger than 1 and a finite wordw over {0, 1, 2, ...,m− 1},
the block-counting sequence (em;w(n))n∈N counts the number of occurrences of
the word w in the m-expansion of n for each non-negative integer n. Let us de-
fine (am;w(n))n∈N to be a sequence over {0, 1, 2, ...,m− 1} such that am;w(n) ≡
em;w(n) mod (m) for all non-negative integer n. The analytical as well as the
combinatorial properties of these sequences have been studied since 1900’s after
Thue and some well-known sequences are strongly related to this notion. Recall
that the 0, 1-Thue-Morse sequence can be defined as (a2;1(n))n∈N (see, for exam-
ple, Page 15 in [4]) and the 0, 1-Rudin-Shapiro sequence can also be defined as
(a2;11(n))n∈N (see, for example, Example 3.3.1 in [4]). In this article, we review
some common properties of usual block-counting sequences and generalize them
to all block-counting sequences.

To be able to announce our results, here we recall some definitions and no-
tation. Let A be a finite set. It will be called an alphabet and its elements will
be called letters. Let A∗ denote the free monoid generated by A under concate-
nations and let AN denote the set of infinite concatenations of elements in A.
Let A∞ = A∗ ∪ AN. A finite word over the alphabet A is an element in A∗ and
an infinite word over A is an element in AN. Particularly, the empty word is an
element in A∗ and it is denoted by ǫ. The length of a word w, denoted by |w|,
is the number of letters that it contains. The length of the empty word is 0 and
the length of any infinite word is infinite. For any non-empty word w ∈ A∞, it
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can be denoted by w[0]w[1]w[2]..., where w[i] are elements in A. A word x is
called a factor of w if there exist two integers 0 ≤ i ≤ j ≤ |w| − 1 such that
x = w[i]w[i + 1]...w[j], this factor can also be denoted by w[i..j]. A factor x is
called a prefix (resp. a suffix ) of the word w if there exists a positive integer i
such that 0 ≤ i ≤ |w| and x = w[0..i] (resp. x = w[i..|w| − 1]). For any finite
word w and any positive integer n, let wn denote the concatenation of n copies
of w, i.e. wn = ww...w n times. Particularly, w0 = ǫ. For any pair of words w, v
such that v is a factor of w, let |w|v denote the number of occurrences of v in w.

Let A and B be two alphabets, a morphism φ from A to B is a map from
A∞ to B∞ satisfying φ(xy) = φ(x)φ(y) for any pair of elements x, y in A∞. The
morphism φ is called k-uniform if for all elements a ∈ A, |φ(a)| = k and it is
called non-uniform otherwise. A morphism φ is called a coding function if it is
1-uniform and it is called non-erasing if φ(a) 6= ǫ for all a ∈ A.

Let A be a finite alphabet and let (an)n∈N be an infinite sequence over A, it
is called morphic if there exists an alphabet B, an infinite sequence (bn)n∈N over
B, a non-erasing morphism φ from B∞ to B∞ and a coding function ψ from
B∞ to A∞, such that (bn)n∈N is a fixed point of φ and (an)n∈N = ψ((bn)n∈N).
Moreover, the sequence (an)n∈N is called uniformly morphic if φ is k-uniform for
some integer k, and it is called non-uniformly morphic otherwise. The sequence
(an)n∈N is called purely morphic if A = B and ψ = Id.

For any positive integer m, let [[m]] = {0, 1, 2, ...,m− 1}. For any t ∈ [[m]] let
t+ ≡ t+ 1 mod m; for any w ∈ [[m]]∗, let w+ = w[0]+w[1]+...w[|w| − 1]+.

In Section2, we give a fast algorithm to generate all block-counting sequences.
It is well-known that the Thue-Morse sequence can be generated by the following
algorithm (see, for example, [12, A008277]):

Example 1 Let (wn)n∈N be a sequence of words over the [[2]]∗ such that w0 = 0
and that wi+1 = wiw

+
i for all i, then the Thue-Morse sequence (a2;1(n))n∈N

satisfies (a2;1(n))n∈N = limi→∞ wi.

