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Abstract

In this paper, a Delay Tolerant Network environment is considered where the source
is in full control of the two-hop spreading mechanism by setting key parameters such
as the number of copies allowed to be spread in the network and the delay bound of
the messages. The introduced analysis allows for a differentiation between the source
of the message and the intermediate nodes (in terms of e.g. transmission power,
speed or cooperation degree). Analytical expressions for the cumulative distribution
function (cdf ) of the delivery delay and the induced overhead are extracted, taking
into account the fact that the source node may continue spreading copies after the
message delivery. In addition, a fairly accurate approximate expression for the cdf
of the delivery delay is also derived and validated through simulations. 1
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1 Introduction

Delay Tolerant Networks (DTNs) are characterized by a relatively high delay
in delivering the information to a destination node due to the fact that there
is typically no contemporaneous path between a potential source-destination
pair. In such networks, traditional ad hoc routing algorithms cannot be ef-
ficient, [1][2]. For instance, reactive algorithms would suffer from the fact
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that the route discovery procedure may lead to invalid paths (if any actu-
ally found) while proactive algorithms would spend too much overhead for
information that would not be credible. Furthermore, source-based techniques
are expected to be inappropriate since the selected path (if any discovered)
will most likely be invalid before it is used. Thus, per-hop routing techniques
seem to be the only viable option for DTNs due to the lack of guaranteed
end-to-end connectivity.

The routing mechanisms considered within the context of DTNs rely on mo-
bility as the main means to achieve connectivity and, thus, nodes should carry
and relay data at each node encounter until data is eventually delivered to the
destination, [3–10]. These routing mechanisms are categorized depending on
the number of copies of the message they allow to be present in the network
and the employed message relaying strategy. In case of single copy strategies
– where only a single copy of each message exists in the network at any time
– a lower number of transmissions is required and less bandwidth is wasted,
[4]. On the other hand, in multiple-copy strategies, [14], multiple copies of a
message may exist concurrently in the network leading, generally, to a lower
delivery delay and higher robustness. The way the overhead may be limited
for several routing variations is explored in [11], using the ODE (Ordinary
Differentiation Equations) fluid model.

This work focuses on the two-hop relay algorithm, [12][13], where the source
node relays a copy of the message to every node it encounters until it reaches
the destination; the intermediate nodes that acquire a copy of the message
are allowed to forward the copy only to the destination and, thus, one hop or,
maximum, two hops of communication are employed for the message delivery.
An important characteristic of the multiple-copy, two-hop relay algorithm is
that the source itself fully controls the process of spreading the copies of the
message, unlike having intermediate nodes assume part of this responsibility.
This attribute may lead to the increased resilience of the copy-spreading pro-
cess as it does not involve any potentially non-cooperative or misbehaving
intermediate nodes that may decide to drop the copies, [15].

In the previous studies, the performance of the introduced routing algorithms
has been evaluated basically through measuring two metrics: (i) the mean
message delivery delay achieved; and (ii) the overhead spent, expressed as
the total number of transmissions that are needed until the message delivery.
First, although the mean message delivery delay is indicant of the performance
of the algorithm employed, it still cannot fully illustrate the case in which one
considers an upper bound on the tolerated delivery delay. Second, the overhead
actually spent in the copy-spreading process is generally larger than the one
measured until the message delivery and one should also take into account the
case of a heterogeneous environment where, for instance, different transmission
ranges may be employed.
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Taking the above into account and in order to provide for a more general
framework within which the two-hop relay algorithm may be studied, the set-
ting that is considered in this work allows for a differentiation between the
source of the message and the intermediate nodes (in terms of e.g. transmis-
sion power, speed or cooperation degree), as discussed in detail in Section 2.
In addition, instead of allowing the source to relay the message to all the inter-
mediate nodes that it encounters, the number of copies allowed to be spread
in the network is treated here as a design parameter.

Based on the introduced setting, the delivery delay is fully characterized by
extracting its cdf (cumulative distribution function); moreover, an approxi-
mate approach is proposed that leads to a fairly accurate and much simpler
expression for the cdf, as shown in Section 3. In addition, the overhead re-
quired, in terms of both the number of transmissions and energy consumed,
is considered not only upon the delivery of the message, but also until the
actual termination of the algorithm, which takes place when the source be-
comes aware of the delivery, and is analytically derived in Section 4. (When
the message is delivered to the destination by some intermediate node, the
source continues to forward the rest of the copies of the message allowed to be
spread until it becomes aware of the successful delivery and, thus, the number
of transmissions until message delivery is only a fraction of the total number
of transmissions that will eventually take place.)

For all the above derivations, we assume that each message has a certain
delay bound upon the expiration of which the message is dropped. This de-
lay bound might be considered either as an application-specific characteristic
(e.g. a calendar-related message or a meeting reminder that are expected to
be delay-bounded) or as a design parameter of the algorithm (in order, for
instance, to limit the spreading of copies by determining an appropriate delay
bound for the messages within which their delivery is expected).

2 Model Description

According to the two-hop relay algorithm employed here, [12], the source node
is allowed to spread up to a maximum number of copies (K) within the net-
work. Each time it encounters some other node with no copy of the message,
it gives it one until it has only one copy available (for the destination node).
The intermediate nodes are not allowed to spread the message copy they may
have to any other node than the destination.

Let N + 1 be the total number of nodes moving within a square area of
size L2. It is assumed that the node intermeeting times (i.e., the time elapsed
between two consecutive encounters for a given pair of nodes) are exponentially
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distributed. This assumption has been demonstrated to be fairly accurate in
the case the communication range R is such that R ¿ L and that nodes move
according to the random waypoint or the random direction model, [12]. As it
has been shown in [12], the rate at which a given node encounters some other
node, λ̂, may be linked to the nodes’ relative speed v, communication range
R and network area L2:

λ̂ = c
vR

L2
, (2.1)

where c is a constant that depends on the mobility model used.

For the random direction model that we employ in our simulation, c is equal
to 1. For two nodes with velocities v1 and v2 with v2 > v1, the expected value

of the relative speed v is given by v = 1
πv1v2

∫ v1+v2
v2−v1

(
x2/

√
1−

(
v2
1+v2

2−x2

2v1v2

)2
)

dx.

(For more details regarding both mobility models, see Section 4.2 in [12].)

