Block-counting sequences are not purely morphic

Antoine Abram¹, Yining Hu², and Shuo Li¹

¹ Laboratoire de Combinatoire et d'Informatique Mathématique, Université du Québec à Montréal, Montréal (QC), Canada, abram.antoine@lacim.ca, li.shuo@lacim.ca ² Institute for Advanced Study in Mathematics Harbin Institute of Technology, Harbin, PR China huyining@protonmail.com

Abstract. Let *m* be a positive integer larger than 1, let *w* be a finite word over $\{0, 1, ..., m-1\}$ and let $a_{m;w}(n)$ be the number of occurrences of the word *w* in the *m*-expansion of *n* mod *p* for any non-negative integer *n*. In this article, we first give a fast algorithm to generate all sequences of the form $(a_{m;w}(n))_{n \in \mathbf{N}}$; then, under the hypothesis that *m* is a prime, we prove that all these sequences are *m*-uniformly but not purely morphic, except for w = 1, 2, ..., m - 1; finally, under the same assumption of *m* as before, we prove that the power series $\sum_{i=0}^{\infty} a_{m;w}(n)t^n$ is algebraic of degree *m* over $\mathbb{F}_m(t)$.

1 Introduction, definitions and notation

Given a positive integer m larger than 1 and a finite word w over $\{0, 1, 2, ..., m - 1\}$, the block-counting sequence $(e_{m;w}(n))_{n\in\mathbb{N}}$ counts the number of occurrences of the word w in the m-expansion of n for each non-negative integer n. Let us define $(a_{m;w}(n))_{n\in\mathbb{N}}$ to be a sequence over $\{0, 1, 2, ..., m - 1\}$ such that $a_{m;w}(n) \equiv$ $e_{m;w}(n) \mod (m)$ for all non-negative integer n. The analytical as well as the combinatorial properties of these sequences have been studied since 1900's after Thue and some well-known sequences are strongly related to this notion. Recall that the 0, 1-Thue-Morse sequence can be defined as $(a_{2;1}(n))_{n\in\mathbb{N}}$ (see, for example, Page 15 in [4]) and the 0, 1-Rudin-Shapiro sequence can also be defined as $(a_{2;11}(n))_{n\in\mathbb{N}}$ (see, for example, Example 3.3.1 in [4]). In this article, we review some common properties of usual block-counting sequences and generalize them to all block-counting sequences.

To be able to announce our results, here we recall some definitions and notation. Let A be a finite set. It will be called an *alphabet* and its elements will be called *letters*. Let A^* denote the free monoid generated by A under concatenations and let $A^{\mathbf{N}}$ denote the set of infinite concatenations of elements in A. Let $A^{\infty} = A^* \cup A^{\mathbf{N}}$. A *finite word* over the alphabet A is an element in A^* and an *infinite word* over A is an element in $A^{\mathbf{N}}$. Particularly, the empty word is an element in A^* and it is denoted by ϵ . The length of a word w, denoted by |w|, is the number of letters that it contains. The length of the empty word is 0 and the length of any infinite word is infinite. For any non-empty word $w \in A^{\infty}$, it $\mathbf{2}$

can be denoted by w[0]w[1]w[2]..., where w[i] are elements in A. A word x is called a *factor* of w if there exist two integers $0 \le i \le j \le |w| - 1$ such that x = w[i]w[i+1]...w[j], this factor can also be denoted by w[i..j]. A factor x is called a *prefix* (resp. a *suffix*) of the word w if there exists a positive integer i such that $0 \le i \le |w|$ and x = w[0..i] (resp. x = w[i..|w| - 1]). For any finite word w and any positive integer n, let w^n denote the concatenation of n copies of w, i.e. $w^n = ww...w n$ times. Particularly, $w^0 = \epsilon$. For any pair of words w, v such that v is a factor of w, let $|w|_v$ denote the number of occurrences of v in w.

Let A and B be two alphabets, a morphism ϕ from A to B is a map from A^{∞} to B^{∞} satisfying $\phi(xy) = \phi(x)\phi(y)$ for any pair of elements x, y in A^{∞} . The morphism ϕ is called *k*-uniform if for all elements $a \in A$, $|\phi(a)| = k$ and it is called non-uniform otherwise. A morphism ϕ is called a *coding* function if it is 1-uniform and it is called *non-erasing* if $\phi(a) \neq \epsilon$ for all $a \in A$.

Let A be a finite alphabet and let $(a_n)_{n \in \mathbb{N}}$ be an infinite sequence over A, it is called *morphic* if there exists an alphabet B, an infinite sequence $(b_n)_{n \in \mathbb{N}}$ over B, a non-erasing morphism ϕ from B^{∞} to B^{∞} and a coding function ψ from B^{∞} to A^{∞} , such that $(b_n)_{n \in \mathbb{N}}$ is a fixed point of ϕ and $(a_n)_{n \in \mathbb{N}} = \psi((b_n)_{n \in \mathbb{N}})$. Moreover, the sequence $(a_n)_{n \in \mathbb{N}}$ is called *uniformly morphic* if ϕ is k-uniform for some integer k, and it is called *non-uniformly morphic* otherwise. The sequence $(a_n)_{n \in \mathbb{N}}$ is called *purely morphic* if A = B and $\psi = Id$.

