
Semantic enablers for dynamic digital-physical object associations in 1

a federated node architecture for the Internet of Things 2

 3

Suparna De1, Benoit Christophe2, Klaus Moessner1 4

1Centre for Communication Systems Research (CCSR), University of Surrey, Guildford GU2 7XH,
Surrey, United Kingdom. {S.De, K.Moessner}@surrey.ac.uk
2 Bell Labs Research, Alcatel-Lucent, 91620 Nozay, France. benoit.christophe@alcatel-lucent.com

Abstract 5

The Internet of Things (IoT) paradigm aims to realize heterogeneous physical world objects 6

interacting with each other and with the surrounding environment. In this prospect, the automatic 7

provisioning of the varied possible interactions and bridging them with the digital world is a key 8

pertinent issue for enabling novel IoT applications. The introduction of description logic-based 9

semantics to provide homogeneous descriptions of object capabilities enables lowering the 10

heterogeneity and a limited set of interactions (such as those with stationary objects with fixed 11

availability) to be deduced using classical reasoning systems. However, the inability of such 12

semantics to capture the dynamics of an IoT system as well as the scalability issues that reasoning 13

systems encounter if too many descriptions have to be processed, necessitate that such approaches 14

should be used in conjunction with others. Towards this aim, this paper proposes an automated 15

rule-based association mechanism for integrating the digital IoT components with physical entities 16

along temporal-spatial-thematic axes. To address the scalability issue, this mechanism is distributed 17

over a federated network of nodes, each embodying a set of objects located in the same 18

geographical area. Nodes covering nearby geographical areas can share their object descriptions 19

while all nodes are capable of deducing interactions between the descriptions that they are aware 20

of. 21

Keywords: Internet of Things; Federated architecture; SWRL rules; Smart object associations 22

1 Introduction 23

The Internet of Things (IoT) concept envisions a future where numerous physical world objects 24

interacting with each other are engrained in the fabric of our environment [1]. Inspired by the RFID 25

and Wireless Sensor Networks (WSNs) research areas, this concept that was initially considering 26

RFID tags, readers and sensors as ‘things’, has evolved over the years to now encompass all types of 27

devices supporting interactions between the physical and the virtual world [2]. Facilitating such 28

interactions requires provisioning of mechanisms that enable virtualization of such objects to allow 29

interaction with them, ultimately leading to a realization of the vision of “technology rich human 30

surroundings that often initiate interactions” [3]. Finding sensors, actuators and other digital world 31

objects that are relevant for interactions with any particular physical world object is a key precursor 32

to achieving this IoT vision, which requires lowering the heterogeneity implied by the plethora of 33

possible devices and their resulting data. 34

1

 The applicability of Semantic Web technologies to create homogeneous, standardized and machine-35

processable representations has already been identified in the literature [1, 4] as an enabler of 36

object interoperability. Existing research works in sensor networks [5-7] have focused on sensor (and 37

actuator) middleware frameworks that offer sensor measurement data services on the Web and/or 38

at the application level. Finally, standardization activities such as the Semantic Sensor Network 39

Incubator Group (SSN-XG) [8]have resulted in the Semantic Sensor Network (SSN) ontology [9] that 40

represents a high-level schema model to describe sensor devices, their capabilities, observation and 41

measurement data and the platform aspects. However, using Semantic Web technologies brings at 42

least two strong limitations that prevent building efficient and accurate provisioning systems in an 43

IoT context. First, due to the impossibility of describing and reasoning over the dynamics of a 44

system, the use of the Semantic Web precludes representing that objects in the IoT can evolve over 45

time (e.g. having their access policy, availability, geo-location, etc. changing over time). Secondly, 46

almost all the works on Semantic Web reasoning still assume a centralized approach where the 47

complete terminology has to be present on a single centralized system and all inference steps are 48

carried out on this system. While this assumption is acceptable when considering a small set of 49

described entities, the highly dynamic nature of envisioned IoT systems – composed of a very large 50

number of smart objects producing and consuming information – requires adopting a different 51

approach to avoid scalability issues. Moreover, this requirement is strengthened by the fact that 52

disregarding IoT systems dynamics may lead to the computation of meaningless interactions (e.g. an 53

association being asserted between two objects based only on their functionalities without 54

considering their respective geo-locations). 55

We believe that the use of Semantic Web in the context of the IoT must be coupled with additional 56

processes addressing these two limitations. More precisely, temporal and spatial reasoning must be 57

added on top of classical semantic reasoning in order to accurately reflect the behaviour of the 58

considered IoT systems. This overall reasoning process must also be distributed to cope with 59

computation spikes without having to maintain and administer the computing, network and storage 60

resources each time a reasoning step is performed. 61

 Towards this aim, this paper presents a federated distributed framework of nodes for an IoT 62

architecture. Within this framework, the contributions proposed are focussed on two aspects: 63

inferring automated associations that integrate the IoT digital components with physical entities and 64

a notification algorithm to share knowledge between a determined set of nearby nodes. Each node 65

of the framework refers to a managed geographic location that encompasses reasoning capabilities 66

enabling associations (applicable to the objects contained in the location managed by the node) to 67

be derived. Determining these associations is achieved by a novel rule-based mechanism along 68

temporal-spatial-thematic axes. This mechanism builds upon our earlier work [10] on semantic 69

models that capture the components of the IoT domain and provide a formal representation to the 70

interactions. In line with the identification by Miorandi et al. [1] that architectures may make use of 71

proximity communications whenever possible, each node of our framework is capable of selecting a 72

set of geographically nearby nodes to share the knowledge about the IoT digital components that it 73

manages. As a consequence, each node always uses a well delineated set of IoT digital components – 74

i.e. those attached to or nearby the geographic location managed by the node – to derive 75

associations. The consequent reduced size of the set enables reducing the computation cost implied 76

by the reasoning process while elements composing the set still allow almost all associations to be 77

