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Abstract. Let m be a positive integer larger than 1, let w be a finite
word over {0,1,...,m — 1} and let @m;w(n) be the number of occurrences
of the word w in the m-expansion of n mod p for any non-negative integer
n. In this article, we first give a fast algorithm to generate all sequences of
the form (@m;w(n))nen; then, under the hypothesis that m is a prime, we
prove that all these sequences are m-uniformly but not purely morphic,
except for w = 1,2,...,m — 1; finally, under the same assumption of m
as before, we prove that the power series Y °° ) am;w(n)t" is algebraic of
degree m over F,(t).

1 Introduction, definitions and notation

Given a positive integer m larger than 1 and a finite word w over {0,1,2,...,m — 1},
the block-counting sequence (em;w(n))nen counts the number of occurrences of
the word w in the m-expansion of n for each non-negative integer n. Let us de-
fine (am;w(n))nen to be a sequence over {0,1,2,...,m — 1} such that am,.,(n) =
em:w(n) mod (m) for all non-negative integer n. The analytical as well as the
combinatorial properties of these sequences have been studied since 1900’s after
Thue and some well-known sequences are strongly related to this notion. Recall
that the 0, 1-Thue-Morse sequence can be defined as (az2.1(n))nen (see, for exam-
ple, Page 15 in [4]) and the 0, 1-Rudin-Shapiro sequence can also be defined as
(a2;11(n))nen (see, for example, Example 3.3.1 in [4]). In this article, we review
some common properties of usual block-counting sequences and generalize them
to all block-counting sequences.

To be able to announce our results, here we recall some definitions and no-
tation. Let A be a finite set. It will be called an alphabet and its elements will
be called letters. Let A* denote the free monoid generated by A under concate-
nations and let AN denote the set of infinite concatenations of elements in A.
Let A = A* U AN. A finite word over the alphabet A is an element in A* and
an infinite word over A is an element in AN. Particularly, the empty word is an
element in A* and it is denoted by €. The length of a word w, denoted by |w],
is the number of letters that it contains. The length of the empty word is 0 and
the length of any infinite word is infinite. For any non-empty word w € A it
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can be denoted by w[0]w[1]w[2]..., where w[i] are elements in A. A word x is
called a factor of w if there exist two integers 0 < ¢ < j < |w| — 1 such that
x = wliJw[i + 1]...w[j], this factor can also be denoted by w[i..j]. A factor z is
called a prefix (resp. a suffiz ) of the word w if there exists a positive integer i
such that 0 < 4 < |w| and x = w[0..7] (resp. x = w[i..]lw| — 1]). For any finite
word w and any positive integer n, let w™ denote the concatenation of n copies
of w, i.e. w" = ww...w n times. Particularly, w® = €. For any pair of words w, v
such that v is a factor of w, let |w]|, denote the number of occurrences of v in w.

Let A and B be two alphabets, a morphism ¢ from A to B is a map from
A to B satisfying ¢(zy) = ¢(x)¢(y) for any pair of elements x,y in A*. The
morphism ¢ is called k-uniform if for all elements a € A, |¢(a)] = k and it is
called non-uniform otherwise. A morphism ¢ is called a coding function if it is
1-uniform and it is called non-erasing if ¢(a) # € for all a € A.

Let A be a finite alphabet and let (a,)nen be an infinite sequence over A, it
is called morphic if there exists an alphabet B, an infinite sequence (b, )neN over
B, a non-erasing morphism ¢ from B*® to B> and a coding function ¢ from
B to A*, such that (b, )nen is a fixed point of ¢ and (an )nen = Y((bn)nen)-
Moreover, the sequence (an )nen is called uniformly morphic if ¢ is k-uniform for
some integer k, and it is called non-uniformly morphic otherwise. The sequence
(an)nen is called purely morphic if A = B and ¢ = Id.

For any positive integer m, let [m] = {0,1,2,...,m — 1}. For any ¢ € [m] let
tt =t+1 mod m; for any w € [m]*, let wt = w[0]tw[1]T. . w[|lw| — 1.