For any positive integer m, let $[\![m]\!] = \{0, 1, 2, ..., m-1\}$. For any $t \in [\![m]\!]$ let $t^+ \equiv t+1 \mod m$; for any $w \in [\![m]\!]^*$, let $w^+ = w[0]^+ w[1]^+ ... w[|w|-1]^+$.

In Section2, we give a fast algorithm to generate all block-counting sequences. It is well-known that the Thue-Morse sequence can be generated by the following algorithm (see, for example, [12, A008277]):

Example 1 Let $(w_n)_{n \in \mathbf{N}}$ be a sequence of words over the $[\![2]\!]^*$ such that $w_0 = 0$ and that $w_{i+1} = w_i w_i^+$ for all *i*, then the Thue-Morse sequence $(a_{2;1}(n))_{n \in \mathbf{N}}$ satisfies $(a_{2;1}(n))_{n \in \mathbf{N}} = \lim_{i \to \infty} w_i$.

In Section2, we prove that the Rudin-Shapiro sequence can also be generalized by a similar algorithm, see 4. More generally, we find fast algorithms to generate all block-counting sequences. These algorithms are given by 3 and 5 in Section2.

From the definitions recalled as above, any morphic word can be classified as either a uniformly morphic word or a non-uniformly morphic word. However, from a recent article [5], Allouche and Shallit proved that all uniformly morphic sequences are also non-uniformly morphic. This result implies that all sequences in the family of morphic sequences are also in its subfamily of non-uniformly morphic sequences. Indeed, many works can be found in the literature in the direction of characterizing all those non-uniformly morphic sequences which are *not* uniformly morphic, for example, one can find [2][13][7][1][8][9][6]. However, in [5], it is proved actually that all uniformly morphic sequences are also nonuniformly *non-purely* morphic. In other words, from the construction of the proof given in [5], a nontrivial coding function is required. In Section 3, we investigate all those uniformly morphic sequences which are not purely morphic. It is already known that the Rudin-Shapiro sequence is in this case (Example 26 in [3]). In section 3, we prove that all other sequences in the form of $(a_{m,w}(n))_{n \in \mathbb{N}}$ have the same property when $|w| \neq 1$ and m is a prime. The result is announced as follows:

Theorem 2 Let p be a prime number and $w \in [\![p]\!]^*$. The sequence $(a_{p;w}(n))_{n \in \mathbb{N}}$ is a p-uniformly morphic. Moreover, if |w| = 1 and $w \neq 0$, this sequence is purely morphic and if not is it non-purely morphic.

In Section 4, under the assumption that p is a prime number, we prove that the formal power series $f_{p;w} = \sum_{i=0}^{\infty} a_{m;w}(n)t^n$ is algebraic and of degree p over $\mathbb{F}_p(t)$. Indeed, from Christol's theorem [11], we know that the power series $f_{p;w}$ is algebraic over $\mathbb{F}_p(t)$. In Section 4, we prove that f is algebraic of degree p.

2 Windows functions and $(a_{p;w}(n))_{n \in \mathbb{N}}$

For any positive integer m and non-negative integer n, let $[n]_m$ denote the expansion of n in the base m. For a given word $w \in \llbracket m \rrbracket^* = \{0, 1, \cdots, m-1\}^*, w = w[0]w[1]...w[|w| - 1], \text{ let } (w)_m = \sum_{i=0}^{|w|-1} w[i]m^{|w|-1-i} \text{ and let } w' = w[1]w[2]\cdots w[|w| - 1].$ A word w is called a x-word if w[0] = x. For a given string w, let $\alpha_w = \frac{(w')_m}{m^{|w|-1}}, \beta_w = \frac{(w')_m+1}{m^{|w|-1}}$ and let $\phi_w : \llbracket m \rrbracket^* \to \llbracket m \rrbracket^*$ be a function such that for any $v \in \llbracket m \rrbracket^*, \phi_w(v)$ satisfies the following propriety:

$$\phi_w(v)[i] = \begin{cases} v[i] + 1 \mod m & \text{if } \alpha_w |v| \le i < \beta_w |v| \\ v[i] & \text{otherwise.} \end{cases}$$

2.1 Block-counting sequences for non-0-words

Proposition 3 Let m a positive number, let $x \in \llbracket m \rrbracket \setminus \{0\}$, let $w \in \llbracket m \rrbracket^*$ be a x-word and let $t = (v)_m$. If we let $(u_i)_{i \in \mathbb{N}}$ be a sequence of words such that $|u_0| = m^{|w|}$, that

$$u_0[i] = \begin{cases} 1 & if \ i=t \\ 0 & otherwis \end{cases}$$

and that $u_{k+1} = u_k^x \phi_w(u_k) u_k^{m-x-1}$, then $\lim_{k \to \infty} u_k = (a_{m;w}(n))_{n \in \mathbb{N}}$.

