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Abstract. We study substitutions on a countably infinite alphabet (without
compactification) as Borel dynamical systems. We construct stationary and non-
stationary generalized Bratteli-Vershik models for a class of such substitutions,
known as left determined. In this setting of Borel dynamics, using a stationary
generalized Bratteli-Vershik model, we provide a new and canonical construction
of shift-invariant measures (both finite and infinite) for the associated class of
subshifts.
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1. Introduction.

In this paper, we consider a class of substitution dynamical systems on a count-
ably infinite alphabet and discuss the realization of such systems by means of gen-
eralized Bratteli diagrams. Using the Perron-Frobenius theorem for infinite positive
matrices, we describe invariant measures of substitution dynamical systems. We
present answers to the following questions in our analysis of substitution dynamics
over an infinite alphabet (a partial list): Kakutani-Rokhlin towers for substitution
dynamical systems on infinite alphabets, stationary and non-stationary generalized
Bratteli-Vershik models for substitution dynamical systems on infinite alphabets,
description of invariant measures (both finite and σ-finite) over the path space of the
generalized Bratteli diagrams, and correspondence between tail invariant measures
to shift-invariant measures.

Our present results are motivated by diverse applications. In this connection, we
stress connections between our present focus on path-space analysis from symbolic
dynamics on the one hand and a variety of applied topics on the other. The list in-
cludes both direct and indirect interrelationships. Moreover, these connections have
increased over time, see e.g., [BBEP21], [Jea16], [BM16] for a partial list. Some
of these connections include theoretical computer science, combinatorics, search al-
gorithms, substitution algorithms, analysis on graphs, graph neural network mod-
els, theoretical probability, thermodynamics, and empirical behavior of differential
equations from big data. Consequently, results from symbolic dynamics have come
to play an increasingly important role in applied mathematics.

Substitution dynamical systems defined on a finite alphabet have been exten-
sively studied for the last decades. There are several books covering the recent
developments, see e.g. [Fog02], [Que10]. The connection of substitution dynamical
systems with “finite” (standard) Bratteli diagrams is well known, see the papers
[DHS99], [For97], [Dur10] for the case of minimal dynamical systems and [BKM09],
[BKMS10] for aperiodic substitutions. Roughly speaking, any nontrivial substitu-
tion dynamical system is represented by a corresponding Vershik map acting on the
path space of a stationary Bratteli diagram.

Very few results are known about substitution dynamical systems on an infinite
alphabet. We were motivated by [Fer06] where the author carefully considered the
“square drunken man substitution” n → (n− 2)nn(n+ 2), n ∈ Z.

We shall study substitution dynamical systems, stressing the dichotomy of finite
alphabet vs infinite alphabet. Recently there has been a renewed interest in the
study of dynamical systems on an infinite alphabet. In this context, we refer to the
papers on Markov shifts and substitutions: [Tak20], [OTW14], [JKL14], [Gra11],
[GS98], [RY17], [Dom12], [Fer06], [Mau06]. Dynamical systems on infinite alphabets
have obvious particularities: the underlying space is not compact. Some authors
use the compactification of the space [PFS14], [DOP18] and [MRW21]. In the
current work, our focus is on the study of substitution dynamical systems over
countable infinite alphabets without the assumption of compactification. Hence,
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the associated subshift should be viewed as a Borel dynamical system (in fact, it is
a homeomorphism of a Polish space).

In the study of substitution dynamical systems over finite alphabets, the notion
of recognizability plays an important role. The term was first coined by Martin
[Mar73]. This notion has been studied by Mossé [Mos92, Mos96]. She showed
that primitive aperiodic substitutions on finite alphabets are recognizable. Bezug-
lyi, Kwiatkowski, and Medynets [BKM09] extended Mossé’s result by relaxing the
requirement of primitivity. They showed that all aperiodic substitutions on finite
alphabets are recognizable. Berthé, Steiner, Thuswaldner, and Yassawi [BSTY19]
studied recognizability (and also eventual recognizability) for sequences of mor-
phisms that define an S-adic shift. The notion of recognizability has been studied
in word combinatorics under the name circularity (see [Cas94, KS19, MS93]) and
in the study of self-similar tilings as unique composition property (see [Sol98]).

For substitutions over infinite alphabets, we need a property similar to recog-
nizability. S. Ferenczi [Fer06] introduced a notion of a left determined substitution,
which is stronger than recognizability (see Definition 3.2). In this paper, we show
that a left determined substitution admits its realization as a Vershik map on a
stationary generalized Bratteli diagram, see Definition 6.1. We prove in this paper
the following result (see Sections 3 and 6 for necessary definitions).

Theorem 1.1. Let σ be a bounded size left determined substitution on a countably
infinite alphabet and (Xσ, T ) be the corresponding subshift. Then there exists a
stationary ordered generalized Bratteli diagram B = (V,E,≥) and a Vershik map
φ : YB → YB such that (Xσ, T ) is isomorphic to (YB, φ).

Our focus on the infinite case in turn is motivated by specific applications. First
note that classes of dynamical systems arising from substitutions over a finite alpha-
bet have already proved to play a central role within the wider subject of dynamical
systems, and more specifically in the study of symbolic dynamics. One reason for
this is the role substitution dynamics play in diverse applications. The other reason
is their amenability to use in random walk models with specified transition matri-
ces. The latter in turn are made precise with the use of combinatorial diagrams,
more specifically, Bratteli diagrams; or Bratteli-Vershik diagrams.

We recall that Bratteli diagrams were first introduced by O. Bratteli in his sem-
inal paper [Bra72]. A Bratteli diagram is a combinatorial structure; specifically, a
graph composed of vertex levels (“levels”), and an associated system of unoriented
edges, edges between vertices having levels differing by one: each edge only links
vertices, source and range, in successive levels, hence loops are excluded. They have
turned out to provide diverse and very powerful “models” for many mathematical
structures. For example approximately finite-dimensional C∗ algebras (also called
AF-algebras), i.e., inductive limits of systems of matrix algebras. AF-algebras
are important in the field of operator algebras and their applications to quantum
physics. Moreover, Bratteli diagrams are used in combinatorics, and in compu-
tation, for example in an analysis of directed systems of fast Fourier transforms,
arising for example in big data models.
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The first usage of Bratteli diagrams can be found in [Ver81]) (under a differ-
ent name) where the author represented any ergodic transformation of probability
measure space as a map (now known as a Vershik map) acting on the path space
of a Bratteli diagram. His work has been of immense importance as it provides
transparent models for ergodic dynamical systems. Then in the 1990’s, Giordano,
Herman, Putnam, and Skau (see [HPS92]; [GPS95]) and Glasner and Weiss [GW95]
successfully extended this work to minimal Cantor dynamical systems. They con-
structed Bratteli-Vershik models for minimal Cantor systems. As an application,
they classified minimal Cantor systems up to orbit equivalence. More results about
applications of Bratteli diagrams for constructions of models in Cantor dynamics
can be found in [Med06], [DK19], [Shi20].

In many cases, the properties of a Bratteli diagram are determined by the prop-
erties of incidence matrices. They show transitions between neighboring levels. If
the same incidence matrix is used at each level, then it is said that the Bratteli
diagram is stationary. A key ingredient in a systematic study of the corresponding
dynamical systems is the use of the Perron-Frobenius theorem for the incidence ma-
trices. As follows from the outline above, studying substitution dynamical systems
arising from countably infinite alphabets leads to new challenges. For example,
now the incidence matrices are infinite by infinite matrices. Hence the classical
Perron-Frobenius theorem must now be adapted to infinite matrices. We use the
book [Kit98] as our main source for the Perron-Frobenius theory.

For infinite recurrent incidence matrices, the generalized Perron-Frobenius the-
orem gives us a tool to find explicitly tail invariant measures (in other words,
invariant measures for substitution dynamical systems). For the applications at
hand, we show that it is possible to arrange that the substitutions are specified by
infinite but banded matrices. An infinite banded matrix has its entries supported
in a finite-width band around the diagonal. Jacobi-matrices (used in the study of
special functions) are perhaps the best known such infinite banded matrices. Our
main result is as follows:

Theorem 1.2. Let σ be a bounded size left determined substitution on a countably
infinite alphabet A and (Xσ, T ) be the corresponding subshift. Assume that the
countably infinite substitution matrix M is irreducible, aperiodic, and recurrent.
Then

(1) there exists a shift-invariant measure ν on Xσ;

(2) the measure ν is finite if and only if the Perron-Frobenius left eigenvector ℓ =
(ℓi)i∈Z of the matrix M has the property

∑
i∈Z

ℓi < ∞.

The outline of the paper is as follows. Section 2 consists of definitions and prelim-
inary information regarding substitution dynamical systems on infinite alphabets
and Borel dynamics. In Section 3, we discuss crucial properties of left determined
substitutions. In Section 4, we construct two versions of Kakutani-Rokhlin tow-
ers for subshifts associated with left determined substitution on countably infinite
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alphabets. In Section 5, we study the subshift associated with left determined sub-
stitution on countably infinite alphabets as Borel dynamical systems. Section 6 is
dedicated to the construction of generalized Bratteli diagrams for such subshifts.
In Section 7, using the stationary generalized Bratteli-Vershik model, we provide
an explicit formula for a shift-invariant measure. In the last section (Section 8),
we provide some examples of substitutions on infinite alphabets, corresponding
Bratteli-Vershik models, and expressions for tail-invariant measures.

2. Preliminaries

2.1. Substitutions on infinite alphabet. Let A be a countably infinite set,
called an alphabet ; its elements are called letters. A word w = a1a2 · · · an is a
finite string of elements in A. For n ∈ N, we denote by An the set of all words of
length n. Then A∗ =

⋃
n≥0An is the set of all words on alphabet A including the

empty word. A word w is said to be the prefix of a word u if u = ww′ for some
word w′. Similarly, we say that w′ is the suffix of u if u = ww′. We denote by AZ

the set of all bi-infinite sequence (xi)i∈Z over A and endow it with the topology
induced by the metric:

d(x, y) := 2−inf {|i|: xi ̸= yi} for x, y ∈ AZ. (2.1)

Then the topological space (AZ, d) is a zero-dimensional Polish space. A word
w = a1a2 · · · an is said to occur at the j-th place in the infinite sequence x ∈ AZ if
xj = a1, ..., xj+n−1 = an. In this case, we also say that w is a factor of x. Similarly,
we will denote by x[p,q] ; p, q ∈ Z , q > p, the word of length q − p + 1 occurring
at p-th place in x. Given an infinite word x ∈ AZ, let Ln(x) denote the set of all
factors of x of length n. Then the language L(x) of x is the set of all factors of x,
i.e., L(x) =

⋃
n∈N

Ln(x).

Definition 2.1. A substitution σ on a countably infinite set A is an injective map
from A to A+ (the set of non-empty finite words on A), which associates to every
letter a ∈ A a finite word σ(a) ∈ A+. The length of σ(a) is denoted by ha := |σ(a)|.
We assume that ha ≥ 2 for all a ∈ A.

For a substitution σ : A → A+, the infinite matrix M = (mab), a, b ∈ A, where
mab is the number of occurrences of the letter b in the word σ(a), is called the
substitution matrix of σ.

