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Abstract  5 

The Internet of Things (IoT) paradigm aims to realize heterogeneous physical world objects 6 

interacting with each other and with the surrounding environment. In this prospect, the automatic 7 

provisioning of the varied possible interactions and bridging them with the digital world is a key 8 

pertinent issue for enabling novel IoT applications. The introduction of description logic-based 9 

semantics to provide homogeneous descriptions of object capabilities enables lowering the 10 

heterogeneity and a limited set of interactions (such as those with stationary objects with fixed 11 

availability) to be deduced using classical reasoning systems. However, the inability of such 12 

semantics to capture the dynamics of an IoT system as well as the scalability issues that reasoning 13 

systems encounter if too many descriptions have to be processed, necessitate that such approaches 14 

should be used in conjunction with others. Towards this aim, this paper proposes an automated 15 

rule-based association mechanism for integrating the digital IoT components with physical entities 16 

along temporal-spatial-thematic axes. To address the scalability issue, this mechanism is distributed 17 

over a federated network of nodes, each embodying a set of objects located in the same 18 

geographical area. Nodes covering nearby geographical areas can share their object descriptions 19 

while all nodes are capable of deducing interactions between the descriptions that they are aware 20 

of.  21 

Keywords: Internet of Things; Federated architecture; SWRL rules; Smart object associations 22 

1 Introduction 23 

The Internet of Things (IoT) concept envisions a future where numerous physical world objects 24 

interacting with each other are engrained in the fabric of our environment [1]. Inspired by the RFID 25 

and Wireless Sensor Networks (WSNs) research areas, this concept that was initially considering 26 

RFID tags, readers and sensors as ‘things’, has evolved over the years to now encompass all types of 27 

devices supporting interactions between the physical and the virtual world [2]. Facilitating such 28 

interactions requires provisioning of mechanisms that enable virtualization of such objects to allow 29 

interaction with them, ultimately leading to a realization of the vision of “technology rich human 30 

surroundings that often initiate interactions” [3]. Finding sensors, actuators and other digital world 31 

objects that are relevant for interactions with any particular physical world object is a key precursor 32 

to achieving this IoT vision, which requires lowering the heterogeneity implied by the plethora of 33 

possible devices and their resulting data.  34 
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 The applicability of Semantic Web technologies to create homogeneous, standardized and machine-35 

processable representations has already been identified in the literature [1, 4] as an enabler of 36 

object interoperability. Existing research works in sensor networks [5-7] have focused on sensor (and 37 

actuator) middleware frameworks that offer sensor measurement data services on the Web and/or 38 

at the application level. Finally, standardization activities such as the Semantic Sensor Network 39 

Incubator Group (SSN-XG) [8]have resulted in the Semantic Sensor Network (SSN) ontology [9] that 40 

represents a high-level schema model to describe sensor devices, their capabilities, observation and 41 

measurement data and the platform aspects. However, using Semantic Web technologies brings at 42 

least two strong limitations that prevent building efficient and accurate provisioning systems in an 43 

IoT context. First, due to the impossibility of describing and reasoning over the dynamics of a 44 

system, the use of the Semantic Web precludes representing that objects in the IoT can evolve over 45 

time (e.g. having their access policy, availability, geo-location, etc. changing over time). Secondly, 46 

almost all the works on Semantic Web reasoning still assume a centralized approach where the 47 

complete terminology has to be present on a single centralized system and all inference steps are 48 

carried out on this system. While this assumption is acceptable when considering a small set of 49 

described entities, the highly dynamic nature of envisioned IoT systems – composed of a very large 50 

number of smart objects producing and consuming information – requires adopting a different 51 

approach to avoid scalability issues. Moreover, this requirement is strengthened by the fact that 52 

disregarding IoT systems dynamics may lead to the computation of meaningless interactions (e.g. an 53 

association being asserted between two objects based only on their functionalities without 54 

considering their respective geo-locations).   55 

We believe that the use of Semantic Web in the context of the IoT must be coupled with additional 56 

processes addressing these two limitations. More precisely, temporal and spatial reasoning must be 57 

added on top of classical semantic reasoning in order to accurately reflect the behaviour of the 58 

considered IoT systems. This overall reasoning process must also be distributed to cope with 59 

computation spikes without having to maintain and administer the computing, network and storage 60 

resources each time a reasoning step is performed.  61 

 Towards this aim, this paper presents a federated distributed framework of nodes for an IoT 62 

architecture. Within this framework, the contributions proposed are focussed on two aspects: 63 

inferring automated associations that integrate the IoT digital components with physical entities and 64 

a notification algorithm to share knowledge between a determined set of nearby nodes. Each node 65 

of the framework refers to a managed geographic location that encompasses reasoning capabilities 66 

enabling associations (applicable to the objects contained in the location managed by the node) to 67 

be derived. Determining these associations is achieved by a novel rule-based mechanism along 68 

temporal-spatial-thematic axes. This mechanism builds upon our earlier work [10] on semantic 69 

models that capture the components of the IoT domain and provide a formal representation to the 70 

interactions. In line with the identification by Miorandi et al. [1] that architectures may make use of 71 

proximity communications whenever possible, each node of our framework is capable of selecting a 72 

set of geographically nearby nodes to share the knowledge about the IoT digital components that it 73 

manages. As a consequence, each node always uses a well delineated set of IoT digital components – 74 

i.e. those attached to or nearby the geographic location managed by the node – to derive 75 

associations. The consequent reduced size of the set enables reducing the computation cost implied 76 

by the reasoning process while elements composing the set still allow almost all associations to be 77 
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derived. Though the proposed approaches are focussed towards IoT systems in indoor 78 

environments, the contributions can be applied to other conceivable IoT deployments as well. 79 

We evaluate the proposed mechanisms by testing the applicability of the implemented association 80 

mechanisms for indirect inference in an entity mobility scenario and show the feasibility of the 81 

approach by quantitatively evaluating the scalability of the proposed framework.  82 

The rest of this paper is organized as follows. The federated architecture concept and the 83 

embodiment of semantically-enabled nodes are presented in Section 2. Section 3 presents the 84 

description of the semantic models supporting both the association mechanism detailed in Section 4 85 

and the knowledge sharing algorithm explained in Section 5. An implementation of the framework is 86 

detailed in Section 6, with a scenario validation and evaluation results discussed in Section 7. Related 87 

state of the art is presented in Section 8 and 9 concludes the paper and discusses future work. 88 

2 Federated architecture of nodes 89 

In the literature, federated network systems refer to shared resources among multiple loosely 90 

coupled nodes [11] in order to optimize the use of those resources, improve the quality of network-91 

based services, and/or reduce costs. Widely used in scenarios involving information sharing between 92 

different tiers [12], such distributed systems can cope with storage and computation limitations and 93 

offer efficient – i.e. fast – search processes using optimization techniques [13]. Due to these 94 

advantages, federated systems are particularly suited to interconnecting heterogeneous physical 95 

world objects with the surrounding environment, which relies on the capability to store, retrieve and 96 

process a high number of semantic descriptions of IoT digital components. 97 

Supporting the aforementioned IoT paradigm through a federated system is achieved by considering 98 

each loosely coupled node as the digital representation of a place hosting physical world objects. In 99 

this paper, we define a place as an indoor premise (e.g. a building, a room, etc.) and propose a 100 

model allowing such places to be described. However, nothing precludes adapting our architecture 101 

to address other kinds of places such as outdoor areas (e.g. a crossroad, a district, etc.). An example 102 

of a node (say N) presented in this paper may represent a meeting room equipped with a webcam, a 103 

presence sensor and other equipment. Embedding storage and computing capabilities, each node 104 

manages a pool of semantically described IoT digital components and can determine all possible 105 

associations between such components and the surrounding environment (following our previous 106 

example, a node N computes and stores the semantic descriptions of the digital interfaces of the 107 

webcam, the presence sensor and all other equipment present in the meeting room). 108 