Proof. First, it is obvious that u_0 is a prefix of $(a_{m;w}(n))_{n \in \mathbb{N}}$. Now let $y \in [\![m]\!] \setminus \{0\}$. For any integers r and m^k such that $0 \leq r < m^k, 0 \leq e_{m;w}(r+ym^k) - e_{m;w}(r) \leq 1$. Indeed, since $y \neq 0$, $[r+ym^k]_m = y0.0[r]_m$, thus, $[r+ym^k]_m$ has exactly one more x-factor of length |v| than $[r]_p$ only if y = x, and this factor can be w or not. Moreover, $e_{m;w}(r+ym^k) - e_{m;w}(r) = 1$ only if w is a prefix of $[r+ym^k]_m$. Consequently, $e_{m;w}(r+ym^k) = e_{m;w}(r) + 1$ only if $\alpha_w m^k \leq r < \beta_w m^k$ and y = x. Hence, for any $t \in [\![m]\!] \setminus \{x\}$,

$$(a_{m;w}(n))_{tm^k \le n < (t+1)m^k} = (a_{m;w}(n))_{0 \le n < m^k}$$
$$(a_{m;w}(n))_{xm^k \le n < (x+1)m^k} = \phi_w((a_{m;w}(n))_{0 \le n < m^k})$$

This implies that

$$(a_{m;w}(n))_{0 \le n < m^{k+1}} = u_k^x \phi_w(u_k) u_k^{m-x-1}$$

which concludes the proof.

Example 4 Let us compute the Rudin-Shapiro sequence using windows function. From Example 3.3.1 in [4], the Rudin-Shapiro sequence can be defined as $(a_{2;11}(n))_{n \in \mathbb{N}}$. From Proposition 3, set $\alpha_{11} = \frac{1}{2}$, $\beta_{11} = \frac{2}{2}$ and $s_0 = 0, 0, 0, 1$. For any words $w \in \{0, 1\}^*$ such that $w = w_1w_2$ with $|w_1| = |w_2|$, $\phi_s(w) = w_1(w_2^+)$. Thus, one can compute

$$s_1 = 0, 0, 0, 1, 0, 0, 1, 0;$$
 $s_2 = 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1;$

 $s_3 = 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0;$

 $(e_s(n))_{n \in \mathbb{N}}$ is the limit of s_n when n tends to infinite.

2.2 Block-counting sequences for 0-words

Proposition 5 Let m be a positive number, let $w \in [m]^*$ a 0-word and let $t = (w)_m$. Let u_0 be such that $|u_0| = m^{|w|}$ and

$$u_0[i] = \begin{cases} 1 & if \ i=t \\ 0 & otherwise, \end{cases}$$

and let $u_{k+1} = \phi_w(u_k)u_k^{m-1}$.

By letting $w_{-1} = u_0$ if $w = 0^{|w|}$ and $w_{-1} = 0^{m^{|w|}}$ if not, $w_k = u_k^{m-1}$ for $k \ge 0$, then

$$(a_{m;w}(n))_{n\in\mathbb{N}}=w_{-1}w_0w_1w_2\cdots w_n\cdots$$

Lemma 6 Let m be a positive number, $y \in \llbracket m \rrbracket \setminus \{0\}$, $w \in \llbracket m \rrbracket^*$ a 0-word and let $t = (w)_m$, then for any integer r satisfying $t < m^k \le r < m^{k+1}$: 1) $e_{m;w}(r + ym^{k+1}) = e_{m;w}(r)$; 2) $0 \le e_{m;w}(r + m^k) - e_{m;w}(r) \le 1$; 3) $e_{m;w}(r + m^k) - e_{m;w}(r) = 1$ only if $[r]_m$ is a m - 1-word and $\alpha_w m^k \le r < \beta_w m^k$.

Proof. For any integer r satisfying $t < m^k \le r < m^{k+1}$, we first remark that $[r + ym^{k+1}]_m = y[r]_m$. Since $[r + ym^{k+1}]_m$ and $y[r]_m$ have the same set of 0-factors, $e_{m;w}(r + ym^{k+1}) = e_{m;w}(r)$. Second, if $[r]_m$ is not a m - 1-word than $[r]_m$ and $[r + m^k]_m$ has the same set of 0-factors. But if $[r]_m$ is a m - 1-word, then $[r + m^k]_m = 10[r]'_m$ and thus, can have at most one more 0 factors of length |w| than $[r]_m$. Consequently, $0 \le e_{m;w}(r + m^k) - e_{m;w}(r) \le 1$. Moreover, in the latter case, $e_{m;w}(r + m^k) - e_{m;w}(r) = 1$ only if 1w is a prefix of $[r + m^k]_m$. So $e_{m;w}(r + m^k) = e_{m;w}(r) + 1$ only if $\alpha_w m^k < r \le \beta_w m^k$.

Proof (of Proposition 5). We first remark that $w_{-1}w_0$ is a prefix of $(a_{m;w}(n))_{n\in\mathbb{N}}$. Further, for any integer k satisfying $(w)_m < m^k$ and $x \in \llbracket m \rrbracket \setminus \{0\}$, from Lemma 6,

$$(a_{m;w}(n))_{xm^k \le n < (x+1)m^k} = (a_{m;w}(n))_{m^k \le n < 2m^k}$$
$$(a_{m;w}(n))_{m^{k+1} \le n < m^{k+1} + m^k} = (\phi(a_{m;w}(n))_{(p-1)m^k \le n < m^{k+1}})).$$

This implies that

$$(a_{m;w}(n))_{m^k \le n < m^{k+1}} = \left(\phi_w((a_{m;w}(n))_{m^{k-1} \le n < m^k})(a_{m;w}(n))_{m^{k-1} \le n < m^k}^{m-1}\right)^{m-1},$$

which concludes the proof.

