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1 Introduction

In ad hoc wireless networks, no base stations exist and every mobile node acts
as both a router and a host. Nodes in an ad hoc network can communicate
with each other at any time, subject to connectivity limitations. Currently,
most ad hoc networks do not have any provisions for restricting or regulating
the traffic that flows through a node, i.e., they do not implement any network
access control. This leaves these networks vulnerable to resource consumption
attacks where a malicious node injects packets into the network with the
goal of depleting the resources of the nodes relaying the packets. For example,
since mobile hosts are usually battery powered, they are susceptible to battery
exhaustion attacks [36].

A resource consumption attack can be especially effective if a packet injected
into an ad hoc network by a malicious node ends up being multicast or broad-
cast throughout the network. For example, the operation of most routing pro-
tocols involves steps in which a control packet, e.g., a route request packet,
is broadcast to all nodes. Moreover, many applications for ad hoc networks
are group-oriented and involve collaborative computing; thus multicast com-
munication is likely to increase in importance as multicast routing protocols
for ad hoc networks become more mature. Compared to the channel jamming
attack, which only affects a relative small area around the malicious node and
could be addressed by techniques such as spread spectrum, channel surfing, or
spatial retreat [40], the packet injection attack using broadcast messages may
be more favorable to an attacker due to its network-wide harm.

Most of the routing protocols [19,29,28 34 39] that have been proposed for
ad hoc networks do not address the issue of network access control. In these
protocols, a node trusts that its neighbors will forward packets for it and
also assumes that the packets it receives from its neighbors are authentic.
This naive trust model allows a malicious node to inject erroneous routing
requests or routing updates into a network, which can paralyze the entire
network. To prevent such attacks, recently researchers have proposed several
security extensions [8,13,14,41] to the existing routing protocols, which include
mechanisms for authenticating the routing control packets in the network.

To the best of our knowledge, however, none of the proposed secure routing
protocols include any provisions for authenticating data packets. One reason
for this is that data packets are typically unicast; therefore, simply restricting
the number of hops a packet can take will limit the effectiveness of a resource
consumption attack. However, this argument does not apply to multicast data
packets. As such, we believe that it is important to provide network access
control for both data and control packets.



To provide full network access control, every node has to verify the authenticity
of every packet it receives before forwarding the packet. The simplest solution
is to employ a network-wide key ! shared by all nodes. Every node uses this
shared key to compute message authentication codes (MACs) on the packets
it transmits and verify packets from its neighbors. Despite its simplicity, this
scheme has several disadvantages. First, an attacker only needs to compromise
one node to break the security of the system. Second, if the global key is
divulged, it is difficult to identify the compromised node. A compromised
node may launch various attacks impersonating other nodes due to the lack
of source authentication. Third, it is expensive to recover from a compromise
because it usually involves a group key update process. In practice, a system
administrator might have to manually reset the group key in the configuration
of every user’s wireless NIC card.

A well known technique for providing strong source authentication is to at-
tach a digital signature to a packet. However, signing every packet can be
prohibitively expensive since the computational capacity and battery power
of mobile nodes are quite constrained. Therefore, the challenge is to design a
lightweight authentication protocol for the more vulnerable yet more resource-
constrained environment of an ad hoc network.

In this paper, we present LHAP, a scalable and efficient authentication pro-
tocol for ad hoc networks. To prevent resource consumption attacks, LHAP
implements lightweight hop-by-hop authentication, i.e., intermediate nodes
authenticate all the packets they receive before forwarding them. Using LHAP,
a node joining an ad hoc network only needs to perform some inexpensive au-
thentication operations to bootstrap a trust relationship with its neighbors.
It then switches to a very lightweight protocol for subsequent traffic authen-
tications.

LHAP is transparent to and independent of the network routing protocols. It
resides between the data link layer and the network layer, providing a layer of
protection that can prevent or thwart many attacks, including attacks on ad
hoc routing protocols made possible by the lack of support for packet authen-
tication in these protocols. LHAP can be seamlessly integrated with secure
routing protocols to provide a more secure ad hoc network. Our detailed per-
formance evaluation shows that LHAP is a very lightweight protocol. Further,
LHAP allows a tradeoff between security and performance, and can therefore
be configured to provide the desired levels of security and performance for a
specific application or network.

The rest of this paper is organized as follows. In Section 3, we provide some
background on one way hash chains and TESLA that are needed for under-

1A network-wide key is used in the WEP algorithm in 802.11 standard [18] for
confidentiality.



standing the techniques used in our protocol. We present the details of the
LHAP protocol in Section 4, and analyze its security in Section 5. In Sec-
tion 6, we analyze the performance of our protocol, and show several possible
optimizations for its real deployment in Section 7. Finally, we discuss related
work in Section 8, and present our conclusions in Section 9.

2 Assumptions and Design Goals

This section describes our network, node, and security assumptions as well as
our design goals.

2.1 Assumptions

Network and Node Assumptions First, we assume that the wireless net-
work links are bidirectional, i.e., if node A can hear node B, node B can
also hear node A. This is generally true when the nodes use omnidirectional
antennas and have similar power levels. Second, we assume loose time synchro-
nization among all the nodes in a network such that the difference between any
two nodes does not exceed a certain value. This is because we use TESLA for
providing strong broadcast source authentication and TESLA requires loose
time synchronization.

Security Assumptions We assume that each node possesses a public key
certificate issued by a trusted certificate authority (CA) as well as the au-
thenticated public key of the CA. The distribution of certificates and keys can
be done in any reliable way. LHAP relies on these public keys to bootstrap
trust among the nodes in an ad hoc network. We believe this is a reasonable
assumption if all the nodes in the network belong to the same autonomous
system or administrative unit (e.g., a university). An advantage of using pub-
lic key certificates is scalability with respect to storage. Unlike a symmetric
key based scheme where every node needs to be preloaded with N — 1 pair-
wise keys shared with N — 1 other nodes for a network size of N, in a public
key based scheme, a node only needs to remember its own certificate and the
public key of the CA, irrespective of the network size N. However, we will not
discuss the issue of certificate management and revocation; several previous
works [6,17] have studied this issue.