In Section2] we give a fast algorithm to generate all block-counting sequences.
It is well-known that the Thue-Morse sequence can be generated by the following
algorithm (see, for example, [12, A008277]):

Example 1 Let (wy,)nen be a sequence of words over the [2]* such that wo =0
and that w;11 = wiw;r for all i, then the Thue-Morse sequence (az;1(n))neN
satisfies (a1 (n))nen = lim;_yo0 w;.

In Section2] we prove that the Rudin-Shapiro sequence can also be generalized
by a similar algorithm, see[d More generally, we find fast algorithms to generate
all block-counting sequences. These algorithms are given by [Bland [l in Section2}

From the definitions recalled as above, any morphic word can be classified
as either a uniformly morphic word or a non-uniformly morphic word. However,
from a recent article [5], Allouche and Shallit proved that all uniformly morphic
sequences are also non-uniformly morphic. This result implies that all sequences
in the family of morphic sequences are also in its subfamily of non-uniformly
morphic sequences. Indeed, many works can be found in the literature in the
direction of characterizing all those non-uniformly morphic sequences which are
not uniformly morphic, for example, one can find [2][13][7][1][8][9][6]. However,
in [5], it is proved actually that all uniformly morphic sequences are also non-
uniformly non-purely morphic. In other words, from the construction of the proof
given in [5], a nontrivial coding function is required. In Section [, we investigate
all those uniformly morphic sequences which are not purely morphic. It is already
known that the Rudin-Shapiro sequence is in this case (Example 26 in [3]). In



Block-counting sequences are not purely morphic 3

section B] we prove that all other sequences in the form of (am w(n))nen have
the same property when |w| # 1 and m is a prime. The result is announced as
follows:

Theorem 2 Let p be a prime number and w € [p]*. The sequence (ap.w(n))neN
is a p-uniformly morphic. Moreover, if |w| =1 and w # 0, this sequence is purely
morphic and if not is it non-purely morphic.

In Section @ under the assumption that p is a prime number, we prove that
the formal power series fpw = > oo Gm:w(n)t" is algebraic and of degree p over
F,(t). Indeed, from Christol’s theorem [I1I], we know that the power series fp..
is algebraic over IF,(¢). In Section ] we prove that f is algebraic of degree p.

2 Windows functions and (ap,,(1))nen

For any positive integer m and non-negative integer n, let [n],, denote the ex-

pansion of n in the base m. For a given word w € [m]* = {0,1,--- ,m —
17, w = wojw[1]..wljw| — 1], let (w), = S5 wlilm!®l=1= and let w' =
w[l]w[2] - -w[Jw| — 1]. A word w is called a z-word if w[0] = z. For a given
string w, let a,, = gfw)‘ﬁﬁ, W = % and let ¢, : [m]* — [m]* be a

function such that for any v € [m]*, ¢, (v) satisfies the following propriety:

oli] +1 modm if aufo] < i < Bulol

Pu(v)[i] = {

v[i] otherwise.

2.1 Block-counting sequences for non-0-words

Proposition 3 Let m a positive number, let x € [m]\{0}, let w € [m]* be
a z-word and let t = (V)y,. If we let (u;)ien be a sequence of words such that

lug| = m!®!, that
. 1 if i=t
ugli] = )
0 otherwise,

and that up+1 = ufdu (uk)u}f*z*l, then limy oo Uk = (@miw(N))nen.

Proof. First, it is obvious that wo is a prefix of (am.w(n))nen. Now let y €
[m]\{0}. For any integers r and m* such that 0 < r < m*, 0 < e, (r +ym*) —
emw(r) < 1. Indeed, since y # 0, [r + ymF],, = y0..0[r]m, thus, [r + ymF*],,
has exactly one more z-factor of length |v| than [r], only if y = =, and this
factor can be w or not. Moreover, €., (1 + ym¥) — em.(r) = 1 only if w is
a prefix of [r + ym*],,. Consequently, €,,.,(r + ym*) = ep.(r) + 1 only if
aymF <r < B,m* and y = z. Hence, for any t € [m]\{x},

= T

(Amsw () ek <n<(t+1)mk = (@m;w(n) >O§n<mk

(am;w (n))mmk§n<(z+1)mk = wa((am;w (n>>0§n<mk )
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This implies that