The setting that is considered in this work allows both for the spreading
of a restricted (K ≤ N) number of copies and for diverse intermeeting times
between the source and the other nodes. More specifically, from equation (2.1),
it is become evident that a possible differentiation between the transmission
range and/or the speed of the intermediate nodes and the source node leads
to a differentiation between their corresponding parameters; in the sequel, we
use the parameter λ to denote the parameter for the source node and λo to
denote the parameter for the intermediate nodes, respectively. In addition, a
differentiation between the above two parameters may be associated with other
causes like a possible misbehaviour of the intermediate nodes by assuming, for
instance, that an intermediate node discards a copy without further relaying
it at its encounter with the destination with a certain probability 1 − d (d
expresses the degree of cooperation of the intermediate nodes); assuming, for
simplicity, a homogeneous network with respect to the transmission range and
speed of the nodes, the network may be modeled by setting λo = dλ.

The above parameters that may lead to differentiation could either be consid-
ered as non-tunable (e.g., the capabilities of some nodes to transmit by default
at a higher power level or a node’s misbehavior or cooperation degree), or as
tunable (e.g., adjustment of the transmission range of the nodes within the
technological power limitations in order to satisfy specific performance goals).

3 Derivation of the CDF of the delivery delay

Under the aforementioned assumptions, the message spreading process ac-
cording to the K−limited, two-hop relay algorithm may be modeled by the
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Fig. 1. The Markov chain for the two-hop relay algorithm.

continuous-time Markov chain depicted in Fig.1, consisting of K +1 states (K
states capturing the number of copies spread in the network and one absorbing
state, A, assumed to be visited when the message is delivered to the destina-
tion; generally, K ≤ N). When there are i copies (i ≤ K) in the network, a
new copy is forwarded either to one of the (N − i) nodes which do not have a
copy yet (at the rate of λ(N − i) triggering a transition from i to i + 1) or to
the destination (at the rate of λ + (i − 1)λo triggering a transition from i to
A). Thus, the transition rates of the Markov chain of Fig.1 are

q(i, j) =





λ(N − i), i = 1, . . . , K − 1, j = i + 1;

λ + λo(i− 1), i = 1, . . . , K, j = A;

0, otherwise,

where λ and λo denote the exponential distribution parameter of the inter-
meeting times for the source and for the rest of the nodes, respectively.

In order to derive the cdf (cumulative distribution function) of the message
delivery delay D, that is the time consumed until the message is eventually
delivered to the destination, we first derive its pdf (probability distribution
function), fD(t), and then use the properties of the Laplace transform. More
specifically, based on the property of the Laplace transform concerning the
integration in time domain, the cdf of the message delivery delay Q(t) =
P (D ≤ t) =

∫ t
0 fD(x)dx may be expressed as

Q(t) = L−1

(
FD(s)

s

)
, (3.1)

where FD(s) = L(fD(t)).

It should be noted that the notation L(g) (L−1(g)) is used for the Laplace
(inverse Laplace) transform of some function g.

a. Deriving fD(t).

By conditioning on the state at which the message delivery takes place, the
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pdf of the message delivery delay D, may be expressed as

fD(t) =
K∑

i=1

pd,ifDi
(t), (3.2)

where pd,i denotes the probability to be in state i when the destination gets
the message with

pd,i =





q(i,A)
qi

∏i−1
j=1

(
1− q(j,A)

qj

)
, i = 1, . . . , K − 1;

1−∑K−1
j=1 pd,j, i = K;

0, otherwise,

, qi , q(i, i + 1) + q(i, A)

(3.3)

and fDi
(t) denotes the pdf of Di, which is defined as the conditional delay until

the message reaches the destination provided that the destination gets the
message when the system is in state i. Obviously, it holds that Di =

∑i
j=1 Tj,

where Tj denotes the sojourn time in state j.

b. Deriving FD(s).

By applying the linear property of the Laplace transform to the formula of
fD(t) in equation (3.2), the Laplace transform of the pdf of D may be expressed
as

FD(s) = L(fD(t)) = L(
K∑

i=1

pd,ifDi
(t)) =

K∑

i=1

pd,iL(fDi
(t)). (3.4)

By the definition of the model, the sojourn times in states j, Tj, are indepen-
dent random variables that are exponentially distributed with parameter qj.
Thus the pdf of Tj is fTi

(t) = qie
−qit, while the Laplace transform of the pdf

is L(fTi
(t)) = L(qie

−qit) = qi

qi+s
.

Now, Di =
∑i

j=1 Tj is the sum of the sojourn times at states j that precede
state i. This implies that the Laplace transform of Di, L(fDi

(t)), may be
expressed as the product of the Laplace transform of Tj’s, that is

L(fDi
(t)) =

i∏

j=1

L(fTj
(t)). (3.5)

Using equations (3.3)-(3.5) it is obtained that
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FD(s) =
K−1∑

i=1

BiCi(s) + BKCK(s), (3.6)

where

Bi =
q(i, A)

qi




i−1∏

j=1

(1− q(j, A)

qj

)




i∏

j=1

qj

= (λd + (λ− λd)i)λ
i−1 (N − 1)!

(N − i)!
, 1 ≤ i ≤ K − 1,

BK =


1−

K−1∑

i=1

q(i, A)

qi

i−1∏

j=1

(1− q(j, A)

qj

)




K∏

j=1

qj

= λK−1(Kλ− (K − 1)λd)
(N − 1)!

(N −K)!
,

λd = λ− λo,

and

Ci(s) =
i∏

j=1

1

qj + s
.

c. Obtaining the cdf.

By substituting the expression derived in equation (3.6) in that of (3.1), the
cdf of the message delivery delay may be expressed as

Q(t) = L−1

(
FD(s)

s

)
= L−1

(
K−1∑

i=1

Bi
Ci(s)

s
+ BK

CK(s)

s

)

=
K−1∑

i=1

BiL−1

(
Ci(s)

s

)
+ BKL−1

(
CK(s)

s

)
,

or
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Q(t) =
K−1∑

i=1

Bimi(t) + BKmK(t), (3.7)

where mi(t) = L−1
(

Ci(s)
s

)
. The derivation of mi(t) is lengthy and, thus,

quoted in the Appendix.

3.1 Special cases.

The above expression for Q(t) holds for the case K < N and λd 6= 0. Following
the same steps, it may be concluded that for K < N and λd = 0, the cdf of
the delivery delay, denoted as Q0(t), is

Q0(t) =
K−1∑

i=1

iλi (N − 1)!

(N − i)!