Attack Models We consider resource consumption attacks in which an at-
tacker injects a huge number of spurious packets into an ad hoc network with
the goal of depleting the resources of the nodes that relay the packets. In ad-
dition, these packets could introduce severe wireless channel contention and



network congestion. The attacker could be an outsider (unauthorized) node
that does not possess a valid credential, or an insider (authorized) node that
possesses a valid credential. An insider node may launches resource consump-
tion attacks because it has been compromised or it is malicious; we do not
distinguish between these two cases. The attacker may impersonate another
node by inserting that node’s id in the source id field of the packets it is inject-
ing. The packets could be unicast packets, local (one-hop) broadcast packets,
or network-wide broadcast packets. Clearly, the attack is the most effective if
the injected packets are flooded in the entire network. To achieve its goals,
an attacker may eavesdrop on other nodes, reorder or drop packets, replay
packets, or modify overheard packets and re-inject them into network.

Note that we do not address attacks against the physical layer and the me-
dia access control layer. Techniques such as spread spectrum [33], frequency
hopping, or spatial retreat [40] can be employed to prevent physical jamming
attacks if necessary. Cardenas et al [5] and Gupta et al [10] have studied tech-
niques for detecting and preventing media access control layer attacks. Note
that an attacker does not necessarily favor these lower layer attacks over the
resource consumption attacks addressed by LHAP. A lower layer attack may
jam the channel or interrupt the communications in a small area, whereas in a
resource consumption attack an attacker may inject one spurious broadcast or
multicast packet which is replicated throughout the network, thus consuming
the energy of all the nodes in the network.

2.2 Design Goals

Generally, there are three approaches for dealing with security attacks: preven-
tion, detection, and reaction. Prevention aims at thwarting security breaches
from occurring in the first place, whereas the other two approaches are nec-
essary when prevention fails. Ideally, a defense system integrates all these ap-
proaches, but the cost of such a system may be too expensive for the low-end
nodes under consideration. As such, in defending against resource consump-
tion attacks, we mainly take the prevention approach.

The main objective of our protocol is to prevent outsider nodes from launching
resource consumption attacks. A secondary goal of our protocol is to provide a
mechanism that helps identify insider attackers, thus deterring insider attacks.
We note, however, that preventing insider attacks is a very difficult problem
that is outside the scope of this paper.

To prevent resource consumption attacks, it is essential that a node is able to
verify the authenticity of every packet received from other nodes. As a result,
the protocol should meet the following requirements:



Efficiency The protocol must be very resource efficient since every packet
will need to be authenticated; otherwise, the amount of resources it consumes
may be equivalent to that caused by resource consumption attacks. Although
security does not come for free, the protocol should incur as little overhead
as possible. More specifically, computation-intensive operations such as those
based on public key techniques should be minimized, if they cannot be avoided
altogether. Since packet transmissions result in the largest contribution to the
energy expenditure of a wireless node, the protocol should not incur large
bandwidth overhead.

Scalability The performance of the protocol, in terms of computational and
communication cost, should not degrade with the network size. The scheme
should not require every node to have the global knowledge of a network; for
example, requiring that a node shares a pairwise key with every other node in
the network.

Immediate Authentication The protocol should provide immediate au-
thentication, i.e., there should be no delay in authenticating a packet that is
received; otherwise, the latency of packet delivery will be unacceptably high
in a multi-hop communication setting and a node might have to dedicate a
large memory space for buffering those temporarily unverifiable packets.

Transparency It is very undesirable that the deployment of a protocol re-
quires modification or redesign of other protocols in the protocol stack. There-
fore, the protocol should work transparently with other protocols, i.e., the
protocol can be turned on or turned off without affecting the functionalities
of other protocols such as routing protocols or application layer protocols.

Independence The protocol should be independent of the routing protocol.
It is possible to design a specific and more efficient network access control pro-
tocol that works with a specific routing protocol; however, this would require
the design of a new customized protocol for every routing protocol, which is
clearly undesirable.

LHAP achieves all these design goals. Note that our goal is not to design
another secure routing protocol. Instead, our protocol and a secure routing
protocol are complementary to each other, and they could be employed at the
same time to make a network stronger against various security attacks.

3 Background

LHAP uses one-way key chains [22] for traffic authentication and TESLA [31,30]
for bootstrapping trust. We briefly review these techniques in this section.



3.1  One-way Hash Chain

Since its first use by Lamport [22] for password authentication, one-way key
chain has been widely used in cryptography. A one-way key chain is a chain
of keys generated through repeatedly applying a one-way hash function on a
random number. For instance, if a node wants to generate a key chain of size
N, it first randomly chooses a key, say K(INV), then computes K(N — 1) =
F(K(N)), K(N —2) = F(K(N — 1)),..., repeatedly until it gets K(0) =
F(K(1)). Here F' is a cryptographically secure hash function with the one-
way property, that is, if y = F(x), it is computationally infeasible to compute
x given y and F. As such, given K (i), any others can compute K(i — 1),
K(i —2),....,K(0) independently, but they cannot compute any keys in K (i +
1),K(i+2),..,K(N).

To use a one-way key chain for authentication, a sender first signs the last value
(called the commitment) in the chain, i.e., K(0) above, with its private key
so that anybody who knows its public key can verify the signature and hence
the authenticity of K(0). Then the sender discloses keys in the chain in an
order reverse to that of its generation. A receiver can verify K (j) by checking
if K(j —1)= F(K(j)), if it has K(j — 1). Furthermore, if a receiver did not
receive K(j — 1) and the last key it has verified is K (i), where i < j — 1,
it can still verify K(j) by checking if FV=%(K(j)) = K(i). This property is
very useful because it allows the authentication scheme to work in the event
of packet losses.

3.2 TESLA

TESLA [31] is a broadcast authentication scheme that uses one-way key
chain along with message authentication code (MAC). In the basic scheme
of TESLA, a sender uses a key K from its key chain to compute a MAC over
packet P(i), and then attaches the MAC to P(i). A receiver cannot verify
packet P(7) immediately. Indeed, the key K is disclosed in the next packet
P(i+ 1), which allows the receivers to verify the authenticity of K and hence
the MAC of P(i). If both K and the MAC are correct, and if the packet P(7)
is guaranteed to be received before P(i+ 1) was sent, the receivers will accept
P(i).