Interconnecting these nodes allows a communication scheme where descriptions of IoT digital 109 

components can be exchanged to maximize the aforementioned determination process of 110 

associations (e.g. the node N sharing semantic descriptions with another node M). 111 

The following sub-sections describe the building blocks composing a node of our federated system 112 

as well as an indoor location model enabling to define how nodes are interconnected. 113 

2.1 Architecture of a node 114 

Each node of a federated system has been designed to provide the following three capabilities:  115 

1. The storage and the processing of semantic descriptions of IoT digital components. 116 
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2. The association process determining all possible interactions. 117 

3. The propagation of aforementioned descriptions to other nodes in order to maximize the set 118 

of associations that they will (re)compute.  119 

Fig. 1 details the design of each node composing the federation. Although different implementations 120 

of such a node may be investigated, a possible embodiment – that will be presented in Section 6 – 121 

can be a Semantic Web application running on a Personal Computer equipped with an Internet 122 

connection. 123 

In our vision, two kinds of resources are managed by a node. The first type of resource embraces any 124 

physical entity that can be sensed, measured or actuated: people, tables/chairs as well as connected 125 

physical world objects. The second type of resource comprises the IoT digital components offering 126 

some services (such as measuring a temperature) which can provide information on or actuate upon 127 

a physical entity. In the remainder of this paper, we consider this second type of resources as IoT 128 

Services. In other words, the IoT Service represents the set of functionalities of an IoT digital 129 

component and the corresponding offered APIs. 130 

 131 

Figure 1: Building blocks of a node 132 

We recall that any considered resource can be mobile and therefore can enter or exit from a 133 

geographic place. We assume in this paper the existence of a trigger process that notifies a node 134 

about such a join/exit event and provides it with the semantic description of the corresponding 135 

resource.  136 

That being said, upon an incoming resource, the Processing and Storage functionality block of a node 137 

performs management functionalities including checking the validity of the semantic description of 138 

such resource. This check uses the semantic models defining an IoT Service and a physical entity – 139 
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presented in Section 3. If compliant, the semantic description is translated to a set of RDF triples and 140 

inserted into the triple store of the node. 141 

The stored semantic descriptions of the resources are then employed by the Association Manager 142 

that makes use of Association rules to derive associations between a physical entity and the IoT 143 

Services that can actuate or provide information about it. The association mechanism is detailed in 144 

Section 4. 145 

Finally, the Knowledge Propagation block – detailed in Section 5 – uses Knowledge sharing rules 146 

defining the strategy of information sharing. Defined by a node manager (e.g. someone with 147 

administrative rights, managing the node by accessing to its configuration), examples of such rules 148 

can be the sharing of all semantic descriptions of incoming IoT Services or physical entities. 149 

However, as this can lead to the generation of a high number of messages between nodes, we 150 

believe that a good trade-off is to limit the sharing of information to the descriptions of incoming IoT 151 

Services.  152 

The Knowledge Propagation algorithm also uses an indoor location model – implemented in each 153 

node and described in the following Section 2.2 – in order to share the information with nearby 154 

nodes (recall that a node is mapped to a geographic area). This indoor location model allows 155 

localizing a place relatively to others (e.g. Chemistry lab is next to Computer Science lab) and serves 156 

as a basis to initialize and keep updated the federation system by defining how nodes are 157 

interconnected. 158 

2.2 Interconnecting nodes and creating the federation system 159 

To build a federated system composed of aforementioned nodes, we propose to create 160 

interconnections based on a ‘container’ approach, meaning that a place ‘containing’ other places 161 

results in as many interconnections as number of contained places (see for instance the curved 162 

arrows in Fig. 2 interconnecting N2 to N4 and N5 as a consequence of having the Chemistry lab and 163 

the Computer Science lab located in the 2nd floor of a given building). In our vision, the place 164 

containing other places acts as a ‘manager’ of the places it ‘contains’. As a consequence, the 165 

resulting federated system has a ‘top-node’ i.e. having no manager. By following this simple 166 

placement of rooms relatively to corridors, floors, etc. we enable a federated system to be quickly 167 

deployed and extended, i.e. when a room is newly mapped to a node, such a node only needs to 168 

contact its ‘manager’ in order to declare itself as a new node of the federated system. This approach 169 

must however be used in conjunction with another process, enabling information acquired by a 170 

given node to be shared only with relevant nodes, i.e. those mapped to places nearby the place 171 

managed by the given node. As an example, Fig. 2 presents the nodes of the Computer Science lab 172 

and the Chemistry lab as being interconnected to the node mapped to the 2nd floor of a University 173 

Building. However, it is not because both labs are in the 2nd floor that they should exchange 174 

knowledge (consider for instance the case of a floor being 300m long, with both labs localized at the 175 

opposite corners. Exchanging knowledge may, in this case, be irrelevant as the distance separating 176 

both labs seems too high). 177 
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 178 

Figure 2: gathering overall nodes' location of a given federation network 179 

To address this issue and to ensure sharing knowledge with the right nodes, it is necessary to be able 180 

to describe a place relatively to others, in order to decide whether a place is ‘close’ enough to 181 

another to share information with. Although vocabularies such WGS-841 or GeoNames [14] allow 182 

describing outdoor places based on their GPS coordinates, describing indoor location places requires 183 

a more granular description of the location concept. Towards this aim, we use Semantic Web 184 

technologies and in particular the Web Ontology Language (OWL) [15] due to its ability of providing 185 

richer descriptions for any kind of resource. The resulting model, depicted in Fig. 3, contains indoor 186 

location concepts gathered under a Place concept and representing structures of buildings, rooms, 187 

or other premises.  188 

 189 

Figure 3: Indoor location concepts 190 

                                                           
1
 Basic RDF Geo Vocabulary, http://www.w3.org/2003/01/geo/wgs84 pos# 
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Due to the various types of places that may be described, the Place concept has a broad meaning 191 

that can be narrowed to a Building, a Floor, a Premise or other kind of structures2. Some of these 192 

concepts are formally defined (based on logical predicates), allowing reasoning tasks to be 193 

performed. As an instance, a Building concept is modelled as an entity not contained by another 194 

Place but that contains at least one Floor and its formal definition is given by the following equation: 195 

    (1)  196 

We complete this model by defining the Region concept. Mapped to each place, a Region is defined 197 

as a geographical area (i.e. built from coordinates and distances of a place) enabling spatial 198 

associations to be derived (see Section 4). 199 

Finally, along with these concepts, we define some OWL properties allowing different places to be 200 

interlinked and localized relatively to others (e.g. a Room can ‘give access’ to another Room). This 201 

set of properties, summarized in Table 1, provides a small but necessary core of relations between 202 

different places enabling to define knowledge sharing rules (see Section 5).  203 

Note that although this model contains a small set of premises and properties, the import 204 

mechanism tied to OWL allows extending it. Consequently, other types of premises can be modelled. 205 

Besides, more complex relationships between places may be envisioned. Finally, note that the 206 

current proposed model assumes that places have a simple geometrical form (we only consider 207 

rectangular or circular places) to compute their Region and describe their relative localizations. 208 

Additional properties and concepts may therefore be defined in order to take into account places 209 

with more complex geometrical form (e.g. torus, L-shaped structures, etc.). 210 

Table 1: OWL Properties interlinking places 211 

Property Name Domain Range 

Description 

Contains Place Place 

Allows a place to contain other places (e.g. a floor containing some rooms) 

isAdjacentTo Place Place 

Models that two places are separated by some boundaries  

inEast Place Place 

inWest Place Place 

inNorth Place Place 

inSouth Place Place 

Refinement of isAdjacentTo, including the cardinal direction(s) of a place relatively to another 

