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ON THE RECURSIVE AND EXPLICIT FORM

OF THE GENERAL J.C.P. MILLER FORMULA WITH APPLICATIONS

DARIUSZ BUGAJEWSKI, DAWID BUGAJEWSKI, XIAO-XIONG GAN, AND PIOTR MAĆKOWIAK

Abstract. The famous J.C.P. Miller formula provides a recurrence algorithm for the composition Ba ◦ f ,
where Ba is the formal binomial series and f is a formal power series, however it requires that f has to be
a nonunit.

In this paper we provide the general J.C.P. Miller formula which eliminates the requirement of nonunitness
of f and, instead, we establish a necessary and sufficient condition for the existence of the composition
Ba ◦f . We also provide the general J.C.P. Miller recurrence algorithm for computing the coefficients of that
composition, if Ba ◦ f is well defined, obviously. Our generalizations cover both the case in which f is a
one–variable formal power series and the case in which f is a multivariable formal power series.

In the central part of this article we state, using some combinatorial techniques, the explicit form of the
general J.C.P. Miller formula for one-variable case.

As applications of these results we provide an explicit formula for the inverses of polynomials and formal
power series for which the inverses exist, obviously. We also use our results to investigation of approximate
solution to a differential equation which cannot be solved in an explicit way.

1. introduction

In the well-known [12], P. Henrici introduced the following J.C.P. Miller formula, that is,
for any nonunit formal power series

f(z) = b1z + b2z
2 + b3z

3 + . . .

over C, if we write

Ba ◦ f(z) = c0 + c1z + c2z
2 + . . .+ cnz

n + . . . ,

where a ∈ C, Ba is a formal binomial series, that is

Ba(z) = 1 +

(
a

1

)

z +

(
a

2

)

z2 +

(
a

3

)

z3 + . . . , a ∈ C,

then c0 = 1, and

(1.1) cn =
1

n

n−1∑

k=0

[
a(n− k)− k

]
ckbn−k =

1

n

n∑

k=1

[
(a + 1)k − n

]
cn−kbk,

for all n ∈ N.
J.P.C. Miller formula has found many applications in algorithm theory, analysis, combina-

torics, formal analysis, number theory, the theory of differential equations and other fields of
mathematics and physics, like fluid mechanics (see e.g. [1], [2], [6], [16] and [20]). A recent
application of formulas (1.1) to an algorithm of computing the real exponent of formal power
series can be found in [8], p. 311.
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In this paper we extend the J.C.P. Miller formula beyond nonunit formal power series.
More precisely, we establish a necessary and sufficient condition for the existence of the
composition Ba ◦ f , where f is a formal power series. We also provide the general J.C.P.
Miller recurrence algorithm for computing the coefficients of that composition, if Ba ◦ f is
well–defined, obviously.

In the central part of this article, using some combinatorial techniques, in Lemma 4.3
we propose formula 4.2, the Generalized Trudi Formula (cf. [19, p.214]; a formula for the
determinant of a general Hessenberg matrix) and next, applying that formula, we provide the
explicit form of the general J.C.P. Miller formula. It is worth mentioning that some already
provided methods (see e.g. [18], [22]) can be used only for integer exponents. However,
because we are going to deal with binomial series for arbitrary a ∈ C, some new techniques
must have been established from the ground up. The crucial result for our investigations for
an explicit form of the J.C.P.Miller formula is the generalized Trudi formula (4.2). As far as
we know, the formula (4.2) seems to be new, though, there are attempts in the literature to
provide such a formula for Toeplitz–Hessenberg matrices (cf. [13], [15] or see the introduction
in [7]). Our results were obtained in the framework of finite dimensional spaces. In particular,
we used the classic combinatorial definition of the determinant. Nevertheless, let us observe
that we could achieve the same ends with help of notions connected to infinite matrices -
this observation seems to be of some importance because applications of infinite matrices in
the theory of formal Laurent series (see e.g. [5] and references therein).

In the final section of the paper we apply the above results to provide an explicit formula
for the inverses of polynomials and formal power series for which the inverses exist, obviously.
We also use our results to investigate approximate solutions to a differential equation which
cannot be solved in an explicit way.

2. Preliminaries

In this section we are going to collect some definitions and facts which will be needed
in the sequel. The interested reader can find basic definitions and results concerning the
composition of formal power series e.g. in the monograph [8]. Let us introduce some notations
and conventions first.

For any finite set A by #A we denote the number of its elements. By {. . .}mset we denote
multisets with elements to be listed within the curly brackets. C is the field of complex
numbers, R is the field of reals. For a ∈ C, Re(a) is the real part of a. By N we denote
the set of all positive integers and N0 := N ∪ {0}. We put [0] := 0 and, for n ∈ N,
[n] := {1, . . . , n}, [n]0 := {0, 1, . . . , n}. We take on the convention that 00 := 1 and Σ∅ := 0.
If A is a square complex (real) matrix, by |A| we denote its determinant. For K ∈ {C,R} we
write X(K) (or X1(K)) to denote the set of one–variable formal power series with coefficients
in K.

Let us emphasize that an essential role in this topic plays the following

Theorem 2.1. ([10]) (General Composition Theorem) Let there be given f, g ∈ X(C):

f(x) = a0 + a1z + . . .+ anz
n + . . . ,

g(x) = b0 + b1z + . . .+ bnz
n + . . . .
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If deg(f) 6= 0, then the composition g ◦ f exists if and only if

(2.1)

∞∑

n=k

(
n

k

)

bna
n−k
0 ∈ C for all k ∈ N0,

where
(
n
k

)
= n(n−1)...(n−k+1)

k!
.

If deg(f) = 0, then the existence of g ◦ f is equivalent to the existence of g(a0).

In what follows we will need a consequence of the above result, namely

Theorem 2.2. ([10]) Let be given f, g ∈ X(C):

f(x) = a0 + a1z + . . .+ anz
n + . . . ,

g(x) = b0 + b1z + . . .+ bnz
n + . . . .

If the series
∞∑

n=0

bnR
n converges for some real number R > |a0|, then g ◦ f exists.