From this description, we can see clearly that the key security issue in TESLA
is a receiver’s ability to determine the sending time of each packet. This is
called security condition in TESLA. TESLA solves this issue through periodi-
cal key disclosure and loose time synchronization. Specifically, time is divided
into many equal length intervals. In each time interval the sender discloses



one MAC key from its key chain. For example, if the start time is s, the time
interval is T', the sender can publish K (i) at time s+ i * T'. The receivers are
required to be loosely synchronized with the sender.

One drawback of the original TESLA protocol is that a receiver cannot authen-
ticate a packet immediately. Its variant [30] enables immediate authentication
in the receiver side, but it requires packet buffering on the sender side.

4 A Lightweight Hop-by-hop Authentication Protocol (LHAP)

The resource constraints of wireless nodes effectively preclude the use of dig-
ital signatures based on public key cryptography for signing each and every
packet. Therefore, we seek solutions that use symmetric key techniques for
packet authentication. As described in Section 3, TESLA is an efficient source
authentication protocol that provides strong security guarantees. However, it
does not provide immediate packet authentication to the nodes that relay
packets.

The simplest approach to achieve our design goal is to employ a network-wide
key shared by all nodes. Every node uses this shared key to compute MACs 2
on the packets it sends. Nodes receiving these packets can use the same key
to verify the MACs and hence the authenticity of the packets. Despite its
simplicity, this scheme has several disadvantages, as discussed in Section 1.

An approach that avoids the security issues in a network-wide key based
scheme is one based on pairwise key sharing. Specifically, a node attaches
to every packet multiple MACs, one for each of its immediate neighbors. Each
MAC is computed from the pairwise key shared with a neighbor node. Since
the number of MACs attached to each packet is equal to the number of immedi-
ate neighbors of the transmitting node, this approach becomes very inefficient
for networks with high node density.

Therefore, as a tradeoff between the performance and the security of these
two approaches, our network access control protocol is based on a localized
broadcast authentication mechanism. In the following section, we will discuss
the protocol and its operation in detail.

2 In this paper, we use MAC to denote message authentication code, not medium
access control
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Fig. 1. The protocol stack with LHAP between the network layer and the data link
layer

4.1 LHAP Overview

4.1.1 The Architecture

To achieve transparency and independence, we design LHAP as an indepen-
dent layer, as depicted in Figure 1. LHAP resides between the data link layer
and the network layer. For every traffic packet received from the network
layer, LHAP adds its own header, which includes its node id, a packet type
field indicating it is a traffic packet, and an authentication tag. Both routing
control packets and application data packets are referred to as traffic packet
because LHAP does not distinguish between them. After that, LHAP passes
the packet to the data link layer. LHAP also generates its own control packets
for establishing and maintaining trust relationship with neighboring nodes.

For a received traffic packet, LHAP verifies its authenticity based on the au-
thentication tag in the LHAP header of the packet. If the packet is valid,
LHAP removes the LHAP header and then passes the packet to the network
layer; otherwise, it discards the packet. For a received LHAP control packet,
LHAP processes the packet and then discards it. That is, a LHAP control
packet is not passed to the network layer. This design has the advantage that
LHAP can be turned on or off without affecting the operations of the other
layers.

LHAP provides a protection mechanism that can prevent or thwart many
attacks from happening. In LHAP, every node in the network verifies every
packet it receives from a neighbor before forwarding it (if it is not the des-
tination node). Packets from unauthorized nodes are dropped immediately,
thus preventing them from propagating through the network. A packet that
needs multiple hops before reaching its destination is thus authenticated by
each node on its path. We refer to this as hop-by-hop authentication.



LHAP’s efficiency gains over traditional authentication protocols are derived
from two techniques: (i) lightweight packet authentication, and (ii) lightweight
trust management. Since all packets are authenticated on every hop on their
paths, it is important that the packet authentication technique used by LHAP
be as inexpensive as possible. LHAP employs a packet authentication tech-
nique based on the use of one-way hash chains. Secondly, LHAP uses TESLA
to reduce the number of public key operations for bootstrapping trust be-
tween nodes, and also use TESLA for maintaining the trust between nodes.
We briefly discuss both these issues below before discussing the operations of
the protocol in more detail.

Lightweight Traffic Authentication In LHAP, each node generates a one-
way key chain that is used for authenticating traffic to its immediate neighbors.
We use the term TRAFFIC key to refer to the keys in a one-way key chain.
Every neighbor of a node obtains an authenticated TRAFFIC key in this
node’s TRAFFIC key chain when it establishes trust relationship with the
node for the first time. When transmitting a packet, a node appends a new
TRAFFIC key to the packet. All the neighboring nodes receiving this packet
can verify the authenticity of this packet by verifying the attached TRAFFIC
key.

Trust Management Nodes can bootstrap their trust relationship, i.e., ex-
change authentic TRAFFIC keys, by using a public key based technique. A
simple approach that can be used is one in which a node signs its most re-
cently released TRAFFIC key and sends it to every new neighbor. However,
this approach does not scale well for resource-constrained mobile nodes which
may encounter a large number of nodes during their lifetime. To address this
issue, LHAP uses TESLA to reduce the number of signature operations to one.
Specifically, in LHAP every node only uses digital signatures to bootstrap a
TESLA key chain, and TESLA keys are then used to provide authenticated
TRAFFIC keys.

To maintain its trust relationships, a node periodically announces its most
recently released TRAFFIC keys, authenticated by its TESLA keys. Its neigh-
bors will drop any received packets that are authenticated by an old TRAFFIC
key. This thwarts replay attacks by both outsider and insider nodes. We call
this periodic message a KEYUPDATE message. If a node does not receive
a valid KEYUPDATE message from a neighbor within a certain number of
TESLA intervals, it infers that that neighbor is most likely out of its transmis-
sion range. Therefore, it temporarily terminates its trust with this neighbor.
When the two nodes come within each other’s transmission range again in the
future, they reestablish their trust relationship by exchanging KEY UPDATE
messages.