(
(

1

λN
)i −

i∑

k=1

e−λNt

(k − 1)!λN
tk−1

)

+λKK
(N − 1)!

(N −K)!

(
1

λK(λN)K−1
− e−λKt

λK(λ(N −K))K−1

−e−λNt

λK

K−1∑

k=1

(
( 1

λN
)K−k − ( 1

λ(N−K)
)K−k

)
tk−1

(k − 1)!


 .

In the special case where K = N and λd 6= 0 it is obtained that the cdf of the
delivery delay, denoted as QN(t), is

QN(t) = 1− e−λNt

(
1 +

λ

λd

(
eλdt − 1

))N−1

. (3.8)

For K = N and λd = 0 the cdf may be obtained by taking the limit as λd → 0,

lim
λd→0

QN(t) = lim
λd→0

(1− e−λNt

(
1 +

λ

λd

(
eλdt − 1

))N−1

)

= 1− e−λNt(1 + λt)N−1.

The analysis was validated through simulations. Figure 2 depicts an indicative
example for the cases of K = 4, 8, 100 when N = 100, λ = 0.08 and λo = 0.04.
For the simulations, a network of 100 nodes that move according to the random
direction mobility model with a speed of 11.2m/sec within a square area of a
side of 16km has been considered. The source node has a transmission range of
200m and spreads up to 3, 7 and 99 copies of the message to the intermediate
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Fig. 2. Theoretical and simulation results for N = 100, λ = 0.08, λo = 0.04 and for
the cases of K = 4, 8, 100.

nodes (K = 4, 8, 100, respectively) that have a transmission range of 100m;
the results refer to the average of 20000 runs. 2

3.2 Approximate expression for the cdf of the delivery delay

Instead of using the equation (3.7) in order to calculate the cdf of the deliv-
ery delay, an approximate expression is derived here, giving a much simpler
expression that approximates fairly accurately the exact one. Its derivation is
based on the observation that the cdf for a specific number of copies K where
K ≤ N , named accurate cdf hereafter, is upper bounded by two cdfs.

The first one, named maximum-copy cdf hereafter, refers to the case where
the number of copies employed in the network equals the number of nodes
(K = N), is denoted as QN(t) and is given by equation (3.8). This is because
the algorithm has exactly the same behaviour up to the time point where
the first K copies are spread in the network, while, afterwards, the setting
corresponding to the maximum-copy cdf takes advantage of the surplus copies
(N −K) allowed to be spread to enhance its performance.

2 As it may be seen in equation (2.1), the parameters of λ and λo do not only depend
on the transmission range of the source and the intermediate nodes but also on their
speed and the area size. Although in this paper we only change the transmission
ranges in order to derive different values for λ and λo, the same results are derived
for other parameter sets as well (for instance, we obtained almost identical results
for a transmission range of all nodes equal to 200m and a speed of the source
node and the intermediate nodes (moving in an area of 16km2) of 13.632m/sec and
5.58m/sec, respectively). It should also be noted that (although not illustrated)
parameters λ and λo are here given in hrs−1 and, thus, time, t, is measured in hrs.
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The second one, named zero-spreadtime cdf hereafter, refers to the hypothetical
ideal case where upon the generation of a message, all K copies are assumed
to have been spread instantly in the network; one copy is owned by the source
node and (K−1) by some intermediate nodes. In that case, a transition to the
state of the destination’s having acquired the message takes place at a rate
of (λ + λo(K − 1)) and, thus, the zero-spreadtime cdf of the delivery delay,
denoted as QḰ(t), is given by

QḰ(t) = 1− e−(λ+λo(K−1))t. (3.9)

What may be intuitively expected and is indeed observed regarding the zero-
spreadtime cdf is that when it is shifted to be tangent to the maximum-copy
one, the part of the cdf from the contact point and afterwards is a fairly
accurate approximation of the original cdf.

Based on the above observations, an approximate expression for the cdf of
the delivery delay, denoted as Q̂K(t), may be defined as a two-part function,
consisting of the maximum-copy cdf until being tangent to the shifted zero-
spreadtime one and of the latter afterwards, or

Q̂K(t) =





QN(t) = 1− e−λNt
(
1 + λ

λd

(
eλdt − 1

))N−1
, 0 ≤ t ≤ tcr;

QḰ(t− t0) = 1− e−(λ+λo(K−1))(t−t0), t ≥ tcr,

where t0 denotes the time shift of the zero-spreadtime cdf needed to be tangent
to the maximum-copy one and tcr corresponds to the contact point of the above
two cdfs.

In order to calculate the contact point of the shifted zero-spreadtime cdf and
the maximum-copy cdf, the equation QN(t) = QḰ(t− t0) should be solved; by
setting y = λt and z = λt0,

e−y

(
1 +

λ

λd

(
e

λdy

λ − 1
))N−1

N

= e−
(λ+λo(K−1))(y−z)

λN .

To solve the above equation we expand each part in a Taylor series and keep
the terms up to the second order. Thus, it is obtained

1 + a1y + a2y
2 = b0(1 + b1y +

1

2
(b1y)2),

where a1 = − 1
N

, a2 = (λd

2λ
+ 1

2N2 + 1
2N
− λd

2λN
− 1

2
), b0 = e−b1z, b1 = (λdK

λN
− λd

λN
−K

N
).

In order for the polynomial above to have a single root (contact point), denoted
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as ycr, with

ycr =
b1e

−b1z − a1

2a2 − b2
1e
−b1z

it is required that its discriminant be zero, or (a1−b1e
−b1z)2−4(a2−1

2
b2
1e
−b1z)(1−

e−b1z) = 0, which, by using the terms up to the first order of its expansion in
Taylor series, (a2

1 − 2a1b1 + b2
1) + (2a1b

2
1 − 4a2b1)z + O(z2) = 0, leads to the

calculation of the required time shift of the zero-spreadtime cdf, t0,

t0 =
z

λ
≈

2a1b1 − b2
1 − a2

1

2λb1(a1b1 − 2a2)
=

λo(K − 1)2N

2λ(λK − λd(K − 1))((N − 1)N −K + 1)
.

Then, tcr may be obtained by

tcr =
1

λ

b1e
−b1λt0 − a1

2a2 − b2
1e
−b1λt0

.

Figure 3 illustrates how the approximate cdf is constructed for the case of
N = 100, K = 8, λ = 0.08 and λo = 0.04.