Example 7 Let us compute the sequence $(a_{2;01}(n))_{n \in \mathbb{N}}$ with. From the previous theorem, set $\alpha_{01} = \frac{1}{2}$, $\beta_{01} = \frac{2}{2}$, $s_{-1} = 0, 0, 0, 0$ and $s_0 = 0, 1, 0, 0$. For any words $w \in \{0,1\}^*$ such that $w = w_1w_2$ with $|w_1| = |w_2| = k$ for some integer k, $\phi_s(w) = w_1w_2^+$. Thus, one can compute

$$s_1 = 0, 1, 1, 1, 0, 1, 0, 0; \quad s_2 = 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0;$$

$$s_3 = 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0;$$

 $(a_{2:01}(n))_{n \in \mathbb{N}}$ is the limit of $s_{-1}s_0s_1s_2s_3...s_n$ when n tends to infinite.

3 $(a_{p;w}(n))_{n \in \mathbb{N}}$ are not purely morphic

From now on, we work with p a prime number.

We first prove that $(a_{p;w}(n))_{n \in \mathbb{N}}$ is not purely morphic when |w| > 1. We will need a simple notation, for $w = w[0] \cdots w[|w| - 1]$, let $w^{\diamond} = w[0] \cdots w[|w| - 2]$.

Proposition 8 For any prime number p and for any $w \in [\![p]\!]^*$, the sub-sequences of the form $(a_{p;w}(pn+i))_{0 \le i \le p-1}$ are either constant (called type 1) or of the form

$$a_{p;w}(pn+i) = \begin{cases} t^+ & \text{if } i = w[|w|-1], \\ t & \text{otherwise;} \end{cases}$$

for some integer $t \in [\![p]\!]$ (called type 2). Moreover, $(a_{p;w}(pn+i))_{0 \le i \le p-1}$ is of type 2 if and only if w^{\diamond} is a suffix of $[n]_p$.

For the sequence $(a_{p;w}(n))_{n \in \mathbf{N}}$, let us define a *p*-block to be a sub-sequence of the form $(a_{p;w}(pn+i))_{0 \leq i \leq p-1}$ for some integer *n*. From the previous proposition, a *p*-block is either of type 1 or type 2. For a *p*-block $(a_{p;w}(pn+i))_{0 \leq i \leq p-1}$ of type 2, let us define its index to be an integer $i \in [p]$ such that $a_{p;w}(pn+i) \neq a_{p;w}(pn+j)$ for all $j \neq i$.

Proposition 9 For any prime number p and any $w \in \llbracket p \rrbracket^*$, if there exists a word v such that v^{p+1} is a prefix of $(a_{p;w}(n))_{n \in \mathbb{N}}$ and that $|v| \ge 2p^{|w|}$, then |v| is a multiple of $p^{|w|-1}$.

6

Proof. If $|v| \ge 2p^{|w|}$, then, from Proposition 3 and 5, v contains a p-block of the form

$$a_{p;w}(pm+i) = \begin{cases} 1 & \text{if } i = w[|w|-1], \\ 0 & \text{otherwise,} \end{cases}$$

for some *m*. Since v^{p+1} is a prefix of $(a_{p;w}(n))_{n\in\mathbb{N}}$, $(a_{p;w}(pm+p|v|+i))_{0\leq i\leq p-1} = (a_{p;w}(pm+i))_{0\leq i\leq p-1}$, which is also a *p*-factor of type 2. From Proposition 8, w^{\diamond} is a suffix of both $[m]_p$ and $[m+|v|]_p$. Thus, m+|v|-m is a multiple of $p^{|w|-1}$.

Proposition 10 For any prime integer p and any $w \in \llbracket p \rrbracket^*$, the sequence $(a_{p;w}(n))_{n \in \mathbb{N}}$ cannot have a prefix v^{p+1} such that $|v| = ip^{|w|-1}$ for some positive integer $i \ge p+1$.

This proposition will be proved with the help of the following lemmas.

Lemma 11 Let $w \in \llbracket p \rrbracket^*$, then for any words $a, b \in \llbracket p \rrbracket^*$ and for any positive integer ℓ , there exists a word u such that |u| = l, $|au|_w = |a|_w$ and $|bu|_w = |b|_w$.

Proof. Let $x \in [\![p]\!] \setminus \{w[|w|-1]\}$ and $u = x^{\ell}$. It is clear that $|au|_w = |a|_w$ and $|bu|_w = |b|_w$ because none of the added factor of size |w| ends with x.

Lemma 12 Let w be a word in $\llbracket p \rrbracket^*$ such that |w| > 1. Let $a, b \in \llbracket p \rrbracket^*$ such that $a_w \neq b_w$ where a_w and b_w are the longest suffixes of respectively a and b that are prefixes of w. Then there exists a word u such that $|u| \leq |w| - 1$ and that $|au|_w \neq |bu|_w \mod p$.

Proof. If $|a|_w \not\equiv |b|_w \mod p$, then let $v = \epsilon$.

If $|a|_w \equiv |b|_w \mod p$, because have $a_w \neq b_w$, then $|a|_w \neq |b_w|$ because w doesn't have multiple suffixes of the same length. Suppose that a_w is the longest. It is clear that $|a_w| > 0$. We define v to be a word satisfying $a_w v = w$. In this case, $|v| \leq |w| - 1$, $|av|_w = |a|_w + 1$ and $|bv|_w = |b|_w$.

Now we are able to prove Proposition 10.