10



4.2 Notation

We use the following notation to describe security protocols and cryptography
operations in this paper:

e A, B are principals, the identities of mobile nodes.

e Certy is node A’s public-key certificate issued by a trusted CA.

o Signa(M) denotes the digital signature of message M, signed with node
A’s private key. Note that M is also included in the signature.

e M1|M2 denotes the concatenation of message M1 and M2.

o MAC(K, M) denotes the computation of MAC over message M with key
K.

o K1 (i) denotes node A’s i’th key in its TESLA key chain, while K% (i) de-
notes its i’th key in its TRAFFIC key chain.

4.3 LHAP in Detail

LHAP consists of two security building blocks: traffic authentication and trust
management.

4.8.1 Traffic Authentication

Since LHAP authenticates all traffic packets, we must use a computation-
ally inexpensive technique that can provide immediate authentication. Like
TESLA, the traffic authentication technique used by LHAP is based upon the
use of one-way key chains. Unlike TESLA, however, our authentication tech-
nique does not use periodic and delayed key disclosure. Delayed authentication
(as in TESLA) is not appropriate for LHAP since a packet would be delayed
at each node in the path from the source to the destination. For example, a
traffic packet sent to another node ten hops away will take at least ten seconds
if we use TESLA for authentication and the key disclosure period in TESLA
is one second. Moreover, each node has to buffer the received traffic packets
until they are verifiable, this may require a large memory space at every node.
We note that the variant of TESLA [30] that switches the buffer overhead to
senders cannot be employed to address this problem because every forwarding
node in an ad hoc network is both a sender and a receiver.

Every node uses TRAFFIC keys for authenticating the traffic packets origi-

nating from itself or received from its neighbors. Consider a node A that wants
to broadcast a message M. Let K4 (i) be its next TRAFFIC key. It sends the

11



uv < ux + Xv

Fig. 2. Triangular Inequality

following packet:

A—s % M, K (D). (1)

Every receiving node verifies the authenticity of this packet by verifying the
TRAFFIC key K% (i), based on the most recent TRAFFIC key, K% (j5),7 < i,
that it received from node A. It then replaces K% (j) with K% () in its record.

In LHAP, a node only authenticates traffic packets to its immediate neighbors;
thus it is very difficult for an attacker to launch replay attacks. This is due to
the triangular inequality that applies to the distances of the involved nodes.
When a node sends a packet, a neighbor will normally receive the packet
directly before it receives a copy forwarded by a third node. Fig. 2 illustrates
this property. When node u sends a packet, node v will receive the packet
before it receives a forwarded copy from node z because |uv| < |uz| + |zv]|.
We will discuss several security issues related to this property in Section 5.

Using TRAFFIC keys for traffic authentication has several performance ad-
vantages. First, it enables immediate verification of traffic packets. Second,
unlike TESLA keys, TRAFFIC keys are not disclosed periodically. Disclosing
keys periodically wastes TRAFFIC keys when a node has no packets to trans-
mit. Indeed, in LHAP the rate at which a node consumes its TRAFFIC keys
is determined by the actual traffic rate. Third, it only requires computing a
hash over a key of a small fixed size (e.g., 8 bytes); thus it is more computa-
tionally efficient than computing HMAC over the entire message. As a tradeoft
between security and performance, on the other hand, our scheme does not
provide the same level of security as TESLA.

4.3.2  Trust Management

Trust management includes trust bootstrapping, trust maintenance and trust
termination.

Trust Bootstrapping When a node joins an ad hoc network, it first com-

12



Fig. 3. A scenario when node A joins the ad hoc network. B, C, D, E are its current
neighbors.

putes two key chains: a TRAFFIC key chain and a TESLA key chain. Then it
signs the commitments of these key chains, and broadcasts them to its neigh-
bors. Fig. 3 shows a scenario where node A is joining a network where its
neighbors are B,C,D, and E. A broadcasts a JOIN message to its neighbors:

Certa, Signa{ A|K(0)| K4 (0)|T4(0)|T4(0)}, (2)

where 7% (0) and T (0) are the starting times for its TESLA and TRAFFIC
key chains, respectively. Each neighbor first verifies node A’s certificate using
the CA’s public key, then uses node A’s public key in the certificate to verify
the signature in the message. It records the commitments of node A’s key
chains in its TRUST table and their starting times if all the verifications
succeed. To authenticate itself to node A, each of its neighbors will send an
ACK message to A presenting their credentials. For example, node B sends
the following ACK message to A:

Certp, Signp{ B|K(0)| Ky (0)|T5(0)|T5 (0)},
K5 (), Kp(i = 1), MAC(K (i), K5 (j))- (3)

Note that here node B does not compute a new digital signature because the
included signature was generated when node B first joined the network. K% ()
and K}(i—1) are node B’s most recently released TRAFFIC key and TESLA
key, respectively, and K%(i) is node B’s next TESLA key to be released.

Upon receiving this message, node A first verifies the signature in the same
way as its neighbors did earlier to verify its JOIN message. Then it records
node B’s key chain commitments and their starting times in its TRUST table.
Based on this information, node A can verify K5(j) and K%5(i—1) using a hash
function. An attacker cannot forge arbitrary keys to deceive node A, although
node A’s computational resources will be expended while verifying false keys.
In Section 7 we discuss a Merkle hash tree based scheme [26] that speeds up
the verification process, thus mitigating this attack. Also, an attacker gains
no security privileges by replaying any older keys that node B had previously

13



released.

The MAC in the message certifies node B’s latest TRAFFIC key so that node
A will not be deceived by forged packets that contain older TRAFFIC keys.
However, node A cannot verify the MAC immediately because K} (i) is not
known yet. After node B discloses K% (i) (on average half a TESLA interval
later), node A can verify the MAC and then updates K%(0) and K%(0) to
KL(i) and KE(j), respectively. After that, node A starts to forward valid
traffic packets from node B.

Trust Maintenance Periodically, each node broadcasts a KEYUPDATE
message to its immediate neighbors, which contains its most recently dis-
closed TRAFFIC key. The KEYUPDATE message is authenticated with the
next TESLA key in its key chain. As an example, the KEYUPDATE message
node A sends is

A= K (i = 1), K5 (5), MAC(K 4 (i), K4 (7). (4)

We can see that this message is in the same format as an ACK message except
that it does not contain a certificate and a signature. Therefore, the motivation
for constructing this message is clear.