Definition 2.3. ([8], p.147) Let g ∈ X(C). The formal power series g is said to be formally
analytic at a ∈ C, or a is in the composition domain of g, if

g(n)(a) ∈ C, for infinitely many n ∈ N.

By [8, Theorem 5.4.6] it follows that the condition “g(n)(a) ∈ C, for infinitely many n ∈ N”
is equivalent to the following “g(n)(a) ∈ C, for all n ∈ N”. Let us observe that this equivalence
can be easily derived from the following property which is a simple consequence of [3, Lemma
1, Lemma 2]: for a ∈ C and n ∈ N, if g(n)(a) does not absolutely converge, then g(n+1)(a)
is not absolutely convergent and g(n+2)(a) is divergent. Therefore, either g(n)(a) ∈ C for all
n ∈ N or g(n)(a) ∈ C for a finite number of n ∈ N. But this implies the equivalence of the
aforementioned statements.

Proposition 2.4. ([8]) Let g ∈ X(C) be given. Then g is formally analytic at a ∈ C if and
only if for any f ∈ X(C) such that f(0) = a, g ◦ f ∈ X(C)

Corollary 2.5. ([9]) Let g ∈ X(C) and a ∈ C be given. If a ∈ C is a formally analytic point
of g, then z is a formally analytic point of g for all z ∈ C with |z| = |a|.

As regards formal power series of multiple variables we stick to notations given in [4].
However, for convenience of the reader, below we are going to recall some of those notions.

Let us fix q ∈ N, k ∈ N0 and denote by Ck the set of all nonnegative integer solutions
c1, . . . , cq of the equation c1 + . . .+ cq = k for k ∈ N0, q ∈ N, that is

Ck := {c = (c1, . . . , cq) ∈ N
q
0 : c1 + . . .+ cq = k}.

Obviously, C := N
q
0 =

⋃

k∈N0
Ck and for each c ∈ C there is exactly one k ∈ N0 for which

c ∈ Ck. Let K stand for the field of real (or complex) numbers, that is, K ∈ {C, R}. Now,
let us state a definition of a formal power series of multiple variables (see also [11] or [21]).

Definition 2.6. A formal power series f in q-variables x := (x1, . . . , xq) ∈ Kq (for short:
q-fps) is a formal sum of the form f(x) :=

∑

c∈C fcX
c, where fc ∈ K and Xc := xc1

1 . . . x
cq
q

for all c ∈ C. An element fc is called the c-th coefficient of the q-fps f , c ∈ C. The set of
all q-fps is denoted by Xq(K) or just by Xq.
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Remark 1. Let us observe that a q-fps f can be uniquely identified with the mapping
C ∋ c 7→ fc ∈ K.

Let us recall the definition of the Cauchy product of q-fps.

Definition 2.7. For q-fps f(x) =
∑

c∈C fcX
c, g(x) =

∑

c∈C gcX
c ∈ Xq, q ∈ N, the q-

dimensional Cauchy product of f and g is a q-fps h = fg defined as

h(x) :=
∑

c∈C

(
∑

a, b∈C: a+b=c

fagb

)

︸ ︷︷ ︸

hc:=

Xc.

Obviously, there are a finite number of pairs (a, b) such that a, b ∈ C and a + b = c for
a given c ∈ C. It is also clear that for such a pair we have a ≤ c and b ≤ c, where the
inequality ≤ is taken coordinatewise.

We are now ready to define the composition of a 1-fps g with a q-fps f .

Definition 2.8. For f(x) =
∑

c∈C fcX
c ∈ Xq, q ∈ N, and g(y) =

∑∞
n=0 gny

n ∈ X1, the
composition of g with f is a q-fps h = g ◦ f defined by

h(x) :=
∑

c∈C

(
∞∑

n=0

gnf
n
c

)

︸ ︷︷ ︸

hc:=

Xc,

provided that the coefficients hc exist, that is, if the series defining hc converge for every
c ∈ C, where fn ∈ Xq is the n-th power of f , that is, fn := ff . . . f

︸ ︷︷ ︸

n×

, fn
c := (fn)c, n ∈ N,

c ∈ C, and f 0 := (1, 0, 0, . . .), where 1 is the multiplicative identity of the field K.

3. The generalized J.C.P. Miller formula

Let us notice that if a formal power series f is a constant formal power series or, equiva-
lently, if deg(f) = 0, then the problem of the existence of the composition Ba ◦ f reduces to
the problem of the convergence of the binomial series. Moreover, let us notice that if a ∈ N,
then we have

(
a

n

)

=
a(a− 1) . . . (a− n+ 1)

n!
= 0,

when n > a. In such a case Ba(z) is a polynomial and therefore Ba(f) ∈ X(C) for all
f ∈ X(C). Both these cases are trivial. In what follows, we suppose that deg(f) 6= 0 and
a ∈ C \ N unless we indicate otherwise.

Now, let us investigate the composition of the formal binomial series Ba with a formal
power series over X(C).

Theorem 3.1. Let f ∈ X(C) be a formal power series over C with deg(f) 6= 0:

f(z) = b0 + b1z + b2z
2 + . . . ,

Let Ba be a formal binomial series with a ∈ C\N. Then Ba◦f ∈ X(C) if and only if |b0| < 1.
4



Proof. It is well-known that the radius of convergence of the binomial power series is equal
to 1. Thus applying Theorem 2.2, we infer that Ba ◦ f ∈ X(C) if |b0| < 1.

By Theorem 2.1, we need only to show that b0 is not a formally analytic point of Ba for a
formal power series f with |b0| = 1. By [14, Theorem 247, p. 426], a binomial series Ba with
a ∈ C, Re(a) < 0, diverges at z = −1. Hence, by Corollary 2.5, if Re(a) < 0, an element
z ∈ C is a formally analytic point of Ba only if |z| < 1.

Now, let a ∈ C \ N and Re(a) ≥ 0. By [8, Proposition 2.2.7], for k ∈ N : k > Re(a), we
have

B(k)
a (z) = a(a− 1) . . . (a− k + 1)Ba−k(z),

where B
(k)
a is the kth formal derivative of Ba. Hence, since Re(a)− k < 0, any z ∈ C such

that |z| = 1 is not a formally analytic point of Ba−k. Therefore Ba(f) ∈ X(C) with Re(a) > 0
if and only if |b0| < 1.