The approximate cdf may be used in order to obtain closed-form solutions
to design problems for which the exact analysis allows only for a numerical
solution. For example, given the characteristics of the network and the nodes,
which would allow to determine the intermeeting parameters λ and λo, it
might be desirable to estimate the number of copies K that the source should
spread in the network in order to achieve a specific delivery ratio within some
time t, referred to as Qd.

Using the above approximation, the following estimation may be obtained:

Kapprox =

−λd(N + (N − 2)(N + 1)λt) + λ(N + (N(N − 1)− 1)λt + ln (1−Qd))±
√

C

λo(N − 2λt)
,

where C = λ (2λλo(N − 1)N2 +(λd(N−1)N +λ(1−N2 + N))2λt) +λ ln (1−Qd)
(−2λd(N − 1)N(N − λt) + 2λ((N − 1)N(N − λt) + λt) + λ ln (1−Qd)), and
λd = λ − λo. From the two values obtained for Kapprox, the positive one that
fulfils the condition t0 ≤ tcr should be selected. It should be noted that the
derived Kapprox is found to provide a performance close to the targeted one
even if it suggests a lower number of copies.
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4 Calculation of the overhead

Here, the overhead induced for the message delivery is calculated; this over-
head is not only considered in terms of the number of transmissions that is
required for the message to be delivered to the destination node but also in
terms of energy consumption (in case of heterogeneous environments where not
all the nodes employ the same transmission power). Moreover, every message
is assumed to have a delay bound (that might be either an application-specific
characteristic or a design parameter of the algorithm itself) after which it is
dropped, no matter if it has been delivered or not to the destination.

In the sequel, the total overhead spent for the delivery of the delay-bounded
messages is determined in two phases; first, the overhead until the delivery or
drop of the message is extracted (both in terms of transmissions and energy
consumption) and then the overhead that might occur after the delivery of
the message until the source becomes aware of the message delivery, referred
to as additional overhead, is calculated.

4.1 Overhead until the delivery or drop of the message

The expected overhead consumption until the delivery or drop of the message,
Odel|drop, may be expressed as

Odel|drop =
K∑

i=1

Pdel|drop,iOdel|drop,i,

where Pdel|drop,i denotes the probability that the system is in state i when
the destination is reached or the message is dropped and Odel|drop,i denotes
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the expected overhead consumption provided that the message is delivered or
dropped when being in state i.

a. Deriving Pdel|drop,i.

For 1 ≤ i < K,

Pdel|drop,i =

(
1− (1− Pdrop,i)

q(i, i + 1)

qi

)
i−1∏

j=1

(1− Pdrop,j)
q(j, j + 1)

qj

,

where Pdrop,i denotes the probability that the message is dropped provided that
the system is in state i. For i = K, we use the complementary probability

Pdel|drop,K = 1−
K−1∑

i=1

Pdel|drop,i.

Let Db denote the delay bound of the message. The probability (1 − Pdrop,i)
that the message is not dropped provided that the system is in state i may be
expressed as

1− Pdrop,i =





∫ Db
0 fD1(t)dt, i = 1;∫ Db

0
fDi

(t)dt∫ Db
0

fDi−1
(t)dt

, 1 < i ≤ K − 1,

where Di depicts the total delay until the message reaches the destination
provided that the destination gets the message when the system is in state i
and fDi

(t) denotes the pdf of Di. More specifically, since the system is in state
i, it holds that

∑i−1
j=1 Tj ≤ Db, where Tj denotes the sojourn time in state j.

In addition, the message is not dropped only if
∑i

j=1 Tj ≤ Db. Furthermore,
∫ t
0 fDi

(x)dx =
(∏i

j=1 qj

)
mi(t). Thus,

1− Pdrop,i =





q1m1(Db), i = 1;

qimi(Db)
mi−1(Db)

, 1 < i ≤ K − 1.

b. Deriving Odel|drop,i.

The expected overhead consumption provided that the message is delivered
or dropped when the system is in state i, Odel|drop,i can be expressed as

Odel|drop,i = (i− 1)Es + Pdels,iEs + Pdelo,iEo,
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Fig. 4. Pdel|drop,i and Pdrop,i as a function of state i, for N = 100, K = 8, λ = 0.02
and λo = 0.04.

where Pdels,i (Pdelo,i) denotes the probability that the source (some intermedi-
ate node) delivers the message to the destination provided that the message
is delivered or dropped when the system is in state i. To allow for the cal-
culation of the consumed energy when different power levels are used for the
transmissions of the source and the intermediate nodes, the parameters Es

and Eo are used respectively. In order to calculate the overhead only in terms
of the number of transmissions, Es and Eo should be assumed to be equal to
1.

When being in state i, the message is dropped with probability Pdrop,i, it is
delivered to the destination by some of the i − 1 intermediate nodes with
probability (1 − Pdrop,i)

(i−1)λo

qi
and it is delivered to the destination by the

source with probability (1−Pdrop,i)
λ
qi

. Taking the above into consideration, it
is obtained that

Pdels,i =
(1− Pdrop,i)

λ
qi

Pdrop,i + (1− Pdrop,i)
λ+(i−1)λo

qi

, 1 ≤ i ≤ K,

and

Pdelo,i =
(1− Pdrop,i)

(i−1)λo

qi

Pdrop,i + (1− Pdrop,i)
λ+(i−1)λo

qi

, 1 ≤ i ≤ K.

The analysis was validated through simulations, as shown in Fig.4, where
Pdel|drop,i and Pdrop,i are calculated as a function of state i. The simulation
setting refers to a network of 100 nodes that move according to the random
direction mobility model with a speed of 11.2m/sec within a square area of a
side of 16km; the transmission range of the source node is 50m while that of
the intermediate nodes is 100m.
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Fig. 5. The Markov chain for the additional overhead calculation.

4.2 Calculation of the additional overhead

When the message is delivered to the destination by an intermediate node,
the source node will continue spreading the rest (if any) of the predefined
number of copies (K); the overhead that is unnecessarily spent in this case is
referred to as additional overhead. Here, the additional overhead is calculated
for two distinct cases: (a) until the source node meets the destination (referred
to as single notification); and (b) until it meets either the destination or the
intermediate node that delivered the message to the destination (referred to
as double notification).

The single notification may be considered as the straightforward notification
procedure of the two-hop relay algorithm, since the source node is obviously
expected to end the message copy spreading process after meeting the destina-
tion node. On the other hand, the double notification is the simplest notifica-
tion procedure engaging intermediate nodes and requires that the node which
has delivered the message to the destination keep the source in its memory and
notify it after their encounter; this procedure is used as an indicative example
of how a little more sophisticated mechanism may limit the overhead spent.