(am;w(”))0§n<mk+1 = Uy Pw (“k)u;cnixila

which concludes the proof. a

Example 4 Let us compute the Rudin-Shapiro sequence using windows func-
tion. From Example 3.3.1 in [J)], the Rudin-Shapiro sequence can be defined as
(a2;11(n))nen. From Proposition[3, set a1 = %, B = % and so = 0,0,0,1. For
any words w € {0,1}" such that w = wywy with |wi| = |wa|, ¢s(w) = wy(wy).
Thus, one can compute

s1=0,0,0,1,0,0,1,0; s5=0,0,0,1,0,0,1,0,0,0,0,1,1,1,0,1;

s3 =0,0,0,1,0,0,1,0,0,0,0,1,1,1,0,1,0,0,0,1,0,0,1,0,1,1,1,0,0,0,1,0;

(es(n))neN is the limit of s, when n tends to infinite. O

2.2 Block-counting sequences for 0-words

Proposition 5 Let m be a positive number, let w € [[m]]* a O-word and let
t= (w)m Let Ug be SuCh that |’U,0| = m‘w‘ and

woli] = {1 if i=t

0 otherwise,

and let ugyr1 = qbw(uk)u;"_l

By letting w_y = ug if w = 01 and w_y = 0" if not, wy, = u'~" for
k >0, then

(am;w (n))nEN = W 1WowWr Wz« - Wy " .

Lemma 6 Let m be a positive number, y € [m]\{0}, w € [m]* a 0-word and
let t = (W), then for any integer r satisfying t < mF <r < mF+l:

1) emu(r + ykarl) = emu(r);

2) 0 < eman(r +mF) — epan(r) < 1;

3) emw(r + mk) — em:w(r) =1 only if [r]m is a m — 1-word and apmb <r <
Buwm®.

Proof. For any integer r satisfying t < m* < r < mF+!, we first remark that

[r + ym**1),, = y[r]m. Since [r + ym* T, and y[r],, have the same set of 0-
factors, €m.w(r + ym 1) = e (7). Second, if [r],, is not a m — 1-word than
[7]m and [r + mF],, has the same set of O-factors. But if [r],, is a m — 1-word,
then [r+m¥],, = 10[r)!, and thus, can have at most one more 0 factors of length
|w| than [r],,. Consequently, 0 < €. (r + m¥) — €4.0(r) < 1. Moreover, in the
latter case, €muw(r + mF) — e (r) = 1 only if 1w is a prefix of [r + m*],,. So
emw(r +mF) = ey (r) + 1 only if apym® < r < B,m*. O
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Proof (of Proposition[d). We first remark that w_jwy is a prefix of (@m.w (1)) neN-
Further, for any integer k satisfying (w),, < m* and z € [m]\{0}, from
Lemma [6]

(am;w(n))zmk§n<(z+1)mk = (am;w(n))mk§n<2mk
(am;w (n))mk+1§n<mk+1+mk = (¢(am;w (n))(p—l)mk <n<mk+1 ))

This implies that

m—1
(@m0 (1)) gk <n<mktl = (¢w ((@m;w(n))pr—1 <n<mk ) (@ (n))zk_—ll §n<mk) )
which concludes the proof. O

Example 7 Let us compute the sequence (a2,01(n))nen with. From the previous
theorem, set agy = %, Bo1 = %, s—1 = 0,0,0,0 and sg = 0,1,0,0. For any
words w € {0,1}" such that w = wywy with |wi| = |wa| = k for some integer k,
¢s(w) = wiwy . Thus, one can compute

s1=0,1,1,1,0,1,0,0; s =0,1,1,1,1,0,1,1,0,1,1,1,0,1,0,0;

s3=0,1,1,1,1,0,1,1,1,0,0,0,1,0,1,1,0,1,1,1,1,0,1,1,0,1,1,1,0, 1,0, 0;

(a2:01(N))nen is the limit of s_150515283...5n, when n tends to infinite. O

3 (apw(n))nen are not purely morphic

From now on, we work with p a prime number.
We first prove that (ap.w(n))nen is not purely morphic when |w| > 1. We will
need a simple notation, for w = w[0] - - - w[|w| — 1], let w® = w|[0] - - - w([|w| — 2].