Thus, Ba(f) ∈ X(C) with all a ∈ C \ N if and only if |b0| < 1. �

Now, we are going to establish the general J.C.P. Miller formula.

Theorem 3.2. Let f ∈ X(C) be a formal power series over C with deg(f) 6= 0:

f(z) = b0 + b1z + b2z
2 + . . . , |b0| < 1.

Then

Ba ◦ f(z) = c0 + c1z + c2z
2 + c3z

3 + . . . , a ∈ C \ N,

is a formal power series over C, where c0 = (1 + b0)
a, c1 =

ac0b1
1+b0

,

(3.1) cn =
1

n(1 + b0)

[

nac0bn +
n−1∑

k=1

bkcn−k[ka− (n− k)]

]

=

1

n(1 + b0)

n∑

k=1

bkcn−k[ka− (n− k)],

for all n ∈ N, n ≥ 2.

Proof. Suppose that |b0| < 1. By Theorem 3.1, Ba ◦ f ∈ X(C) for any a ∈ C (the case when
a ∈ N is obvious). Put

(3.2) Ba ◦ f(z) = c0 + c1z + c2z
2 + c3z

3 + . . . ,

We also have

Ba ◦ f(z) = 1 +

(
a

1

)

f(z) +

(
a

2

)

f 2(z) +

(
a

3

)

f 3(z) + . . . .

Considering the constant term of Ba ◦ f(z), we have

c0 = 1 +

(
a

1

)

b0 +

(
a

2

)

b20 +

(
a

3

)

b30 + . . . = (1 + b0)
a.

By the Generalized Chain Rule for the formal composition, we get

(Ba ◦ f)
′ = a(Ba−1 ◦ f)f

′.
5



Multiplying by (B1 ◦f) both sides of the above equality and applying the Right Distributive
Law, we obtain

(3.3) (B1 ◦ f)(Ba ◦ f)
′ = a(B1 ◦ f)(Ba−1 ◦ f)f

′ = a
[
(B1Ba−1) ◦ f

]
f ′ = a(Ba ◦ f)f

′.

Since B1(z) = 1 + z, we have

(1 + b0 + b1z + b2z
2 + . . .)(c1 + 2c2z + 3c3z

2 + . . .) =

a(c0 + c1z + c2z
2 + . . .)(b1 + 2b2z + 3b3z

2 + . . .).

Applying the formulas of Cauchy product on both sides of the above equality, and then
equating the coefficients of the term zn−1, we obtain

(1 + b0)ncn + b1(n− 1)cn−1 + b2(n− 2)cn−2 + . . .+ bn−22c2 + bn−1c1 =

a

[

nbnc0 + bn−1(n− 1)c1 + bn−2(n− 2)c2 + . . .+ b22cn−2 + b1cn−1

]

.

If n = 1, the above equality provides

(1 + b0) · 1 · c1 = ac0 · 1 · b1,

and we get c1 =
ac0b1
1+b0

= ab1(1 + b0)
a−1.

For every n ≥ 2,

(1 + b0)ncn = a
[
nbnc0 + bn−1(n− 1)c1 + bn−2(n− 2)c2 + . . .+ b1cn−1

]

−
[
b1(n− 1)cn−1 + b2(n− 2)cn−2 + . . .+ bn−1c1

]
=

anbnc0 + [ab1cn−1 − b1(n− 1)cn−1] + [ab2cn−22− b2(n− 2)cn−2]

+ . . .+ [abn−2c2(n− 2)− bn−22c2] + [abn−1c1(n− 1)− bn−1c1] =

nac0bn +

n−1∑

k=1

bkcn−k

[
ka− (n− k)

]
.

Thus

cn =
1

n(1 + b0)

[

nac0bn +

n−1∑

k=1

bkcn−k[ka− (n− k)]

]

=

abn(1 + b0)
a−1 +

1

n(1 + b0)

n−1∑

k=1

bkcn−k[ka− (n− k)] =

1

n(1 + b0)

n∑

k=1

bkcn−k[ka− (n− k)].

�

Remark 3.3. Theorems 3.1 and 3.2 and their proofs remain valid if we replace C with R.

Remark 3.4. Let us notice that putting b0 = 0 in formula (3.1), we get

cn =
1

n

[ n∑

k=1

bkcn−k[k(a + 1)− n]

]

, n ≥ 2,

which is the original J.C.P. Miller formula (1.1).
6



4. The explicit form of the general J.C.P. Miller formula

The main goal of this section is to establish the explicit form of the general J.C.P. Miller
formula. For that goal we will need a few lemmas. Among them, the most important one
is Lemma 4.3 containing the generalized Trudi formula - a new and useful formula for the
determinant of any Hessenberg (almost lower-triangular) matrix.

Lemma 4.1. Let n ∈ N and σ be a permutation of [n] satisfying the condition

(4.1) σ(k) ≤ k + 1 for all k ∈ [n],

and define X(σ) := {k ∈ [n] : σ(k) ≤ k} = {s1, . . . , sl} ⊆ [n], where s1 < . . . < sl, sl = n,
for some l ∈ [n]. Then

(1) σ(k) = k + 1 for k ∈ [n] \X(σ),
(2) σ(si+1) = si + 1 for all i ∈ {0, . . . , l − 1}, where s0 := 0.

Moreover, the sign of the permutaton σ is (−1)n−l.