In Section2, we prove that the Rudin-Shapiro sequence can also be generalized
by a similar algorithm, see 4. More generally, we find fast algorithms to generate
all block-counting sequences. These algorithms are given by 3 and 5 in Section2.

From the definitions recalled as above, any morphic word can be classified
as either a uniformly morphic word or a non-uniformly morphic word. However,
from a recent article [5], Allouche and Shallit proved that all uniformly morphic
sequences are also non-uniformly morphic. This result implies that all sequences
in the family of morphic sequences are also in its subfamily of non-uniformly
morphic sequences. Indeed, many works can be found in the literature in the
direction of characterizing all those non-uniformly morphic sequences which are
not uniformly morphic, for example, one can find [2][13][7][1][8][9][6]. However,
in [5], it is proved actually that all uniformly morphic sequences are also non-
uniformly non-purelymorphic. In other words, from the construction of the proof
given in [5], a nontrivial coding function is required. In Section 3, we investigate
all those uniformly morphic sequences which are not purely morphic. It is already
known that the Rudin-Shapiro sequence is in this case (Example 26 in [3]). In
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section 3, we prove that all other sequences in the form of (am,w(n))n∈N have
the same property when |w| 6= 1 and m is a prime. The result is announced as
follows:

Theorem 2 Let p be a prime number and w ∈ [[p]]∗. The sequence (ap;w(n))n∈N

is a p-uniformly morphic. Moreover, if |w| = 1 and w 6= 0, this sequence is purely
morphic and if not is it non-purely morphic.

In Section 4, under the assumption that p is a prime number, we prove that
the formal power series fp;w =

∑∞
i=0 am;w(n)t

n is algebraic and of degree p over
Fp(t). Indeed, from Christol’s theorem [11], we know that the power series fp;w
is algebraic over Fp(t). In Section 4, we prove that f is algebraic of degree p.

2 Windows functions and (ap;w(n))n∈N

For any positive integer m and non-negative integer n, let [n]m denote the ex-
pansion of n in the base m. For a given word w ∈ [[m]]∗ = {0, 1, · · · ,m −

1}∗, w = w[0]w[1]...w[|w| − 1], let (w)m =
∑|w|−1

i=0 w[i]m|w|−1−i and let w′ =
w[1]w[2] · · ·w[|w| − 1]. A word w is called a x-word if w[0] = x. For a given

string w, let αw = (w′)m
m|w|−1 , βw = (w′)m+1

m|w|−1 and let φw : [[m]]∗ → [[m]]∗ be a
function such that for any v ∈ [[m]]∗, φw(v) satisfies the following propriety:

φw(v)[i] =

{

v[i] + 1 modm if αw|v| ≤ i < βw|v|

v[i] otherwise.

2.1 Block-counting sequences for non-0-words

Proposition 3 Let m a positive number, let x ∈ [[m]]\{0}, let w ∈ [[m]]∗ be
a x-word and let t = (v)m. If we let (ui)i∈N be a sequence of words such that
|u0| = m|w|, that

u0[i] =

{

1 if i=t

0 otherwise,

and that uk+1 = uxkφw(uk)u
m−x−1
k , then limk→∞ uk = (am;w(n))n∈N.

Proof. First, it is obvious that u0 is a prefix of (am;w(n))n∈N. Now let y ∈
[[m]]\{0}. For any integers r and mk such that 0 ≤ r < mk, 0 ≤ em;w(r+ym

k)−
em;w(r) ≤ 1. Indeed, since y 6= 0, [r + ymk]m = y0..0[r]m, thus, [r + ymk]m
has exactly one more x-factor of length |v| than [r]p only if y = x, and this
factor can be w or not. Moreover, em;w(r + ymk) − em;w(r) = 1 only if w is
a prefix of [r + ymk]m. Consequently, em;w(r + ymk) = em;w(r) + 1 only if
αwm

k ≤ r < βwm
k and y = x. Hence, for any t ∈ [[m]]\{x},

(am;w(n))tmk≤n<(t+1)mk = (am;w(n))0≤n<mk

(am;w(n))xmk≤n<(x+1)mk = φw((am;w(n))0≤n<mk).
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This implies that