The expected additional overhead may be expressed as

Oadd =
K∑

i=2

Pdel|drop,iPdelo,iOadd,i,

where Oadd,i denotes the expected additional overhead provided that the mes-
sage is delivered by some intermediate node when the system (as modeled by
the Markov chain of Fig.1) is in state i. In order to derive Oadd,i the system
may be modeled as a Markov chain, depicted in Fig.5, starting from state i
(where there are i copies of the message, one for the source node and the rest
for the intermediate ones) up to state K and having an absorbing state Ai

that corresponds to the case that the source node has been informed of the
delivery success.
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The transition rates for the Markov chain of Fig.5 are

ri(j, k) =





λ(N − j), j = i, . . . , K − 1, k = j + 1;

λn,i + λn,d, j = 1, . . . , K, k = Ai;

0, otherwise,

where λn,i and λn,d denote the intermeeting time parameters for the interme-
diate node and the destination node when they notify the source, respectively.
(In the case where this parameter is assumed to be the same as for message
transmissions, it holds that λn,i = λn,d = λo.)

The expected additional energy consumption provided that the message is
delivered by an intermediate node when the system is in state i, Oadd,i, may
be expressed as

Oadd,i =
K∑

j=i

Oadd,i,jPdel|drop,i,j,

where Oadd,i,j denotes the expected overhead provided that the source is no-
tified or the message is dropped when the system is in state j (Fig. 5) and
Pdel|drop,i,j denotes the probability that the system is in state j when the source
is notified or the message is dropped. For i ≤ j < K, the latter term is given
by

Pdel|drop,i,j =

(
1− (1− Pdrop,i,j)

ri(j, j + 1)

ri,j

) j−1∏

k=1

(1− Pdrop,i,k)
ri(k, k + 1)

ri,k

,

where Pdrop,i,j denotes the probability that the message is dropped provided
that the system is in state j and ri,j = ri(j, j + 1) + ri(j, Ai). (In case j = K,
there is no additional overhead spent.)

Now, the message will not be dropped when the system is in state j if and
only if Di,j =

∑i
k=1 Tk +

∑j
k=i Ti,k ≤ Db, where Tk denotes the sojourn time

in state k of the chain in Fig.1 and Ti,k denotes the sojourn time in state k
of the chain in Fig.5. Provided that the system is in state j in Fig.5, it holds
that Di,j−1 =

∑i
k=1 Tk +

∑j−1
k=i Ti,k ≤ Db. Thus,

1− Pdrop,i,j =





FDi,1
(Db), j = 1;

FDi,j
(Db)

FDi,j−1
(Db)

, 1 < j ≤ K − 1,

with

FDi,j
(t) =

∫ t

0
fDi,j

(x)dx,
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Fig. 6. Pdel|drop,i,j and Pdrop,i,j as a function of state j, for N = 100, K = 8, λ = 0.02
and λo = 0.04.

where fDi,j
(t) denotes the pdf of Di,j. FDi,j

(t) is derived in the Appendix.

The term Oadd,i,j may be expressed as

Oadd,i,j = (j − 1)Es + Pnd,i,jEnd + Pni,i,jEni,

where Pnd,i,j (Pni,i,j) denotes the probability that the source is notified by the
destination (the intermediate node that delivered the message) provided that
the source is notified or the message is dropped when being in state j; End

and Eni denote the energy consumed for the transmission of the notification
message by the destination node and an intermediate node, respectively.

Finally, Pnd,i,j and Pni,i,j may be obtained by

Pnd,i,j =
(1− Pdrop,i,j)

λn,d

ri,j

Pdrop,i,j + (1− Pdrop,i,j)
λn,i+λn,d

ri,j

,

and

Pni,i,j =
(1− Pdrop,i,j)

λn,i

ri,j

Pdrop,i,j + (1− Pdrop,i,j)
λn,i+λn,d

ri,j

.

It should be noted that for single notification λn,i = 0; thus, Pni,i,j becomes
equal to zero.

Analytical results are validated through simulations as shown in Fig.6, where
Pdel|drop,i,j and Pdrop,i,j are depicted as a function of state j for the same sim-
ulation setting as that in Fig.4. (For i = 8, the results are similar.)
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5 Results

For all the simulations that are presented in the sequel, a network of 100 nodes
that move according to the random direction mobility model with a speed of
11.2m/sec within a square area of a side of 16km has been considered; the
results refer to the average of 20000 runs.

5.1 The effect of the parameters K and Db

Both the number of copies that are allowed in the network (K) and the delay
bound that may be set to the messages (Db) constitute two basic parameters of
the two-hop relay algorithm and affect the performance of message spreading.
In Fig.7, the effect of the delay bound (Db) on the message delivery ratio
(Fig.7(a)), on the number of transmissions until delivery (Fig.7(b)) and on
the number of transmissions after delivery when applying single (Fig.7(c)), or
double notification (Fig.7(d)), as a function of the number of copies (K) is
depicted for the case of λ = 0.08 and λo = 0.04. As it may be seen, both the
parameters K and Db seem to significantly affect the message delivery ratio
and the number of transmissions until the message delivery, up to some specific
values (approximately K = 20 and Db = 10). By allowing an extra number
of copies to be spread in the network, or by increasing the delay bound, the
achieved increase in the delivery ratio (and the number of transmissions until
delivery) is negligible; however, there is a significant effect on the additional
transmissions that take place (especially in the case of single notification).

Figures 8 and 9 illustrate the fact that the parameters K and Db may be
used either interchangeably or in combination with each other to allow for
efficient message dissemination. 3 More specifically, the minimum delay bound,
for which a specific delivery ratio (0.5, 0.7, 0.9, 0.99) may be achieved, as a
function of K is depicted in Fig.8. It can be seen that increasing K beyond
a certain value does not lead to a reduction in the required value of Db.
Figure 9 illustrates the number of transmissions (until the delivery and after
the delivery of the message for the case of single and double notification)
as a function of K for the case where no delay bound is used (leading to a
delivery ratio equal to 1) and for the case where for each K the minimum
value of Db required to achieve a delivery ratio equal to 0.99 is applied. It can
be seen that: (i) K and Db may be used interchangeably to achieve similar
performance; however, (ii) when used in combination with each other, a more
significant decrease of the additional overhead is observed (at the cost of a
negligible reduction in the delivery ratio).