We extend the substitution σ to A∗ by concatenation, i.e., for w = a1a2 · · · an ∈
A+, put σ(w) = σ(a1)σ(a2) · · ·σ(an) (and for empty word ∅, put σ(∅) = ∅). We
iterate the substitution σ on A in the usual way by putting σi = σ ◦ σi−1.

Remark 2.2. (1) We included in Definition 2.1 two properties of a substitution σ:
injectivity on letters and growth of word length, |σn(a)| ≥ 2n. In other words, we
consider a class of substitutions on A satisfying these properties. This assumption
is made to avoid some pathological cases. It will be clear from our main results
why we need these assumptions.
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(2) The fact that A is an infinite alphabet gives more possibilities to consider
various properties of substitutions σ on A in comparison with substitutions on
a finite alphabet. Conversely, some properties of finite substitutions cannot be
defined for substitutions on infinite alphabets. In particular, there are no primitive
substitutions on an infinite alphabet assuming the finiteness of words.

In the definition below, we introduce a class of substitutions of bounded size.
This definition makes the behavior of σ more predictable.

In some cases, it is convenient to identify the set A with the set of integers Z or
the set of natural numbers N. We will denote by N0 the set N ∪ 0.

Definition 2.3. We say that σ is of bounded length if there exists an integer L ≥ 2
such that for every a ∈ A, |σ(a)| ≤ L. In the case when, for every a ∈ A, |σ(a)| = L,
we say that σ is of constant length.

Identifying A with Z, we say that σ : n → σ(n), n ∈ Z is of bounded size, if it
is of bounded length and there exists a positive integer t (independent of n) such
that for every n ∈ Z, if m ∈ σ(n), then m ∈ {n − t, ..., n, ..., n + t}. We call t ∈ N
the size of σ where t is taken minimal possible.

Remark 2.4. Note that if σ is of bounded length (respectively, of constant length),
then the corresponding substitution matrix M has bounded row sum property (re-
spectively, equal row sum property). If σ is of bounded size, then the substitution
matrix M is a band matrix (i.e., non-zero entries are confined to a diagonal band
of width 2t+ 1), and it has bounded row sum property.

The left shift T : AZ → AZ is defined by (Tx)k = xk+1 for all k ∈ Z. Recall that
a subshift (X,T ) is a dynamical system where X is a closed shift-invariant subset
of AZ. We define the language LX of a subshift (X,T ) as LX =

⋃
x∈X

L(x). On the

other hand, let L be a set of finite words on a countably infinite alphabet A that
is closed under taking subwords. We denote by XL the set of bi-infinite sequences
such that all their subwords belong to L. This defines a subshift (XL, T ) which is
called the subshift associated with L. Interesting examples of such languages are
generated using substitutions as defined below.

Definition 2.5. We define the language of a substitution σ on a countably infinite
alphabet A by setting

Lσ = {factors of σn(a) : for some n ≥ 0, a ∈ A}.
For n ∈ N, we will denote by Lσ(n) all words of length n in the language Lσ.
Consider the subset Xσ := {x ∈ AZ : L(x) ⊂ Lσ} ⊂ AZ. Then Xσ is a closed
subset of AZ which is invariant with respect to T . We call (Xσ, T ) the subshift on
A associated with the substitution σ or a substitution dynamical system.

Every finite word x = (xm, ..., xn), where m ≤ n ∈ Z, determines a cylinder set
[x](m,n) in Xσ of length n−m+ 1 :

[x](m,n) := {y = (yi) ∈ Xσ : ym = xm, ..., yn = xn}. (2.2)



SUBSTITUTION-DYNAMICS AND INVARIANT MEASURES FOR INFINITE ALPHABET-PATH SPACE.7

The zero-dimensional topology on Xσ inherited from AZ is generated by the collec-
tion of all cylinder sets. Note that these cylinder sets also generate the σ-algebra1

of Borel sets in Xσ. Later, we will work with cylinder sets of the form [x](0,n),
n ∈ N0, of length n+ 1

[x](0,n) := {y = (yi) ∈ Xσ : y0 = x0, ..., yn = xn}. (2.3)

For simplicity, when n is known by context we will denote [x](0,n) by [x].

2.2. Borel dynamical system. In Section 5, we will interpret the subshift on a
countably infinite alphabet as a Borel dynamical system. Below we provide some
definitions from Borel dynamics and descriptive set theory.

Let X be a separable completely metrizable topological space (also called a Polish
space), and let B be the σ-algebra of Borel sets generated by open sets in X. Then
the pair (X,B) is called a standard Borel space. Any two uncountable standard
Borel spaces are Borel isomorphic.

For a standard Borel space (X,B), a one-to-one Borel map T of X onto itself
is called a Borel automorphism of (X,B). Let Aut(X,B) denote the group of
all Borel automorphisms of (X,B). Any subgroup Γ of Aut(X,B) is called a Borel
automorphism group, and the pair (X,Γ) is referred to as a Borel dynamical system.
In this paper, we will only work with groups Γ generated by a single automorphism
T of (X,B). A Borel automorphism is called free if Tx ̸= x for every x ∈ X. If the
orbit OrbT (x) = {Tnx : n ∈ Z} is infinite for every x, then T is called aperiodic.

An equivalence relation E on (X,B) is called Borel if E is a Borel subset of
the product space X × X. It is said that an equivalence relation E on (X,B)
is a countable equivalence relation (CBER) (or aperiodic) if the equivalence class
[x]E := {y ∈ X : (x, y) ∈ E} is countable for every x ∈ X. Let B ∈ B be a Borel
set, then the saturation of B with respect to a CBER E on (X,B) is the set [B]E
containing entire equivalence classes [x]E for every x ∈ B.

In the study of Borel dynamical systems, the theory of countable Borel equiv-
alence relations on (X,B) plays an important role as it provides a link between
descriptive set theory and Borel dynamics (see Theorem 2.6 below). We refer the
reader to [Kec19] for an up-to-date survey of the theory of countable Borel equiv-
alence relations. We refer to [DJK94], [BK96], [Kec95], [Hjo00], [JKL02], [KM04],
[Nad13], [Var63], and [Wei84], where the reader can find connections between the
study of orbit equivalence in the context of dynamical systems and descriptive set
theory.

Let Γ ⊂ Aut(X,B) be a countable Borel automorphism group of (X,B). Then
the orbit equivalence relation EX(Γ) generated by Γ on X is

EX(Γ) = {(x, y) ∈ X ×X : x = γy for some γ ∈ Γ}.

The following theorem shows that all CBERs come from Borel actions of count-
able groups.

1The letter σ used here is a traditional notation which is not related to a substitution σ.
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Theorem 2.6 (Feldman–Moore [FM77]). Let E be a countable Borel equivalence
relation on a standard Borel space (X,B). Then there is a countable group Γ of
Borel automorphisms of (X,B) such that E = EX(Γ).

Definition 2.7. A Borel set C is called a complete section for an equivalence
relation E on (X,B) if every E-class intersects C. In other words, [C]E = X.

We can also interpret this definition in terms of a Borel automorphism as follows:
given T ∈ Aut(X,B), a Borel set C ⊂ X is called a complete section (or simply a
T -section) if every T -orbit meets C at least once. In other words, X =

⋃
i∈Z

T iC.

3. Left determined substitutions

Let σ be a substitution on A as in Definition 2.1. Then σ defines a map, σ : Xσ →
Xσ where, for x = (xi) ∈ Xσ, one takes σ(x) = (σ(xi)). We use the same notation
σ for the map defined on Xσ. It will be clear from the context whether we consider
the substitution or the above map. We recall the definition of recognizability.

Definition 3.1. Let σ be a substitution on a countably infinite alphabet A satis-
fying Definition 2.1. Let (Xσ, T ) be the corresponding subshift. It is said that σ
is recognizable if for each x = (xi)i∈Z ∈ Xσ there exists a unique y = (yi)i∈Z ∈ Xσ

and unique k ∈ {0, ..., |σ(y0)| − 1} such that

x = T kσ(y). (3.1)

For the study of substitutions over countable infinite alphabets, Ferenczi [Fer06]
coined the notion of a left determined substitution (Definition 3.2). This notion is
stronger than recognizability, and it will be a key notion of the current work. We
will show below that a left determined substitution is recognizable (see Corollary
3.4).

Definition 3.2 ([Fer06]). A substitution σ on a countably infinite alphabet A is
called left determined if there exists Nσ ∈ N such that any word w ∈ Lσ of length
at least Nσ has a unique decomposition w = w1w2 · · ·ws such that each wi = σ(ai)
for some unique ai ∈ A, except that w1 may be a suffix of σ(a1) and ws may be a
prefix of σ(as). We will call w = w1w2 · · ·ws the unique σ-decomposition of w.

Convention. Dealing with a left determined substitution, we will have to use
estimates for the length of a word. We will assume that Nσ in Definition 3.2 is
always chosen minimal possible.

For example, it was shown in [Fer06] that the squared drunken man substitution

n 7→ (n− 2)nn (n+ 2), n ∈ 2Z,
is left determined: any word of length at least 3 has a unique σ-decomposition. We
will give more examples of left determined substitutions in Section 8.

For this new and more general framework, our first result below shows that
every left determined substitution has a natural realization as a homeomorphism
of a metric space.
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Theorem 3.3. Let σ be a left determined substitution on a countably infinite al-
phabet A, then σ is a homeomorphism from Xσ to σ(Xσ).
Proof. Note that by definition, σ : A → A+ is injective and σ(Xσ) ⊂ Xσ. To see
that the map σ : Xσ → Xσ is injective, we assume that there are distinct x, y ∈ Xσ

such that σ(x) = σ(y) = z ∈ Xσ. Consider the word w of length 2ℓ+1 ≥ Nσ given
by w = z−ℓ · · · z0 · · · zℓ where z = (zi). Since σ is left determined, w has the unique
σ-decomposition of the form

w = w−pw−p+1 · · ·w0 · · ·ws−1ws = w−pσ(a−p+1) · · ·σ(a0) · · ·σ(as−1)ws

where aj ∈ A , j ∈ {−p, ..., 0, ..., s}, and p, s are positive integers. Here we chose
the labeling {−p, ..., 0, ..., s} such that z0 ∈ σ(a0). Also, w−p and ws are either
empty words or a suffix of σ(a−p) and a prefix of σ(as), respectively. Since the
finite word w has length at least Nσ, any extension w′ of w will also have a unique
σ-decomposition that does not change the word σ(a−p+1) · · ·σ(a0) · · ·σ(as−1). Con-
tinuing this procedure, we conclude that z (as a bi-infinite extension of w) also has
a unique σ-decomposition. In other words, there exists unique u = (ai)i∈Z, such
that σ(u) = z. Since σ is injective on letters from A, we conclude that x = u = y.
This proves that σ : Xσ → Xσ is injective.