                                                           
2 Indoor location model, http://webofdevices.appspot.com/models/owl/complex/indoor location.owl 
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givesAccessTo Place Place 

Means that a door exists in the boundary separating two places connecting them 

isIncludedIn Place Place 

Inverse property of ‘contains’ 

isPrivate/isPublic/isSemiPrivate Place Boolean 

Allows to know if a place can be used or not when computing associations 

 212 

By implementing this model, each node can be aware of all its ‘neighbours’ i.e. the ones it will share 213 

information with. This is made possible through a double cascading process (represented by straight 214 

and dashed arrows in Fig. 2) executed by each node when ‘initializing’ (recall that a node is a piece of 215 

software that is mapped to a place. Equipping a place with a node consists of starting this piece of 216 

software). Hence, at initialization, each node communicates the description of the place it manages 217 

to the top node using a cascading process. The top node uses a semantic engine to merge this data 218 

from all nodes to obtain the overall distribution of nodes in the federation. The same cascading 219 

process is then used to relay this inferred distribution data to all nodes. When a new node (i.e. a 220 

place implementing some indoor location model concept and containing some connected objects) is 221 

added, the above cascading process is performed again. The new node can then begin sharing 222 

knowledge about the IoT Services it manages. 223 

3 Models for physical entities and IoT Services  224 

This section presents the ontology models that we have used in this paper to allow associations to 225 

be discovered between IoT Services and physical entities and correspond to the Semantic Models 226 

block in Fig.1. These models have been proposed as part of our work done in the EU FP7 project IoT-227 

A3 and are presented in detail in [10]. Here, we briefly present the important concepts and 228 

properties of the models which are pertinent to forming associations.  229 

A physical entity can have certain attributes which are its observable or actionable features. These 230 

attributes can be related to the domain of the entity and hence be specified in terms of a domain 231 

ontology, e.g. temperature attribute in the environmental domain. The domain attribute name is 232 

specified as a string, whereas the attribute type could link to other models, for instance, a 233 

vocabulary of physical phenomena, such as the Ontology for Quantity Kinds and Units (QU)4 . The 234 

value itself has a literal ‘value’ and associated metadata information (ValueMetadata). The entity 235 

location is defined in terms of a modelled WGS-84 Location concept (hasLatitude, hasLongitude, has 236 

Altitude). The location concept also has properties that link to global (hasGlobalLocation) location 237 

models and to our proposed indoor location (hasLocalLocation) model. To specify the global 238 

location, an instantiation of the Entity Model could specify a URI from existing standards such as 239 

GeoNames that models well-known location aspects such as cities, districts, countries and 240 

                                                           
3
 IoT-A: Internet of Things – Architecture (http://www.iot-a.eu/public) contract number: 257521 

4
 http://www.w3.org/2005/Incubator/ssn/ssnx/qu/qu-rec20.html#Section_dim 
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universities.  Also captured are optional temporal features and links to known vocabularies (e.g. 241 

FOAF5) for specifying ownership. Part of the entity ontology is shown in Fig. 4. 242 

 243 

Figure 4: Model describing semantics of a physical entity 244 

The IoT digital component may be a sensor (including RFID tag), actuator or a storage device that 245 

stores information obtained from other sensors. Such components can be abstracted as ‘resources’, 246 

as detailed in [10]. Many ontologies already exist to detail such devices, e.g. SSN ontology for 247 

sensors.  Due to the different types of digital components possible in the IoT domain and the 248 

resulting hardware and software heterogeneity, the IoT Service model has been designed to provide 249 

a uniform abstraction for exposing the functionalities provided by them. Fig. 5 depicts the main 250 

properties of the IoT Service model. The ‘exposes’ property represents the mapping of the IoT 251 

Service to the corresponding digital component, which could be of different types (rm:hasType 252 

property) depending upon the kind of digital component. The resource abstraction allows for both 253 

hardware (e.g. sensor, actuator) and software specification (e.g. in the case of storage device) of the 254 

digital component. 255 

                                                           
5
 The Friend Of A Friend project, http://www.foaf-project.org/ 
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 256 

Figure 5: IoT Service Model 257 

The IoT Service model provides the capability to gather information about entities that can be 258 

associated with the digital components or to manipulate physical properties of the associated 259 

entities. This is modelled using the IOPE (input, output, preconditions and effects) parameters. The 260 

functionality of the digital component is captured by the hasOutput (e.g. for sensor services) and 261 

hasInput (e.g. for actuator services) properties. The input and output parameters can be specified in 262 

terms of the generic instance quantities from the QU ontologies, such as ‘temperature’ or 263 

‘luminosity’. This is then employed for deriving associations. For instance, a physical entity can have 264 

an attribute that represents its ‘indoorTemperature’. The generic type of this particular attribute is 265 

‘temperature’. Then, if there is a service that measures temperature, specified as the service’s 266 

hasOutput parameter, the corresponding service can be a candidate for a possible association to the 267 

relevant entity. For actuating services, the impact on the entity attribute being controlled after the 268 

service execution is also important. This post-condition state is modelled through the hasEffect 269 

parameter in the service model. Similarly, any pre-conditions that need to be met before the service 270 

execution can be specified through the hasPrecondition parameter. The actual technology used to 271 

invoke the service is modelled through the ‘hasServiceType’ parameter, which could take a value 272 

such as ‘REST’ for a RESTful Web Service. The area affected by the service is specified through the 273 

‘hasServiceArea’ property. For sensing services, this would be the observed area, while actuating 274 

services would specify the area of operation. The service area is defined in terms of the indoor 275 

location model ‘Place’ concept. The possibility of specifying time constraints on service availability is 276 
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captured through the ‘hasServiceSchedule’ property. The IoT Service also has ID (‘hasID’) and name 277 

(‘hasName’) properties. 278 

4 Associations along thematic-spatial-temporal Axes 279 

The concept of a Semantic Sensor Web with thematic, spatial and temporal information was first 280 

introduced by Sheth et al. [16], wherein the authors aimed to provide web accessible semantic 281 

descriptions of sensor networks and archived sensor data. The sensor data had temporal and 282 

location information embedded within the descriptions. There are well-defined thematic or domain-283 

specific ontologies for a number of domains and applications. Specifically, in the sensor domain, 284 

different ontologies cover sensor descriptions, sensor site information and sensor observation and 285 

measurements. Along with these thematic models, temporal and spatial models are increasingly 286 

employed for capturing meaning from data [3]. These can then aid semantic computations, 287 

inference and rule-based reasoning that enable semantic search and other IoT applications.  288 

The Association Manager of a node specifies forming the associations between physical and IoT 289 

digital objects along the thematic-spatial-temporal axes. Associations between a physical entity and 290 

an IoT Service link an attribute of the physical entity to either the IoT Service’s input or output. Thus, 291 

according to the IoT Service model detailed in Section 3, the service may either provide information 292 

about a physical entity, in which case the service output is of interest, or the service may bring about 293 

a change in the physical entity, when we are interested in the service input.  In this section, we 294 

discuss forming the associations between IoT Services and physical entities through a first set of 295 

rules that can be applied when a node’s triple store is updated with new IoT Service instances. 296 

An association is defined along thematic (feature), location and temporal axes, as depicted in Fig. 6. 297 

The feature dimension is defined as an intersection between an entity’s domain attribute and the 298 

IoT service’s input or output properties. The location axis takes into account the concept of place as 299 

defined in the indoor location model. For the location match, the entity needs to be in the IoT 300 

service’s service area to allow an association between them. Whenever the location and feature 301 

dimensions meet at the same time, associations can be established automatically.  302 