(am;w(n))0≤n<mk+1 = uxkφw(uk)u
m−x−1
k ,

which concludes the proof. ⊓⊔

Example 4 Let us compute the Rudin-Shapiro sequence using windows func-
tion. From Example 3.3.1 in [4], the Rudin-Shapiro sequence can be defined as
(a2;11(n))n∈N. From Proposition 3, set α11 = 1

2 , β11 = 2
2 and s0 = 0, 0, 0, 1. For

any words w ∈ {0, 1}
∗
such that w = w1w2 with |w1| = |w2|, φs(w) = w1(w

+
2 ).

Thus, one can compute

s1 = 0, 0, 0, 1, 0, 0, 1, 0; s2 = 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1;

s3 = 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0;

(es(n))n∈N is the limit of sn when n tends to infinite. ⊓⊔

2.2 Block-counting sequences for 0-words

Proposition 5 Let m be a positive number, let w ∈ [[m]]∗ a 0-word and let
t = (w)m. Let u0 be such that |u0| = m|w| and

u0[i] =

{

1 if i=t

0 otherwise,

and let uk+1 = φw(uk)u
m−1
k .

By letting w−1 = u0 if w = 0|w| and w−1 = 0m
|w|

if not, wk = um−1
k for

k ≥ 0, then
(am;w(n))n∈N = w−1w0w1w2 · · ·wn · · · .

Lemma 6 Let m be a positive number, y ∈ [[m]]\{0}, w ∈ [[m]]∗ a 0-word and
let t = (w)m, then for any integer r satisfying t < mk ≤ r < mk+1:
1) em;w(r + ymk+1) = em;w(r);
2) 0 ≤ em;w(r +mk)− em;w(r) ≤ 1;
3) em;w(r +mk) − em;w(r) = 1 only if [r]m is a m − 1-word and αwm

k ≤ r <
βwm

k.

Proof. For any integer r satisfying t < mk ≤ r < mk+1, we first remark that
[r + ymk+1]m = y[r]m. Since [r + ymk+1]m and y[r]m have the same set of 0-
factors, em;w(r + ymk+1) = em;w(r). Second, if [r]m is not a m − 1-word than
[r]m and [r +mk]m has the same set of 0-factors. But if [r]m is a m − 1-word,
then [r+mk]m = 10[r]′m and thus, can have at most one more 0 factors of length
|w| than [r]m. Consequently, 0 ≤ em;w(r +mk)− em;w(r) ≤ 1. Moreover, in the
latter case, em;w(r +mk) − em;w(r) = 1 only if 1w is a prefix of [r +mk]m. So
em;w(r +mk) = em;w(r) + 1 only if αwm

k < r ≤ βwm
k. ⊓⊔
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Proof (of Proposition 5). We first remark thatw−1w0 is a prefix of (am;w(n))n∈N.
Further, for any integer k satisfying (w)m < mk and x ∈ [[m]]\{0}, from

Lemma 6,

(am;w(n))xmk≤n<(x+1)mk = (am;w(n))mk≤n<2mk

(am;w(n))mk+1≤n<mk+1+mk = (φ(am;w(n))(p−1)mk≤n<mk+1)).