Proof (of Proposition 10). We only need to prove that there exist $k, k' \in [\![p]\!]$ such that

 $(a_{p;w}(n))_{kip^{|w|-1} \le n < (k+1)ip^{|w|-1}} \neq (a_{p;w}(n))_{k'ip^{|w|-1} \le n < (k'+1)ip^{|w|-1}},$

i.e. there exists some j such that $0 \le j < |v|$ and

$$a_{p;w}(kip^{|w|-1}+j) \neq a_{p;w}(k'ip^{|w|-1}+j).$$

For $1 \leq k \leq p$, let $t_k = [kip^{|w|-1}]_p$. One has $t_k = u_k x_k 0^j$ for some word u_k , some letter $x_k \in [\![p]\!] \setminus \{0\}$ and some non-negative integer $j \geq |w| - 1$. Note that $u_1 \neq 0$. Since p is prime, one has $x_k \neq x_{k'}$ if $k \neq k'$. Thus, there exists $k \in [\![p]\!]$ such that $x_k = w[0]$. Now, let $k' \in \llbracket p \rrbracket \setminus \{k\}$ and let v_k and v'_k be the longest suffixes of respectively $u_k x_k$ and $u_{k'} x_{k'}$ that are prefixes of w. Because $x_k = w[0]$, $v_k \neq \epsilon$ and thus $v_k \neq v_{k'}$. Therefore, by Lemma 12 and Lemma 11, there exists u such that $|v_k u|_w \neq |v_{k'} u|_w \mod p$ and that |u| = |w| - 1. Let $j = [u]_p$, clearly $j < ip^{|w|-1}$ and one has

$$a_{p;w}(kip^{|w|-1}+j) \neq a_{p;w}(k'ip^{|w|-1}+j),$$

which proves the result.

Now we are able to prove the principle theorem in most cases:

Theorem 13 For any prime number p and any $w \in [\![p]\!]^*$, the sequence $(a_{p;w}(n))_{n \in \mathbb{N}}$ is p-uniformly morphic for any w and non-purely morphic when |w| > 1 and $w \neq 10$.

Proof. First, the fact that $(a_{p;w}(n))_{n \in \mathbb{N}}$ is *p*-automatic for any word *w* follows from the Proposition 3.1 in [10], Page 7 and Theorem 16.1.5 in [4].

Now, if $w \neq 10$ and |w| > 1 and the sequence $(a_{p;w}(n))_{n \in \mathbb{N}}$ is purely morphic, then 0^{p+1} is a prefix of $(a_{p;w}(n))_{n \in \mathbb{N}}$. Thus, $(a_{p;w}(n))_{n \in \mathbb{N}}$ will have infinitely many prefix of type v^{p+1} . However, from Proposition 9 and 10, $(a_{p;w}(n))_{n \in \mathbb{N}}$ can only have finitely many prefix of the form v^{p+1} . We conclude.

Here we prove the p particular cases.

Proposition 14 For any prime number p and for any $w \in [\![p]\!] \setminus \{0\}$, the sequence $(a_{p,w}(n))_{n \in \mathbb{N}}$ is purely morphic.

Proof. It is easy to check that for any non-negative integer m, $(a_{p;w}(pm + i))_{0 \le i \le p-1}$ satisfies the following property:

$$a_{p;w}(pm+i) = \begin{cases} a_{p;w}(m)^+ & \text{if } i = w, \\ a_{p;w}(m) & \text{otherwise.} \end{cases}$$

Thus, it is easy to check that $(a_{p;w}(pm+i))_{0 \le i \le p-1}$ is the fixed point of the morphism: $i \to v_i$ for all $i \in [p]$, where,

$$v_i[k] = \begin{cases} i^+ & \text{if } k = w, \\ i & \text{otherwise.} \end{cases}$$

Proposition 15 The sequence $(a_{2,0}(n))_{n \in \mathbb{N}}$ is non-purely morphic.

Proof. The sequence $(a_{2,0}(n))_{n \in \mathbb{N}}$ begins with 1, 0, 1, 0. Thus, if this sequence is purely morphic, then this sequence has infinitely many prefixes of the form v^2 . Here we prove that $(a_{2,0}(n))_{n \in \mathbb{N}}$ cannot have a prefix of the form v^2 with $|v| \geq 5$.

8

If $(a_{2,0}(n))_{n \in \mathbb{N}}$ has a prefix of the form v^2 with $|v| \ge 5$. Let us suppose that |v| = 4k + i for some non-negative integers k, i such that i = 0, 1, 2, 3 and $k \ge 1$. First note that $a_{2,0}(r) = a_{2,0}(4k + i + r)$ for any r satisfying $0 \le r < 4k + i$.

Also note that, for $k \ge 0$, $a_{2,0}(k) = a_{2,0}(4k) = a_{2,0}(4k+3) = a_{2,0}(2k+1) = x$ and $a_{2,0}(4k+1) = a_{2,0}(4k+2) = a_{2,0}(2k) = x^+$ for some $x \in \{0,1\}$. This is because if $[k]_2 = u$, then $[2k]_2 = u0$, $[2k+1]_2 = u1$, $[4k]_2 = u00$, $[4k+1]_2 = u01$, $[4k+2]_2 = u10$ and $[4k+3]_2 = u11$.