 303 

Figure 6: Derivation of Associations along thematic-temporal-spatial axes 304 
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Fig. 6 shows a floor of a building with a number of rooms and corridors, with each room having 305 

multiple sensors (and hence IoT Services) deployed in it. The placement and boundaries around each 306 

depicted sensor corresponds to its service area. A mobile physical entity is situated in the Chemistry 307 

Lab on this floor at time t1 and having a temperature attribute, is thus associated to the IoT Service 308 

exposed by the temperature sensor in this room. At time t2, the entity has moved to corridor 1 and 309 

since there are no sensors with a service area matching this corridor, the entity is no longer 310 

associated with any service. However, the association mechanism then considers the next higher 311 

level space in the indoor location ontology and finds a temperature sensor with service area 312 

specified as the floor 2. Thus, the entity is then associated to its IoT Service (shown as t2’ in Fig. 6). As 313 

a consequence, we propose the following rule as typified in the Rule Manager block: 314 

A thematic association is asserted if there is a non-empty intersection between the output (or input) 315 

of a service and the attribute types of the entity.  316 

4.1 Spatial analysis 317 

Following a match along the thematic attributes, the next step of the association logic is to consider 318 

various levels of spatial relations. The location-specific rules follow an incremental approach and 319 

make use of the knowledge inferred by the thematic association rules, i.e. only entity-IoT Service 320 

pairs matched along the thematic axis are considered for location matching. Since the indoor 321 

location ontology allows specifying logical locations for entities as well as the area served by an IoT 322 

Service, this can then serve as the basis for deriving spatial associations. However, the current logical 323 

location may not be known in all scenarios, e.g. in unfamiliar environments. In such cases, the 324 

current location according to the indoor location model needs to be ascertained first. Thus, the 325 

Geolocation Mapper block considers the nearest known geographical coordinate and defines an 326 

inference mechanism for determining the logical location of a mobile entity. We follow a top-down 327 

approach for the inference mechanism as follows: 328 

a) Consider all known ‘place’ concepts from the location ontology (i.e. 329 

premises/building/room) and their corresponding ‘regions’. We assume that a region is 330 

defined as a polygon including geo-coordinate information (e.g. a sphere, with the 331 

coordinate as its centre and a known radius).  332 

b) Starting from the top-node of the federation, i.e. considering a Premise instance, determine 333 

its area. Then calculate if the entity’s known coordinate is within the area defined by the 334 

Premise instance. 335 

c) If the entity is within the Premises, then consider all Building instances. Similarly, if it is 336 

determined that the entity is within the area of a building, then consider individual rooms 337 

with asserted dimension properties. 338 

d) If the physical entity is inferred to be within a particular room’s area, its ‘haslocalLocation’ 339 

property is asserted to be that of the ID of the room. If the entity is not within any room, but 340 

within a building, then the ‘haslocalLocation’ property is set to be the building location and 341 

so on. 342 

Once the local location is known, the matching of the physical entity and the IoT Service along the 343 

spatial dimension can be defined. The following rules consider four levels of spatial association, 344 

depending upon the proximity of the physical entity and the IoT Service: 345 
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a) sameLocation: the entity’s current logical location, as denoted by the ‘localLocation’ 346 

attribute falls within the service’s service area.  347 

b) nearby: the proximity of the connected device to the local location of the entity is not an 348 

exact match, but can be inferred by the location model that outlines spatial relationships 349 

between locations. For instance, if the entity’s location is adjacent to the IoT Service area, or 350 

the device is in a corridor that gives access to the room the physical entity is in, the 351 

association is then annotated as ‘nearby’.  352 

c) samePremise: if the adjacency and access properties yield no valid spatial associations, the 353 

association derivation process looks at the next higher level in the location model, i.e. 354 

employing the place containment captured in the indoor location model. This can be, for 355 

instance, co-location within company offices or houses. The association is then labelled to be 356 

within the same premise. 357 

d) sameRegion: the resource location matches the global location of the entity, e.g. same city, 358 

or county or geographically defined regions. 359 

The temporal logic for the association derivation process follows an event driven strategy tied to the 360 

federation framework, i.e. we assume that the rules are triggered based on some context change 361 

(e.g. IoT Service/physical entity added to the triple store of a node). Thus, the associations are 362 

automatically kept up-to-date regarding the physical entities and IoT Services known to the node at 363 

that instant of time and as a result, we do not explicitly employ any temporal variables in the rule-364 

set. 365 

5 Knowledge propagation between nodes 366 

As mentioned in the introduction of this paper, we believe that sharing information between nodes 367 

of the federated system can optimize the set of associations obtained by the process described in 368 

the previous section. In other words, we believe that a given node will be able to extend the 369 

associations it can compute by knowing the IoT Services and the physical entities that ‘live’ in 370 

neighbour nodes. To realize this sharing of information, we design a knowledge sharing process 371 

implemented by the Knowledge Propagation block of each node. Triggered each time the triple store 372 

of a node is modified (e.g. when adding or removing IoT Service descriptions), this process consists 373 

of using the aggregated location information (described in Section 2.2) as well as a list of knowledge 374 

sharing rules (Section 5.1). Based on the semantic models defined in Section 3, the rules use 375 

Semantic Web technologies. Depending on the rule results, messages are sent to all ‘neighbours’ of 376 

the node with the information to be shared (Section 5.2). 377 

5.1 Knowledge sharing rules 378 

Sharing knowledge between federated nodes is about extending the knowledge of nodes to allow 379 

them to derive more associations. Resulting in sharing descriptions of IoT Services or physical 380 

entities, this process make use of Semantic Web technologies and is specified in the Rule Manager 381 

component of a node. Although many rules could be defined, this section focuses on six particular 382 

rules forming a basic strategy about the way a node could exchange knowledge with others. These 383 

rules use the generic term resources to refer to semantically described physical entities or IoT 384 

Services. Note however that in our vision, the sharing knowledge strategy should be defined by the 385 

node manager as being the only one able to decide whether he wants to share information or not. 386 

Consequently, the six following rules may be adapted in each node. 387 
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The two first rules, trigger a message when an IoT Service (or physical entity) joins or left a place.   388 

1) When a resource has joined a place P, notify all the places accessible from P about this fact. 389 

2) When a resource has left a place P, notify all the places accessible from P that the resource 390 

could reach them. 391 

The two following rules, replace the two first ones by ’adjacency‘ concept. Compared to the two first 392 

rules, applying these two ones results in sharing information with more nodes (i.e. not only the ones 393 

that can be accessed but also the one that have a boundary in common). 394 

3) When a resource has joined a place P, notify all the places adjacent to P about this fact. 395 

4) When a resource has left a place P, notify all the places adjacent to P that the resource may 396 

reach them. 397 

The final two rules take into account mobility of resources by associating a learning process allowing 398 

nodes to notify other selected nodes that a resource should join them in the near future. In detail, 399 

the fifth rule consists of notifying a place P2 that a resource may reach it soon. P2 can then discover 400 

beforehand the associations between this resource and the other resources it currently manages. As 401 

such associations are predicted, P2 “locks” them (i.e. makes them not retrievable from search) by 402 

tagging them as being “prepared”. The sixth rule, finally, consists of unlocking these aforementioned 403 

associations by tagging them as being “available” (i.e. retrievable if searched). Note that although 404 

not described in this paper, such learning process associates a confidence score to each of these two 405 

rules. The more this process has learnt, the higher the confidence score is.  406 

5) When it has been learned that any mobile resource always reaches a place P2 after having 407 

reached P1 and if a resource has just joined P1, notify P2 that such resource will join. 408 