This implies that

(am;w(n))mk≤n<mk+1 =
(

φw((am;w(n))mk−1≤n<mk)(am;w(n))
m−1
mk−1≤n<mk

)m−1

,

which concludes the proof. ⊓⊔

Example 7 Let us compute the sequence (a2;01(n))n∈N with. From the previous
theorem, set α01 = 1

2 , β01 = 2
2 , s−1 = 0, 0, 0, 0 and s0 = 0, 1, 0, 0. For any

words w ∈ {0, 1}
∗
such that w = w1w2 with |w1| = |w2| = k for some integer k,

φs(w) = w1w
+
2 . Thus, one can compute

s1 = 0, 1, 1, 1, 0, 1, 0, 0; s2 = 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0;

s3 = 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0;

(a2;01(n))n∈N is the limit of s−1s0s1s2s3...sn when n tends to infinite. ⊓⊔

3 (ap;w(n))n∈N are not purely morphic

From now on, we work with p a prime number.
We first prove that (ap;w(n))n∈N is not purely morphic when |w| > 1. We will

need a simple notation, for w = w[0] · · ·w[|w| − 1], let w⋄ = w[0] · · ·w[|w| − 2].

Proposition 8 For any prime number p and for any w ∈ [[p]]∗, the sub-sequences
of the form (ap;w(pn + i))0≤i≤p−1 are either constant (called type 1) or of the
form

ap;w(pn+ i) =

{

t+ if i = w[|w| − 1],

t otherwise;

for some integer t ∈ [[p]] (called type 2). Moreover, (ap;w(pn + i))0≤i≤p−1 is of
type 2 if and only if w⋄ is a suffix of [n]p. ⊓⊔

For the sequence (ap;w(n))n∈N, let us define a p-block to be a sub-sequence of
the form (ap;w(pn+i))0≤i≤p−1 for some integer n. From the previous proposition,
a p-block is either of type 1 or type 2. For a p-block (ap;w(pn + i))0≤i≤p−1 of
type 2, let us define its index to be an integer i ∈ [[p]] such that ap;w(pn+ i) 6=
ap;w(pn+ j) for all j 6= i.

Proposition 9 For any prime number p and any w ∈ [[p]]∗, if there exists a
word v such that vp+1 is a prefix of (ap;w(n))n∈N and that |v| ≥ 2p|w|, then |v|
is a multiple of p|w|−1.
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Proof. If |v| ≥ 2p|w|, then, from Proposition 3 and 5, v contains a p-block of the
form

ap;w(pm+ i) =

{

1 if i = w[|w| − 1],

0 otherwise,

for somem. Since vp+1 is a prefix of (ap;w(n))n∈N, (ap;w(pm+p|v|+i))0≤i≤p−1 =
(ap;w(pm + i))0≤i≤p−1, which is also a p-factor of type 2. From Proposition 8,
w⋄ is a suffix of both [m]p and [m + |v|]p. Thus, m + |v| − m is a multiple of
p|w|−1. ⊓⊔

Proposition 10 For any prime integer p and any w ∈ [[p]]∗, the sequence
(ap;w(n))n∈N cannot have a prefix vp+1 such that |v| = ip|w|−1 for some pos-
itive integer i ≥ p+ 1.

This proposition will be proved with the help of the following lemmas.

Lemma 11 Let w ∈ [[p]]∗, then for any words a, b ∈ [[p]]∗ and for any positive
integer ℓ, there exists a word u such that |u| = l, |au|w = |a|w and |bu|w = |b|w.

Proof. Let x ∈ [[p]]\{w[|w| − 1]} and u = xℓ. It is clear that |au|w = |a|w and
|bu|w = |b|w because none of the added factor of size |w| ends with x.

Lemma 12 Let w be a word in [[p]]∗ such that |w| > 1. Let a, b ∈ [[p]]∗ such that
aw 6= bw where aw and bw are the longest suffixes of respectively a and b that
are prefixes of w. Then there exists a word u such that |u| ≤ |w| − 1 and that
|au|w 6≡ |bu|w mod p.

Proof. If |a|w 6≡ |b|w mod p, then let v = ǫ.
If |a|w ≡ |b|w mod p, because have aw 6= bw, then |a|w 6= |bw| because w doesn’t
have multiple suffixes of the same length. Suppose that aw is the longest. It is
clear that |aw| > 0. We define v to be a word satisfying awv = w. In this case,
|v| ≤ |w| − 1, |av|w = |a|w + 1 and |bv|w = |b|w.