The continuity of σ is obvious. To see that σ−1 is continuous observe that, for
j ∈ N, if σ(x) and σ(y) agree on a cylinder set of length at least 2j (say [c](p,p+2j−1)

for some p ∈ Z), then x, y agree on a cylinder set of length j (say [c′](q,q+j−1) for
some q ∈ Z). This claim follows from the fact that if a word w admits a unique
σ-decomposition w = w1σ(a2 · · · as−1)ws, then the length of a2 · · · as−1 tends to
infinity as |w| → ∞. □

The following is a direct corollary of Theorem 3.3.
Corollary 3.4. If σ is left determined substitution on a countably infinite alphabet
A, then σ is recognizable.
Proof. Since σ is injective for each x = (xi)i∈Z ∈ Xσ, there exists a unique y =
(yi)i∈Z ∈ Xσ and such that x = σ(y). Thus, σ satisfies (3.1) for k = 0. □

Recall that we consider only injective substitutions σ : A → A+. In general,
σn needs not be injective. However, the following proposition shows that, for left
determined substitutions, σn is also injective for all sufficiently large n. Our next
result offers an explicit uniform estimate of word length for powers of a general left
determined substitution.
Theorem 3.5. Let σ be a left determined substitution on a countably infinite al-
phabet A. Then, for all k ∈ N such that 2k−1 ≥ Nσ, the map σk : A → A+ is
injective.
Proof. Given a left determined substitution σ, fix a natural number Nσ such that
all words of length at least Nσ admit unique σ-decompositions. We show that the
map

σ :
⋃

n≥Nσ

Lσ(n) → A+ (3.2)
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is injective. To see this, assume that there exist distinct w1, w2 ∈
⋃

n≥Nσ

Lσ(n) such

that
σ(w1) = σ(w2) =: w. (3.3)

Since |w1|, |w2| ≥ Nσ, we have |w| > Nσ. Hence, w must have a unique σ-
decomposition, which contradicts (3.3).

Next, we show that, for all k ∈ N such that 2k−1 ≥ Nσ, the map σk : A → A+

is injective. Assume for the contrary that there exist a1, a2 ∈ A such that a1 ̸= a2
but

σk(a1) = σk(a2) =: w̄. (3.4)
We write (3.4) as

σ(σk−1(a1)) = σ(σk−1(a2)) =: w̄. (3.5)
Note that for every a ∈ A, |σ(a)| ≥ 2, implies |σk−1(a)| ≥ 2k−1 ≥ Nσ. Thus, the
injectivity of the map in (3.2) contradicts (3.5). Hence, the map σk : A → A+ is
injective. □

Theorem 3.6. Let σ be a bounded length substitution on a countably infinite al-
phabet A and C = max {|σ(a)| ; a ∈ A}. If σ is left determined, then σn is also
left determined for all n > 1, and Nσn can be chosen as NσC

n−1.

Proof. First we prove the theorem for n = 2. Let w be a word of length at least NσC,
where Nσ is as in Definition 3.2. We will show that w has a unique representation
of the form

w = p1σ
2(b2) · · ·σ2(bℓ−1)pℓ ; bj ∈ A , j ∈ {1, 2, ..., ℓ},

where p1 and pℓ are either empty words or suffix of σ2(b1) and prefix of σ2(bℓ),
respectively. Since σ is left determined and |w| > Nσ, the word w has a unique
representation of the form

w = w1 · · ·ws = w1σ(a2) · · ·σ(as−1)ws ; ai ∈ A , i ∈ {1, 2, ..., s}, (3.6)

where w1 and ws are either empty words or suffix of σ(a1) and prefix of σ(as),
respectively. We consider the case when w1 and ws are both non-empty words
(other cases are easier and can be similarly proved).

We claim that relation (3.6) implies s ≥ Nσ. To see this, assume towards a
contradiction that s < Nσ. Note that for i ∈ {2, ..., s− 1}, 2 ≤ |σ(ai)| ≤ C and for
i ∈ {1, s}, 1 ≤ |σ(ai)| < C. These inequalities imply that |w| < sC < NσC, which
is a contradiction because we took w such that |w| ≥ NσC.

Let
σ(a1) = a(1,1)a(1,2) · · · a(1,m), where 2 ≤ m ≤ C

and
σ(as) = a(s,1)a(s,2) · · · a(s,n), where 2 ≤ n ≤ C.

Since w1 is suffix of σ(a1) and w2 is prefix of σ(as), we have

w1 = a(1,t) · · · a(1,m), for some t ∈ {2, ...,m}
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and
ws = a(s,1) · · · a(s,r), for some r ∈ {1, ..., n− 1}.

Thus, we can rewrite (3.6) as follows

w = a(1,t) · · · a(1,m)σ(a2 · · · as−1)a(s,1) · · · a(s,r).

We complete the suffix (i.e. w1) and prefix (i.e. ws) to get the word w′ from w as
follows:

w′ = a(1,1) · · · a(1,t−1)a(1,t) · · · a(1,m)σ(a2 · · · as−1)a(s,1) · · · a(s,r)a(s,r+1) · · · a(s,n)
(3.7)

= σ(a1)σ(a2 · · · as−1)σ(as) = σ(a1 · · · as).

Since s ≥ Nσ and σ is left determined, the word a1 · · · as has the unique represen-
tation of the form

a1 · · · as = u1u2 · · ·uℓ−1uℓ = u1σ(b2) · · ·σ(bℓ−1)uℓ, ; bj ∈ A , j ∈ {1, 2, ..., ℓ} (3.8)

where u1 and uℓ are either empty words or suffix of σ(b1) and prefix of σ(bℓ)
respectively. Again, we will consider the case when u1 and uℓ are both non-empty
words. We have by (3.8)

w′ = σ(a1 · · · as) = σ(u1σ(b2) · · ·σ(bℓ−1)uℓ)

Let u1 = a1a2 · · · ak1 for some k1 ∈ {1, ..., s}. Similarly, let uℓ = ak2ak2+1 · · · as for
some k2 ∈ {1, ..., s}. Since u1 is a suffix of σ(b1), σ(a1a2 · · · ak1) = σ(u1) is the
suffix of σ2(b1). It follows from (3.7) that

a(1,1) · · · a(1,t−1)a(1,t) · · · a(1,m)σ(a2) · · ·σ(ak1) is a suffix of σ2(b1).

Hence,

p1 := a(1,t) · · · a(1,m)σ(a2) · · ·σ(ak1) is a suffix of σ2(b1).

Similarly, since uℓ is a prefix of σ(bℓ), the word σ(ak2ak2+1 · · · as) = σ(uℓ) is a prefix
of σ2(bℓ). Relation (3.7) implies that

σ(ak2)σ(ak2+1) · · ·σ(as−1)a(s,1) · · · a(s,r)a(s,r+1) · · · a(s,n) is a prefix of σ2(bℓ).

Hence,

pℓ := σ(ak2)σ(ak2+1) · · ·σ(as−1)a(s,1)...a(s,r) is a prefix of σ2(bℓ).

Thus, we get
w = p1σ

2(b2) · · ·σ2(bℓ−1)pℓ

as needed. We proved that every word of length at least NσC has a unique σ-
decomposition. The proof for n > 2 is similar. □
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4. Kakutani-Rokhlin towers for infinite substitutions.

In this section, we construct Kakutani-Rokhlin (K-R) towers for subshifts associ-
ated with left determined substitutions on countably infinite alphabets. The bases
of K-R towers in our construction are represented by cylinder sets. We give two
versions of K-R towers based on the structure of cylinder sets that form the bases
of the towers. These constructions are central to our work as they form building
blocks for Bratteli-Vershik models of the corresponding subshifts.

Recall that for a finite word x = (x0, ..., xn), [x] denotes the cylinder set of the
form [x](0,n), n ∈ N0 (see (2.3)). We should mention that Theorem 4.1 below is
a generalization of Lemma 2.8 from [Fer06], where the author worked with the
squared drunken man substitution which has constant length.

Theorem 4.1. Let σ be a bounded length left determined substitution on a countably
infinite alphabet A, and let (Xσ, T ) be the corresponding subshift. Then, for any
n ∈ N, there exists a partition of Xσ into Kakutani-Rokhlin towers given by

Xσ =
⊔
a∈A

h
(n)
a −1⊔
k=0

T k[σn(a)] (4.1)

where h
(n)
a = |σn(a)|, a ∈ A.

Proof. First, we prove this theorem for n = 1. Since σ is left determined, there
exists Nσ ∈ N such that every word of length greater than or equal to Nσ has a

unique decomposition. If Nσ is odd, put ℓ =
Nσ − 1

2
, otherwise put ℓ =

Nσ

2
. We

take arbitrary x in Xσ and show that there exists a ∈ A such that

x ∈
ha−1⊔
k=0

T k[σ(a)].

For x = {xi}i∈Z ∈ Xσ, consider the word w = x−ℓ · · ·x0 · · ·xℓ of length 2ℓ+1 = Nσ.
Since σ is left determined, w has a unique representation of the form

w = w−pw−p+1 · · ·w0 · · ·ws−1ws = w−pσ(a−p+1) · · ·σ(a0) · · ·σ(as−1)ws (4.2)

for aj ∈ A , j ∈ {−p, ...0..., s}, where p, s are positive integers. Here we choose the
labeling {−p, ...0..., s} such that x0 ∈ σ(a0). Also, by definition of a left determined
substitution, w−p and ws are either empty words or suffix of σ(a−p) and prefix of
σ(as), respectively.

We denote h0 := ha0 = |σ(a0)| and set σ(a0) = b1 · · · bh0 , where bi ∈ A for i ∈
{1, ..., h0}. By uniqueness of the representation in (4.2), a0 is uniquely determined.
Also x0 = bj for some j ∈ {1, ..., h0}. We define

y = (yi), yi = xi−(j−1), for all i ∈ Z.
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Set j − 1 = k, then T−kx = y. Since y ∈ [σ(a0)], we obtain that x ∈ T k[σ(a0)] for
some k ∈ {0, ..., h0 − 1}. Hence, we have

Xσ =
⊔
a∈A

ha−1⊔
k=0

T k[σ(a)] (4.3)

where ha = |σ(a)|, for a ∈ A. We claim that the two unions in (4.3) are disjoint.
To see this assume that the first union is not disjoint. Hence there exists x ∈ Xσ

such that x ∈ T ki [σ(ai)] ∩ T kj [σ(aj)] for ai ̸= aj ∈ A, ki ∈ {0, ..., hai − 1} and
kj ∈ {0, ..., haj − 1}. This implies that the word w = x−ℓ · · ·x0 · · ·xℓ has two
different decompositions (of the form (4.2)) one with a0 = ai and another with
a0 = aj . This contradicts the fact that σ is left determined. Similarly, assume
that the second union in (4.3) is not disjoint. Hence there exists x ∈ Xσ such
that x ∈ T ki [σ(a)] ∩ T kj [σ(a)], for ki ̸= kj ∈ {0, ..., ha − 1}. In other words
[σ(a)] ∩ T kj−ki [σ(a)] ̸= ∅. This again implies that word w = x−ℓ · · ·x0 · · ·xℓ has
two different decompositions (of the form (4.2)), which is a contradiction. Hence for
every x ∈ X there is a unique a ∈ A and k ∈ {0, ..., ha− 1} such that x ∈ T k[σ(a)].
This proves the theorem for n = 1.

The statement for n > 1 is proved similarly. It follows from the fact that if σ is
a bounded length left determined substitution, then, for every n > 1, σn is also a
left determined substitution (Theorem 3.6), and we can repeat the above proof for
σn. Therefore, the decomposition of Xσ analogous to (4.3) holds. □

For completion, we state an analogue of the existence of K-R partition for con-
stant length substitutions (in other words, the substitution matrix has the equal
row sum property) which follows immediately from Theorem 4.1.