6) When the previous pattern has been learned and that a resource leaves P1, notify P2 that a 409 

resource joins. 410 

The benefit of using SWRL rules to define how knowledge between nodes has to be exchanged is 411 

twofold. First, it allows any node manager to define additional rules, processable by a Semantic Web 412 

engine without requiring code to be developed (as long as the rules do not contain calls to custom 413 

built-ins unassociated with the engine). Second, SWRL allows custom built-ins to be developed. In 414 

particular, some built-ins have been developed (see Section 6) to enable notification features to the 415 

‘head’ of a rule. Therefore, assuming someone having access to the implementation of the Sharing 416 

knowledge process, allows developing specific exchange protocols and rules. This flexibility allows 417 

policies to be associated to a strategy of knowledge sharing. As an example, two different place 418 

managers may decide two different strategies to share knowledge between nodes of the same 419 

federated network. Two different federated networks could also lead to different knowledge 420 

exchange models. Finally, different policies may be applied depending on their associated business 421 

models. 422 

5.2 Notification mechanism 423 

Having selected a set of nodes with which to share some knowledge, a given node needs to send 424 

appropriate messages so that its ‘neighbours’ will be notified of new content. Towards this aim, the 425 

Result Dispatcher component of the Knowledge Propagation block of a node specifies a notification 426 

mechanism. This mechanism leads to generating messages composed of a payload containing results 427 
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to share and a header containing the appropriate routes that the messages have to follow to reach 428 

their respective recipients. Knowledge to share arises from the execution of aforementioned rules 429 

(Section 5.1) and is therefore a set of triples. 430 

Determining the path between a given node and the recipient of a message relies on the 431 

organizational aspect of the federation (recall Section 2.2 and Fig. 2). Such a path is exactly the list of 432 

nodes that need to be crossed, in order to find a ’common manager’of both considered nodes. 433 

Computing this path relies on the gathered and inferred location of all nodes and involves the 434 

anonymous property ’inverse of contains‘ (with contains – a defined property – and its inverse 435 

provided by a Semantic Web engine). This property allows finding the ancestors of both the issuer 436 

and the recipient nodes. Hence, with this property, we build two sub-graphs, one starting with the 437 

issuer and the other one starting with the recipient. Each time we find ancestors, we check if the two 438 

sub-graphs have a common node. If so, we merge them into a single graph, which gives the shortest 439 

– and only – path between both nodes. Because the nodes cannot have more than one ‘manager’ 440 

the federation has no undirected cycles, which ensures that the algorithm converges to one unique 441 

solution. For a given result to share the notification mechanism consists then of the generation of K 442 

messages (assuming K neighbours). Each message contains a payload composed of a simple 443 

envelope to be routed properly as well as the result to. Once having received a result, a selected 444 

node processes it and updates its triple store. 445 

6 Implemented framework 446 

This section presents the prototype that we have realized to assess the processes described in 447 

Sections 4 and 5. Section 6.1 presents our implementation of the architecture components 448 

described in Section 2, while Section 6.2 presents the implementation of the notification process 449 

that allows sharing knowledge between nodes. 450 

6.1 Implementation of architecture components 451 

6.1.1 Implementation of a node 452 

Our implementation considers that a node of the federated system is embodied in a Java Web 453 

application deployed in a servlet container such as Tomcat. This Web application orchestrates the 454 

three blocks presented in Fig. 1 that have been implemented as follows. 455 

The Processing and Storage functionality block uses an RDF-based API capable of processing 456 

semantic descriptions. Reading and processing these descriptions is performed using the OWL API 457 

[17] coupled with Pellet [18], a semantic engine capable of reasoning on OWL ontologies. Once 458 

checked, these descriptions are inserted into OWLDB [19], acting as the triple store of a node.  459 

The Geolocation Mapper of the Association manager determines if an entity’s geographical 460 

coordinates lies within the area defined by a known location (premise/building/room).This is 461 

implemented by using the JTS Topology Suite [20] APIs. The steps are as follows: (a) create an object 462 

of class jts.geom.Polygon for the relevant Place instances, (b) take the physical entity’s geographical 463 

coordinate and create an object of class jts.geom.Point and (c) determine if the Polygon covers the 464 

Point. If it is true, then the entity is within the area defined by the matching place instance. Since this 465 

functionality is only executed in certain specific conditions as specified in Section 4.1, the associated 466 

complexity does not impact the federated system working.  467 
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The Rule Engine then implements an expert system using the SWRL Factory Java APIs and the Jess 468 

inference engine. It is worth noting that the rules are independent of the inference engine used, 469 

allowing the SWRL-Jess bridge to be replaced with another implementation of an inference engine 470 

that can execute SWRL rules. The derived property assertions are not inserted into the actual service 471 

or entity models, thus avoiding violating OWL’s monotonicity. However, the inferred knowledge is 472 

held within the rule engine, so that subsequent rules and queries can make use of the inferred 473 

associations. The derived associations are stored in a triple, with the entity-ID and the IoT service ID 474 

associated by the corresponding entity attribute. These triples are then written into the Association 475 

Repository in the node for subsequent queries.  Table 2 shows a SWRL realization of some of the 476 

association rules: 477 

Table 2: SWRL association rules 478 

Rule-1: 
 

srv:Service(?s) ∧ srv:hasOutput(?s, ?out) ∧ em:Entity(?et) ∧ em:hasA(?et, ?da) ∧ em:hasAttributeType(?da, 
?atype) ˚ sqwrl:makeSet(?sr, ?out) ∧ sqwrl:groupBy(?sr, ?s) ∧ sqwrl:makeSet(?se, ?atype) ∧ 
sqwrl:groupBy(?se, ?et) ˚ sqwrl:intersection(?in, ?sr, ?se) ∧ sqwrl:size(?n, ?in)   ∧  swrlb:greaterThan(?n, 0) 
→ assoc:sameFeatureAs(?s, ?et) 

 
Rule-2: 
 

assoc:sameFeatureAs(?s, ?et) ∧ srv:hasServiceArea(?s, ?sa) ∧ em:Entity(?et) ∧ em:hasA(?et, ?l) ∧ 
em:hasLocalLocation(?l, ?loc) ˚ sqwrl:makeSet(?rsa, ?sa) ∧ sqwrl:groupBy(?rsa, ?s) ∧ sqwrl:makeSet(?eloc, 
?loc) ∧  sqwrl:groupBy(?eloc, ?et) ˚  
sqwrl:intersection(?in, ?rsa, ?eloc) ∧ sqwrl:size(?n, ?in)   ∧  swrlb:greaterThan(?n, 0) → 
assoc:isAssociatedWith(?s, ?et) 

 
Rule-3: 
assoc:sameFeatureAs(?s, ?et) ∧ srv:hasServiceArea(?s, ?sa) ∧ em:Entity(?et) ∧ em:hasA(?et, ?l) ∧ 
em:hasLocalLocation(?l, ?loc) ∧ loc:givesAccessTo(?sa, ?loc)  → assoc:isAssociatedWith(?s, ?et) 
 
Rule-4: 
assoc:sameFeatureAs(?s, ?et) ∧ srv:hasServiceArea(?s, ?sa) ∧ em:Entity(?et) ∧ em:hasA(?et, ?l) ∧ 
em:hasLocalLocation(?l, ?loc) ∧ loc:isAdjacentTo(?sa, ?loc)  → assoc:isAssociatedWith(?s, ?et) 

 479 

Rules in Table 2 use the namespaces referring to the use of the service (srv prefix), entity (em prefix) 480 

and location models (loc prefix) defined in Sections 2 and 3, the defined association model (assoc 481 

prefix) and the SWRL (swrlb prefix) and SQWRL (sqwrl prefix) built-in libraries.  482 