Now we are able to prove Proposition 10.

Proof (of Proposition 10). We only need to prove that there exist k, k′ ∈ [[p]]
such that

(ap;w(n))kip|w|−1≤n<(k+1)ip|w|−1 6= (ap;w(n))k′ip|w|−1≤n<(k′+1)ip|w|−1 ,

i.e. there exists some j such that 0 ≤ j < |v| and

ap;w(kip
|w|−1 + j) 6= ap;w(k

′ip|w|−1 + j).

For 1 ≤ k ≤ p, let tk = [kip|w|−1]p. One has tk = ukxk0
j for some word uk,

some letter xk ∈ [[p]]\{0} and some non-negative integer j ≥ |w| − 1. Note that
u1 6= 0. Since p is prime, one has xk 6= xk′ if k 6= k′. Thus, there exists k ∈ [[p]]
such that xk = w[0].
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Now, let k′ ∈ [[p]]\{k} and let vk and v′k be the longest suffixes of respectively
ukxk and uk′xk′ that are prefixes of w. Because xk = w[0], vk 6= ǫ and thus
vk 6= vk′ . Therefore, by Lemma 12 and Lemma 11, there exists u such that
|vku|w 6≡ |vk′u|w mod p and that |u| = |w| − 1. Let j = [u]p, clearly j < ip|w|−1

and one has

ap;w(kip
|w|−1 + j) 6= ap;w(k

′ip|w|−1 + j),

which proves the result.

Now we are able to prove the principle theorem in most cases:

Theorem 13 For any prime number p and any w ∈ [[p]]∗, the sequence (ap;w(n))n∈N

is p-uniformly morphic for any w and non-purely morphic when |w| > 1 and
w 6= 10.

Proof. First, the fact that (ap;w(n))n∈N is p-automatic for any word w follows
from the Proposition 3.1 in [10], Page 7 and Theorem 16.1.5 in [4].

Now, if w 6= 10 and |w| > 1 and the sequence (ap;w(n))n∈N is purely morphic,
then 0p+1 is a prefix of (ap;w(n))n∈N. Thus, (ap;w(n))n∈N will have infinitely
many prefix of type vp+1. However, from Proposition 9 and 10, (ap;w(n))n∈N

can only have finitely many prefix of the form vp+1. We conclude. ⊓⊔

Here we prove the p particular cases.

Proposition 14 For any prime number p and for any w ∈ [[p]]\{0}, the sequence
(ap,w(n))n∈N is purely morphic.

Proof. It is easy to check that for any non-negative integer m, (ap;w(pm +
i))0≤i≤p−1 satisfies the following property:

ap;w(pm+ i) =

{

ap;w(m)+ if i = w,

ap;w(m) otherwise.

Thus, it is easy to check that (ap;w(pm + i))0≤i≤p−1 is the fixed point of the
morphism: i→ vi for all i ∈ [[p]], where,

vi[k] =

{

i+ if k = w,

i otherwise.

⊓⊔

Proposition 15 The sequence (a2,0(n))n∈N is non-purely morphic.

Proof. The sequence (a2,0(n))n∈N begins with 1, 0, 1, 0. Thus, if this sequence
is purely morphic, then this sequence has infinitely many prefixes of the form
v2. Here we prove that (a2,0(n))n∈N cannot have a prefix of the form v2 with
|v| ≥ 5.
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If (a2,0(n))n∈N has a prefix of the form v2 with |v| ≥ 5. Let us suppose that
|v| = 4k+ i for some non-negative integers k, i such that i = 0, 1, 2, 3 and k ≥ 1.
First note that a2,0(r) = a2,0(4k + i+ r) for any r satisfying 0 ≤ r < 4k + i.