Finally, note that $a_{2,0}(2^tk-1) = a_{2,0}(k-1)$, because, we know that $k \ge 1$ so if $[k-1]_2 = u$ then $[2^tk-1]_2 = u1^t$. Similarly, $a_{2,0}(2^tk-2^s-1) = a_{2,0}(2^tk-1)^+$ if 1 < s < t.

Now if i = 0, then |v| = 4k and $a_{2,0}(1) = a_{2,0}(4k+1) = 0$, $a_{2,0}(2) = a_{2,0}(4k+2) = 1$ which contradicts to $a_{2,0}(4k+1) = a_{2,0}(4k+2)$.

If i = 1, then |v| = 4k + 1 and $a_{2,0}(0) = a_{2,0}(4k + 1) = 1$, $a_{2,0}(1) = a_{2,0}(4k + 2) = 0$ which contradicts to $a_{2,0}(4k + 2) = a_{2,0}(4k + 2)$.

If i = 2, then |v| = 4k + 2 and $a_{2,0}(k-1) = a_{2,0}(4k-1)$ but $a_{2,0}(k-1) = a_{2,0}(8k-1) = a_{2,0}(4k-3) = a_{2,0}(4k-1)^+$.

If i = 3, then |v| = 4k + 3 and $a_{2,0}(2(2k + 1)) = a_{2,0}(4k + 2) = a_{2,0}(4k + 3)^+ = a_{2,0}(0)^+ = 0$. Thus, we have $a_{2,0}(2k + 1) = 1$. But on the other hand, $a_{2,0}(2k + 1) = a_{2,0}(4(2k + 1)) = a_{2,0}(8k + 4) = a_{2,0}(4k + 1) = a_{2,0}(4k + 2) = 0$, which is a contradiction.

In all cases, $(a_{2,0}(n))_{0 \le n < |v|} \ne (a_{2,0}(n))_{|v| \le n < 2|v|}$.

Proposition 16 For any prime number $p \geq 3$, the sequence $(a_{p,0}(n))_{n \in \mathbb{N}}$ is non-purely morphic.

Proof. The sequence $(a_{p,0}(n))_{n \in \mathbb{N}}$ begins with $(10^{p-1})^p$. Thus, if this sequence is purely morphic, then this sequence has infinitely many prefixes of the form v^2 . Here we prove that $(a_{p,0}(n))_{n \in \mathbb{N}}$ cannot have a prefix of the form v^2 with $|v| \ge p^2$.

First, let us prove that if v^2 is a prefix of $(a_{p,0}(n))_{n \in \mathbb{N}}$, then |v| is a multiple of p. It is easy to check that v^2 is not a prefix of $(a_{p,0}(n))_{n \in \mathbb{N}}$ when |v| = 1, 2. Let us suppose that $|v| \ge 3$. In this case, v begins with 1, 0, 0. Thus, $a_{p,0}(|v|) =$ $1, a_{p,0}(|v|+1) = a_{p,0}(|v|+2) = 0$.

Let us suppose that |v| = kp + t for some nonnegative integers k, t such that $0 \le t \le k-1$. We first prove that $t \ne k-1$. If it is the case, then |v|+1 is a multiple of p and $a_{p,0}(|v|+1) \ne a_{p,0}(|v|+2) = 0$ since |v|+2 has one 0 less than |v|+1 in their p-expansions. this contradicts the fact that $a_{p,0}(|v|+1) = a_{p,0}(|v|+2) = 0$.

Now let us suppose that $t \neq k-1$. In this case, $(a_{p,0}(n))_{kp \leq n \leq (k+1)p-1}$ contains the factor $a_{p,0}(|v|)a_{p,0}(|v|+1) = 1, 0$. Thus, $(a_{p,0}(n))_{kp \leq n \leq (k+1)p-1}$ is a factor of type 2 announced in proposition 8. But the word $(a_{p,0}(n))_{0 \leq n \leq p-1} = 10^{p-1}$ is also a word of type 2 and the word $(a_{p,0}(n))_{n \in \mathbb{N}}$ cannot have two different factors of type 2 such that the special letters are at different positions. Thus, $a_{p,0}(|v|)a_{p,0}(|v|+1)$ should be a prefix of $(a_{p,0}(n))_{kp \leq n \leq (k+1)p-1}$ and consequently |v| is a multiple of p.

Second, |v| is not a multiple of p^2 . Because, if it is in this case, $a_{p,0}(|v|) = a_{p,0}(0) = 1$ and $a_{p,0}(|v|+p) = a_{p,0}(|v|) - 1 = 0$. But $a_{p,0}(p) = 1$, thus, $a_{p,0}(|v|+p) \neq a_{p,0}(p)$. Consequently, $(a_{p,0}(n))_{0 \le n < |v|-1} \neq (a_{p,0}(n))_{|v| \le n < 2|v|-1}$.

Third, if |v| is not a multiple of p^2 but larger than $p^2 + 1$, let us suppose that $|v| = kp^2 + tp$ for some positive integers k, t such that $1 \le t \le p - 1$. Let x = (p-t)p, we then have $a_{p,0}(|v|+x) = a_{p,0}(x) = 1$. But in this case, $a_{p,0}(x+p) = 1$ or 2, but $a_{p,0}(|v|+x+p) = 0$. Thus, $(a_{p,0}(n))_{0 \le n < |v|-1} \ne (a_{p,0}(n))_{|v| \le n < 2|v|-1}$.