Proof. Denote X := {s1, . . . , sl}. It is obvious that n ∈ X and sl = n. By the condition
(4.1) σ(k) = k + 1 for all k ∈ [n] \ X , so σ(X) = {σ(si) : i ∈ [l]} = [n] \ {k + 1 : k ∈
[n] \X} = {1, s1 + 1, . . . , sl−1 + 1}. The last equality stems from the fact σ is a bijection,
1 /∈ σ([n] \X), and because if, for some i ∈ [l − 1], si + 1 /∈ σ(X), then si ∈ [n] \X which
is impossible. Observe that for any k < s1, k ∈ [n], we have σ(k) = k + 1 which implies
σ({k ∈ [n] : k < s1}) = {2, 3, . . . , s1} provided that s1 > 1. It is now clear that σ(s1) = 1
because σ(s1) ≤ s1. Arguing similarly we obtain σ(s2) = s1 + 1, and then σ(s3) = s2 + 1,
and further up to σ(sl) = sl−1 + 1. So, formulas (1) and (2) are valid.
Now, by formulas (1) and (2) we have, for k < s1, σ(k) = k+1 and σ(s1) = 1. So the number
of inversions in the sequence (σ(1), . . . , σ(s1)) is s1 − 1. Analogously, since σ(k) = k + 1 for
s1 < k < s2 and σ(s2) = s1+1, the number of inversions in the sequence (σ(s1+1), . . . , σ(s2))
equals s2−s1−1. Moreover, because σ(k) < σ(l) for k ≤ s1 < l ≤ s2, the number of inversions
in the sequence (σ(1), . . . , σ(s2)) is s1 − 1 + s2 − s1 − 1 = s2 − 2. Continuing this way we
conclude that the number of inversions in the sequence (σ(1), . . . , σ(n)) is (s1 − 1) + (s2 −
1 − s1) + . . . + (sl − 1 − sl−1) = sl − l = n − l. Therefore, the sign of the permutation σ is
(−1)n−l. �

Remark 4.2. It easily follows from the above proof that the mapping σ 7→ X(σ) is a bi-
jection between the set of permutations of [n] satisfying condition (4.1) and subsets of [n],
containing n.

In what follows, whenever we see {s1, . . . , sl} ⊆ [k] under a summation symbol we mean
that the sum extends over all l-element subsets {s1, . . . , sl} ⊆ [k] for which s1 < . . . < sl and
sl = k; it may happen that the family of such subsets is empty for given values of k, l. We
also assume s0 := 0.

7



Lemma 4.3. (Generalized Trudi Formula) Let n ∈ N and

A =
















a1,1 a1,2 0 . . . 0

a2,1 a2,2 a2,3 0
...

. . .
. . .

. . .
. . .

. . . 0

. . . an−2,n−1 0
... an−1,n−1 an−1,n

an,1 . . . an,n−1 an,n
















be a Hessenberg matrix. Then

|A| =
n∑

l=1

(−1)n−l
∑

{s1,...,sl}⊆[n]





l∏

q=1

asq,sq−1+1

∏

k∈[n]\{si: i∈[l]}

ak,k+1



 .(4.2)

In particular, if ak,k+1 = a ∈ C for k ∈ [n− 1], then

|A| =
n∑

l=1

(−a)n−l
∑

{s1,...,sl}⊆[n]

l∏

q=1

asq,sq−1+1.(4.3)

Proof. By definition of the determinant of a square matrix we have

|A| =
∑

σ

sgn(σ)a1,σ(1) . . . an,σ(n),

where the sum is taken over permutations σ of the set [n] and sgn(σ) is the sign of σ.
However, if there exists k ∈ [n] such that σ(k) > k + 1, then ak,σ(k) = 0, and consequently
we can assume the summation runs only over permutations σ of [n] for which σ(k) ≤ k + 1,
k ∈ [n], that is, over σ satisfying condition (4.1). By Lemma 4.1, for any permutation σ
satisfying condition (4.1), we get

sgn(σ)a1,σ(1) . . . an,σ(n) = (−1)n−l
∏

k∈X(σ)

ak,σ(k)
∏

k∈[n]\X(σ)

ak,k+1 =

(−1)n−l

l∏

q=1

asq,sq−1+1

∏

k∈[n]\{si: i∈[l]}

ak,k+1,

where X(σ) = {s1, . . . , sl}, s1 < . . . < sl, sl = n and s0 = 0. Therefore, by Remark 4.2,

|A| =

n∑

l=1

(−1)n−l
∑

{s1,...,sl}⊆[n]





l∏

q=1

asq,sq−1+1

∏

k∈[n]\{si: i∈[l]}

ak,k+1



 ,

which proves (4.2). Formula (4.3) is an obvious consequence of (4.2). �

Now, we are going to prove the central result of this section.
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Theorem 4.4. Let a ∈ C \ N and (bn)n∈N0
be a sequence of complex numbers such that

|b0| < 1 and bn 6= 0 for some n ∈ N. Suppose that (cn)n∈N0
is a sequence defined by the

following recursive J.C.P. Miller formula:

c0 := (1 + b0)
a, c1 :=

ac0b1
1 + b0

= ab1(1 + b0)
a−1,

and, for n ≥ 2,

cn :=
1

n(1 + b0)

[

nac0bn +

n−1∑

k=1

bkcn−k[ka− (n− k)]

]

=
1

n(1 + b0)

n∑

k=1

bkcn−k[ka− (n− k)].

Then

(4.4) cn = a(1 + b0)
a−1×



bn +
n−1∑

j=1

bj

n−j
∑

l=1

(1 + b0)
−l

∑

{s1,...,sl}⊆[n−j]

l∏

q=1

a(sq − sq−1)− sq−1 − j

sq + j
bsq−sq−1



 .

Proof. Let us notice that c1 = ab1(1 + b0)
a−1 and for all n ≥ 2

−
n−1∑

k=1

ka− (n− k)

n(1 + b0)
bkcn−k + cn =

anc0bn
n(1 + b0)

= abn(1 + b0)
a−1.

Fix n ≥ 2. By the above formulas we have
(4.5)














1 0 . . . 0

− (a−1)b1
2(1+b0)

1 0
...

− (2a−1)b2
3(1+b0)

− (a−2)b1
3(1+b0)

1
. . .

. . .
. . .

. . .
...

. . . 1 0

− ((n−1)a−1)bn−1

n(1+b0)
− ((n−2)a−2)bn−2

n(1+b0)
. . . − (a−(n−1))b1

n(1+b0)
1





























c1
c2
c3
...
...
...
cn















= a(1+b0)
a−1















b1
b2
b3
...
...
...
bn















.

Let us denote the lower–triangular matrix on the left–hand side as B = [bi,j]i,j∈[n]; then

bi,j :=







0, i < j,
1, i = j,
−((i−j)a−j)

i(1+b0)
bi−j , i > j.