Proposition 8 For any prime number p and for any w € [p]*, the sub-sequences
of the form (ap.w(pn + i))o<i<p—1 are either constant (called type 1) or of the
form

tt ifi = wllw| — 1],

t otherwise;

Apyw (PN + 1) = {

for some integer t € [p] (called type 2). Moreover, (ap.w(pn + 4))o<i<p—1 1S of
type 2 if and only if w® is a suffix of [n],. O

For the sequence (ap.,(n))nen, let us define a p-block to be a sub-sequence of
the form (apw (pn+1))o<i<p—1 for some integer n. From the previous proposition,
a p-block is either of type 1 or type 2. For a p-block (ap,w(pn + ©))o<i<p—1 of
type 2, let us define its index to be an integer ¢ € [p] such that ap,.,(pn + i) #
apyw(pn + j) for all j # 1.

Proposition 9 For any prime number p and any w € [p]*, if there exists a
word v such that v**1 is a prefiv of (ap.w(n))nen and that [v] > 2pl*! then |v|
is a multiple of pl®I=1.
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Proof. If |v| > 2p*!, then, from Proposition Bl and [ v contains a p-block of the
form

1 ifi = wljw| —1],

0 otherwise,

apsw (P + 1) = {

for some m. Since v is a prefix of (ap.w (1)) neN, (ap:w(Pm+plv|+i))o<i<p—1 =

(@pyw(pm + 1))o<i<p—1, which is also a p-factor of type 2. From Proposition [§]

w® is a suffix of both [m], and [m + |v|],. Thus, m + |v| — m is a multiple of
Jw|—1

D . O

Proposition 10 For any prime integer p and any w € [p]*, the sequence
(Apiw(n))neN cannot have a prefiz vP+ such that |v| = ip!™®!=1 for some pos-
itive integer 1 > p+ 1.

This proposition will be proved with the help of the following lemmas.

Lemma 11 Let w € [p]*, then for any words a,b € [p]* and for any positive
integer £, there exists a word w such that |u| =1, |au|y = |alw and |buly = [b]w-

Proof. Let = € [p]\{w[|w| — 1]} and u = 2*. Tt is clear that |au|, = |a|, and
|bu]y = |blw because none of the added factor of size |w| ends with x.

Lemma 12 Let w be a word in [p]* such that |w| > 1. Let a,b € [p]* such that
Gy F by where a, and by, are the longest suffixes of respectively a and b that
are prefizes of w. Then there exists a word u such that |u| < |w| — 1 and that
lau|y, Z |bul, mod p.

Proof. If |a|y # bl mod p, then let v =e.

If |a|w = |blw mod p, because have a,, # by, then |al, # |bw| because w doesn’t
have multiple suffixes of the same length. Suppose that a,, is the longest. It is
clear that |a,| > 0. We define v to be a word satisfying a,,v = w. In this case,
[v] < |w| =1, |av|w = |alw + 1 and |[bv]y = |-

Now we are able to prove Proposition [0

Proof (of Proposition [I]). We only need to prove that there exist k, k' € [p]
such that

(ap;w(n))kip‘“"*l§n<(k+1)ip‘w‘*1 # (aPﬂU(n))k/ip‘w"l§n<(k’+1)ip\w\*1a

i.e. there exists some j such that 0 < j < |v| and
ap;w(k/’ip‘w‘il +7) # ap;w(k/ip‘w‘i1 +J)-

For 1 <k <p,let t = [k:ip‘“"_l]p. One has t;, = urx07 for some word uy,
some letter zj € [p]\{0} and some non-negative integer j > |w| — 1. Note that
uy # 0. Since p is prime, one has z, # zp if k # k'. Thus, there exists k € [p]
such that xp = w|0].
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Now, let & € [p]\{k} and let v and v}, be the longest suffixes of respectively
ugpry and upxp that are prefixes of w. Because xp = w[0], vy # € and thus
v # vpr. Therefore, by Lemma and Lemma [} there exists u such that
|vgti|w Z |k ulw mod p and that |u| = |w| — 1. Let j = [u],, clearly j < ipl“I=1
and one has

e (Rip™' ™1 + ) # apa (Kip =" + ),

which proves the result.
Now we are able to prove the principle theorem in most cases:

Theorem 13 For any prime numberp and any w € [p]*, the sequence (ap;w(n))nen
is p-uniformly morphic for any w and non-purely morphic when |w| > 1 and

w # 10.