Proposition 17 The sequence $(a_{2;10}(n))_{n \in \mathbb{N}}$ is non-purely morphic.

Proof. The sequence $(a_{2;10}(n))_{n \in \mathbb{N}}$ begins with 0010. Thus, if this sequence is purely morphic, then this sequence has infinitely many prefixes of the form v^2 . We will prove that its only prefix of square shape is 00.

Let v^2 be a prefix of $(a_{p;10}(n))_{n\in\mathbb{N}}$. Because of that, one can note that $(a_{p;10}(n))_{0\leq n<|v|} = a_{p;10}(|v|+n))_{0\leq n<|v|}$, in particular, $(a_{p;10}(|v|+n))_{0\leq n\leq 4} = 0010$. Using this, we will prove this proposition by proving all the different possibility for the word $[|v|]_2$.

For now on, u can be any word in $[\![p]\!]^*$ and s and t positive integer. Note that the computation is made in binary basis.

i) If $[|v|]_2 = 1^t$ with t > 1, we have $a_{p;10}(|v|+1) = 1 \neq 0$ because $1^t + 1 = 10^t$.

ii) If $[|v|]_2 = 1^t 01$, one can simply note that $a_{p;10}(|v|) = 1 \neq 0$.

iii) If $[|v|]_2 = u101^t01$ then $a_{p;10}(|v|+3) = a_{p;10}(|v|)^+$ because $u101^t01+11 = u110^{s+2}$.

iv) If $[|v|]_2 = u101^t$ with t > 1 then $a_{p;10}(|v|+2) = a_{p;10}(|v|)$, because $u101^t + 11 = u110^{t-1}1$.

v) If $[|v|]_2 = u10^{s}1^t$ with s > 1 we have $a_{p;10}(|v|+1) = a_{p;10}(|v|)^+$, because $u10^{s}1^t + 1 = u10^{s-1}10^t$.

vi) Finally, if $[|v|]_2 = u10^t$ with t > 1, we have on one hand $a_{p;10}(|v| + (1^{t-1}0)_2) = a_{p;10}(|v|) = 0$ because $u10^t + 1^{t-1}0 = u1^t0$. We also have $a_{p;10}(|v| + (1^{t-1}0)_2) = a_{p;10}((1^{t-1}0)_2) = 1$, which is a contradiction.

An attentive reader will remark that this cover all the number strictly bigger than 1. $\hfill \Box$

Proposition 18 For any prime number $p \ge 3$ the sequence $(a_{p;10}(n))_{n\in\mathbb{N}}$ is non-purely morphic.

Proof. The sequence $(a_{p;10}(n))_{n \in \mathbb{N}}$ begins with $0^p 1$. Thus, if this sequence is purely morphic, then this sequence has infinitely many prefixes of the form v^p . It suffices to prove that if $|v| > p^2$ then v^p is not a prefix of $(a_{p;10}(n))_{n \in \mathbb{N}}$.

Let v^p be a prefix of $(a_{p;10}(n))_{n \in \mathbb{N}}$.

Suppose that $p \nmid |v| > p^2$. This means that v = uyx for a word u and some letters y, x with $x \neq 0$. Because v^2 is a prefix of $(a_{p;10}(n))_{n \in \mathbf{N}}$, v begins with the letters $0^p 1$ and $(a_{p;10}(n))_{0 \leq n \leq p} = a_{p;10}((v)_p + n))_{0 \leq n \leq p}$. Thus $a_{p;10}((v)_p) = 0$.

Let $c \in \llbracket p \rrbracket$ such that x + c = p; it exists because $x \neq 0$ and p > 2. Thus, $[(v)_p + c]_p = u'y'0$. Because $a_{p;w}(c) = 0$, $a_{p;w}((v)_p + c) = 0$ also and $a_{p;w}((v)_p + p) = 0$ or p - 1 which is not equal to $a_{p;w}(p) = 1$. Therefore, v^2 is not a prefix of $(a_{p;10}(n))_{n \in \mathbf{N}}$.

Suppose now that $p \mid |v| \geq p$. Let $|v| = sp^t$ for some positive integer s, t such that $t \geq 1$ and $p \nmid s$ and let $[v]_p = ux0^t$ for some word u and some letter $x \in [\![p]\!] \setminus \{0\}.$

Since p is prime, there exists $k \in \llbracket p \rrbracket$ such that $[kv]_p = u'10^t$ for some word u'. Let $m = p^{t+1} - 1$, thus $[m]_p = (p-1)^t$ and $[kv + m]_p = u'1(p-1)^t$.

Since $(a_{p;10}(n))_{k_1|v| \le n \le (k_1+1)|v|-1} = (a_{p;10}(n))_{k_2|v| \le n \le (k_2+1)|v|-1}$, for any k_1 , $k_2 \in \llbracket p \rrbracket$ we have $a_{p;10}(0) = 0 = a_{p;10}(kv)$ thus $a_{p;10}(u') = p - 1$ which means that $a_{p;10}(m) = 0 \neq a_{p;10}(kv+m) = p - 1$.

Hence, v^p cannot be a prefix of $(a_{p;10}(n))_{n \in \mathbb{N}}$ if $v > p^2$ which concludes the proof.