It is clear that |B| = 1. Let Bj
i be the cofactor of the entry bi,j , that is, the product of

(−1)i+j and the determinant of the matrix obtained from B by crossing out its ith row and
jth column, i, j ∈ [n]. It is not difficult to see that Bj

i = 0, for i > j, and Bi
i = 1.

9



Let us now consider the case i < j. We have

Bj
i = (−1)i+j

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

bi+1,i 1 0 . . . 0

bi+2,i bi+2,i+1 1 0
...

. . .
. . .

. . . 1 0
... bj−1,j−2 1
bj,i . . . bj,j−2 bj,j−1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,

and denoting for convenience ak,l := bi+k,i+l−1, for k, l ∈ [j − i] with k + 1 > l, by Lemma
4.3 and the definition of bi,j we get

Bj
i = (−1)i+j

j−i
∑

l=1

∑

{s1,...,sl}⊆[j−i]

(−1)j−i−l

l∏

q=1

asq ,sq−1+1 =

j−i
∑

l=1

∑

{s1,...,sl}⊆[j−i]

(

(−1)l
l∏

q=1

bsq+i,sq−1+i

)

=

=

j−i
∑

l=1

∑

{s1,...,sl}⊆[j−i]

(−1)l
l∏

q=1

− [(sq − sq−1)a− sq−1 − i]

(sq + i)(1 + b0)
bsq−sq−1

=

=

j−i
∑

l=1

(1 + b0)
−l

∑

{s1,...,sl}⊆[j−i]

l∏

q=1

(sq − sq−1)a− sq−1 − i

sq + i
bsq−sq−1

.

Now, multiplying equation (4.5) from left by B−1 = [b−1
i,j ]i,j∈[n], where b−1

i,j = Bi
j, we get

cn =
n∑

j=1

Bn
j a(1 + b0)

a−1bj = a(1 + b0)
a−1

(

bn +
n−1∑

j=1

Bn
j bj

)

=

= a(1+b0)
a−1



bn +
n−1∑

j=1

bj

n−j
∑

l=1

(1 + b0)
−l

∑

{s1,...,sl}⊆[n−j]

l∏

q=1

a(sq − sq−1)− sq−1 − j

sq + j
bsq−sq−1



 ,

which completes the proof. �

The usefulness of the above theorem can be illustrated by some examples included in
Section 6 below.

Remark 4.5. We would like to draw the reader’s attention to the paper [22], in which the
Authors provide formulas for the coefficients of fk, where f is a formal power series and k
is an integer (some of which can also be found in [8] and references therein). The recursive
and explicit forms of those formulas look quite analogous to those presented in this section.
However, the methods used in [22] are strongly based on some results concerning integer
powers of semicirculant matrices (see [18]) that cannot be easily extended to non-integer
(real or complex) exponents, which are considered in this section.
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5. Yet another generalization of the J.C.P.Miller formula

This part of the paper is to extend the J.C.P. Miller formula to the case of multivariable
formal power series. We are going to follow the lines of proof of Theorem 3.2. To this end
we need the following two simple results (cf. [8, Lemma 5.5.2 and Theorem 5.5.3 (Chain
Rule)]).

Lemma 5.1. Let g(z) =
∑∞

n=0 anz
n ∈ X1(K) and f(x) =

∑

c∈C fcX
c ∈ Xq(K), where

C := N
q
0, θ := (0, . . . , 0) ∈ C. Then g(k) ◦ f exists, k ∈ N, if and only if g ◦ f exists, where

g(0) := g and g(k) is kth formal derivative of g, k ∈ N.

Proof. By [4, Theorem 10] and the definition of formal derivative the theorem can be stated
equivalently as: g(k)(b0) is convergent in K for every k ∈ N if and only if g(k)(b0) is convergent
in K for every k ∈ N0, where b0 := fθ. Sufficiency is obvious. So, let us assume that g(0)(b0)
diverges, that is, g(b0) diverges. Then, by [3, Lemma 1], g(2)(b0) diverges (cf. the paragraph
following Definition 2.3), which ends the proof. �

Lemma 5.2 (Chain Rule for the composition of one–variable fps with multivariable fps).
Let g(z) =

∑∞
n=0 anz

n ∈ X1(K) and f(x) =
∑

c∈C fcX
c ∈ Xq(K) and suppose that g ◦ f

exists. Then
Di(g ◦ f)(x) = (g′ ◦ f)(x)Dif(x),

where Dif denotes the formal partial derivative of f with respect to variable xi, i ∈ [q].

Proof. Recall that C = N
q
0. Let f

n(x) =
∑

c∈C fn
c X

c denote the nth power of f , f 0(x) := 1,
n ∈ N0. By Lemma 5.1, g′ ◦ f exists. Without loss of generality let us assume that i = 1.
We have

(g ◦ f)(x) =
∑

c∈C(
∑∞

n=0 gnf
n
c )X

c,

(g′ ◦ f)(x) =
∑

c∈C(
∑∞

n=0(n+ 1)gn+1f
n
c )X

c,

D1f(x) =
∑

c∈C(c1 + 1)fc+e1X
c,

D1(g ◦ f)(x) =
∑

c∈C(c1 + 1)(
∑∞

n=0 gnf
n
c+e1)X

c,

where e1 := (1, 0, . . . , 0) ∈ C. Denote (g′ ◦ f)(x)D1f(x) =
∑

c∈C hcX
c. For c ∈ C, it holds

hc =
∑

a+b=c

(g′ ◦ f)a(D1f)b =
∑

a+b=c

(
∞∑

n=0

(n+ 1)gn+1f
n
a

)

(b1 + 1)fb+e1 =

∞∑

n=0

(n+ 1)gn+1

(
∑

a+b=c

fn
a (b1 + 1)fb+e1

)

= (⋆),

where a, b ∈ C under the summation symbols. Since D1f
n+1(x) = (n + 1)(fnD1f)(x) [11,

Theorem 4.2], for any c ∈ C we get (D1f
n+1)c = (n + 1)(fnD1f)c, that is, (c1 + 1)fn+1

c+e1 =
(n+ 1)

∑

a+b=c f
n
a (1 + b1)fb+e1 . Hence,

(⋆) =

∞∑

n=0

gn+1(c1 + 1)fn+1
c+e1 = (c1 + 1)

∞∑

n=0

gn+1f
n+1
c+e1 = (c1 + 1)

∞∑

n=1

gnf
n
c+e1 .