Proof. First, the fact that (ap.w(n))nen is p-automatic for any word w follows
from the Proposition 3.1 in [10], Page 7 and Theorem 16.1.5 in [4].

Now, if w # 10 and |w| > 1 and the sequence (ap;w (1))nen is purely morphic,
then 077! is a prefix of (ap;w(n))nen. Thus, (ap.w(n))nen will have infinitely
many prefix of type vPT!. However, from Proposition [@ and [0, (ap,w(n))neN
can only have finitely many prefix of the form v?*!. We conclude. a

Here we prove the p particular cases.

Proposition 14 For any prime number p and for any w € [p]\{0}, the sequence
(ap,w(n))nen is purely morphic.

Proof. It is easy to check that for any non-negative integer m, (ap..,(pm +
i))o<i<p—1 satisfies the following property:

ap.w(m)™ if i = w,

apw (pm + 1) = {

apyw(m) otherwise.

Thus, it is easy to check that (ap,w(pm + @))o<i<p—1 is the fixed point of the
morphism: ¢ — v; for all i € [p], where,

it oif k=
wlk] =<0 D E
7 otherwise.

Proposition 15 The sequence (az,0(n))nen s non-purely morphic.

Proof. The sequence (a2,0(n))nen begins with 1,0,1,0. Thus, if this sequence
is purely morphic, then this sequence has infinitely many prefixes of the form
v?. Here we prove that (a2 0(n))nen cannot have a prefix of the form v? with
|v] > 5.
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If (a2,0(n))nen has a prefix of the form v? with |v| > 5. Let us suppose that
|v| = 4k + i for some non-negative integers k, ¢ such that ¢ = 0,1,2,3 and k > 1.
First note that as o(r) = a2,0(4k + i + r) for any r satisfying 0 < r < 4k + 4.

Also note that, for k > 0, az o(k) = ag,0(4k) = a2,0(4k+3) = a20(2k+1) ==
and aso(4k + 1) = a2,0(4k + 2) = az0(2k) = z* for some x € {0,1}. This is
because if [k]a = u, then [2k]s = 10, [2k+ 1]z = ul, [4k]2 = w00, [4k+1]2 = w01,
[4k + 2]2 = ©10 and [4k + 3]z = ull.

Finally, note that as o(2'k —1) = as,o(k — 1), because, we know that k > 1 so
if [k —1]2 = u then [2'k — 1]o = ul’. Similarly, as o(2'k — 2% —1) = as0(2'k—1)"
ifl<s<t.

Now if ¢ = 0, then |v| = 4k and a2,0(1) = a20(4k + 1) = 0, az,0(2) =
az,0(4k + 2) = 1 which contradicts to az o(4k + 1) = ag,0(4k + 2).

If i = 1, then |’U| = 4k 4+ 1 and a270(0) = a270(4k +1) =1, ag,o(l) =
az,0(4k + 2) = 0 which contradicts to as o(4k + 2) = ag,0(4k + 2).

If i = 2, then |v| = 4k + 2 and ag,0(k — 1) = ag,0(4k — 1) but ago(k — 1) =
a270(8k - 1) = a270(4k - 3) = a210(4k - 1)+

IfZ = 3, then |’U| = 4]{3 =+ 3 and a210(2(2k + 1)) = a270(4k =+ 2) = a270(4k +
3)t = az0(0)T = 0. Thus, we have aso(2k + 1) = 1. But on the other hand,
a270(2k + 1) = a270(4(2k + 1)) = a2,0(8kz + 4) = a2,0(4kz + 1) = a2,0(4kz + 2) =0,
which is a contradiction.

In all cases, (agﬁo(n))ogn<|v‘ #* (agyo(n))‘v|§n<2|v‘. O

Proposition 16 For any prime number p > 3, the sequence (apo(n))nenN s
non-purely morphic.