In its TRUST table, a node has one or more (from,to) pairs for every node
that it has established a trust relationship with, which record the time periods
during which they were neighbors. Every node reports its node encounter
information to a central authority after it leaves the ad hoc network. If multiple
nodes roaming in different locations of the network assume the same identity
(of a compromised node), the trusted server may be able to identify this node
after analyzing the collected encounter information. When a node receives
a KEYUPDATE message from a neighbor, it sets the latest to field to the
current time if it has previously received a KEYUPDATE message from that
neighbor one TESLA interval ago; otherwise it adds a new (from,to) pair
with both from and to being the current time.

Trust Termination In LHAP, there are two scenarios under which the trust
relationship between nodes will be terminated. First, when a compromised
node is detected and announced, all the nodes will terminate their trust re-
lationship with that node permanently. Second, if a node does not receive a
valid KEYUPDATE message from a neighbor for more than one TESLA in-
terval, it will terminate its trust relationship with this neighbor temporarily.
As a result, it will not forward any packets for this neighbor until it receives
a most recent KEYUPDATE message from this neighbor. The motivation for
this approach is to ensure that a node knows the most recent TRAFFIC key
of a neighbor in order to detect forged packets that reuse older TRAFFIC
keys.

14



Fig. 4. Single outsider attack. P1 is a malicious node. The dashed line indicates
node P1’s movement.

5 Security Analysis

In this section, we discuss several attacks against LHAP. These attacks are
against traffic key chains, not against TESLA key chains, because TESLA [30,31]
has been shown to be secure given loose time synchronization in the network.

5.1 Outsider Attacks

Outsider attacks are attacks launched by nodes that do not possess a valid
certificate. We discuss two types of outsider attacks.

5.1.1 Single Outsider Attack

Fig. 3 showed a situation where node FE received node A’s JOIN message
when node A joined the network. From the JOIN message, node E obtained
the commitments of node A’s key chains. Fig. 4 depicts a scenario where node
E has moved out of node A’s transmission range for longer than one TESLA
interval. During this time period, node A has disclosed several TESLA keys
and TRAFFIC keys. Assume that an outside attacker, node P;, eavesdropped
on node A’s transmissions and recorded these keys. It then moves to the neigh-
borhood of node E and sends spurious packets to node E while impersonating
node A. For instance, suppose node A has broadcast a packet with content M
and TRAFFIC key K4 (i). Node P, changes the content M to M’ and sends
it to node F. Node F might not be able to detect this attack because it has
not seen this TRAFFIC key yet.

The trust termination phase in LHAP was designed to thwart this attack. Since
node E has not heard from node A for longer than one TESLA interval, it will
not forward any traffic packets for node A until it receives a valid KEYUP-
DATE message. Since TESLA keys are disclosed periodically, node E knows
which TESLA keys node A has released. Therefore, node P, cannot reuse the
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Fig. 5. Hidden terminal attacks. P1, P2,P3 are malicious nodes.

TESLA keys that node A has disclosed to forge a KEYUPDATE message.
Node P; cannot forge a valid KEYUPDATE message using any TESLA keys
that node A has not released yet due to the one-way property of a hash func-
tion. As such, we can see that in the worst case P, can impersonate node A for
one TESLA interval, which can happen when node F moves out of node A’s
transmission range just after it receives a KEYUPDATE message from A. The
number of forged packets is upper bounded by the number of packets node

A has transmitted during this TESLA interval, because an attacker cannot
derive the TRAFFIC keys that have not been disclosed by node A yet.

5.1.2 Collaborative Outsider Attack

A collaborative outsider attack is launched by multiple colluding outsider
nodes. We discuss several such attacks below.

Hidden Terminal Attacks Hidden-terminal problem [37] is a unique prob-
lem in wireless networks. IEEE 802.11 solves the problem using CSMA/CD
with ACKs and optional RT'S/CTS control packets. For this scheme to work,
however, it is assumed that contending nodes cooperate. Figure 5 shows an
attack that tries to disrupt this cooperation, which we call a hidden-terminal
attack. Note that this attack also applies to the triangular inequality property
used in LHAP.

Suppose that node A is broadcasting a traffic packet that includes a TRAFFIC
key K% (j) for packet authentication. To attack node F, a malicious node Py
transmits a packet to node E at the same time, which causes node E to drop
both packets. Next node P; sends K (j) to node P,. Now node P, can send an
erroneous packet, which includes K% (), to node E to impersonate node A. If
this packet arrives at E before E receives a retransmission from node A, node
E will accept the forged packet while dropping the retransmitted authentic
packet from node A.

It is not easy for this attack to succeed. Since the packet retransmission interval
is very small (tens of microseconds), the attackers have to cause continuous
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Fig. 6. Wormhole and rushing attacks. P1, P2, P3 are malicious nodes.

collisions on E to prevent a retransmitted packet from being received prior to
a forged one. This can be easily detected because the hidden-terminal problem
does not happen that frequently in a network where RTS/CTS control packets
are used. In addition, impersonating a node within a range of two hops is very
likely to be detected by other neighboring nodes.

Wormbhole and Rushing Attacks Wormhole attacks [15] and rushing at-
tacks [16] are also launched by multiple colluding nodes. Fig. 6 shows such an
attack in which three attacker nodes P;, P,, and P; collude to tunnel packets
between node A and node E with the goal of convincing A and E that they
are still neighbors. More specifically, P; forwards every message it overhears
from node A, including KEYUPDATE messages and traffic packets, towards
node F through P, and Pj3. P3 retransmits the KEYUPDATE messages to
node F, but modifies the traffic packets to deceive node E. Similarly, Ps for-
wards every message from node F towards node A through P; and P». Due to
time synchronization errors, if nodes A and F receive replayed KEYUPDATE
messages from each other without a significant time delay, they will forward
those forged traffic packets.

To prevent these attacks, we need to employ some more sophisticated tech-
niques [15,16] that require the deployment of GPS devices or tight time syn-
chronization. In general, LHAP is vulnerable to these attacks because it does
not place these stringent requirements on the nodes and the networks.