Due to the equality f 0
c+e1 = 0, c ∈ C, we obtain hc = (c1 + 1)

∑∞
n=0 gnf

n
c+e1, c ∈ C, which

proves the claim. �
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Let ei ∈ C be the point that has 1 on ith coordinate and 0 everywhere else, i ∈ [q].
We are now ready to prove the J.C.P.Miller formula for multivariable series.

Theorem 5.3. Let f ∈ Xq(K) be a formal power series over K with deg(f) 6= 0: f(x) =
∑

c∈C fcX
c. Then

(Br ◦ f)(x) ∈ Xq(K), r ∈ C \ N

if and only if |fθ| < 1.
Moreover, for |fθ| < 1, the coefficients of (Br ◦ f)(x) denoted by hc, c ∈ C, satisfy:

hθ = (1 + b0)
r, hei = rfei(1 + fθ)

r−1, i ∈ [q],

and for c′ = c + ei ∈ Cn+1, i ∈ [q], c ∈ Cn, n ≥ 2:

(5.1) hc′ =
1

(ci + 1)(1 + fθ)
×



r
∑

b≤c: bi=ci

(bi + 1)fb+eihc−b +
∑

b≤c−ei

(bi + 1)[rfb+eihc−b − fc−bhb+ei ]



 , i ∈ [q],

where b ∈ C.

Proof. That the composition Br ◦f exists if and only if |fθ| < 1 is clear byTheorem 3.1 above
and [4, Theorem 10]). Moreover, the constant term hθ is given by

hθ =

∞∑

n=0

(
r

n

)

fn
θ =

∞∑

n=0

(
r

n

)

(fθ)
n = (1 + fθ)

r.

By the proof of Theorem 3.2, due to validity of the Chain Rule expressed in Lemma 5.2 and
the Right Distributive Law for multivariable power series given in [4, Theorem 20], we see
that adapted versions of equation (3.3) are valid under current assumptions, that is, we have

(5.2) (Bi ◦ f)(x)(Di(Br ◦ f))(x) = r(Br ◦ f)(x)Dif(x), i ∈ [q].

We shall now equate corresponding coefficients of the series on both sides of (5.2). Let
(Ba ◦ f)(x) =

∑

c∈C hcX
c. Denoting (B1 ◦ f)(x) =

∑

c∈C f cX
c, we get

(B1 ◦ f)(x)(Di(Br ◦ f))(x) =

(
∑

c∈C

f cX
c

)(
∑

c∈C

(ci + 1)hc+eiX
c

)

=

∑

c∈C

(
∑

a+b=c

(bi + 1)fahb+ei

)

Xc

and

r(Br ◦ f)(x)Dif(x) = r

(
∑

c∈C

hcX
c

)(
∑

c∈C

(ci + 1)fc+eiX
c

)

=

∑

c∈C

(

r
∑

a+b=c

(bi + 1)fb+eiha

)

Xc.

Now, for c = θ,
f θhei = rfeihθ ⇔ (1 + fθ)hei = rfeihθ,

12



which results in hei = rfeihθ/(1 + fθ), i ∈ [q], and

hei = rfei(1 + fθ)
r−1, i ∈ [q].

Observe that we have just obtained hc, for c ∈ C0 ∪ C1. Let us assume that all hc, c ∈
C0 ∪ . . . ∪ Cn, are known. By (5.2), we have for c ∈ Cn, i ∈ [q],
∑

a+b=c

(bi + 1)fahb+ei = r
∑

a+b=c

(bi + 1)fb+eiha ⇔

(ci + 1)(1 + fθ)hc+ei +
∑

a+b=c:ai 6=0

(bi + 1)fahb+ei = r
∑

a+b=c

(bi + 1)fb+eiha.

Therefore

(ci + 1)(1 + fθ)hc+ei = r
∑

a+b=c

(bi + 1)fb+eiha −
∑

a+b=c: ai 6=0

(bi + 1)fahb+ei

which is equivalent to

(ci + 1)(1 + fθ)hc+ei =

r
∑

a+b=c: ai=0

(bi + 1)fb+eiha + r
∑

a+b=c: ai 6=0

(bi + 1)fb+eiha −
∑

a+b=c: ai 6=0

(bi + 1)fahb+ei

and, for i ∈ [q],

hc+ei =
1

(ci + 1)(1 + fθ)
×

(

r
∑

a+b=c: ai=0

(bi + 1)fb+eiha + r
∑

a+b=c: ai 6=0

(bi + 1)fb+eiha −
∑

a+b=c: ai 6=0

(bi + 1)fahb+ei

)

.

Notice that all the coefficients in the sum on the right-hand side of the last equation are
known by the assumption and equation (5.1) results from rearranging the sum. �

Remark 5.4. All indexes of the coefficients of Br ◦ f that appear on the right–hand side of
formula (5.1) belong to C0 ∪ . . . ∪ Cn. Moreover, since any c′ ∈ Cn+1 can be expressed as
c′ = c + ei for some c ∈ Cn, i ∈ [q], the formula allows for the recursive computation of all
coefficients of Br ◦ f .

6. Applications

6.1. Determinantion of coefficients by the explicit form of J.C.P. Miller formula.

Let f = b0 + xn ∈ X(C), where |b0| < 1, n ∈ N, n > 2. We will calculate all coefficients of

the formal series Ba ◦ f =
∞∑

n=0

cnx
n with a ∈ C \ N0.