Corollary 4.2. Let σ be a left determined substitution of constant length L on a
countably infinite alphabet A, and let (Xσ, T ) be the corresponding subshift. Then,
for every n ∈ N,

Xσ =
⊔
a∈A

Ln−1⊔
k=0

T k[σn(a)]. (4.4)

Note that in Theorem 4.1 (respectively Corollary 4.2), we assumed the substi-
tution σ was of bounded length (constant length, respectively). In Appendix A.1,
we provide a version of K-R partitions for subshifts associated with left-determined
substitutions on countably infinite alphabets (see Theorem A.1), which does not
need the assumption of bounded or constant length.

5. Substitutions on infinite alphabet as Borel dynamical systems

Let (Xσ, T ) be the subshift associated with a substitution σ on a countably infi-
nite alphabet A. We recall that the space Xσ ⊂ AZ is equipped with the subspace
topology ω inherited from the metric topology on AZ (see (2.1)). Then (Xσ, ω) is a
0-dimensional Polish space. By B, we denote the sigma-algebra generated by open
sets in Xσ so that (Xσ,B) is a standard Borel space. The left shift T is a Borel
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automorphisms, i.e., T ∈ Aut(Xσ,B). In the rest of this paper, we will consider the
subshift (Xσ, T ) as a Borel dynamical system. This allows us to interpret subshifts
from a different perspective and use some methods of Borel dynamics. It is not
hard to see that T is, in fact, a homeomorphism of Xσ.

5.1. Nested sequence of complete sections. Our goal is to construct a Bratteli-
Vershik model of the subshift (Xσ, T ) associated with a left determined substitution
σ on a countable alphabet (see Section 6). An important ingredient of this construc-
tion is a nested sequence of complete sections (see Definition 2.7). In this section,
we construct nested sequences of complete sections for subshifts (see Corollary 5.2).
Since there are many interesting examples of bounded size substitutions on count-
ably infinite alphabets (see Definition 2.3), we will focus on this type of substitution
in the main body of the paper. This assumption has some direct implications: for
example, it allows us to control the cardinality of the intersection of the sequence of
complete sections (Proposition 5.1), which, in turn, helps us to control the cardinal-
ity of the sets of minimal and maximal paths in the path space of the corresponding
Bratteli-Vershik model (see Section 6). In Appendix A.1 we relax the requirement
of bounded size and provide a construction of complete sections associated with
such subshifts (see Corollary A.3).

We recall that the notation [·] is used for a cylinder set of Xσ.

Proposition 5.1. Let σ be a bounded size left determined substitution on a count-
able alphabet A. We define the sequence of Borel sets {An}N0 as follows:

An =
⊔
ai∈A

[σn(ai)], for n ∈ N0. (5.1)

Then the set
⋂

n∈N0

An is at most countably infinite.

Proof. For x ∈
⋂

n∈N0

An, there exists a sequence of letters (an)n∈N such that x ∈

[σ(a1)], x ∈ [σ2(a2)],..., x ∈ [σn(an)],... and so forth. Thus, to find the cardinality
of

⋂
n∈N0

An, we need to find out how many sets of the form
⋂

n∈N0

[σn(an)] are non-

empty, and then determine the cardinality of each such set.
To determine how many sets can have the above form, pick the smallest k ∈

N such that 2k−2 ≥ Nσ. Then |σk(ak)| ≥ 2k ≥ Nσ and it has a unique σ-
decomposition of the form

σk(ak) = w1σ(b2) · · ·σ(bs−1)ws ; bi ∈ A , i ∈ {1, 2, ..., s}, (5.2)

where w1 and ws are either empty words or a suffix of σ(b1) and a prefix of σ(bs),
respectively. Since

σ(σk−1(ak)) = w1σ(b2) · · ·σ(bs−1)ws, (5.3)

it implies w1 = σ(b1) and ws = σ(bs), i.e.

σ(σk−1(ak)) = σ(b1b2 · · · bs) (5.4)
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By Theorem 3.5, the map

σ :
⋃

n≥Nσ

Lσ(n) → A+

is injective. Note that |σk−1(ak)| ≥ 2k−1 ≥ Nσ, hence relation (5.4) implies

σk−1(ak) = b1b2 · · · bs. (5.5)

Since we assumed that 2k−2 ≥ Nσ, Theorem 3.5 implies that the map σk−1 : A →
A+ is injective. Hence, by (5.5) and the fact that the word b1 · · · bs ∈ A+ is unique,
we get that ak is unique. A similar argument shows the uniqueness of an for all
n > k. Since σ is of bounded size, once we fix ak, there are (2t+1) choices for ak−1,
(2t+1)2 choices for ak−2,...., and (2t+1)k−1 choices for a0. Here t ∈ N is the size of
σ (see Definition 2.3). In other words, for a fixed ak, there are finitely many choices
left for terms a0,...,ak−1. We have proved the following result: If

⋂
n∈N0

[σn(an)] ̸= ∅,

then there exist a k ∈ N such that for all n ≥ k, an is uniquely determined and
there are finitely many choices left for terms a0, ..., ak−1. It follows from the proved
result that there exist countably many non-empty sets of the form

⋂
n∈N0

[σn(an)].

To complete the proof of the proposition, we will show the following: If for a
sequence of letters (an)n∈N0 the set

⋂
n∈N0

[σn(an)] is non-empty, then it is a singleton

set. For this, assume that x ∈
⋂

n∈N0

[σn(an)], and choose k ∈ N such that 2k−1 ≥ Nσ.

We consider the cylinder set [σk(ak)] containing x. By Theorem 3.5, the map
σk : A → A+ is injective, and this means that the set x[0,...,|σk(ak)|−1] is uniquely
defined. As k → ∞, we see that the string {xi}i≥0 is uniquely defined. It remains
to show that the same is true for {xi}i<0. Consider the point y = T−1x. Note that
for every n ∈ N, there exists a′n ∈ A such that y ∈ T (|σn(a′n)|−1)[σn(a′n)]. In other
words, for every n ∈ N, y lies on the top of a Kakutani-Rokhlin tower (see (4.1)),
with base [σn(a′n)] for some a′n ∈ A. Put z(n) := T−(|σn(a′n)|−1)y for each n ∈ N.
Pick p ∈ N such that 2p−1 ≥ Nσ, then applying the same proof as in (5.2) through
(5.5), we get that the word σp(a′p) is uniquely determined. Hence the cylinder set
[σp(a′p)] is unique. Since z(p) ∈ [σp(a′p)], this fixes the entries z

(p)
[0,...,|σp(a′p)|−1]. Note

that
z
(p)
[0,...,|σp(a′p)|−1] = y[−(|σp(a′p)|−1),...,0] = x[−(|σp(a′p)|),...,−1].

Thus, it proves that x[−(|σp(a′p)|),...,−1] is uniquely determined. As p → ∞, the
set {xi}i<0 is uniquely determined, too. Hence, we have shown that if the set⋂
n∈N0

[σn(an)] is non-empty, then it is a singleton set. This completes the proof of

the proposition. □

The following corollary is an important tool in the construction of Bratteli-
Vershik models for substitutions on infinite alphabets (see Section 6).
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Corollary 5.2. Let σ be a bounded size left determined substitution on countably
infinite alphabet A, and let (Xσ, T ) be the corresponding subshift. Then the sequence
of Borel sets (An)n∈N0 ⊂ Xσ, defined in (5.1), has following properties:
(a) Xσ = A0 ⊃ A1 ⊃ A2 ⊃ A3 · · · ;
(b) The countable set A∞ :=

⋂
n∈N0

An is a wandering set with respect to T ;

(c) An is a complete T -section for each n ∈ N0;
(d) For each n ∈ N0, every point in An is recurrent, i.e., the T -orbit of every point

returns to An.

Proof. Note that for all n ∈ N and a ∈ A, there exists b ∈ A such that, [σn(a)] ⊂
[σn−1(b)]. To see this, assume that for some a ∈ A, there exists t ∈ N such that
[σt(a)] ̸⊂ [σt−1(b)] for every b ∈ A. This implies that there is no letter b ∈ A,
such that σt−1(b) forms the first |σt−1(b)| entries of the word σt(a). This, in turn,
implies that there is no letter b ∈ A, such that b is the first letter in the word σ(a),
which is a contradiction. This observation together with the definition of An proves
(a).

The set A∞ is a countable set, see Proposition 5.1. Note that A∞, T (A∞),
T 2(A∞), ...,Tn−1(A∞) are pairwise disjoint for every n because of Proposition 5.1.
Therefore, A∞ is a wandering set. This proves part (b).

To see that (c) and (d) are true, we remark that, for every n ∈ N, An is the union
of bases of Rokhlin towers given in (4.1). Hence, for every n ∈ N, An is a complete
section, and every point in An is recurrent. □

By Theorem 4.1, for n ∈ N, Xσ is decomposed into T -towers

ξn(a) = {T i[σn(a)] : i = 0, ..., (hna − 1)}, a ∈ A (5.6)

where ha = |σ(a)|. In other words, for a ∈ A, ξn(a) denotes a tower of height hna−1
with cylinder set [σn(a)] as its base. For n ∈ N, we will denote by

ξn = {ξn(a) : a ∈ A} (5.7)

the countable partition of Xσ. For sake of completion, we denote by ξ0 the following
countable partition of Xσ:

ξ0 =
⊔
ai∈A

[ai].

Remark 5.3. Let (ξn)n∈N0 be the sequence of countable partitions defined above.
Observe that,
(i) ξn+1 refines ξn for every n ∈ N0. To see this, note that for every n ∈ N, and
a ∈ A, there exist b ∈ A such that [σn(a)] ⊂ [σn−1(b)];
(ii)

⋃
n ξn generates the sigma-algebra of Borel sets B;

(iii) all elements of partitions ξn, n ∈ N0 are clopen in the topology ω.

6. Generalized Bratteli-Vershik models for infinite substitutions.

6.1. Generalized Bratteli diagrams. The notion of a generalized Bratteli dia-
gram is a natural extension of the notion of a Bratteli diagram, where each level
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in the diagram is allowed to be countable. It was proved in [BDK06] that any
aperiodic Borel automorphism can be realized as a Vershik map on the path space
of a generalized Bratteli diagram, see Theorem 6.11 below. In this section, we will
provide an algorithm to construct a generalized stationary Bratteli-Vershik model
for a subshift associated with a bounded size left determined substitution on a
countably infinite alphabet.

Definition 6.1. A generalized Bratteli diagram is a graded graph B = (V,E)
such that the vertex set V and the edge set E can be represented as partitions
V =

⊔∞
i=0 Vi and E =

⊔∞
i=0Ei satisfying the following properties:

(i) The number of vertices at each level Vi, i ∈ N0, is countably infinite (in most
cases, we will identify each Vi with either Z or N). For all i ∈ N0, Ei represents the
countable set of edges between the levels Vi and Vi+1.

(ii) The range and source maps r, s : E → V are defined on the diagram B such that
r(Ei) ⊂ Vi+1 and s(Ei) ⊂ Vi for each i ∈ N0. Moreover, for all v ∈ V , s−1(v) ̸= ∅,
and, for all v ∈ V \ V0, r−1(v) ̸= ∅.
(iii) For every vertex v ∈ V \ V0, |r−1(v)| < ∞. Here | · | denotes the cardinality of
the set.