Since our goal is to prevent resource consumption attacks, we stress that from
resource consumption perspective, an attacker does not benefit much from
its attack when the hijacked packets are multicast or broadcast packets. An
attacker can increase the size of a hijacked packet, but it cannot inject extra
packets. Therefore, the hijacked packets are more likely to be unicast packets.
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5.2  Insider Attacks

Insider attacks are attacks launched by one or more compromised nodes that
possess valid certificates. An insider node could try to inject spurious packets
while impersonating other nodes or in its own name. Multiple insider could
also collaborate to launch more sophisticated attacks. In general, there is no
way to prevent insider attacks if the compromised node cannot be detected,
and it is also very difficult to detect insider attacks, especially by multiple
colluding insider nodes.

LHAP cannot prevent an insider node from maliciously injecting packets into
a network, but it can restrict an insider node from impersonating other nodes
due to our trust management mechanism. Moreover, LHAP can help detect
some insider attacks and identify the malicious insider nodes. This is due to the
neighbor encounter time periods every node records in its trust maintenance
phase, which serves as encounter evidence. A node submits this information to
a central authority off-line. From this encounter information reported by all or
a fraction of users, the authority might detect some inconsistencies and then
identify the malicious nodes. Since compromise detection is an independent
research topic, we will not discuss it in detail in this paper.

6 Performance Evaluation

In this section, we evaluate the performance overhead of LHAP. The ability
of LHAP to filter unauthenticated data packets and prevent other security
attacks has been analyzed in Section 5, so we will not examine this ability
through simulation. The overall goal of our experiments is to measure the
performance overhead of adding a network access control protocol when the
network is not under attack. Specifically, we want to answer such questions
as the following. How much bandwidth overhead does LHAP introduce? How
many authentic packets does LHAP drop? What is the impact of LHAP on
the upper layer protocols?

6.1 Performance Analysis

We consider the following performance metrics in evaluating LHAP.

Computational Overhead The numbers and types of cryptographic oper-
ations a node has to compute in a time unit.
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Latency The time delay introduced by LHAP during the forwarding of a
packet and the impact on the other network layers.

Traffic Delivery Ratio v 7 denotes the fraction of authenticated traffic
packets that a node accepts among all the authenticated traffic packets it has
received from its neighbors. Clearly, 1 — « is the fraction of authenticated
packets discarded by a node in error. The larger 7, the smaller impact of
LHAP on the upper layer protocols; v = 1 means there is no impact.

Traffic Overhead () We define traffic overhead €2 as the bandwidth overhead
(in bytes per second per node) for transmitting LHAP control packets.

In the rest of this section, we evaluate the computational overhead and la-
tency through detailed analysis and evaluate traffic delivery ratio and traffic
overhead through detailed simulations.

6.2 Simulation Methodology

We use the GloMoSim 2.0 simulator [11]. The default scenario considered in
our simulations is as follows. The physical layer uses the two-ray ground reflec-
tion model [35] as the radio propagation model. The medium access control
layer uses the IEEE 802.11 Distributed Coordination Function (DCF) [18]. We
use the random waypoint mobility model [19]. Each node moves at a speed
uniformly distributed between 0 and v,,,, towards a location randomly se-
lected in a square environment space of 2000m x 2000m. When it reaches the
destination, it waits for a pause time and then moves towards a new location.
Each node joins the network at a time uniformly distributed between the sim-
ulation time 0 and 5s. The number of nodes is 100. Each simulation runs for
900 seconds of simulated time.

To demonstrate that LHAP is independent of the routing protocol, we insert
LHAP beneath three different routing protocols — the unicast routing protocols
DSR [19] and AODV [34] and the multicast routing protocol ODMRP [25].
Since our goal is not to evaluate these routing protocols, we simply use the
default parameters for these protocols in GloMoSim.

We generate different scenario files with varying traffic patterns. More specif-
ically, a source node generates and transmits constant bit rate (CBR) data
packets to a randomly picked node. The size of a CBR packet is 512 bytes. The
intervals between two CBR packets vary from 0.1s to 1.0s and the durations
of connections vary from 10s to 850s.

When the underlying routing protocol is AODV or DSR, we select 13 source-
destination pairs for unicast communication. The setting for ODMRP is a
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little bit more complex. Of 100 nodes, 13 nodes form a multicast group, and
12 nodes form another group. Each group has three CBR data sources. The
remaining 75 nodes do not belong to either of the two groups, but they can
forward packets for the group members when needed.

Table 1 lists the default parameters used in the simulation (unless otherwise
mentioned).. The values for TESLA parameters are the same as those used
in [14].

Physical Link Bandwidth 2 Mbps
Transmission range 250 m
TESLA interval 2s
Maximum time synchronization error 0.1s

Pessimistic end-to-end propagation time | 0.2 s

Hash length 10 bytes
Time for signature generation 46 ms
Time for signature verification 1 ms
Key length (including a key id) 10 bytes
Signature size (1024-bit RSA) 128 bytes

Table 1

Simulation Parameters

6.3 Performance Results

6.3.1 Computational Overhead

LHAP introduces two types of computational overhead — for traffic authenti-
cation and for trust management respectively. The computational overhead for
verifying a traffic packet is usually negligible due to the efficiency of computing
a hash function, although a node might need to compute multiple hashes to
verify a packet from a neighbor occasionally when the neighbor has recently
released several TRAFFIC keys that this node was unaware of due to packet
loss or because they were not in each other’s transmission range. Note that in
LHAP this verification cost is independent of packet size.

The computational overhead for trust management arises from multiple oper-
ations. The first operation is a digital signature generation for bootstrapping a
TESLA key chain. In LHAP, digital signature generation is the most expensive
operation, but it is only performed once. Hence, the cost is negligible when
amortized over all packets. The second operation is signature verification. A
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node verifies two signatures for every JOIN message received from a newly en-
countered neighbor. The overall verification cost is determined by the number
of nodes encountered, which in turn is determined by network size, network
density, and node velocity. The larger the network size and the network density
are, the more nodes a node will encounter. Fig. 7 shows that the number of
encountered nodes increases with node velocity. Therefore, the signature ver-
ification cost also increases with node velocity. We observe that the number
of signature verifications could be more than a hundred. However, a signature
verification is about 40 times faster than a signature generation [1]; therefore,
this computational cost is also negligible when amortized over all packets a
node receives and transmits. In addition, a node computes two hashes for ev-
ery KEYUPDATE message. This computational cost is also negligible due to
the efficiency of hash function.