Proof. The sequence (a,0(n))nen begins with (10P~1)P. Thus, if this sequence
is purely morphic, then this sequence has infinitely many prefixes of the form
v%. Here we prove that (a,0(n))nen cannot have a prefix of the form v? with
v > p?.

First, let us prove that if v? is a prefix of (a,0(n))nen, then |v] is a multiple
of p. It is easy to check that v? is not a prefix of (ap,0(n))nen when |v] = 1,2.
Let us suppose that |v| > 3. In this case, v begins with 1,0, 0. Thus, a,o(|v|) =
Loapo(Jv] +1) = apo(jv| +2) =0.

Let us suppose that |v| = kp+t for some nonnegative integers k, ¢ such that
0 <t < k—1. We first prove that t # k—1. If it is the case, then |v|+1 is a multiple
of p and apo(Jv|+1) # apo(Jv|+2) = 0 since |v| +2 has one 0 less than |v|+1 in
their p-expansions. this contradicts the fact that a, o(|v|+1) = apo(Jv|+2) = 0.

Now let us suppose that ¢ # k — 1. In this case, (a,,0(n))kp<n<(kt1)p—1 COD-
tains the factor ap o(|v[)ap,o(jv|+1) = 1,0. Thus, (ap,0(n))kp<n<(k+1)p—1 is a fac-
tor of type 2 announced in proposition 8. But the word (ap,0(n))o<n<p—1 = 10P71
is also a word of type 2 and the word (apo(n))nen cannot have two different
factors of type 2 such that the special letters are at different positions. Thus,
ap,0(|v])ap,o(jv] 4+ 1) should be a prefix of (ap,0(n))kp<n<(kt+1)p—1 and conse-
quently |v| is a multiple of p.

Second, |v| is not a multiple of p?. Because, if it is in this case, a,o(Jv]) =
ap,0(0) =1 and apo(Jv| +p) = apo(Jv]) —1 = 0. But ap, 0(p) = 1, thus, apo(|v] +
p) 7é a’p,O(p)' Consequently, (a‘p,O(n))Ogn<|v\—1 7é (ap,O(n))\U|§n<2|'u\—1'
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Third, if |v| is not a multiple of p? but larger than p® + 1, let us suppose that
|v| = kp? + tp for some positive integers k,t such that 1 <t < p—1. Let =
(p—t)p, we then have ap o(|v|+2) = apo(z) = 1. But in this case, apo(z+p) =1
or 2, but ap,o(|v] + +p) = 0. Thus, (ap,0(n))o<n<|vj-1 7 (ap,0(n)) | <n<2lv|-1-

O

Proposition 17 The sequence (a2;10(n))nenN s non-purely morphic.

Proof. The sequence (az.10(n))nen begins with 0010. Thus, if this sequence is
purely morphic, then this sequence has infinitely many prefixes of the form v2.
We will prove that its only prefix of square shape is 00.

Let v? be a prefix of (ap10(n))nen. Because of that, one can note that
(@p;10(n))o<n<fo] = apsr0([v] +n))o<n<|v|, in particular, (ap0([v] +n))o<n<s =
0010. Using this, we will prove this proposition by proving all the different pos-
sibility for the word [|v]]2.

For now on, u can be any word in [p]* and s and t positive integer. Note
that the computation is made in binary basis.

i) If [[v|]2 = 1" with ¢ > 1, we have ap10(Jv]+1) =1 # 0 because 1*+1 = 10,

ii) If [|v]]2 = 1%01, one can simply note that ay,10(|v]) =1 # 0.

iii) If [Jv[]2 = ©101%01 then a,.10(Jv|4+3) = ap10(|v]) T because u101'01+11 =
ul10°+2.

iv) If [v]]s = w101* with ¢ > 1 then api0(|v] + 2) = ap10(|v]), because
2101t + 11 = w110t~ 11.

v) If [|v]]2 = w10%1" with s > 1 we have ap10(|v| + 1) = ap.10(|v|)™, because
©wl10°1* + 1 = u10°~ 110",

vi) Finally, if [|v]]2 = u10® with ¢ > 1, we have on one hand a,.10(|v| +
(1710)2) = ap10(|v]) = 0 because u10? + 17710 = u1%0. We also have ap.10(|v] +
(1'710)2) = ap:10((17710)2) = 1, which is a contradiction.