For a vertex v ∈ Vi and a vertex w ∈ Vi+1, we will denote by E(v, w) the set
of edges between v and w. It follows from Definition 6.1 that the set E(v, w) is
either finite or empty for every fixed pair of vertices (v, w). Set f (i)

w,v = |E(v, w)| for
every v ∈ Vi and w ∈ Vi+1. In such a way, we associate with a generalized Bratteli
diagram B = (V,E) a sequence of non-negative infinite matrices Fi (i ∈ N0) that
are called the incidence matrices and given by

Fi = (f (i)
w,v : w ∈ Vi+1, v ∈ Vi), f (i)

w,v ∈ N0.

Remark 6.2. The next observations follow directly from Definition 6.1:

(1) The structure of a generalized Bratteli diagram is completely determined by
the sequence of incidence matrices (Fn), n ∈ N0. We will write B = B(Fn) to
emphasize that the generalized Bratteli diagram B is determined by (Fn).

(2) For each n ∈ N0, the matrix Fn has at most finitely many non-zero entries in
each row and none of its rows or columns are entirely zero. A column of Fn can
have a finite or infinite number of non-zero entries.

Definition 6.3. Let B(Fn) be a generalized Bratteli diagram such that for every
n ∈ N0 the matrix Fn is same, i.e. Fn = F , n ∈ N0, then we call the diagram a
stationary generalized Bratteli diagram. We will write B = B(F ) in this case.

Figure 1 is an example of a generalized Bratteli diagram. Clearly, we can see
only a finite part of the diagram as there are countably many levels and each level
has countably many vertices.

If the level V0 consists of a single vertex and each set Vn is finite, then we get
the usual definition of a Bratteli diagram which was first defined in [Bra72] and
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Figure 1. Example of a Bratteli diagram: levels, vertices, and
edges (see Definition 6.1)

used to model Cantor dynamical systems and classify them with respect to orbit
equivalence (see [HPS92], [GPS95]).

Definition 6.4. A finite or infinite path in a generalized Bratteli diagram B =
(V,E) is a sequence of edges (ei, i ∈ N0) such that r(ei) = s(ei+1) for each i. For
a diagram B = (V,E), we will denote by YB the set of all infinite paths in B.
This set is called the path space of the generalized Bratteli diagram B = (V,E). If
e = (e0, ..., en) is a finite path in B = (V,E), then the set

[e] := {x = (xi) ∈ YB : x0 = e0, ..., xn = en}, (6.1)

is called the cylinder set associated with e. It is the set containing all infinite paths
with the first n+ 1 entries same as in e.

Two paths x = (xi) and y = (yi) are called tail invariant if there exists some n
such that xi = yi for all i > n. This notion defines a countable Borel equivalence
relation R on the path space YB which is called the tail equivalence relation. A
Borel measure (finite or sigma finite) that is invariant under the tail equivalence
relation R is called a tail invariant measure.

For v ∈ V0 and w ∈ Vn, n ∈ N, we will denote the finite path starting at v and
ending at w by e(v, w) and the corresponding cylinder set by [e(v, w)].
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Remark 6.5. In this remark, we collect several obvious statements about the path
space YB of a generalized Bratteli diagram B.

(1) The path space YB is a zero-dimensional Polish space with the topology gener-
ated by cylinder sets. Moreover, every cylinder set is a clopen set in this topology.
This topology coincides with the topology generated by the following metric on YB:
for x = (xi), y = (yi) (x ̸= y), define

dist(x, y) =
1

2N
, N = min{i ∈ N0 : xi ̸= yi}.

(2) The path space YB of a generalized Bratteli diagram is a standard Borel space,
where the Borel structure is generated by clopen (cylinder) sets. In general, YB is
not locally compact. One can see that YB is locally compact if every column of Fn

has finitely many non-zero entries.

(3) We will assume that the path space YB of a generalized Bratteli diagram B
has no isolated points, i.e., for every infinite path (x0, x1, x2, ...) ∈ YB and every
n ∈ N0, there exists a level m > n such that |s−1(r(xm))| > 1.

Definition 6.6. Given a generalized Bratteli diagram B = (V,E) and a monotone
increasing sequence (nk : k ∈ N0), n0 = 0, we define a new generalized Bratteli
diagram B′ = (V ′, E′) as follows: the vertex sets are determined by V ′

k = Vnk
, and

the edge sets E′
k = Enk+1−1 ◦ ... ◦Enk

are formed by finite paths between the levels
V ′
k and V ′

k+1. The diagram B′ = (V ′, E′) is called a telescoping of the original
diagram B = (V,E). The incidence matrices of B′ are the products of incidence
matrices of B: F ′

k = Fnk+1−1 ◦ ... ◦ Fnk
.

For a generalized Bratteli diagram B = (V,E), we define a partial order ≥ on
each edge set Ei as follows: for every v ∈ Vi+1, equip the finite set r−1(v) with a
linear order ≥ so that any two edges e, e′ ∈ Ei are comparable if and only if they
have the same range, r(e) = r(e′). Since we do this for each Ei (i ∈ N0), we obtain
a partial order ≥ on the set of finite paths. Using the partial order ≥, we can
define a partial lexicographic order on the set of all paths between any two levels
(say Vt and Vs for s > t): (et, ..., es−1) > (ft, ..., fs−1) if and only if for some i with
t ≤ i < s, ej = fj for i < j < s and ei > fi.

Applying this lexicographic order, we can compare any two finite paths in E(V0, w),
the set of all finite paths from level V0 to a vertex w ∈ Vn for some n > 0. This
means that every set E(V0, w) contains one maximal path and one minimal path.
For an infinite path e = (e0, e1, ..., ei, ...), we say that it is maximal if ei is maximal
in the set r−1(r(ei)) for each i ∈ N0. Similarly, we can define a minimal path. We
will denote by Ymax (respectively Ymin) the set of maximal (respectively minimal)
infinite paths in YB. Clearly, Ymax and Ymin are Borel sets.

Definition 6.7. A generalized Bratteli diagram B = (V,E) together with a partial
order ≥ on E is called a generalized ordered Bratteli diagram and denoted by B =
(V,E,≥). A generalized stationary Bratteli diagram is called stationary ordered if
the linear order on r−1(v) is the same for all vertices v independent of the level.
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Definition 6.8. For a generalized ordered Bratteli diagram, we define a Borel
transformation

φ : YB \ Ymax → YB \ Ymin

as follows: given x = (x0, x1, ...) ∈ YB \ Ymax, let m be the smallest number such
that xm is not maximal. Let gm be the successor of xm in the set r−1(r(xm)).
Then we define φ(x) = (g0, g1, ..., gm−1, gm, xm+1, ...) where (g0, g1, ..., gm−1) is the
minimal path in E(V0, r(gm−1)). It is not difficult to check that the map φ is a
Borel bijection. If we can extend φ bijectively to the entire path space YB, then we
call the Borel transformation φ : YB → YB a Vershik map, and the Borel dynamical
system (YB, φ) is called a generalized Bratteli-Vershik system.

Remark 6.9. The Vershik map φ admits a Borel extension to YB if and only if
|Ymax| = |Ymin|. This relation includes the cases when the sets Ymax and Ymin are
finite, countable, and uncountable.

Lemma 6.10. Let µ be a finite or sigma-finite measure on the path space YB
of a generalized ordered Bratteli diagram, and φ the Vershik map. If µ(Ymax) =
µ(Ymin) = 0, then µ is tail invariant if and only if µ is φ-invariant.

The following result shows that for any aperiodic Borel automorphism of a stan-
dard Borel space there exists a generalized Bratteli-Vershik model.

Theorem 6.11 ([BDK06]). Let T be an aperiodic Borel automorphism acting on
a standard Borel space (X,B). Then there exists a generalized ordered Bratteli
diagram B = (V,E,≥) and a Vershik automorphism φ : XB → XB such that
(X,T ) is Borel isomorphic to (XB, φ).

Example 6.12. Substitution read on a stationary Bratteli diagram: Let B =
(V,E,≥) be a generalized stationary ordered Bratteli diagram, and let A be a
countably infinite alphabet. For each n ∈ N0, we label the set of vertices Vn by
letters in A. We denote by v(a, n) the vertex corresponding to letter a ∈ A on level
n. Thus, for all n ∈ N0, we can write Vn = {v(a, n); a ∈ A}. For a fixed n > 0 and
a ∈ Vn, we consider the finite set r−1(v(a, n)), i.e., the set of all edges with range
v(a, n). This is an ordered finite set. We use the order to write

r−1(v(a, n)) = (e1, e2, ..., em)

where e1 < e2 < ... < em. Note that B is a stationary diagram, hence the above
set is independent of n. Let ai ∈ A be such that s(ei) is labeled by ai for i ∈
{1, 2, ...,m}. It defines the ordered set (a1, a2, ..., am) of these labels. This ordered
set may contain possible repetitions. Then the map a 7→ a1a2 · · · am from A to A+

defines a substitution on A which is called the substitution read on a stationary
ordered generalized Bratteli diagram B = (V,E,≥).

Remark 6.13. We provide here an alternative description for infinite paths in a
generalized Bratteli diagram B = (V,E,≥) which will be used below. We set
h(0, v) = 1 for all v ∈ V0, and for v ∈ V1, define h(1, v) = |r−1(v)|. For v ∈ Vn,
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n > 1, we define by induction

h(n, v) =
∑

w∈s(r−1(v))

|E(w, v)|h(n− 1, w). (6.2)

Let v ∈ Vn. All finite paths in the set E(V0, v) are comparable under the lexi-
cographical order described above. This allows us to enumerate the elements of
E(V0, v) from 0 to h(n, v)− 1. In this enumeration, we allot 0 to the minimal path
and h(n, v)− 1 to the maximal path.

Let y = (e0, e1...) be an infinite path in YB. Consider a sequence (Qn)n∈N of
growing finite paths defined by y,

Qn = (e0, ..., en−1) ∈ E(V0, r(en−1)).

This allows us to identify every Qn with a pair (in, vn) where vn = r(en−1) and
in ∈ [0, h(n, vn)− 1] is the order given to Qn in the set E(V0, vn). Thus, for every
y = (e0, e1...) ∈ YB, we can obtain a unique identifier in the form of an infinite
sequence (in, vn) where vn = r(en−1) and in ∈ [0, h(n, vn)− 1], n ∈ N.

6.2. Stationary generalized Bratteli-Vershik model for substitutions on
infinite alphabet. In this section, we provide an algorithm to construct a gener-
alized stationary Bratteli-Vershik model for a bounded size left determined substi-
tution σ on a countably infinite alphabet A. Let (Xσ, T ) be the subshift associated
with σ. We use Corollary 5.2 to obtain a nested sequence of complete sections for
(Xσ, T )

Xσ = A0 ⊃ A1 ⊃ A2 ⊃ A3.... .

Here the sets An are defined as follows:

An =
⊔
a∈A

[σn(a)], n ≥ 0.

For n ∈ N, using (5.7), we obtain the partition ξn of Xσ:

ξn =
⊔
a∈A

ξn(a), (6.3)

where

ξn(a) = {T i[σn(a)] : i = 0, ..., (hna − 1)}, a ∈ A , ha = |σ(a)|. (6.4)

We also define
ξ0 =

⊔
a∈A

[a].