We have c0 = (1 + b0)
a, c1 = 0 (because b1 = 0), and, by (4.4), the following equalities

cn = a(1+b0)
a−1



bn +
n−1∑

j=1

bj

n−j
∑

l=1

(1 + b0)
−l

∑

{s1,...,sl}⊆[n−j]

l∏

q=1

a(sq − sq−1)− sq−1 − j

sq + j
bsq−sq−1



 ,

for n ≥ 2 (recall s0 = 0). Therefore:

(1) cn = 0 for 1 < n < n (because then b1 = ... = bn = 0),
13



(2) cn = a(1 + b0)
a−1bn = a(1 + b0)

a−1 (because bn = 1),
(3) for n > n, we have

cn = a(1 + b0)
a−1

n−n∑

l=1

(1 + b0)
−l

∑

{s1,...,sl}⊆[n−n]

l∏

q=1

a(sq − sq−1)− sq−1 − n

sq + n
bsq−sq−1

,

because if n > 0, then bn 6= 0 if and only if n = n. Moreover,

0 6=
l∏

q=1

a(sq − sq−1)− sq−1 − n

sq + 1
bsq−sq−1

(⋆)

if and only if sq − sq−1 = n, q ∈ [l] with l ≥ 1, because a ∈ C \ N0. In view
of the equality sl = n − n, we have that condition (⋆) is satisfied if and only if
sl = n− n, sl−1 = n− 2n, . . . , s1 = n− ln, s0 = n− (l + 1)n. However, s0 = 0, so (⋆)
holds if and only if l = n

n
− 1 ∈ N and sj = jn, j ∈ [l]. Therefore, it is possible that

cn 6= 0, n ≥ 2, if and only if n = kn for some k ∈ N. By the preceding analysis we
get for k ∈ N, k ≥ 2,

ckn =

a(1 + b0)
a−1

(k−1)n
∑

l=1

(1 + b0)
−l

∑

{s1,...,sl}⊆[(k−1)n]

l∏

q=1

a(sq − sq−1)− sq−1 − n

sq + n
bsq−sq−1

=

a(1 + b0)
a−1(1 + b0)

−(k−1)

k−1∏

q=1

an− qn

qn + n
= a(1 + b0)

a−k

k−1∏

q=1

a− q

q + 1

=
a

k
(1 + b0)

a−k

(
a− 1

k − 1

)

,

It is obvious that cn = a(1 + b0)
a−1 = a

1
(1 + b0)

a−1
(
a−1
0

)
, so the above formula holds

for k = 1 as well.

Therefore Ba ◦ f =
∞∑

n=0

cnx
n, where

cn =







0, n
n
/∈ N0,

(1 + b0)
a, n = 0,

a
k
(1 + b0)

a−k
(
a−1
k−1

)
, n = kn, k ∈ N.

6.2. Multiplicative inverses of fps. We are now going to find a general formula for the
inverse of a formal power series, provided it exists.

Let f = b0 + b1x + . . . ∈ X(C) with b0 = 1. We will derive explicit formulas for the
coefficients of f−1 using formula (4.4) (cf. [12, vol. 1, p.17], [17] or [22]).

By Theorem 3.1, the composition B−1◦(f−1) exists. Denote B−1◦(f−1) = c0+c1x+ . . ..
By Theorem 3.2, we have c0 = 1

b0
= 1, c1 = − b1

b2
0

= −b1 and cn = − 1
b0

∑n
k=1 bkcn−k =

−
∑n−1

k=0 ckbn−k for n > 1, so by [8, Theorem 1.1.8], B−1 ◦ (f − 1) = f−1. We will calculate
14



cn using Theorem 4.4. We have, for n > 1,

cn = −



bn +
n−1∑

j=1

bj

n−j
∑

l=1

∑

{s1,...,sl}⊆[n−j]

l∏

q=1

−(sq − sq−1)− sq−1 − j

sq + j
bsq−sq−1



 =

−



bn +
n−1∑

j=1

bj

n−j
∑

l=1

(−1)l
∑

{s1,...,sl}⊆[n−j]

l∏

q=1

bsq−sq−1



 =

−bn +

n−1∑

j=1

bj

n−j
∑

l=1

(−1)l+1
∑

ǫ1+...+ǫl=n−j

l∏

q=1

bǫq

︸ ︷︷ ︸

(⋆⋆)

,

where ǫ1, . . . , ǫl ∈ N. The last equality stems from the fact that there is a bijection between
the set of sequences s1 < . . . < sl with sl = n− j, l ∈ [n− j], and the set of positive integer
solutions to the equation ǫ1+ . . .+ ǫl = n− j. The expression (⋆⋆) can be written as the sum
of −bn and expressions of the form γk1,n1,...,km,nm

bk1n1
. . . bkmnm

, where n1k1 + . . . + nmkm = n,
ni ∈ [n − 1], i ∈ [m], n1 < n2 < . . . < nm, and k1 + . . . + km = l + 1, k1, . . . , km ∈ N,
m ∈ [l + 1], l ∈ [n − 1], γk1,n1,...,km,nm

∈ Z. Observe that to each solution ǫ1, . . . , ǫl ∈ N of
ǫ1 + . . .+ ǫl = n− j for some j ∈ [n− 1], l ∈ [n− j], there correspond m := #{j, ǫ1, . . . , ǫl},
{n1, . . . , nm} := {j, ǫ1, . . . , ǫl} with n1 < . . . < nm, exactly one i′ ∈ [m] for which j = ni′ ,
and ki := #{s ∈ [l] : ǫs = ni}, i 6= i′, and ki′ := 1 + #{s ∈ [l] : ǫs = ni′}. It is
clear that we have {ni : i ∈ [m]} ⊆ [n − 1], k1n1 + . . . + ki′ni′ + . . . + kmnm = n and
k1 + . . . + ki′ + . . . + km = l + 1. On the other hand, if n1k1 + . . . + nmkm = n, {ni : i ∈
[m]} ⊆ [n− 1], n1 < n2 < . . . < nm, and k1 + . . . + km = l + 1, k1, . . . , km ∈ N, m ∈ [l + 1],
l ∈ [n − 1], and j := ni′ , where i′ ∈ [m] is fixed, then any multiset {ǫ1, . . . , ǫl}mset which
is equal to the multiset {n1, . . . , n1

︸ ︷︷ ︸

k1×

, . . . , ni′ , . . . , ni′
︸ ︷︷ ︸

(ki′−1)×

, . . . , nm, . . . , nm
︸ ︷︷ ︸

km×

}mset solves the equation

ǫ1 + . . . + ǫl = n − j. Thus, there are
(n1k1+...+ni′(ki′−1)+...+nmkm)!

k1!...(ki′−1)!...km!
=

(n−ni′)!

k1!...(ki′−1)!...km!
solutions

ǫ1, . . . , ǫl ∈ N corresponding to the given values of ni, ki, i ∈ [m], m ∈ [n− 1], and the fixed
i′.