Rule-1 implements the feature association, expressed as a ‘sameFeatureAs’ property. It infers a 483 

match between sensor services and entities, if there is a non-null intersection between the output of 484 

a service, (‘hasOuput’ object property) and the attribute types of the entity (‘hasAttributeType’ 485 

property), made possible since both property ranges map to the QU ontology instances. Both being 486 

object properties, rules out a literal string matching operation through SWRL built-ins for string 487 

comparison. Moreover, an entity may have multiple domain attributes and thus, multiple attribute 488 

types. Thus, we use the SQWRL collection operators for set theory operations to derive a non-null 489 

intersection.  First, the instances of the ‘hasOutput’ and ‘hasAttributeType’ property ranges are 490 

grouped into their respective sets using the makeSet operator. Then, each set is grouped by the 491 

services and entities, respectively, through the groupBy operator. This constructs a new set for each 492 

service matched in the service-related query and all the instances of the ‘hasOutput’ property are 493 
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added to that set. The standard set theoretic intersection operation is then employed to find the 494 

intersection between the two grouped collections and a non-null intersection associates the relevant 495 

service-entity pairs through the same feature property. A similar rule can be written for actuating 496 

services, with the ‘hasInput’ property of the service being considered. 497 

The rules to derive location association build upon the feature association rule results, i.e. the 498 

service and entity instances considered in these rules is the subset that are already associated along 499 

the feature axis. Thus, Rule-2 starts by considering only the service-entity pairs that are already 500 

inferred to have a feature match, through the sameFeatureAs property, as a result of Rule-1 501 

execution. It asserts an association when the physical entity’s current location and the IoT service’s 502 

service area intersect. Rules 3 and 4 implement the ‘nearby’ association where the service area is 503 

adjacent to, or gives access to (as known from the indoor location model properties) the entity’s 504 

current location. Other rules can be formulated along similar lines to derive ‘sameArea’ association 505 

by matching the premises of the service areas and entity locations. The ‘sameRegion’ association 506 

matches the service area with the global location of the entity; this can be the case when the service 507 

area covers the same city where the entity is located.  508 

Finally, the Rule Manager of the Knowledge Propagation block extends the features offered by SWRL 509 

and makes use of customized built-ins to create rules containing directives that initiate the exchange 510 

of information messages between different nodes. These built-ins implement an interface of Pellet 511 

(com.clarkparsia.pellet.rules.builtins.GeneralFunction), are packaged in a library and are loaded 512 

when the node starts. Custom built-ins are further registered to Pellet through a BuiltinRegistry 513 

class. Only once all built-ins have been registered, an instance of Pellet is created enabling rules 514 

using such custom built-ins to be processed by the semantic engine.  515 

Table 3 denotes a SWRL realization of rules (1) and (5) detailed in Section 5.1. These rules make use 516 

of prefixes referring to the indoor location model described in this paper (loc prefix), the service 517 

models (the srv prefix), SWRL built-ins connected to machine learning processes (the pattern prefix) 518 

or notification mechanisms (alert, notify and pnotify patterns). They involve concepts, properties 519 

and constants that can be found in the aforementioned semantic models. 520 

Table 3: SWRL expressions of rules 1 and 5 presented in section 4.2 521 

loc:Place(?p1) ∧ loc:Place(?p2) ∧ loc:givesAccessTo(?p1, ?p2) ∧ 
srv:IoTService(?s) ∧ alert:notify(?p1, ?s, loc:JOIN) 
→ notif:notify(?p2, ?p1, ?s, loc:JOIN) 
 
loc:Place(?p1) ∧ loc:Place(?p2) ∧ srv:IoTService(?s) ∧ srv:isMobile(?s, xsd:true) ∧ 
pattern:isNext(?p1, ?p2) ∧ alert:notify(?p1, ?s, loc:JOIN) 
→ notif:pnotify(?p2, ?p1, ?s, loc:WILL_JOIN) 

 522 

About developed patterns, the features mentioned in these rules act as follows: 523 

 pattern:isNext checks if the next node that a resource will join is a given node and returns a 524 

probabilistic score. 525 

 alert:notify simply checks if an entity has joined or left a given node. 526 

 notif:notify sends messages to nearby nodes about a fact that has (or will) happen. Its 527 

associated probability score is equal to 1. 528 
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 notif:pnotify sends messages to nearby nodes about a fact that may happen with a certain 529 

probability. Getting such probability information is outside the scope of this paper. Thus, the 530 

overall idea is to return a score taking into account the number of nodes that are accessible 531 

from or adjacent to a considered node. 532 

6.1.2 Interconnecting nodes as a federated system 533 

As mentioned in Section 2, interconnection of nodes is realized by a double cascading process. In our 534 

implementation, this process is achieved by attaching configuration parameters to each node. 535 

Amongst these parameters, one is an accessible endpoint of the manager of a given node (recall N2 536 

managing N5 in Fig. 2). As our nodes are embodied in Web applications, this accessible endpoint is a 537 

URL mapped on a piece of code able to process incoming requests. The following shows an extract of 538 

a web.xml document used to configure our Web application. Note that a node without the 539 

‘manager’ parameter is supposed to be the top node of the federated system (see Listing 1). 540 

 541 

Listing 1 : Context parameter given the endpoint of the manager of a node 542 

At initialization, a node is configured with the values of these parameters and becomes capable of 543 

contacting its manager. Thus, it enables the implementation of the curved arrows shown in Fig. 2. 544 

Initialization of a node continues by reading a second parameter giving a pointer to the semantic 545 

description of the place this node supervises. This step is justified by the fact that we assume that a 546 

node may not have explicitly said who all its neighbours are. 547 

Computation of the neighbours of a node is described by Algorithm 1 and starts by a node sending 548 

the description of its indoor location to its manager. This message is forwarded between different 549 

managers until reaching the top node of the federated system (first cascading process). By receiving 550 

this message, the top node aggregates this new amount of location data with those it is already 551 

aware of (e.g. location data previously sent by other nodes). It then recomputes all neighbours of all 552 

known nodes by calling a semantic engine and passing this aggregated information. Finally, this 553 

manager notifies all nodes it has previously received location information with this updated location 554 

model. The process is repeated until all nodes of the federated system received a notification 555 

message.  556 
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 557 

 558 

6.2 Implementation of the notification process 559 

 560 
The Results Dispatcher of the Knowledge Propagation block uses the JGraphT6 open source library 561 

that has features to build graphs to determine the path between two nodes willing to share 562 

knowledge. To establish a graph between two nodes A and B, we fed JGraphT with data retrieved 563 

from the aggregated and inferred location data. Considering that the knowledge has to be sent from 564 

A to B, our implementation uses the property loc:givesAccessTo – loc being the prefix used to refer 565 

to the location model of Section 2.1 – to build two subgraphs (see Algorithm 2), respectively called 566 

left subgraph (starting with node A) and right subgraph (starting with node B). Building the left 567 

subgraph consists of asking a Semantic Web engine to provide all nodes {Ni} such that “A 568 

loc:givesAccessTo Ni” and to reiterate this request on the nodes having been found. The right 569 

subgraph uses the inverse of loc:givesAccessTo property and therefore returns the list of nodes Nj 570 

                                                           
6
 JGraphT a Java graph library providing mathematical graph-theory objects and algorithms, http://jgrapht.org/ 

// initialization variables 
indoor_location_desc ← Config.get_parameter(“indoor_location_desc”); 
semantic_engine← Pellet.get_reasoner(“OWL_reasoning”); 
manager ← Config.get_parameter(“manager”); 
managed_descriptions ← [] 
 
// double cascading process triggered when a node starts 
Procedure: start() 
    send_message(“UPDATE_DESCRIPTION”, manager, indoor_loc_desc); 
 