Set V0 := {[a]}a∈A. Each element in the set V0 corresponds to a vertex at level 0 of
the generalized Bratteli diagram. We denote by va,0 the vertex in V0 corresponding
to the cylinder set [a], a ∈ A. Similarly, we denote by

V1 := {[σ(a)]}a∈A.
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The set V1 is identified with cylinder sets of the form [σ(a)] for a ∈ A. The set
[σ(a)] corresponds to a vertex va,1 ∈ V1. Note that [σ(a)] is the base of the tower
ξ1(a). Then relation (6.4) (for n = 1) is represented as

ξ1(va,1) := ξ1(a) = {T i[σ(a)] : i = 0, ..., (ha − 1)}, va,1 ∈ V1,

and then (6.3) (for n = 1) as
ξ1 =

⊔
v∈V1

ξ1(v).

We apply this construction for every An in the sequence above to obtain the corre-
sponding partition ξn of towers ξn(v) of height hnv−1. Note that Remark 5.3 implies
that each ξn+1 refines ξn and

⋃
n∈N ξn generates the σ-algebra B of Borel sets in

Xσ. With the help of sequence of partitions (ξn)n∈N0 we can start constructing the
generalized Bratteli diagram B = (V,E).

Recall, we denoted by vb,0 a vertex in V0 corresponding to cylinder set [b] for
b ∈ A. To define E1, we take va,1 ∈ V1 and corresponding cylinder set [σ(a)]. Here
we are working with a nested sequence of K-R towers. Thus every cylinder set of
the form [σ(a)] lies in a cylinder set of the form [b1] for some b1 ∈ A.

Since the cylinder set [σ(a)] is base of a tower (ξ1(a)) of height ha,1 − 1, each
level of this tower lies in a cylinder set of the form [bi] for some bi ∈ A (which were
used to construct the vertex of the 0th level). Let {[b1], [b2]..., [bha ]}, be the list of
these cylinder sets from bottom to top. We connect va,1 ∈ V1 to vertices vbk,0 in
V0, for k ∈ {1, .., ha} with an edge. We do this for each v ∈ V1, to define E1. To
introduce a linear order on r−1v for v ∈ V1, we enumerate them from 1 to hv in the
order they appear in the tower going bottom to top.

We repeat this procedure for every n ∈ N0 to obtain the corresponding Vn

and partially ordered En. This gives us an ordered generalized Bratteli diagram
B(V,E,≥), with V =

⊔
i∈N0

Vi and E =
⊔

i∈N0
Ei. It is easy to check that this

diagram satisfies the Definition 6.1. The fact that
∣∣ ⋂
n∈N0

An

∣∣ = ℵ0 implies that the

maximal and minimal paths in B are countably infinite. Note that every infinite
path y ∈ YB is completely determined by the infinite sequence (in, vn)n, vn ∈ Vn,
0 ≤ in ≤ h(n, vn) − 1 such that T in+1([σn+1(an+1)]) ⊂ T in([σn(an)]), for every
n ∈ N0, where the cylinder set [σn(an)] corresponds to vn ∈ Vn and so on.

We claim that the generalized Bratteli diagram B = (V,E,≥) constructed above
is a stationary diagram and σ is in fact the substitution read on B = (V,E,≥). To
see this fix n ∈ N and consider the vertex sets Vn−1 and Vn at level (n− 1) and n
respectively. In the construction above, the partition ξn is used to obtain the edge
set En. Recall that we identified vertices at level n with sets of the form [σn(a)]
for a ∈ A. These sets are the base of the tower ξn(a) (see (6.3)). For a vertex
v ∈ Vn, write v = V (av, n) (see Remark 6.12) to illustrate that v is a vertex on
level n corresponding to letter av ∈ A.

There exists a1 ∈ A such that we have the following inclusion, [σn(av)] ⊂
[σn−1(a1)]. Here [σn−1(a1)] is the base of the tower ξn−1(a1) in partition ξn−1.
Now we consider the set of edges with range v; i.e. the set r−1(v). By the above
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construction, this set is fully ordered. We list its elements in increasing order
(e1, ..., es). For i ∈ {1, .., s}, let ai be the label of the vertex (see Remark 6.12) on
level Vn−1 which is the source of edge ei. We make an ordered list of these labels
(a1, .., as) (i.e. same order as ei’s).

By the above construction this means that as we move from bottom to top in the
T -tower ξn(av) (with base [σn(av)]) it intersects with T -towers {ξ1(a1), ..., ξi(as)}
in the given order (i.e. 1 to s). This in turn implies

σn(av) = σn−1a1....σ
n−1as.

Hence we get σ(av) = a1....as. Note that we will get the same expression for σ(av)
using any level n ∈ N, hence the diagram B = (V,E,≥) is stationary. Moreover,
the substitution we recovered above (from the diagram) matches the substitution
σ. This implies that σ is the substitution read on B = (V,E,≥).

Now we are ready to prove Theorem 1.1 which states that the subshift (Xσ, T )
corresponding to a bounded size left determined substitution σ on an infinite al-
phabet can be realized as a Vershik transformation acting on the path space of an
ordered stationary generalized Bratteli diagram. We recall the statement below.

Theorem 6.14. Let σ be a bounded size left determined substitution on a countably
infinite alphabet and (Xσ, T ) be the corresponding subshift. Then there exists a
stationary ordered generalized Bratteli diagram B = (V,E,≥) and a Vershik map
φ : YB → YB such that (Xσ, T ) is isomorphic to (YB, φ).

Proof. We use Corollary 5.2, to obtain a nested sequence of complete sections
(An)n∈N0 corresponding to (Xσ, T ). As described above for n ∈ N0, let

ξn = ξn(v), v ∈ Vn

be the partition of Xσ corresponding to An =
⊔
a∈A

[σn(a)]. As before by identifying

Vn ∋ va,n ∼ [σn(a)]. For convenience, we write An(v) := [σn(a)]. Thus in general
for v ∈ Vn, n ∈ N0, we write

ξn(v) = {T jAn(v) : j = 0, ..., h(n, v)− 1}.
Here h(n, v) = hn(a) (and [σn(a)] is the set corresponding to v ∈ Vn). Remark 5.3,
implies that atoms of (ξn, n ∈ N0) generate the Borel structure of Xσ and are clopen.
In other words, sets of the form T j(An(v)), v ∈ Vn, j = 0, ..., h(n, v) − 1, n ∈ N0,
generate the Borel structure of Xσ.

For a fixed n ∈ N0 and ϵ > 0, we can cut each tower ξn(v) into disjoint clopen
towers of the same height with the diameter of each new tower less than ϵ. Thus
we can assume,

sup
0≤j<h(n,v),v∈Vn

[diamT j(An(v))] → 0, n → ∞. (6.5)

Here we use the metric defined in (2.1).
We apply the construction discussed above to the sets (An) and T to obtain

a stationary ordered generalized Bratteli diagram B = (V,E,≥). We define a
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map φ (Vershik map) on the path space YB as follows: On YB \ Ymax, the φ is
defined using the algorithm in Definition 6.8. Thus φ is a homeomorphism from
YB \ Ymax to YB \ Ymin. By construction, the cardinality of Ymax is equal to the
cardinality of Ymin (both are countably infinite). Hence we extend φ to entire YB
by defining a bijective Borel transformation mapping the set of maximal paths to
the set of minimal paths; i.e. φ(Ymax) = Ymin. To do so, consider a maximal path
y ∈ Ymax. Note that y determines a unique sequence (in, vn)n, where vn ∈ Vn

and in = h(n, vn) − 1 (since y is a maximal path) for every n ∈ N0. More over
T in+1(An+1(vn+1)) ⊂ T in(An(vn)), for every n ∈ N0. Thus y ∈ Ymax corresponds
to a unique point x ∈ Xσ where {x} =

⋂
n
T inAn(vn). Uniqueness of x follows from

(6.5).
Let x̃ = T (x); since T takes points at the top of a KR tower to points at the

bottom of the tower, x̃ lies in the intersections of the base of the nested sequence of
Kakutani-Rokhlin towers. Again x̃ determines a unique sequence (in, vn)n, where
vn ∈ Vn and in = 0 (since x lies in bottom of the towers) for every n ∈ N0 and
{x̃} =

⋂
n
An(vn). Let ỹ be the unique infinite path in YB corresponding to x̃

then by construction ỹ ∈ Ymin. We define φ(y) = ỹ. This gives a bijective Borel
transformation mapping Ymax to Ymin. The bijection follows from the bijection of
T . This together with the definition of φ : YB \ Ymax → YB \ Ymin (see Definition
6.8) gives us a Borel automorphism φ : YB → YB which we call the Vershik map.

Now we show that (Xσ, T ) is Borel isomorphic to (YB, φ). To do this we define
a map f : Xσ → YB as follows: For x ∈ Xσ, choose the unique sequence (in, vn)n,
0 ≤ in ≤ h(n, vn)− 1, vn ∈ Vn, such that

T in+1(An+1(vn+1)) ⊂ T in(An(vn)), (6.6)

for every n ∈ N0 and {x} =
⋂
n
T inAn(vn). As mentioned in Remark 6.13, such a

sequence defines a unique infinite path y ∈ YB. We set f(x) = y. Observe that f is
a continuous injective map. From the construction of B = (V,E,≥) and definition
of Vershik transformation φ, acting on YB, we get that f(Tx) = φ(fx), x ∈ Xσ.
We claim that f is surjective. To see this, let y ∈ YB be an infinite path. Then y
defines an infinite sequence (in, vn)n, 0 ≤ in ≤ h(n, vn) − 1, vn ∈ Vn, (see Remark
6.13). Thus by (6.5) and (6.6), we obtain a single point x such that f(x) = y. □

In Appendix A.2, we provide an alternate construction of a generalized non-
stationary Bratteli-Vershik model for a subshift associated with left determined
substitution σ on a countably infinite alphabet A. We do not assume that σ is
bounded size, and the generalized B-V model, in this case, is not necessarily sta-
tionary (See Theorem A.4).

7. Invariant measure for infinite substitution via Bratteli diagrams

For a stationary generalized Bratteli diagram with an irreducible, aperiodic,
and recurrent countable incidence matrix (see Definition 7.1), there exists a di-
rect method for finding a tail invariant measure on the path space of the diagram.
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In the previous section, we constructed an isomorphism between the subshift (as-
sociated with bounded size left determined substitution on a countably infinite
alphabet) and the Vershik map on path space of the corresponding stationary gen-
eralized Bratteli diagram. Therefore this method will also provide a formula for
a shift-invariant measure when the subshift is associated with a bounded size left
determined substitution on countably infinite alphabets.

7.1. Tail invariant measure for stationary Bratteli diagrams. Recall that a
generalized Bratteli diagram B = B(Fn) is called stationary if, for every n ∈ N0, the
incidence matrices Fn = F . Thus, the structure of the diagram remains stationary,
and the set of edges En between Vn and Vn+1 is independent of n ∈ N0. In the rest
of the paper, we will identify the set of vertices Vn with the integers Z for all n.

We discuss below some definitions and results from the theory of non-negative
infinite matrices. We refer the reader to Chapter 7 of [Kit98] for a detailed discussion
of the Perron-Frobenius theory of such matrices.