Also note that, for k ≥ 0, a2,0(k) = a2,0(4k) = a2,0(4k+3) = a2,0(2k+1) = x
and a2,0(4k + 1) = a2,0(4k + 2) = a2,0(2k) = x+ for some x ∈ {0, 1}. This is
because if [k]2 = u, then [2k]2 = u0, [2k+1]2 = u1, [4k]2 = u00, [4k+1]2 = u01,
[4k + 2]2 = u10 and [4k + 3]2 = u11.

Finally, note that a2,0(2
tk−1) = a2,0(k−1), because, we know that k ≥ 1 so

if [k−1]2 = u then [2tk−1]2 = u1t. Similarly, a2,0(2
tk−2s−1) = a2,0(2

tk−1)+

if 1 < s < t.
Now if i = 0, then |v| = 4k and a2,0(1) = a2,0(4k + 1) = 0, a2,0(2) =

a2,0(4k + 2) = 1 which contradicts to a2,0(4k + 1) = a2,0(4k + 2).
If i = 1, then |v| = 4k + 1 and a2,0(0) = a2,0(4k + 1) = 1, a2,0(1) =

a2,0(4k + 2) = 0 which contradicts to a2,0(4k + 2) = a2,0(4k + 2).
If i = 2, then |v| = 4k + 2 and a2,0(k − 1) = a2,0(4k − 1) but a2,0(k − 1) =

a2,0(8k − 1) = a2,0(4k − 3) = a2,0(4k − 1)+.
If i = 3, then |v| = 4k + 3 and a2,0(2(2k + 1)) = a2,0(4k + 2) = a2,0(4k +

3)+ = a2,0(0)
+ = 0. Thus, we have a2,0(2k + 1) = 1. But on the other hand,

a2,0(2k + 1) = a2,0(4(2k + 1)) = a2,0(8k + 4) = a2,0(4k + 1) = a2,0(4k + 2) = 0,
which is a contradiction.

In all cases, (a2,0(n))0≤n<|v| 6= (a2,0(n))|v|≤n<2|v|. ⊓⊔

Proposition 16 For any prime number p ≥ 3, the sequence (ap,0(n))n∈N is
non-purely morphic.

Proof. The sequence (ap,0(n))n∈N begins with (10p−1)p. Thus, if this sequence
is purely morphic, then this sequence has infinitely many prefixes of the form
v2. Here we prove that (ap,0(n))n∈N cannot have a prefix of the form v2 with
|v| ≥ p2.

First, let us prove that if v2 is a prefix of (ap,0(n))n∈N, then |v| is a multiple
of p. It is easy to check that v2 is not a prefix of (ap,0(n))n∈N when |v| = 1, 2.
Let us suppose that |v| ≥ 3. In this case, v begins with 1, 0, 0. Thus, ap,0(|v|) =
1, ap,0(|v|+ 1) = ap,0(|v|+ 2) = 0.

Let us suppose that |v| = kp+ t for some nonnegative integers k, t such that
0 ≤ t ≤ k−1. We first prove that t 6= k−1. If it is the case, then |v|+1 is a multiple
of p and ap,0(|v|+1) 6= ap,0(|v|+2) = 0 since |v|+2 has one 0 less than |v|+1 in
their p-expansions. this contradicts the fact that ap,0(|v|+1) = ap,0(|v|+2) = 0.

Now let us suppose that t 6= k − 1. In this case, (ap,0(n))kp≤n≤(k+1)p−1 con-
tains the factor ap,0(|v|)ap,0(|v|+1) = 1, 0. Thus, (ap,0(n))kp≤n≤(k+1)p−1 is a fac-
tor of type 2 announced in proposition 8. But the word (ap,0(n))0≤n≤p−1 = 10p−1

is also a word of type 2 and the word (ap,0(n))n∈N cannot have two different
factors of type 2 such that the special letters are at different positions. Thus,
ap,0(|v|)ap,0(|v| + 1) should be a prefix of (ap,0(n))kp≤n≤(k+1)p−1 and conse-
quently |v| is a multiple of p.