3 Although K takes only discrete values, it is treated as continuous for illustration
purposes.
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Fig. 7. The effect of the delay bound (Db) (a) on the message delivery ratio, (b)
on the number of transmissions until delivery, and on the number of transmissions
after delivery when applying (c) single, or (d) double notification, as a function of
the number of copies (K) for the case of λ = 0.08 and λo = 0.04.
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5.2 The effect of the parameters λ and λo

Figure 10 illustrates the number of transmissions as a function of λ for the
case of K = N = 100 and (a) λo = 0.08, or (b) λo = 0.04. (The transmission
range of the source varies between 25m and 400m corresponding to a value
of λ between 0.01 and 0.16, respectively; a transmission range of (a) 200m
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Fig. 10. The number of transmissions as a function of λ, where K = N = 100 and
(a) λo = 0.08, or (b) λo = 0.04.

and (b) 100m is used instead for the intermediate nodes leading to λo = 0.08
and λo = 0.04.) It turns out that the transmissions until the message delivery
time are just a small portion of the additional ones actually made; the double
notification scheme achieves a noticeable decrease in the wasted overhead.

When the source node increases its parameter λ the transmissions needed un-
til message delivery increase as well. For the case of single notification, the
total number of transmissions spent is approximately 50.5, irrespectively of
the values of λ or λo. This is rather expected since however high the param-
eter λ might be, the source node will anyway meet, on average, half of the
nodes before reaching the destination, leading to a constant number of total
transmissions. 4

4 More specifically, consider a network of N + 1 nodes: whichever the value of λ
and λo may be, spreading will be terminated only when the source node reaches the
destination (after having encountered on average (N + 1)/2 nodes – including the
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Fig. 11. The energy consumption as a function of λ, where K = N = 100 and (a)
λo = 0.08, or (b) λo = 0.04.

In the case where not all the nodes have the same transmission range, it might
be useful to calculate the induced overhead in terms of the energy spent and
not only the number of transmissions. We here assume the case where the
source node transmits at a different power level than the intermediate nodes,
leading to different energy consumption per transmission. In particular, the
energy consumed for a transmission of a node with parameter equal to 0.08 is
assumed to be equal to 1. The energy consumption for all other transmissions
are calculated in terms of this unit, based on the relation between the en-
ergy consumed and the parameters λo and λ; we assume a quadratic relation,
thus, for instance, doubling the latter parameters would imply doubling the
transmission range that would, eventually, quadruple the energy consumed.

The energy consumed is depicted in Fig.11 as a function of λ for K = N = 100
and (a) λo = 0.08, or (b) λo = 0.04. The difference between the energy spent
until the message delivery and the additional actually spent when single or
double notification is applied is more noticeable as λ increases. As it may
be expected, and contrary to the total transmissions, the total energy spent
depends on both λ and λo.

destination); when the source reaches the destination, it either gives it a copy (if
the message has not been delivered yet) or it does not (in case an intermediate node
has already delivered the message). In the first case, the total transmissions will
be equal to the average encounters of the source node till it meets the destination
node, that is (N + 1)/2; in the second case, the total transmissions are equal to
the average number of the encounters of the source node (except the one with the
destination node since the latter has already been given the message) added by the
intermediate node’s transmission to the destination, that is [(N + 1)/2 − 1] + 1.
Thus, the total transmissions are equal to (N +1)/2 and do not depend on λ or λo.
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Fig. 12. (a) Pairs of λ and K that achieve the same mean delay (D = 6, 3125),
where λ = λo, N = 100; (b) The energy consumption as a function of K for the
pairs (K,λ) of (a).

5.3 Achieving a specific mean delay

In paragraph 5.1, it was shown that the parameters K and Db can be used
interchangeably in order to control the wasted overhead without noticeably
deteriorating the performance of the two-hop relay algorithm. In this para-
graph, we consider the case of delay unbounded messages (Db = ∞) and use,
as a performance metric, the achieved mean delay (denoted as D) by using
different pairs of K and λ. More specifically, we consider a network of N = 100
nodes where λ = λo. Several pairs of values for λ and K, for which the achieved
mean delay is the same (D = 6, 3125), are depicted in Fig.12(a). The energy
consumed for all these pairs of values is depicted in Fig.12(b) for the time
until the message delivery or until the source node is notified (single or double
notification).

From Fig.12(a), it may be concluded that for the same achieved mean delay
a significant reduction in the per-transmission energy consumption (due to
lower λ) may be achieved by increasing K, when K is small. Beyond a rela-
tively small threshold value of K (less than K = 20 in Fig.12(a)), a further
increase of K does not yield any reduction in the energy consumption due to
λ. Consequently, the pair (K,λ) that achieves a given mean delay and mini-
mizes the total energy consumption should be associated with a K below the
aforementioned threshold value.

This indeed turns out to be the case as illustrated in Fig.12(b), showing that
the total energy consumption is minimized for a given (K, λ) pair below that
threshold value of K; this optimal pair could be used to effectively set key
design parameters of the two-hop relay algorithm.
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Fig. 13. Cdf of the message delivery delay for K = 4, 8 and 100 and for N = 100,
λ = 0.08. In the simulations, the transmission ranges (TR) of the intermediate nodes
vary 20% and 40% (distribution) around the mean value of 100m; in the analysis,
a value of λo = 0.04 is used (that corresponds to the transmission range of 100m).

5.4 Differentiated behavior of the intermediate nodes

In this paragraph, we investigate the applicability of the model in two sce-
narios where a differentiation in the behavior of the intermediate nodes is
introduced. This differentiation leads to a different value of λ̂ (see equation
(2.1)) for each intermediate node. We use as λo in our model the mean value
of λ̂ for the intermediate nodes in order to investigate the capability of the
introduced model to also capture the case where the intermediate nodes have
a differentiated behavior.

In the first scenario, the transmission range of the intermediate nodes differ;
more specifically, the source node’s transmission range is 200m (leading to
λ = 0.08), while the intermediate nodes’ transmission ranges vary 20% and
40% (distribution) around the mean value of 100m. In the analysis, we use a
value of λo = 0.04 equal to the mean value of λ̂ of the intermediate nodes.
The analytical and simulation results for the first scenario are illustrated in
Fig.13 for the cases of K = 4, 8 and 100.