An attentive reader will remark that this cover all the number strictly bigger
than 1. a

*

Proposition 18 For any prime number p > 3 the sequence (ap;10(n))nenN s
non-purely morphic.

Proof. The sequence (ap;10(n))nen begins with 0P1. Thus, if this sequence is
purely morphic, then this sequence has infinitely many prefixes of the form v?.
It suffices to prove that if [v| > p? then v” is not a prefix of (ap.10(n))neN-

Let v? be a prefix of (ap;10(n))neN-

Suppose that p { |v| > p?. This means that v = uyx for a word u and some
letters y, z with x # 0. Because v? is a prefix of (ap;10(n))nen, v begins with the
letters 071 and (ap;10(n))o<n<p = ap10((v)p + n))o<n<p. Thus apio((v)p) = 0.

Let ¢ € [p] such that  + ¢ = p; it exists because z # 0 and p > 2. Thus,
[(v)p + ¢]p = w'y'0. Because ap.(c) =0, ap.((v)p +¢) = 0 also and ap., ((v), +
p) = 0 or p — 1 which is not equal to a,,.,(p) = 1. Therefore, v? is not a prefix
of (ap;10(n))nen.



10 Antoine Abram?!, Yining Hu?, and Shuo Li*

Suppose now that p | |v| > p. Let |v| = sp’ for some positive integer s,t
such that ¢ > 1 and p t s and let [v], = uz0 for some word u and some letter
z € [p]\{0}.

Since p is prime, there exists k € [p] such that [kv], = u'10* for some word
u'. Let m = p'*1 — 1, thus [m], = (p — 1)* and [kv +m], = «'1(p — 1)%.

Since (ap;10(1))ky o] <n< (b +1)jo]—1 = (@p;10(10) )y [u] <n< (ko +1) o] —1, fOT any ki,
ke € [p] we have ap,10(0) = 0 = ap.10(kv) thus api10(u’) = p — 1 which means
that ap.10(m) =0 # ap10(kv+m) =p — 1.

Hence, vP cannot be a prefix of (a,.10(n))nen if v > p? which concludes the
proof. a

Proof (of Theorem[2). It is a direct result of Theorem [I3] Proposition[I4] Propo-
sition [I8], Proposition [I6, Proposition [[7 and Proposition [I8 O

4 Algebraicity

By Christol’s theorem [I1], we know that the power series f = Y .°( apw(n)t"
is algebraic over F,,(t). Now we prove that f is algebraic of degree p. Indeed, if
we let [w], denote wip*~1 + -+ + wy, and write a,, = @y, (n) for short, then

(Lt+- PP — f

p—1
= Z Z(an — Qg )t

n>0 j=0
_ +
= 3t — Ay S

n>0

p—1
5 .

— E E - . np”+jptwg
- (anp-i-J Anp2 4 jpt+wy, )t

n>0 j=0

2
— _ np-+wr_1p+wk
- E (a’"p"l‘wk—l a”np2+wk—1p+wk)t

n>0

k
— np”+|w
- E :(anz)"*1+w1p’“*2~~+wk71 = Qo ph ) e

n>0

DI —gnptHlwle = gl /(2" 1), if wy # 0
B Zn21 _gnptHwly — thJr[w]p/(tpk —1), ifw; =0.

The irreduciblity of the the above functional equations is straightforward
from the Eisenstein’s criterion. We thus have the following propriety:

Proposition 19 For any prime number p and any finite word w in [p]*, the
power series Y .o ap ()" is algebraic of degree p over Fy(t).



5

Block-counting sequences are not purely morphic 11

Final remarks

The authors remark that the fast algorithms introduced in Section 2 for 0-words
and non-0-words are much different. However, the generating functions given in
Section M for 0-words and non-0-words are quite similar. Thus, we believe that
the algorithms in Section [2 can be unified for both 0-words and non-0-words.
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