Definition 7.1. (a) We call a matrix F = (fij) infinite if its rows and columns
are indexed by the same countably infinite set. Assuming that all matrices Fn are
defined (i.e., they have finite entries), we denote the entries of Fn by f

(n)
ij > 0.

(b) An infinite non-negative matrix F = (fij), i, j ∈ Z, is called irreducible if, for
all i, j ∈ Z, there exists some n ∈ N0 such that f

(n)
ij > 0. A stationary Bratteli

diagram B = B(F ) is called an irreducible diagram if its incidence matrix F is
irreducible.

(c) An irreducible matrix F is said to have period p if, for all vertices i ∈ Z,

p = gcd{t : f (t)
ii > 0}.

An irreducible matrix F is called aperiodic if p = 1.

(d) For an irreducible, aperiodic, non-negative, infinite matrix F the limit defined
by

λ = lim
n→∞

(f
(n)
ii )

1
n

exists and is independent of the choice of i. The value of the limit λ is called the
Perron-Frobenius eigenvalue of F . We will consider only the case of finite Perron-
Frobenius eigenvalue λ.

(e) It is said that an irreducible, aperiodic, non-negative, infinite matrix F is tran-
sient if ∑

n≥1

f
(n)
ij λ−n < ∞.

(f) It is said that an irreducible, aperiodic, non-negative, infinite matrix F is re-
current if ∑

n≥1

f
(n)
ij λ−n = ∞.
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(g) For an irreducible, aperiodic, recurrent, non-negative, infinite matrix F , let
tij(1) = fij , and for n > 1,

tij(n+ 1) =
∑
k ̸=i

tik(n)fkj .

It is said the matrix F to be null-recurrent if∑
n≥1

ntii(n)λ
−n < ∞;

otherwise, F is called positive recurrent.

The theorem below is a generalization of the classic Perron-Frobenius theory to
non-negative infinite matrices. We refer the reader to [Kit98] (Theorem 7.1.3) for
a detailed proof.

Theorem 7.2 (Generalized Perron-Frobenius theorem). Let F be an irreducible,
aperiodic, recurrent, non-negative, infinite matrix. Then there exists a Perron-
Frobenius eigenvalue

λ = lim
n→∞

(f
(n)
ij )

1
n > 0

(assumed to be finite) such that:

(a) there exist strictly positive left ℓ and right r eigenvectors for λ;

(b) both ℓ and r are unique up to multiplication by constants;

(c) F is positive recurrent if and only if ℓ · r =
∑

i ℓiri < ∞;

(d) if F is null-recurrent, then lim
n→∞

Fnλ−n = 0;

(e) if F is positive recurrent, then lim
n→∞

Fnλ−n = rℓ (normalized so that ℓr = 1).

Remark 7.3. The aperiodicity assumption can be removed from the statement of
Theorem 7.2 (see [Kit98] Lemma 7.1.37 and Lemma 7.1.38). Hence all the results
in this section are true without assuming aperiodicity. But to be consistent with
the literature we have stated the results keeping the aperiodicity assumption.

The following result (proved in [BJ21]) provides an explicit formula for a tail
invariant measure on the path space of a stationary generalized Bratteli diagram.
Since this result is crucial for the rest of the paper, we reproduce the proof in
Appendix A.3.

Theorem 7.4 (Theorem 2.20, [BJ21]). Let B = B(F ) be a stationary general-
ized Bratteli diagram such that the incidence matrix F is irreducible, aperiodic and
recurrent. Then
(1) there exists a tail invariant measure µ on the path space YB,
(2) the measure µ is finite if and only if the left Perron-Frobenius eigenvector ℓ =
(ℓv) has the property

∑
v ℓv < ∞.
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A special case of a recurrent matrix is positive recurrent. If we assume that the
incidence matrix F is positive recurrent and has an equal row sum property, then
the tail invariant measure defined above is always finite.

Corollary 7.5. Let B = B(F ) be a stationary generalized Bratteli diagram such
that the incidence matrix F is irreducible, aperiodic, and positive recurrent. Assume
that F has equal row sum property, i.e. for every v, v′ ∈ V ,∑

w∈V
fv,w =

∑
w∈V

fv′,w.

Then the tail invariant measure µ (defined in (A.7)) on the path-space YB is finite.

Proof. Since F is positive recurrent, we have

ℓ · r =
∑
v∈V

ℓvrv < ∞,

where r denotes the right eigenvector corresponding to λ. Moreover, the equal row
sum property implies that we can take r = (...1, 1, 1, ...). Hence

µ(YB) =
∑
i∈Z

ℓi < ∞.

□

7.2. From tail invariant measure to shift-invariant measure. In Subsection
7.1, we have provided an explicit formula for a tail invariant (or invariant under
the Vershik map) measure on a stationary generalized Bratteli diagram with an
irreducible, aperiodic, and recurrent incidence matrix. In this subsection, we will
use the isomorphism between the subshift (associated with a bounded size left
determined substitution on a countably infinite alphabet) and the Vershik map on
path space of the corresponding stationary generalized ordered Bratteli diagram
(see Theorem 6.14) to obtain a shift-invariant measure.

Note that if σ is the substitution read on a stationary generalized Bratteli dia-
gram B = B(F ) (see Remark 6.12) then the infinite substitution matrix of σ (see
Definition 2.1) is same as the incidence matrix F . Now we are ready to prove
Theorem 1.2. We recall the statement below.

Theorem 7.6. Let σ be a bounded size left determined substitution on a countably
infinite alphabet A and (Xσ, T ) be the corresponding subshift. Assume that the
countably infinite substitution matrix M is irreducible, aperiodic, and recurrent.
Then

(1) there exists a shift-invariant measure ν on Xσ;

(2) the measure ν is finite if and only if the Perron-Frobenius left eigenvector ℓ =
(ℓi)i∈Z of the matrix M has the property

∑
i∈Z

ℓi < ∞. .

Proof. By Theorem 6.14, there exists a stationary generalized Bratteli diagram
B(F ) such that (Xσ, T ) is isomorphic to the dynamical system (YB, φ). Let f :
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(Xσ, Tσ) → (YB, φ) implement this isomorphism. Also, by construction, the in-
cidence matrix F of the diagram coincides with the substitution matrix M (see
Section 6.2). Since M is irreducible and recurrent, there exists a tail invariant mea-
sure µ on the path space YB (Theorem 7.4). We define the measure ν on Xσ by
setting

ν(A) = µ ◦ f(A) (7.1)
where A ⊂ Xσ is a Borel set. The rest of the proof is obvious. □

Corollary 7.7. Let σ be a constant length left determined substitution on a count-
ably infinite alphabet such that the substitution matrix M is irreducible, aperiodic,
and positive recurrent. Then the shift-invariant measure ν on Xσ defined in (7.1)
is finite.

Remark 7.8. In a sequel to this paper we show that if B = B(F ) be a stationary
generalized Bratteli diagram with irreducible, aperiodic and positive recurrent in-
cidence matrix F then the shift-invariant finite measure (defined in (A.7)) on the
path-space YB is ergodic. The proof involves a direct application of the pointwise
ergodic theorem. Since we prove it more generality in the upcoming sequel we have
not mentioned the proof here.

As a consequence for a bounded size, left determined substitution σ (on a count-
ably infinite alphabet) with irreducible, aperiodic, and positive recurrent substitu-
tion matrix the shift-invariant finite measure ν on Xσ defined in (7.1) is ergodic.

8. Examples

In this section we provide some examples of bounded size, left determined sub-
stitution on countably infinite alphabets for which stationary generalized Bratteli-
Vershik diagram can be constructed using methods in Section 6.

Example 8.1. One step forward, two step back substitution on Z. Define σ by

−1 7→ −2− 1 0 ; 0 7→ −1 0 1

n 7→ (n− 1)(n+ 1)(n+ 1) ; n ≤ −2

n 7→ (n− 1)(n− 1)(n+ 1) ; n ≥ 1

This substitution is bounded size and left determined, hence by Theorem 6.14 there
exists a stationary generalized Bratteli-Vershik model for the associated subshift.
Figure 2 shows part of Vn, En and Vn+1 for any n ∈ N0 of the stationary generalized
Bratteli-Vershik model.

Since the substitution matrix is irreducible, aperiodic, and recurrent, we can
apply Theorem 7.6 to obtain an expression for a shift-invariant measure. Manual
calculation yields P.F value λ = 3 and the left P.F eigenvector is given by

ℓ = (...
1

24
,
1

23
,
1

22
,
1

2
, 1, 1,

1

2
,
1

22
,
1

23
.....).

The right P.F eigenvector has all entries equal to 1. By normalizing the left P.F
eigenvector such that

∑
v ℓv = 1, we obtain a probability shift-invariant measure ν

(defined in (7.1)) on the associated subshift.



SUBSTITUTION-DYNAMICS AND INVARIANT MEASURES FOR INFINITE ALPHABET-PATH SPACE.29

Figure 2. Generalized B-V model for Example 8.1.

Example 8.2. The squared one step forward, two steps backward, substitution on
2Z. Define σ by

−2 7→ −4− 4 − 2− 2− 2 − 4− 2− 2 0; 0 7→ −200022002

n 7→ (n− 2)(n− 2)n(n− 2)(n− 2)nnn(n+ 2) for n ∈ 2Z \ {0,−2}
This substitution is again bounded size and left determined, thus by Theorem 6.14
there exists a stationary generalized Bratteli-Vershik model for the associated sub-
shift. Note that the substitution matrix is irreducible, aperiodic, and recurrent,
hence we can apply Theorem 7.6 to obtain an expression for a shift-invariant mea-
sure. By manual calculations, we get λ = 9. The left P.F eigenvector is given
by

ℓ = (...
1

28
,
1

26
,
1

24
,
1

22
,
1

3
,
1

3
,
1

22
,
1

24
,
1

26
,
1

28
.....).

The right P.F eigenvector has all entries equal to 1. By normalizing the left P.F
eigenvector such that

∑
v ℓv = 1, we obtain a probability shift-invariant measure ν

(defined in (7.1)) on the associated subshift.
The next two examples have recurrent substitution matrix with the sum

∑
v ℓv =

∞. Hence the shift-invariant measure is sigma-finite.

Example 8.3. Random walk on Z. Define σ by

n 7→ (n− 1)(n+ 1)

Note that random walk on Z is a bounded size, left determined substitution, hence
by Theorem 6.14 there exists a stationary generalized Bratteli-Vershik model for
the associated subshift. Figure 3 shows part of Vn, En and Vn+1 for any n ∈ N0 of
the stationary generalized Bratteli-Vershik model.

The substitution matrix is irreducible, periodic with period 2, and null recurrent.
Although the matrix is not aperiodic, we can still study the substitution (see Re-
mark 7.3). Manual calculation yields P.F value λ = 2 and both the left and right
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Figure 3. Generalized B-V model of the Random walk on Z.

P.F eigenvectors are given by

r = ℓ = (.....
1

2
,
1

2
,
1

2
,
1

2
, .....).

Hence by Theorem 7.6, the shift-invariant measure ν (defined in (7.1)) on Xσ is a
sigma-finite, infinite measure.