6.3.2 Latency

In LHAP, a node normally verifies a received traffic packet by computing
one hash, the time for which is less than one millisecond even for handhold
PDAs [1] that have very constrained computational capability. on a AMD
Opteron 1.7 GHZ processor, a hash over 8 bytes can be computed in about
0.08 us [38].

Consider the total processing delay of a packet at one hop (node). It includes
the time spent in all the layers. The time spent in transport layer or application
layer is application dependent, which we do not know. Let us just consider the
time spent in MAC layer and routing layer and also ignore the computational
overhead, then the main processing time includes the random backoff and the
jitter time in both the routing protocol and the MAC protocol. In AODV, the
average random backoff time is 250ms and the average broadcast jitter time
is bms; in 802.11 MAC protocol, the average random backoff time is 25ms.
Thus, the delay caused by LHAP is very small in comparison to the delay
introduced in each hop.
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6.3.3  Traffic Overhead

This subsection examines the impact of node mobility and TESLA interval on
the traffic overhead. All the results are averaged over 64 independent runs.

Impact of Node Mobility Fig. 8 depicts the impact of node mobility on
traffic overhead 2. We can make four observations here. First, () increases with
node velocity v, independent of the routing protocol deployed. One reason is
that a node encounters a larger number of nodes when it moves at a higher
velocity, as shown in Fig. 7. In LHAP, a node sends an ACK packet (of size 300
bytes) to every new neighbor. Another reason is that the increase of node mo-
bility results in more control packets in the routing protocols such as AODV,
DSR, and ODMRP. LHAP authenticates every traffic packet, includes every
routing control packet in the network layer, leading to larger traffic overhead.
Since traffic overhead is application dependent, the values shown in the figure
should not be interpreted as the absolute performance of LHAP. In the case
of no traffic packets, the main traffic overhead of LHAP is a KEYUPDATE
message per TESLA interval, the overhead of which is less than 10 byte/s.

Second, the traffic overhead grows at a lower rate as node velocity increases,
because the chance that a node meets new nodes does not increase linearly
with its velocity due to the limited size of a network. The figure also shows
the traffic overhead in the case of ODMRP is larger than in AODV and DSR.
This is due to different traffic patterns used in the simulations.
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Fig. 8. The impact of node mobility on  Fig. 9. The impact of TESLA interval on
traffic overhead the control packet overhead of LHAP

Impact of TESLA Interval Fig. 9 shows that traffic overhead decreases with
TESLA interval. This is because a node sends fewer KEYUPDATE messages
when a larger TESLA interval is used.

6.3.4 Traffic Delivery Ratio

Impact of Node Mobility Two observations can be made from Fig. 10.
First, the traffic delivery ratio is close to 100%. In LHAP, a node normally
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never discards any packets from a neighbor with which it has established a
trust relationship, although it may fail to drop forged data packets under the
collusion attacks discussed in Section 5. When a node receives a packet from a
new neighbor, it immediately sends back an ACK message to that neighbor to
bootstrap their trust. Therefore, it might drop one or more packets from that
neighbor during this process. Note that in our simulations, a node immediately
drops any unverifiable packets from a new neighbor. Another strategy could
be that a node buffers these unverifiable packets temporarily until the trust
bootstrapping process is completed; thus no such packets will be dropped.
Moreover, since the first packet a node receives from a new neighbor is nor-
mally a broadcast packet (e.g. a routing request packet or a KEYUPDATE
message), dropping a few of these packets has a negligible impact on the deliv-
ery ratio of application data (i.e., the CBR data packets). In our simulations,
we did not see any evidence that this type of rare packet dropping by LHAP
reduces the data packet delivery ratio. Indeed, we found that in some cases the
data packet delivery ratio increases a little bit as a result of the rare events of
packet dropping. For example, if a node is not on the route between a source
and destination pair, its dropping of a routing request packet has no effect
at all; if it is supposed to be a node on the route, its packet dropping might
change the route, but not necessarily leading to a less reliable one.

Second, traffic delivery ratio decreases slightly with node velocity. This is
because a node receives more unverifiable packets from more new neighbors.
But again, the impact is very small. In the worst case, v is less than 0.2%.
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Fig. 10. The impact of node mobility on  Fig. 11. The impact of TESLA interval
traffic delivery ratio on the traffic delivery ratio of LHAP

Impact of TESLA Interval Fig. 11 shows that traffic delivery ratio increases
slightly with TESLA interval (node velocity is 10m/s). This is mainly due to
the trust termination process, whereby a node temporarily terminates its trust
on another node if it has not heard from that node for one TESLA interval.
Two cases may cause two nodes to temporarily lose contact in one TESLA
interval but regain contact later on. The first case is when a HELLO message is
lost; the second case is when a node moves out of the transmission range of the
other but moves in again quickly. In our simulation, a node drops packets from
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another node when their old trust has been terminated while their new trust
has not been reestablished yet. The larger the TESLA interval, the less likely
that two nodes completely lose their contact in the interval, thus the larger
the packet delivery ratio. Note that packet delivery ratio could be further
improved if a node temporarily buffers the unverifiable packets until their
trust (re)establishment process is completed.

Based on the above performance evaluation and the security analysis in Sec-
tion 5, we can see that a larger TESLA interval improves the performance but
also enlarges the vulnerability window for impersonation attacks. Therefore,
the choice of TESLA interval should be based on the requirements of an ap-
plication under consideration. Nevertheless, the above performance analysis
shows LHAP is a light-weight security protocol with respect to both com-
putation and communication overhead, and yet has very small effect on the
performance of other layer protocols.

7 Deployment Issues

We discuss the issues related to the deployment of LHAP in this section.

7.1 Interaction With Routing Protocols

LHAP is independent of the underlying (secure) routing protocols. In practice,
it could take advantage of the deployed routing protocol to achieve better ef-
ficiency. Some ad hoc routing protocols, e.g., AODV, TORA [28], AMRIS [39]
et al, require that nodes periodically exchange routing information or beacon-
ing messages with their neighbors. LHAP can piggyback its KEYUPDATE
information in these messages to avoid transmitting separate KEYUPDATE
packets. This combination does not affect the transparency of LHAP with
respect to the routing protocol, because the LHAP layer in a receiving node
removes the piggybacked KEYUPDATE message prior to submitting the mes-
sage to the network layer.