Second, |v| is not a multiple of p2. Because, if it is in this case, ap,0(|v|) =
ap,0(0) = 1 and ap,0(|v|+ p) = ap,0(|v|)− 1 = 0. But ap,0(p) = 1, thus, ap,0(|v|+
p) 6= ap,0(p). Consequently, (ap,0(n))0≤n<|v|−1 6= (ap,0(n))|v|≤n<2|v|−1.
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Third, if |v| is not a multiple of p2 but larger than p2+1, let us suppose that
|v| = kp2 + tp for some positive integers k, t such that 1 ≤ t ≤ p − 1. Let x =
(p−t)p, we then have ap,0(|v|+x) = ap,0(x) = 1. But in this case, ap,0(x+p) = 1
or 2, but ap,0(|v|+ x+ p) = 0. Thus, (ap,0(n))0≤n<|v|−1 6= (ap,0(n))|v|≤n<2|v|−1.

⊓⊔

Proposition 17 The sequence (a2;10(n))n∈N is non-purely morphic.

Proof. The sequence (a2;10(n))n∈N begins with 0010. Thus, if this sequence is
purely morphic, then this sequence has infinitely many prefixes of the form v2.
We will prove that its only prefix of square shape is 00.

Let v2 be a prefix of (ap;10(n))n∈N. Because of that, one can note that
(ap;10(n))0≤n<|v| = ap;10(|v| + n))0≤n<|v|, in particular, (ap;10(|v| + n))0≤n≤4 =
0010. Using this, we will prove this proposition by proving all the different pos-
sibility for the word [|v|]2.

For now on, u can be any word in [[p]]∗ and s and t positive integer. Note
that the computation is made in binary basis.

i) If [|v|]2 = 1t with t > 1, we have ap;10(|v|+1) = 1 6= 0 because 1t+1 = 10t.

ii) If [|v|]2 = 1t01, one can simply note that ap;10(|v|) = 1 6= 0.

iii) If [|v|]2 = u101t01 then ap;10(|v|+3) = ap;10(|v|)
+ because u101t01+11 =

u110s+2.

iv) If [|v|]2 = u101t with t > 1 then ap;10(|v| + 2) = ap;10(|v|), because
u101t + 11 = u110t−11.

v) If [|v|]2 = u10s1t with s > 1 we have ap;10(|v| + 1) = ap;10(|v|)
+, because

u10s1t + 1 = u10s−110t.

vi) Finally, if [|v|]2 = u10t with t > 1, we have on one hand ap;10(|v| +
(1t−10)2) = ap;10(|v|) = 0 because u10t +1t−10 = u1t0. We also have ap;10(|v|+
(1t−10)2) = ap;10((1

t−10)2) = 1, which is a contradiction.

An attentive reader will remark that this cover all the number strictly bigger
than 1. ⊓⊔

Proposition 18 For any prime number p ≥ 3 the sequence (ap;10(n))n∈N is
non-purely morphic.

Proof. The sequence (ap;10(n))n∈N begins with 0p1. Thus, if this sequence is
purely morphic, then this sequence has infinitely many prefixes of the form vp.
It suffices to prove that if |v| > p2 then vp is not a prefix of (ap;10(n))n∈N.

Let vp be a prefix of (ap;10(n))n∈N.

Suppose that p ∤ |v| > p2. This means that v = uyx for a word u and some
letters y, x with x 6= 0. Because v2 is a prefix of (ap;10(n))n∈N, v begins with the
letters 0p1 and (ap;10(n))0≤n≤p = ap;10((v)p + n))0≤n≤p. Thus ap;10((v)p) = 0.

Let c ∈ [[p]] such that x + c = p; it exists because x 6= 0 and p > 2. Thus,
[(v)p + c]p = u′y′0. Because ap;w(c) = 0, ap;w((v)p + c) = 0 also and ap;w((v)p +
p) = 0 or p − 1 which is not equal to ap;w(p) = 1. Therefore, v2 is not a prefix
of (ap;10(n))n∈N.
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Suppose now that p | |v| ≥ p. Let |v| = spt for some positive integer s, t
such that t ≥ 1 and p ∤ s and let [v]p = ux0t for some word u and some letter
x ∈ [[p]]\{0}.