Example 8.4. Squared drunken man substitution on 2Z. Define σ by

n 7→ (n− 2)nn(n+ 2) ; n ∈ 2Z

This substitution is also bounded size and left determined, hence by Theorem 6.14
there exists a stationary generalized Bratteli-Vershik model for the associated sub-
shift. The substitution matrix is irreducible, aperiodic, and recurrent, hence we can
apply Theorem 7.6 to obtain the expression for a shift-invariant measure. Manual
calculation shows P.-F. value λ = 4 and both the left and right P.F eigenvectors
are given by

r = ℓ = (.....1, 1, 1, 1, 1, ....).

Thus by Theorem 7.6, the shift-invariant measure ν (defined in (7.1)) on Xσ is a
sigma-finite, infinite measure.
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Appendix A.

A.1. Some additional versions of the results. Theorem A.1 is an alternate
version of K-R partitions for subshift associated with left determined substitution
on countably infinite alphabets. Here we, do not require the assumption of bounded
length (compare with Theorem 4.1).

Theorem A.1. Let σ be a left determined substitution on a countably infinite al-
phabet A, and let (Xσ, T ) be the corresponding subshift. Then, for any n ∈ N, there
exists a subset Pn ⊂ Ln of words of length n, such that Xσ can be partitioned into
Kakutani-Rokhlin towers given by

Xσ =
⊔

a0···an−1∈Pn(σ)

ha0+...+han−1−1⊔
k=0

T k[σ(a0 · · · an−1)] (A.1)

where hak = |σ(ak)| for k ∈ {0, .., n− 1}.

Proof. The proof for n = 1 follows from (4.3). We will prove the theorem for n = 2
in two steps. In the first step, we show that the expression

⊔
aiaj∈L2(σ)

hai+haj−1⊔
k=0

T k[σ(aiaj)] (A.2)

contains two disjoint copies of Xσ given by

Xσ =
⊔

aiaj∈L2(σ)

hai−1⊔
k=0

T k[σ(aiaj)] (A.3)

and

Xσ =
⊔

aiaj∈L2(σ)

hai+haj−1⊔
k=hai

T k[σ(aiaj)]. (A.4)

In the second step, we provide an algorithm to remove a copy of Xσ from (A.2),
thus proving (A.1). The first step is similar to the proof of Theorem 4.1. To see
that (A.3) holds, let x = {xi}i∈Z ∈ Xσ and consider the word w = x−ℓ · · ·x0 · · ·xℓ
of length 2ℓ + 1 (here ℓ is the same as in the proof of Theorem 4.1). Again, using
the fact that σ is left determined, we obtain a unique representation of w given by

w = w−pw−p+1 · · ·w0 · · ·ws−1ws = w−pσ(a−p+1) · · ·σ(a0) · · ·σ(as−1)ws (A.5)

for aj ∈ A , j ∈ {−p, ..., 0, ..., s} where p, s are positive integers. We use the la-
beling {−p, ..., 0, ..., s} such that x0 ∈ σ(a0). Also, by definition of left determined
substitutions, w−p and ws are either empty words or a suffix of σ(a−p) and a prefix
of σ(as), respectively.

Instead of considering x0 ∈ σ(a0), we consider x0 ∈ σ(a0a1) where a0a1 ∈
L2(σ). Again as in proof of Theorem 4.1, we denote h0 := ha0 = |σ(a0)| and set
σ(a0) = b1 · · · bh0 , where bi ∈ A for i ∈ {1, 2, ..., h0}. Note that by uniqueness of the
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decomposition in (A.5), the two-letter word a0a1 ∈ L2(σ) is uniquely determined.
Moreover, x0 = bj for some j ∈ {1, 2, ..., h0}. Define

y = (yi), yi = xi−(j−1), for all i ∈ Z.

Set j − 1 = k, then T−kx = y. Since y ∈ [σ(a0a1)], we obtain x ∈ T k[σ(a0a1)]
for some k ∈ {0, ..., h0 − 1}. This proves (A.3). Since σ is left determined, (from
an argument similar to the proof of Theorem 4.1) it follows that the two unions in
(A.3) are disjoint.

To prove (A.4), we consider x ∈ σ(a−1a0) (instead x ∈ σ(a0a1)). Repeating the
argument similar to that above, we will show that (A.4) holds. This proves that
the expression (A.2) contains two disjoint copies of Xσ.

Now, we provide an algorithm allowing us to construct a K-R partition of Xσ

using the towers from (A.2). Let {a1, a2, a3, ...} be an enumeration of A. Define
a total order < on A, by ai < aj if and only if i < j for i, j ∈ N. The order <
generates the lexicographic order (denoted by ≪) on elements aiaj ∈ L2(σ). This
is a total order on the set L2(σ). Arrange the towers in expression (A.2) in the
increasing lexicographic order of the base elements from left to right, i.e., the tower
with base σ(aiaj) is on the left of the tower with the base σ(akaℓ) if and only of
aiaj ≪ akaℓ. Let σ(a1a2) be the base of the first tower (or leftmost tower, which we
denote by T1 for simplicity) in the arrangement of towers. Let a point x ∈ Xσ lies

in
ha1+ha2−1⊔

k=a1

T k[σ(a1a2)], i.e. x lies in upper levels of T1. Proceed in lexicographic

order from left to right and find the smallest tower (in the lexicographic order) to
the right of the T1 that also contains x. Remove this tower from the collection.
Now repeat the process for the next (in the lexicographic order) remaining tower
in the arrangement and so forth. Let P2 ⊂ L2 denote the collection of words w of
length two such that [σ(w)] form the base of towers in the final collection. This
gives us (A.1) for n = 2. The proof for n > 2 follows similarly. □

Proposition A.2 and Corollary A.3 are alternate versions of Proposition 5.1 and
Corollary 5.2. Here we do not require the substitution to be of bounded size.

Proposition A.2. Let σ be a left determined substitution on a countable alphabet
A. We define a sequence of Borel sets {Bn}N0 as follows: Put Xσ = B0 and for
n ∈ N,

Bn =
⊔

a1···an∈Pn(σ)

[σ(a1 · · · an)] (A.6)

where Pn ⊂ Ln is a set of words of length n as in Theorem A.1. Then the set⋂
n∈N0

Bn is at most countably infinite.

Proof. The proof of this proposition is similar to the proof of Proposition 5.1, hence
we only provide a sketch. The fact that the cardinality of

⋂
n∈N0

Bn is countably

infinite is proved by showing that any non-empty set of the form
⋂
n∈N

[σ(a1 · · · an)],
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where a1 · · · an ∈ Ln(σ) for every n ∈ N, is a singleton set and that there exist
countably many infinite non-empty sets of such form. This statement follows from
the fact that σ is left determined by applying arguments similar to that used in the
proof of Proposition 5.1. □

Corollary A.3. (Wandering) Let σ be a left determined substitution on a countably
infinite alphabet A and (Xσ, T ) be the corresponding subshift. Then the sequence of
Borel sets (Bn)n∈N0 ⊂ Xσ, defined in (A.6), has following properties,
(a) Xσ = B0 ⊃ B1 ⊃ B2 ⊃ B3 · · · .
(b) The cardinality of B∞ :=

⋂
n∈N0

Bn is countably infinite and it is a wandering

set.
(c) Bn is a complete T -section for each n ∈ N0.
(d) For each n ∈ N0 every point in Bn is recurrent.

Proof. The proof is similar to Corollary 5.2, hence we omit it. □

A.2. Non-stationary generalized Bratteli-Vershik model for substitutions
on infinite alphabet. In Section 5 we constructed nested sequence of complete
sections for a subshift associated with substitution on a countably infinite alpha-
bet (see Corollary 5.2). We used Corollary 5.2, in Subsection 6.2 to construct a
stationary generalized Bratteli-Vershik model for a bounded size left determined
substitution σ on a countably infinite alphabet.

Note that Corollary A.3 provided an alternate construction of a nested sequence
of complete sections (the substitution is not required to be of bounded size). If
we repeat the construction in Subsection 6.2 using Corollary A.3 (instead of Corol-
lary 5.2), we will obtain alternative generalized Bratteli-Vershik models for a left
determined substitution on a countably infinite alphabet. Since the complete sec-
tions in Corollary A.3 are not powers of σ, an ordered generalized Bratteli diagram
constructed this way will not be stationary in general. Nevertheless, by the same
reasoning as in the proof of Theorem 6.14, the dynamical system on the path space
of this ordered (not necessarily stationary) generalized Bratteli diagram will still
be isomorphic to (Xσ, T ). We want to emphasize that in Corollary A.3 (unlike
Corollary 5.2) there is no requirement for the substitution to be of bounded size.
Hence this construction will allow us to build Bratteli-Vershik models for any left
determined substitution. We obtain the following theorem :

Theorem A.4. Let σ be a left determined substitution on a countably infinite al-
phabet and (Xσ, T ) be the corresponding subshift. Then there exists an ordered (not
necessarily stationary) generalized Bratteli diagram B = (V,E,≥) and a Vershik
map φ : YB → YB such that (Xσ, T ) is isomorphic to (YB, φ).

A.3. Proof of Theorem 7.4. In this subsection, we provide proof of Theorem 7.4
for completion. We recall the statement below.

Theorem A.5 (Theorem 2.20, [BJ21]). Let B = B(F ) be a stationary general-
ized Bratteli diagram such that the incidence matrix F is irreducible, aperiodic and
recurrent. Then
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(1) there exists a tail invariant measure µ on the path space YB,
(2) the measure µ is finite if and only if the left Perron-Frobenius eigenvector ℓ =
(ℓv) has the property

∑
v ℓv < ∞.

Proof. We identify the sets Vi with a countably infinite set V . Since F is irreducible,
aperiodic, and recurrent, there exists a Perron-Frobenius eigenvalue λ for F (see
Theorem 7.2). We denote by ℓ = (ℓv) a left eigenvector corresponding to λ indexed
by elements of V . Let e(w, v) denote a finite path that begins at w ∈ V0 and ends
at v ∈ Vn, n ∈ N. To define the measure µ, we find its values on all cylinder sets,
and then we check that this definition can be extended to a Borel measure using
the Kolmogorov consistency theorem. For the cylinder set [e(w, v)], we set

µ([e(w, v)]) =
ℓv
λn

. (A.7)

To see that µ can be extended to a Borel measure, let gu = e(w, v)e(v, u) denote
the concatenation of path e(w, v) with an edge e(v, u) where u ∈ Vn+1 ∩ r(s−1(v)).
Next, we compute the measure of the set⋃

u∈Vn+1∩r(s−1(v))

[gu]

and show that it is equal to the measure of the set [e(w, v)]. For this, we use the
relation ℓF = λℓ:

µ
( ⋃

u∈Vn+1∩r(s−1(v))

[gu]
)
=

∑
u∈Vn+1

fuv
lu

λn+1
=

ℓv
λn

= µ([e(w, v)]).

Measure µ is tail invariant since any two cylinder sets defined by finite paths termi-
nating at the same vertex v ∈ Vn (say (say e(w1, v) and e(w2, v)) ) have the same
measure as given by

µ([e(w1, v)]) =
ℓv
λn

= µ([e(w2, v)]).

This proves part (1) of the theorem.
To see that (2) holds, we observe that the set YB is the union of all subsets YB(w)

where YB(w) = {x = (xi) ∈ YB : s(x0) = w}. Then

µ(YB) =
∑
w∈V0

µ(YB(w)) =
∑
v∈V

ℓv.

The measure µ is finite if and only if
∑

v∈V ℓv < ∞. □
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