In the second scenario, all the intermediate nodes have the same transmission
range of 200m with the source node but they do not fully cooperate in message
delivery; when an intermediate node with a message copy encounters the desti-
nation, it delivers the copy only with a specific probability (denoted as cooper-
ation degree, d). In simulation results, a cooperation degree of d = 0.2, 0.4, 0.6
and 0.8 is applied for λ = λo = 0.08 while the analytical results are derived
for fully cooperative intermediate nodes with λo = λd. Both analytical and
simulation results for the second scenario are illustrated in Fig.14.
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6 Conclusions

In this work, a model to capture the performance of the two-hop message
spreading mechanism within the framework of a DTN environment is intro-
duced, which allows for: (i) the differentiation on the characteristics between
the source and the intermediate nodes – either intentionally (e.g. adjusting
transmission range, misbehaving), or unintentionally (e.g., transmission power
limitations), expressed by the parameters λ and λo respectively, and (ii) han-
dling both the number of copies that are permitted to be spread in the network
and the delay bound of a message. The analytical expressions for the message
delivery ratio as well as the number of transmissions and consumed energy not
only until the delivery of the message but also until the actual termination of
the message copy spreading process were derived, assuming two message deliv-
ery notification procedures. Moreover, an approximation for the delivery ratio
was extracted that fairly accurately captures the performance of the two-hop
relay algorithm.

Based on the introduced model, the effect of the basic parameters of the
algorithm (number of copies or delay bound) and the nodes (parameters λ
and λo) was investigated. It was illustrated that the overhead wasted after the
message delivery (number of transmissions or energy consumed) may be rather
significant; even a simple message delivery notification procedure was proved
to be a valuable mechanism when the number of copies to be spread in the
network is high. In addition, it has been demonstrated that the parameters K
and Db may be used either interchangeably, or in combination with each other
to allow for efficient dissemination. Finally, simulation results indicate that the
model also captures well the cases of non-homogeneous networks where the
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intermediate nodes may have distinct characteristics as far as their capability
or willingness to forward a message is concerned (different transmission range,
or cooperation degree).

7 Appendix

7.1 Derivation of mi(t)

It holds that mi(t) = L−1 (Mi(s)) where

Mi(s) , Ci(s)

s
=

1

s

i∏

j=1

1

qj + s
=





1
s

∏i
j=1

1
λN−λd(j−1)+s

, 1 ≤ i ≤ K − 1;

1
s

1
λ+(λ−λd)(K−1)+s

∏K−1
j=1

1
λN−λd(j−1)+s

, i = K.

A.1 For 1 ≤ i < K the poles of Mi(s) are si,0=0 and si,k = λd(k−1)−λN, k =
1, . . . , i, which are all single poles. Thus,

mi(t) =
i∑

k=0

mi,ke
si,kt,

where mi,k = (s− si,k)Mi(s)|s=si,k
. For 0 < k ≤ K,

mi,k =
1

λd(k − 1)− λN
mi,k,

where

mi,k =
∏i

j=1,j 6=k

1

λN − λd(j − 1) + λd(k − 1)− λN

=
1

λi−1
d

∏i

j=1,j 6=k

1

k − j
=

1

λi−1
d

1

(k − 1)!

(−1)i−k

(i− k)!
.

For k = 0,

mi,0 =
i∏

j=1

1

λN − λd(j − 1)
=

i∑

k=1

1

λN − λd(k − 1)

i∏

j=1,j 6=k

1

λd(k − 1)− λd(j − 1)
=

i∑

k=1

−mi,k.
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Thus,

mi(t) =
i∑

k=1

mi,k(e
−λNteλd(k−1)t − 1) =

i∑

k=1

1

λd(k − 1)− λN
mi,k(e

−λNteλd(k−1)t − 1)

=
i∑

k=1

1

λd(k − 1)− λN

1

λi−1
d

1

(k − 1)!

(−1)i−k

(i− k)!
(e−λNteλd(k−1)t − 1).

A.2 For i = K the poles of MK(s) are sK,0 = 0, sK,K = −(λ+(λ−λd)(K−1)) =
(K−1)λd−Kλ and sK,k = λd(k−1)−λN, k = 1, . . . , K−1. The above poles are
all single for −(λ+(λ−λd)(K−1)) 6= λd(j−1)−λN, ∀j, 1 ≤ j ≤ K−1 (it can
be easily concluded that λ(N−K)+jλd 6= 0,∀j, 1 ≤ j ≤ K−1, so none of the
following denominators is zero), sK,K 6= 0 and sK,k 6= 0, k = 1, . . . , K−1). The
case of poles with multiplicity greater than 1 is not considered in order to avoid
unnecessary complexity; however, in the numerical results the aforementioned
condition is technically never met by adding some “noise” digits. Thus,

mK(t) =
K∑

k=0

m̃K,ke
sK,kt,

where m̃K,k = (s− sK,k)CK(s)|s=sK,k
. For 0 < k < K,

m̃K,k =
1

λd(k − 1)− λN

1

λ + (λ− λd)(K − 1) + λd(k − 1)− λN
∏K−1

j=1,j 6=k

1

λN − λd(j − 1) + λd(k − 1)− λN

=
1

λd(k − 1)− λN

−1

λ(N −K) + λd(K − k)
mK−1,k

=
1

λd(k − 1)− λN
m̂K,k.

where

m̂K,k =
1

λ + (λ− λd)(K − 1) + λd(k − 1)− λN
∏K−1

j=1,j 6=k

1

λN − λd(j − 1) + λd(k − 1)− λN

=
−1

λ(N −K) + λd(K − k)
mK−1,k.
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For k = K,

m̃K,K =
1

λd(K − 1)− λK

K−1∏

j=1

1

λN − λd(j − 1) + (K − 1)λd −Kλ

=
1

λd(K − 1)− λK
m̂K,k,

where

m̂K,K =
K−1∏

j=1

1

λN − λd(j − 1) + (K − 1)λd −Kλ

=
K−1∏

j=1

1

λ(N −K) + jλd

=
K−1∑

k=1

1

λ(N −K) + kλd

∏K−1

j=1,j 6=k

1

λdj − λdk

=
K−1∑

k=1

1

λ(N −K) + kλd

1

λK−2
d

(−1)k−1

(k − 1)!

1

(K − k − 1)!
.