Since p is prime, there exists k ∈ [[p]] such that [kv]p = u′10t for some word
u′. Let m = pt+1 − 1, thus [m]p = (p− 1)t and [kv +m]p = u′1(p− 1)t.

Since (ap;10(n))k1|v|≤n≤(k1+1)|v|−1 = (ap;10(n))k2|v|≤n≤(k2+1)|v|−1, for any k1,
k2 ∈ [[p]] we have ap;10(0) = 0 = ap;10(kv) thus ap;10(u

′) = p − 1 which means
that ap;10(m) = 0 6= ap;10(kv +m) = p− 1.

Hence, vp cannot be a prefix of (ap;10(n))n∈N if v > p2 which concludes the
proof. ⊓⊔

Proof (of Theorem 2). It is a direct result of Theorem 13, Proposition 14, Propo-
sition 15, Proposition 16, Proposition 17 and Proposition 18. ⊓⊔

4 Algebraicity

By Christol’s theorem [11], we know that the power series f =
∑∞

i=0 ap;w(n)t
n

is algebraic over Fp(t). Now we prove that f is algebraic of degree p. Indeed, if
we let [w]p denote w1p

k−1 + · · ·+ wk, and write an = ap;w(n) for short, then

(1 + t+ · · ·+ tp−1)fp − f

=
∑

n≥0

p−1
∑

j=0

(an − apn+j)t
pn+j

=
∑

n≥0

(an − apn+wk
)tpn+wk

=
∑

n≥0

p−1
∑

j=0

(anp+j − anp2+jp+wk
)tnp

2+jp+wk

=
∑

n≥0

(anp+wk−1
− anp2+wk−1p+wk

)tnp
2+wk−1p+wk

. . .

=
∑

n≥0

(anpk−1+w1pk−2···+wk−1
− anpk+w1pk−1+···+wk

)tnp
k+[w]p

=

{

∑

n≥0 −t
npk+[w]p = t[w]p/(tp

k

− 1), if w1 6= 0
∑

n≥1 −t
npk+[w]p = tp

k+[w]p/(tp
k

− 1), if w1 = 0.

The irreduciblity of the the above functional equations is straightforward
from the Eisenstein’s criterion. We thus have the following propriety:

Proposition 19 For any prime number p and any finite word w in [[p]]∗, the
power series

∑∞
i=0 ap;w(n)t

n is algebraic of degree p over Fp(t).
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5 Final remarks

The authors remark that the fast algorithms introduced in Section 2 for 0-words
and non-0-words are much different. However, the generating functions given in
Section 4 for 0-words and non-0-words are quite similar. Thus, we believe that
the algorithms in Section 2 can be unified for both 0-words and non-0-words.

References

1. Allouche, G., Allouche, J.P., Shallit, J.: Kolam indiens, dessins sur
le sable aux ı̂les Vanuatu, courbe de Sierpinski et morphismes de
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nal de Théorie des Nombres de Bordeaux 8(2), 347–367 (1996),
http://www.jstor.org/stable/43974217

https://aif.centre-mersenne.org/articles/10.5802/aif.2235/
http://www.numdam.org/item/ITA_1989__23_3_235_0/
https://arxiv.org/abs/1711.10807
https://doi.org/10.1007/978-3-030-55857-4_1
https://www.sciencedirect.com/science/article/pii/S0012365X20301448
https://www.sciencedirect.com/science/article/pii/S0021869303002680
https://doi.org/10.1142/S0218196710005728
https://doi.org/10.1142/S0218196712500452
https://tel.archives-ouvertes.fr/tel-00845511
http://www.numdam.org/item?id=BSMF_1980__108__401_0
http://oeis.org
http://www.jstor.org/stable/43974217

	Block-counting