Several secure routing protocols [8,14] use public key certificates to bootstrap
trust between nodes. When employed under these protocols, LHAP can use
the certificates used by these protocols. Since the security services provided
by LHAP are complementary to those provided by secure routing protocols,
they can be employed at the same time to provide stronger security.
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7.2 Supporting Very Long Key Chains

In LHAP, TESLA keys are disclosed periodically. For a network with a lifetime
of five hours and TESLA interval of one second, the TESLA key chain will
have a size of 5 x 3600 = 18,000 keys. On the other hand, TRAFFIC keys are
usually consumed at a much higher rate, depending on the application under
consideration. As a result, very long key chains are needed.

If a node stores all the keys in a key chain, it can use any key immediately.
This approach however is not scalable with respect to its storage requirements.
Another approach is one in which a node only keeps the last key of the key
chain and derives every key from the last key every time. This scheme has the
minimal storage requirement, but it is not scalable in terms of computational
cost. Coppersmith and Jakobsson [3] propose an optimization algorithm that
can make tradeoff between storage and computation cost. Their algorithm
performs [dlog,N'| hashes per output element, and uses [dlog,N| memory
cells, where the size of each cell is slightly larger than that of a key and N is
the length of the key chain.

The multilevel key chain scheme proposed by Liu and Ning [23] can also
be used to provide a very long TESLA key chain with small storage and
computation overhead. The main idea is to construct multiple level key chains
of different disclosure intervals such that a low-level key chain can be derived
on the fly from a key in a high-level key chain. Both the high-level and the
low-level key chains can use the optimization scheme in [3] to enable further
tradeoffs between storage and computation.

7.8 Supporting Fast Hash Verification

Consider the scenario in which two nodes encounter each other again 7" seconds
after their last encounter. If 7' = 3600 and the TESLA interval is 1 second,
they need to compute 3600 hashes to verify each other’s current TESLA keys.
Although computation of a hash function is very efficient, it is still undesirable
to have such a big number of hash computations. On the other hand, an
attacker may exploit this feature to consume the computational resource of a
node by engaging the node in computing a large number of hash evaluations.
For example, a malicious node may replay another node’s initial bootstrapping
message and replay it to another node a couple of hours later, forcing that
node to perform thousands of hash computations. This is actually a resource
consumption attack.

To support fast hash verification, LHAP uses a tree-based authentication
scheme, which is also known as Merkle hash tree [26] and is further stud-
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ied in [15]. The maximum number of verifications a receiver has to perform is
loga N, where N is the length of a TESLA key chain. Suppose N = 10, 800,
the number of verifications is no more than 14. Thus, although an attacker
may launch the aforementioned replay-based resource consumption attack, the
consequence is still limited.

Note that this verification algorithm only works for TESLA key chains, not
for TRAFFIC key chains because TRAFFIC keys are not disclosed period-
ically. Actually, fast verification is normally not necessary for a TRAFFIC
key chain. Because the most recently disclosed TRAFFIC keys are announced
in KEYUPDATE messages, the number of hashes a node has to compute to
verify a TRAFFIC key is upper bounded by the number of traffic packets
transmitted in one TESLA interval.

8 Related Work

Stajano and Anderson [36], Balfanz et al. [2] proposed schemes to establish
trust and keys between nodes through physical contact in the absence of an
online authentication server. Zhou and Hass [42] propose to use threshold
signature schemes to prevent one or a few compromised nodes from signing
messages for the group; this approach was later extended by Kong et al. [21]
to a distributed scheme.

To setup a secret key for a pair of nodes, one approach is to preload each of
them with the key, but it requires a node to store N —1 keys for a network with
N nodes. To address this issue, Eschenauer and Gligor [9] proposed a proba-
bilistic key pre-deployment scheme in which every node only stores a subset
of keys selected randomly from a large key pool. This scheme was extended
by several other schemes [4,7,24,46] to provide stronger security under node
compromises. Zhu et al also proposed a key management framework consisting
of a suite of keying mechanisms for sensor networks [44] and an efficient group
key management scheme for mobile ad hoc networks [45].

Secure routing for ad hoc networks has been extensively studied recently.
Dabhill et al [8] identified several security vulnerabilities in AODV and DSR,
and proposed to use asymmetric cryptography for securing ad hoc routing
protocols. Yi, Naldurg, and Kravets [41] presented a security-aware routing
protocol that uses security (e.g., trust level in a trust hierarchy) as the metric
for route discovery between pairs. Papadimitratos and Hass [32] proposed a
secure routing discovery protocol that assumes a security association (SA)
between a source and a destination, whereas the intermediate nodes are not
authenticated. Hu, Perrig and Johnson designed SEAD [13] which uses one-
way hash chains for securing DSDV, and Ariadne [14] which uses TESLA and
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HMAC for securing DSR.

LHAP also uses the techniques such as one-way hash chains and TESLA
due to their efficiency. The main difference between LHAP and the secure
routing protocols is in their design goals. While those protocols are designed for
securing specific routing protocols, LHAP is a general network access control
protocol for preventing resource consumption attacks.

Zhang and Lee [43], Marti et al. [27] have studied the intrusion and misbehav-
ior detection issue in mobile networks. It is suggested [43] that every node be
installed with an intrusion detection system (IDS) which collects trace data
imported from all the layers, because compromised nodes could launch attacks
against multiple layers, such as routing layer and application layer. Therefore,
the encounter evidence provided by LHAP will help in node compromise de-
tection.

9 Conclusions

In this paper, we have presented LHAP, a lightweight hop-by-hop authentica-
tion protocol for network access control in ad hoc networks. LHAP is based
on two techniques: (i) hop-by-hop authentication for verifying the authenticity
of all the packets transmitted in the network and (ii) one-way key chain and
TESLA for packet authentication and for reducing the overhead for establish-
ing trust among nodes. The design of LHAP is transparent to and independent
of the routing protocols. Through a detailed simulation study, we show that
LHAP is efficient and allows a tradeoff between security and performance. In
the future, we will investigate new solutions that do not rely on TESLA.
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