// the following procedure handles incoming messages, e.g. issued from other nodes 
Procedure: handle_incoming_message(type, content) 
    if content ≠ <> then 
        if type = “UPDATE_DESCRIPTION” then 
            // keep track of all nodes this one manages 
            managed_descriptions ← content; 
            // update description of this node by merging the received info 
            indoor_location_desc.add_triples(content);  
            // if this node is the top node of the federated system, infer on the merged location 
            if manager = <> then 
                // update the ontology used by the semantic engine 
                semantic_engine.update_ontology(indoor_location_desc); 
                // (re)infer relationships between places 
                semantic_engine.infer(); 
                // send inferred triples back to all managed nodes 
                foreach managed_node in managed_descriptions do 
                    send_message(“DESCRIPTION_UPDATED”, managed_node.endpoint, 

semantic_engine.get_inferred_ontology()); 
            else 
                send_message(“UPDATE_DESCRIPTION”, manager, indoor_location_desc); 
        else if type = DESCRIPTION_UPDATED then 
            // updates all managed nodes with the updated description 
            foreach managed_node in managed_descriptions do 
                    send_message(“DESCRIPTION_UPDATED”, managed_node.endpoint, 
semantic_engine.get_inferred_ontology()); 
 

Algorithm 1: Getting all the neighbours of a node with a double cascading process 
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such as “B inverseOf(loc:givesAccessTo) Nj”. Having no undirected cycles in the federated system 571 

allows us to ensure that our algorithm terminates (i.e. as givesAccessTo is a symmetric property, 572 

iterations on such a property may have led to infinite loops). Having obtained the two subgraphs, we 573 

search if both contain common vertices. Searching for common vertices in these graphs is possible 574 

due to the fact that each vertex is associated with a unique URI, as representing a Place, defined 575 

using the indoor location model presented in Section 2.2. Finally, in the case of common elements 576 

found, we merge both graphs and apply the Djikstra algorithm [21] to find the shortest path 577 

between A and B. 578 

Once the path between the two nodes is determined, the developed SWRL built-ins fire HTTP 579 

messages containing the customized HTTP Request header (referred to as X-nodes in Listing 2) 580 

containing the ordered list of nodes retrieved when establishing the path between the nodes. The 581 

content of this HTTP message consists of a SPARQL Update query containing the triple(s) to push in 582 

the triple store of the recipient node. This message is sent to the first node to cross and then goes 583 

through all the other nodes appearing in X-nodes. Each time the message is forwarded by a given 584 

node, its IP address appears in the standardized “via” header while it is removed from the X-nodes 585 

one. The following Fig. 7 summed up this notification process.  586 

 587 

Listing 2: Message sent between two nodes 588 

 589 

Figure 7: Sharing associations between nearby nodes 590 

POST <N3_ip_address>/store/update HTTP/1.1       
Content-Type: application/sparql-update        
X-nodes: <N4_ip_address>, <N5_ip_address>, <N6_ip_address>     
Via:            
Content-length: 340          
Prefix assoc: <http://models.iot-a.eu/association.owl>      
DELETE DATA { <http://[N1_ip_address]/service/webcam1234.rdf>     

assoc:isAssociatedWith <http://dblp.l3s.de/d2r/resource/authors/ 
Benoit_Christophe> } 

INSERT DATA { <http://[N1_ip_address]/service/webcam1234.rdf>     
assoc:isAssociatedWith <http://dblp.l3s.de/d2r/resource/authors/ 
Suparna_De> } 
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 591 

 592 

Algorithm 2: Compute the left or right subgraph SG of a given node n 593 

7 Evaluation and discussion 594 

To evaluate our implemented framework, the indoor location model has been instantiated with 595 

different types of premises, namely, floors, corridors and various types of rooms (offices, meeting 596 

rooms and labs) across different buildings. A node has then been deployed in each described 597 

premises to build up a federated architecture, comprising of four levels of management (i.e. the 598 

// Create a DAG using JGraphT library 

 
 
Procedure: create_subgraph(n): 
Require:  
  
  
 
Procedure: analyze(node, direction): 
 // Analyze node to build its subgraph SG 
Require:  
  
  
 if direction=”left” then 
  ; 
 else 
   
 end if 
  
  
  for all sn in subnodes do 
    
     

add_node(sn, node); 
     
   end if 
  end for 
 end if 
 
Procedure: add_node(node, parent): 
 // Add a node in the DAG 
Require:  
  
   
 end if 
 
Procedure: get_rdf_objects(subject, predicate): 

//Get a collection of objects objet such that (subject, predicate, object) exists in the 
knowledge base 

Require:  
  
  
 return objects; 
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maximum distance between the root and the leaf node). Our evaluation approach consists of testing 599 

the applicability of the implemented mechanisms through a scenario validation and showing the 600 

feasibility of the approach by quantitatively evaluating the scalability of the proposed framework. 601 

7.1 Scenario validation 602 

The proposed mechanisms have been applied to a scenario that is representative of dynamic IoT 603 

systems. The testbed consists of a number of sensors deployed in rooms in a university building, 604 

with four floors in the building. We limit the service areas of the IoT Services to the room location. 605 

We organized the testbed into a federated network of nodes, comprising up to four management 606 

levels (i.e. university premise, building, floor and room). The distribution on a given floor is as shown 607 

in Fig. 8 (blue circles represent sensor locations). The deployment of the IoT Services in each node 608 

triggers its Processing and Storage block which processes the corresponding semantic descriptions 609 

and stores them in the triple store. Once this is done for each node, the double cascading process 610 

allows the information related to the distribution of the nodes to be shared within the federation. 611 

 612 

Figure 8: Dataset visualization on a floor plan 613 

The first case of the scenario consists of an entity, John, who moves around the university premises 614 

and is interested in finding the relevant sensors that can give him an idea of his ambient 615 

temperature at any given location. John’s current location is known in terms of geographical 616 

coordinates. A user application allows this request to be received and triggers insertion of the entity 617 

description (i.e. FOAF profile and temperature attribute) into the node’s triple store. This then feeds 618 

the Geolocation Mapper which translates the received latitude, longitude pair to an indoor location 619 

model instance, which is asserted to be John’s ‘localLocation’ property. In this case, this is 620 

determined to be a room, corresponding to 12BA01 in Fig. 8. Since the room contains a temperature 621 

sensing service (circled in green in Fig. 8), it is associated to John by the association rules executed 622 

by the Association Manager’s Rule Engine. 623 
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The second case of the scenario showcases relocation of a sensor from one room to another, and 624 

thus a change in the semantic description of its IoT Service. The generated event (IoT Service joining 625 

a place) triggers the Rule Manager of the Knowledge Propagation block which executes the relevant 626 

knowledge sharing rules to determine the set of nodes to be updated. The Results Dispatcher then 627 

employs the notification algorithm to determine the path to the selected nodes and the IoT Service’s 628 

semantic description is sent to these nodes. 629 

7.2 Performance measurements 630 

Our evaluation approach consisted of a number of performance related experiments. The first 631 

experiment we performed was to assess the time taken to compute associations, by varying the 632 

number of IoT Services to be taken into account by the Association Manager, from 20 to 2000. We 633 

run this experiment on a Personal Computer with a standard configuration (Intel Core 2 Duo 634 

processor – 2.26 GHz frequency – 2 GB RAM – Ethernet connection). We used a centralized triple 635 

store containing all the semantic descriptions of the IoT services considered. To determine 636 

associations, we also used a fixed set of five described physical entities. Associations were then 637 

derived using the logic of the Association Manager. The results displayed in Figure 9 show the 638 

exponential growth of the time required to derive associations, in function of the number of IoT 639 

Services. 640 

 641 

Figure 9: Association computation measurements 642 

This experiment highlights the computationally expensive task of recomputing associations and 643 

validates the inappropriate use of a centralized approach to do so. As an example, Fig. 9 shows that 644 