Therefore, by (⋆⋆), we get

γn1,k1,...,nm,km = (−1)k1+...+km
(n− n1)!

(k1 − 1)! . . . km!
+ . . .+ (−1)k1+...+km

(n− nm)!

k1! . . . (km − 1)!
=

(−1)k1+...+km
k1(n− n1)! + . . .+ km(n− nm)!

k1! . . . km!
.

Observe that this formula is also true in the case m = 1, k1 = 1, because γn,1 = (−1)1 1·0!
1!

=
−1. Hence, we have, for every n > 1,

cn =
∑

n1k1+...+nmkm=n

(−1)k1+...+km
k1(n− n1)! + . . .+ km(n− nm)!

k1! . . . km!
bk1n1

. . . bkmnm
,

where the sum runs over all m,n1, . . . , nm, k1, . . . , km ∈ N satisfying the equation n1k1 +
. . .+ nmkm = n with n1 < . . . < nm.
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Table 1.

n cn an n cn an

0 1.2247448713915900 1.0000000000000000 16 0.0000035796625374 0.0000277881868848

1 0.0000000000000000 1.2247448713915900 17 0.0000000000000000 0.0000125869403043

2 0.2041241452319310 0.7500000000000000 18 -0.0000003602232440 0.0000056387449858

3 0.0000000000000000 0.3742275995918740 19 0.0000000000000000 0.0000024442987887

4 0.0850517271799714 0.1770833333333330 20 -0.0000002793002863 0.0000010450469782

5 0.0000000000000000 0.0910053480825694 21 0.0000000000000000 0.0000004327886893

6 0.0198454030086600 0.0486689814814815 22 -0.0000000039576999 0.0000001772501339

7 0.0000000000000000 0.0256268954157747 23 0.0000000000000000 0.0000000741299381

8 0.0022444205783604 0.0132621321097884 24 0.0000000200040961 0.0000000312378594

9 0.0000000000000000 0.0064852176354488 25 0.0000000000000000 0.0000000139531465

10 -0.0000511885395065 0.0031089507321061 26 0.0000000025459408 0.0000000063022832

11 0.0000000000000000 0.0014364173446264 27 0.0000000000000000 0.0000000027839502

12 -0.0000246098747627 0.0006538262527318 28 -0.0000000012350587 0.0000000012100920

13 0.0000000000000000 0.0002972040963190 29 0.0000000000000000 0.0000000004632152

14 0.0000117893019101 0.0001337370698301 30 -0.0000000003410592 0.0000000001648688

15 0.0000000000000000 0.0000612246949009 - - -

Let us notice that one can easily extend the above method to any series with b0 ∈ C\{0},
because (αf)−1 = α−1f−1 for any α ∈ C, α 6= 0.

6.3. Approximate solution to a differential equation by the general J.C.P.Miller

formula. Let us consider the following initial value problem:

y′ = (1 +
1

2
ex

2

)1/2y, y(0) = 1.

We are going to find an ε-solution to this problem with help of formal power series. To
this end we treat y as a formal power series of an indeterminate x. Let y(x) =

∑∞
n=0 anx

n.
We are interested in determining the coefficients an, n ∈ N0, so that the above initial value
problem would be satisfied. Hence the initial value problem treated as a formal differential
initial value problem gives, by the initial condition, a0 = 1, and

∞∑

n=0

(n+ 1)an+1x
n =

(

1 +
∞∑

n=0

1

2 · n!
x2n

)1/2

︸ ︷︷ ︸

F (x)

∞∑

n=0

anx
n. (⋆)

Notice that F (x) is the composition of B1/2 with f(x) := 1
2
ex

2

=
∑∞

n=0
1

2·n!
x2n and since

f(0) = 1/2 we can apply the generalized J.C.P. Miller formula Theorem 3.2 to compute
coefficients of F (x) =

∑∞
n=0 cnx

n. Then the right hand side is the product of two formal
power series F (x) and y(x) and we obtain the coefficients of y(x) by equating corresponding
coefficients of y′(x) and F (x)y(x). Thus,

a0 = 1, a1 = c0, a2 =
1

2
(a0c1 + a1c0), . . . , an =

1

n

n−1∑

i=0

aicn−1

Values of coefficients cn and an are presented in Table 1. Let us now fix the degree n = 20

of ε-solution: y20(x) :=
∑20

n=0 anx
n, x ∈ [0, 1]. Table 2 contains values of y20 and differences
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Table 2.

x y20(x) Difference at x x y20(x) Difference at x

0 1.00000000000000 0.0000000000000000 0.4 1.63956586946161 -0.0000000000001172

0.01 1.01232282472150 0.0000000000000000 0.41 1.66036516236899 -0.0000000000001958

0.02 1.02479791987633 0.0000000000000000 0.42 1.68146063815948 -0.0000000000003162

. . . . . . . . . 0.43 1.70285790196189 -0.0000000000005080

0.33 1.50182164480892 -0.0000000000000020 0.32 1.48320605611964 0.0000000000000000

0.44 1.72456270488050 -0.0000000000008091 0.45 1.74658094894847 -0.0000000000012723

0.34 1.52069329521405 -0.0000000000000044 0.46 1.76891869227989 -0.0000000000019833

0.35 1.53982560178267 -0.0000000000000075 0.47 1.79158215442945 -0.0000000000030655

0.36 1.55922327151806 -0.0000000000000144 0.48 1.81457772196906 -0.0000000000046909

0.37 1.57889112761902 -0.0000000000000246 0.49 1.83791195429131 -0.0000000000071201

0.38 1.59883411326048 -0.0000000000000417 0.5 1.86159158965003 -0.0000000000107172

0.39 1.61905729552070 -0.0000000000000706 - - -

between the left–hand and right–hand sides of our initial value problem (with y replaced
with y20) at grid points of [0, 1], grid size is 0.01.
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