Proof (of Theorem 2). It is a direct result of Theorem 13, Proposition 14, Proposition 15, Proposition 16, Proposition 17 and Proposition 18. □

4 Algebraicity

By Christol's theorem [11], we know that the power series $f = \sum_{i=0}^{\infty} a_{p;w}(n)t^n$ is algebraic over $\mathbb{F}_p(t)$. Now we prove that f is algebraic of degree p. Indeed, if we let $[w]_p$ denote $w_1 p^{k-1} + \cdots + w_k$, and write $a_n = a_{p;w}(n)$ for short, then

$$(1 + t + \dots + t^{p-1})f^p - f$$

$$= \sum_{n \ge 0} \sum_{j=0}^{p-1} (a_n - a_{pn+j})t^{pn+j}$$

$$= \sum_{n \ge 0} (a_n - a_{pn+w_k})t^{pn+w_k}$$

$$= \sum_{n \ge 0} \sum_{j=0}^{p-1} (a_{np+j} - a_{np^2+jp+w_k})t^{np^2+jp+w_k}$$

$$= \sum_{n \ge 0} (a_{np+w_{k-1}} - a_{np^2+w_{k-1}p+w_k})t^{np^2+w_{k-1}p+w_k}$$

$$\dots$$

$$= \sum_{n \ge 0} (a_{np^{k-1}+w_1p^{k-2}\dots+w_{k-1}} - a_{np^k+w_1p^{k-1}+\dots+w_k})t^{np^k+[w]_{p}}$$

$$= \begin{cases} \sum_{n \ge 0} -t^{np^k+[w]_p} = t^{[w]_p}/(t^{p^k} - 1), & \text{if } w_1 \ne 0\\ \sum_{n \ge 1} -t^{np^k+[w]_p} = t^{p^k+[w]_p}/(t^{p^k} - 1), & \text{if } w_1 = 0. \end{cases}$$

The irreduciblity of the the above functional equations is straightforward from the Eisenstein's criterion. We thus have the following propriety:

Proposition 19 For any prime number p and any finite word w in $[\![p]\!]^*$, the power series $\sum_{i=0}^{\infty} a_{p;w}(n)t^n$ is algebraic of degree p over $\mathbb{F}_p(t)$.

5 Final remarks

The authors remark that the fast algorithms introduced in Section 2 for 0-words and non-0-words are much different. However, the generating functions given in Section 4 for 0-words and non-0-words are quite similar. Thus, we believe that the algorithms in Section 2 can be unified for both 0-words and non-0-words.

References

- Allouche, G., Allouche, J.P., Shallit, J.: Kolam indiens, dessins sur le sable aux îles Vanuatu, courbe de Sierpinski et morphismes de monoïde. Annales de l'Institut Fourier 56(7), 2115-2130 (2006), https://aif.centre-mersenne.org/articles/10.5802/aif.2235/
- Allouche, J.P., Bétréma, J., Shallit, J.O.: Sur des points fixes de morphismes d'un monoïde libre. RAIRO Theoretical Informatics and Applications Informatique Théorique et Applications 23(3), 235-249 (1989), http://www.numdam.org/item/ITA_1989_23_3_235_0/
- Allouche, J.P., Cassaigne, J., Shallit, J., Zamboni, L.Q.: A taxonomy of morphic sequences (2017), https://arxiv.org/abs/1711.10807
- 4. Allouche, J.P., Shallit, J.: Automatic Sequences: Theory, Applications, Generalizations. Cambridge University Press (2003)
- Allouche, J.P., Shallit, J.: Automatic Sequences Are Also Non-uniformly Morphic, pp. 1–6. Springer International Publishing, Cham (2020), https://doi.org/10.1007/978-3-030-55857-4_1
- Allouche, J.P., Shallit, J., Wen, Z.X., Wu, W., Zhang, J.M.: Sumfree sets generated by the period-k-folding sequences and some sturmian sequences. Discrete Mathematics 343(9), 111958 (2020), https://www.sciencedirect.com/science/article/pii/S0012365X20301448
- 7. Bartholdi, L.: Endomorphic presentations of branch groups. Journal of Algebra 268(2), 419-443 (2003), https://www.sciencedirect.com/science/article/pii/S0021869303002680
- Bartholdi, L., Siegenthaler, O.: The twisted twin of the Grigorchuk group. International Journal of Algebra and Computation 20(04), 465–488 (2010), https://doi.org/10.1142/S0218196710005728
- Benli, M.G.: Profinite completion of Grigorchuk's group is not finitely presented. International Journal of Algebra and Computation 22(05), 1250045 (2012), https://doi.org/10.1142/S0218196712500452
- digitales et k-régulières. 10. Cateland, E.: Suites suites Theses, Uni-Sciences Technologies Bordeaux (Jun versité \mathbf{et} -Ι 1992). https://tel.archives-ouvertes.fr/tel-00845511
- 11. Christol, G., Kamae, T., Mendès France, M., Rauzy, G.: Suites algébriques, automates et substitutions. Bull. Soc. Math. France 108(4), 401-419 (1980), http://www.numdam.org/item?id=BSMF_1980__108__401_0
- 12. OEIS Foundation Inc.: The On-Line Encyclopedia of Integer Sequences (2022), published electronically at http://oeis.org
- 13. Shallit, J.: Automaticity iv: sequences, sets, and diversity. Journal de Théorie des Nombres de Bordeaux 8(2), 347-367 (1996), http://www.jstor.org/stable/43974217