20s are required to recompute associations involving 200 IoT Services, a number that may however 645 

be quickly reached when deploying sensors in a whole building. This conclusion bolsters our belief 646 

that a federated architecture would be a more feasible deployment option in IoT scenarios, where 647 

each node would manage only a limited number of IoT Services. 648 
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We assess the scalability of the federated framework by a second experimentation quantifying the 649 

number of messages exchanged with different nodes sharing information as well as the time taken 650 

to process these messages. For this experimentation, we used the 20 nodes of the federated system 651 

associated to the Building displayed in Fig. 8 and deployed 50 IoT Services in each of them (i.e. the 652 

overall system was managing 1000 IoT Services). We then simulated the relocation of groups of 653 

sensors to evaluate how the number of sensors relocated was impacting the federated system 654 

compared to a centralized approach. Tests involved respectively the relocation of 1, 20 and finally 50 655 

IoT Services. For this experimentation, we used a node sharing knowledge with only one other node. 656 

Consequently, respectively 1, 20 and 50 messages were generated. Upon receptions of these 657 

messages, semantic descriptions of relocated sensors were retrieved by the node and, finally, 658 

associations were derived. Fig. 10 summarizes the overall times that we have obtained.  659 

  660 

Figure 10: Measurements for maintaining the federated system when IoT Services are relocated 661 

These times are decomposed in the time taken to send the set of messages, the time taken to load 662 

the semantic descriptions associated to these messages and the time taken to recompute 663 

associations. This figure indicates that the time spent in sending messages follows a linear growing 664 

(function of the number of messages to send) resulting in a significant amount of time added by the 665 

knowledge sharing process. Besides, this figure shows that the time taken to load semantic profiles 666 

of sensors was constant. Finally the time to compute associations follows a similar curve than what 667 

was presented in Fig. 9. Compared to a centralized approach deriving associations with 1000 IoT 668 

Services, these times stay however much more acceptable (see Fig. 9 showing a time of 645s to 669 

derive associations with 1000 IoT Services).  670 

Finally, we did a third experimentation checking whether the number of nodes crossed by a 671 

knowledge sharing message was impacting the federated system or not. We then run the scenario of 672 

the relocation of one sensor multiple times; varying the route of this relocation by changing the 673 

recipient room. Such scenario provided us with a set of messages, each having been propagated 674 

differently (i.e. having crossed up to 5 nodes). Although the time increased linearly with the number 675 



24 
 

of nodes having been crossed, the results displayed in Fig. 11 shows that it could be disregarded 676 

compared to others (i.e. time to load the semantic description of the relocated sensor and time to 677 

recompute associations using 51 IoT Services). 678 

 679 

Figure 11: Maintaining the federated system when one IoT Service is relocated 680 

8 State of the art 681 

Due to the nascent IoT paradigm, it is relevant to look at on-going research in allied areas such as the 682 

broad sensor Web community. In this section, we first review other research works that have looked 683 

at linking sensor descriptions or data to existing data sources. An ontology-based event detection 684 

system for wireless sensor networks by Danieletto et al. [22] automatically classifies any sensing 685 

device based on its capabilities and any event based on its source and detection place. The device 686 

classification method categorizes sensor types based on the detected data. The presented event 687 

classification algorithm distinguishes between general, focused and outlier events based on the 688 

number of sensors detecting the event values and agreed threshold values. Yu et al. [23] use the 689 

Linked Data approach to integrate sensor Web data with geospatial, streaming and event data 690 

sources in the context of integrated water resource decision support. The thematic-spatial-temporal 691 

concept for annotating sensor Web observation data was first proposed by Sheth et al. [16]. This 692 

concept was extended with the Linked Data concepts by Barnaghi et al. [24] to allow users to publish 693 

linked sensor data for sensor site information that is associated to existing resources that are already 694 

a part of the Web of data. In this proposed work, we take the theme, time and space concept and 695 

extend it to the IoT world to associate physical world objects with digital world objects that can 696 

provide information or mediate interaction with the physical objects. 697 

Among the middleware approaches proposed for the IoT, some have applied semantics to objects to 698 

leverage the benefits of interoperability that Semantic Web technologies provide. Katasonov et al. 699 

[25] propose coupling of ontologies with agents, interconnected with the FIPA7 specification, to 700 

develop a middleware allowing heterogeneous devices to cooperate. They employed Semantic Web 701 

Service ideas [26] to create a Semantic Web of Things composed of agents presenting semantic 702 

                                                           
7
 FIPA Specification, http://www.fipa.org/specifications/index.html 



25 
 

profiles of devices that they were monitoring. The agents process incoming semantic requests by 703 

triggering appropriate device functionalities. Boussard et al. developed a Web of Things (WoT) 704 

framework exposing smart environments and their constituents as Web resources  [27]. This 705 

framework relies on the concept of Virtual Object (VO) and makes use of semantic profiles [28] 706 

coupled with reasoning mechanisms to propose locally relevant objects [29]. A middleware to couple 707 

the envisioned IoT architecture with enterprise applications has been proposed in [6]. The proposed 708 

SOCRADES middleware architecture enables enterprise-level applications to interact with and 709 

consume data from a wide range of networked devices, including sensors. Device abstraction is 710 

achieved by device proxies that integrate low-capacity devices to the platform and expose the 711 

offered functionalities as services on the middleware. It relies on Web Services for all 712 

communication interfaces. The middleware supports composition of IoT-level services. It 713 

implements a service implementation repository that stores all services that are available for 714 

composition of new services, orchestration of business process or deployment. Pfisterer et al. [30] 715 

have proposed an architecture allowing enhanced integration of sensor data and services. Their 716 

approach includes defined vocabularies that facilitate integration of descriptions of sensors and 717 

things with Linked Open Data (LOD) cloud8 and the search mechanisms take into account sensor 718 

states (e.g. availability). User queries were answered by querying a triple store with SPARQL. 719 

All of the middleware approaches reviewed here contain similarities with the one presented in this 720 

paper. However, our approach differs in the fact that we integrate the geographical distribution of 721 

objects (sensors, actuators etc.) into a federated architecture of nodes allowing efficient distribution 722 

of knowledge. The above approaches consider a unique registry where all user requests are 723 

processed. Although some approaches have mentioned that the registry could be implemented 724 

across distributed servers, none of them have addressed the benefits of distributing the knowledge 725 

gathered by a node with a selected set of geographically nearby peers. 726 

9 Conclusions 727 

This paper presents an exploratory, development-oriented approach for associating physical and 728 

digital world objects forming part of the Internet of Things. The associations are defined in an 729 

automated way, along the concepts of theme, time and space. We have also proposed a scalable, 730 

distributed framework of nodes organized in a federated architecture, with each node capable of 731 

processing the semantic descriptions of the objects comprising the IoT and their associations. 732 

Though other approaches have also applied Semantic Web technologies for achieving 733 

interoperability between the connected objects in the IoT domain, our approach additionally 734 

considers a particular deployment infrastructure, with each node been mapped to an indoor physical 735 

environment. This facilitates local reasoning capabilities and makes use of proximity knowledge for 736 

inter node communication, thus allowing a solution to the scalability issue of IoT. Our approach also 737 

takes into account mobility of entities or devices within the infrastructure, making use of SPARQL 1.1 738 

update support. Our future initiatives involve expanding the temporal dimension for associations, 739 

for alignment with the SWRL temporal ontology. Integration of the service model with on-going 740 

initiatives like SSN and Linked USDL9  are also envisaged.  741 

                                                           
8
 Linked Open Data Cloud, richard.cyganiak.de/2007/10/lod/ 

9
 http://www.linked-usdl.org/ 
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