For k = 0,

m̃K,0 =
1

λ + (λ− λd)(K − 1)

∏K−1

j=1

1

λN − λd(j − 1)

=
1

λK − λd(K − 1)

K−1∑

k=1

1

λN − λd(k − 1)

1

λK−2
d

1

(k − 1)!

(−1)K−k−1

(K − k − 1)!
.

Thus,

mK(t) =
K∑

k=0

m̃K,ke
sK,kt =

1

λK − λd(K − 1)
K−1∑

k=1

1

λN − λd(k − 1)

1

λK−2
d

1

(k − 1)!

(−1)K−k−1

(K − k − 1)!

+
1

λK−2
d

K−1∑

k=1

1

(k − 1)!

1

(K − 1− k)!
(

(−1)k−1e((K−1)λd−Kλ)t

(λd(K − 1)− λK)(λ(N −K) + kλd)

+
(−1)K−ke−λNteλd(k−1)t

(λd(k − 1)− λN)(λ(N −K) + λd(K − k))

)
.
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7.2 Derivation of FDi,j
(t)

FDi,j
(t) is derived starting from

L
(
FDi,j

(t)
)

=
1

s

(
i∏

k=1

qk

s + qk

) 


j∏

k=i

ri,k

s + ri,k


 .

The poles L
(
FDi,j

(t)
)

are

si,j,k =





0, k = 0;

−qk, 1 ≤ k ≤ i− 1;

−ri,k, i ≤ k ≤ j;

−qi, k = j + 1.

(We consider −qi as the j + 1 pole.) We consider only the case where the
multiplicity of each pole is equal to one; this requires that:

qk 6= qk′ , 1 ≤ k, k′ ≤ i, k 6= k′;
ri,k 6= ri,k′ , i ≤ k, k′ ≤ j, k 6= k′;
qk 6= ri,k′ , 1 ≤ k ≤ i, i ≤ k′ ≤ j;

qk 6= 0, 1 ≤ k ≤ i;

ri,k 6= 0, i ≤ k ≤ j.

(In the numerical results it is ensured that these conditions are met by using
some additional “noise” digits for the values of the parameters.) Then,

FDi,j
(t) =

j+1∑

k=0

ci,j,ke
si,j,kt,

where

ci,j,k = (s− si,j,k)L
(
FDi,j

(t)
)
|s=si,j,k

, 0 ≤ k ≤ j + 1.
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Thus,

ci,j,k =





1, k = 0;

−
(∏k−1

m=1
qm

qm−qk

) (∏i−1
m=k+1

qm

qm−qk

) (∏j
m=i

ri,m

ri,m−qk

)
, 1 ≤ k ≤ i− 1;

−
(∏i−1

m=1
qm

qm−ri,k

) (∏k−1
m=i

ri,m

ri,m−ri,k

) (∏j
m=k+1

ri,m

ri,m−ri,k

)
, i ≤ k ≤ j;

−
(∏i−1

m=1
qm

qm−qi

) (∏j
m=i

ri,m

ri,m−qi

)
, k = j + 1.

(7.1)

7.3 Table of notations

Description of notations

K Maximum number of copies allowed to be spread in the network

N + 1 Total number of nodes

L2, R, v Size of the square area, communication range, expected value of relative speed (see equation
(2.1))

λ Rate at which the source node encounters some other node

λo Rate at which an intermediate node encounters some other node (not the source)

d Cooperation degree (see Sections 2 and 5.4)

λd λ− λo

q(i, j), qi Transition rates for the continuous-time Markov chain of Fig.1

Ti Sojourn time in state i of the Markov chain of Fig.1

D Message delivery delay

Di Conditional message delivery delay, given that the message is delivered to the destination
when exactly i copies of the message have been spread in the network

Db Delay bound of a message

pd,i Probability that i copies of the message have been spread in the network when the destination
gets the message

fx(t) Probability distribution function (pdf ) of the random variable x

Fx(s) Laplace transform of the function fx(t)

Q(t) Cumulative distribution function (cdf ) of the message delivery delay (accurate cdf )

Q0(t) Cdf of the message delivery delay in case K < N and λ = λo

QN (t) Cdf of the message delivery delay in case K = N and λ 6= λo (maximum-copy cdf )

QḰ(t) Cdf of the message delivery delay in the ideal case of all copies having being instantly spread
in the network (zero-spreadtime cdf )

Q̂K(t) Approximate expression for Q(t)

Bi, mi(t), ci(t) Auxilary functions to calculate Q(t) (see section 3)

Mi(s), Ci(s) Laplace transform of mi(t), ci(t)

Kapprox Estimation of the number of copies that the source should spread in the network in order to
achieve a specified delivery ratio Qd
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Odel|drop Expected overhead consumption until the delivery or drop of the message

Odel|drop,i Expected overhead consumption provided that the message is delivered or dropped when
exactly i copies of the message have been spread in the network

Pdel|drop,i Probability that exactly i copies of the message have been spread in the network when the
destination is reached or the message is dropped

Pdrop,i Probability that the message is dropped provided that exactly i copies of the message have
been spread in the network

Pdels,i

(Pdelo,i)
Probability that the source (some intermediate node) delivers the message to the destination
provided that the message is delivered or dropped when exactly i copies of the message have
been spread in the network

Es (Eo) Energy consumed for a single transmission of the source node (an intermediate node)

Oadd Expected additional overhead

Oadd,i Expected additional overhead provided that the message is delivered to the destination by
some intermediate node when exactly i copies of the message have been spread in the network

ri(j, k), ri,j Transition rates of the Markov chain of Fig.5

Ti,k Sojourn time in state k of the Markov chain of Fig.5

λn,d (λn,i) Rate at which the destination node (an intermediate node) encounters the source node,
notifying it of the message delivery

Oadd,i,j Expected overhead provided that the source is notified or the message is dropped when
exactly j message copies have been spread in the network after the delivery of the message
when i copies of the message were spread in the network

Pdel|drop,i,j Probability that exactly j copies of the message have been spread in the network when the
source is notified or the message is dropped after the delivery of the message when i copies
of the message were spread in the network

Di,j Delay until j copies of the message have been spread in the network, provided that the
message was delivered to the destination when there were i copies of the message

Pnd,i,j

(Pni,i,j)
Probability that the source node is notified by the destination (the intermediate node that
delivered the message) provided that the source is notified or the message is dropped when
exactly j message copies have been spread in the network after the message was delivered to
the destination when exactly i copies were spread

End (Eni) Energy consumed for a single notification message transmission by the destination node
(intermediate node)
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