2

derived. Though the proposed approaches are focussed towards IoT systems in indoor 78

environments, the contributions can be applied to other conceivable IoT deployments as well. 79

We evaluate the proposed mechanisms by testing the applicability of the implemented association 80

mechanisms for indirect inference in an entity mobility scenario and show the feasibility of the 81

approach by quantitatively evaluating the scalability of the proposed framework. 82

The rest of this paper is organized as follows. The federated architecture concept and the 83

embodiment of semantically-enabled nodes are presented in Section 2. Section 3 presents the 84

description of the semantic models supporting both the association mechanism detailed in Section 4 85

and the knowledge sharing algorithm explained in Section 5. An implementation of the framework is 86

detailed in Section 6, with a scenario validation and evaluation results discussed in Section 7. Related 87

state of the art is presented in Section 8 and 9 concludes the paper and discusses future work. 88

2 Federated architecture of nodes 89

In the literature, federated network systems refer to shared resources among multiple loosely 90

coupled nodes [11] in order to optimize the use of those resources, improve the quality of network-91

based services, and/or reduce costs. Widely used in scenarios involving information sharing between 92

different tiers [12], such distributed systems can cope with storage and computation limitations and 93

offer efficient – i.e. fast – search processes using optimization techniques [13]. Due to these 94

advantages, federated systems are particularly suited to interconnecting heterogeneous physical 95

world objects with the surrounding environment, which relies on the capability to store, retrieve and 96

process a high number of semantic descriptions of IoT digital components. 97

Supporting the aforementioned IoT paradigm through a federated system is achieved by considering 98

each loosely coupled node as the digital representation of a place hosting physical world objects. In 99

this paper, we define a place as an indoor premise (e.g. a building, a room, etc.) and propose a 100

model allowing such places to be described. However, nothing precludes adapting our architecture 101

to address other kinds of places such as outdoor areas (e.g. a crossroad, a district, etc.). An example 102

of a node (say N) presented in this paper may represent a meeting room equipped with a webcam, a 103

presence sensor and other equipment. Embedding storage and computing capabilities, each node 104

manages a pool of semantically described IoT digital components and can determine all possible 105

associations between such components and the surrounding environment (following our previous 106

example, a node N computes and stores the semantic descriptions of the digital interfaces of the 107

webcam, the presence sensor and all other equipment present in the meeting room). 108

Interconnecting these nodes allows a communication scheme where descriptions of IoT digital 109

components can be exchanged to maximize the aforementioned determination process of 110

associations (e.g. the node N sharing semantic descriptions with another node M). 111

The following sub-sections describe the building blocks composing a node of our federated system 112

as well as an indoor location model enabling to define how nodes are interconnected. 113

2.1 Architecture of a node 114

Each node of a federated system has been designed to provide the following three capabilities: 115

1. The storage and the processing of semantic descriptions of IoT digital components. 116

3

2. The association process determining all possible interactions. 117

3. The propagation of aforementioned descriptions to other nodes in order to maximize the set 118

of associations that they will (re)compute. 119

Fig. 1 details the design of each node composing the federation. Although different implementations 120

of such a node may be investigated, a possible embodiment – that will be presented in Section 6 – 121

can be a Semantic Web application running on a Personal Computer equipped with an Internet 122

connection. 123

In our vision, two kinds of resources are managed by a node. The first type of resource embraces any 124

physical entity that can be sensed, measured or actuated: people, tables/chairs as well as connected 125

physical world objects. The second type of resource comprises the IoT digital components offering 126

some services (such as measuring a temperature) which can provide information on or actuate upon 127

a physical entity. In the remainder of this paper, we consider this second type of resources as IoT 128

Services. In other words, the IoT Service represents the set of functionalities of an IoT digital 129

component and the corresponding offered APIs. 130

 131

Figure 1: Building blocks of a node 132

We recall that any considered resource can be mobile and therefore can enter or exit from a 133

geographic place. We assume in this paper the existence of a trigger process that notifies a node 134

about such a join/exit event and provides it with the semantic description of the corresponding 135

resource. 136

That being said, upon an incoming resource, the Processing and Storage functionality block of a node 137

performs management functionalities including checking the validity of the semantic description of 138

such resource. This check uses the semantic models defining an IoT Service and a physical entity – 139

4

presented in Section 3. If compliant, the semantic description is translated to a set of RDF triples and 140

inserted into the triple store of the node. 141

The stored semantic descriptions of the resources are then employed by the Association Manager 142

that makes use of Association rules to derive associations between a physical entity and the IoT 143

Services that can actuate or provide information about it. The association mechanism is detailed in 144

Section 4. 145

Finally, the Knowledge Propagation block – detailed in Section 5 – uses Knowledge sharing rules 146

defining the strategy of information sharing. Defined by a node manager (e.g. someone with 147

administrative rights, managing the node by accessing to its configuration), examples of such rules 148

can be the sharing of all semantic descriptions of incoming IoT Services or physical entities. 149

However, as this can lead to the generation of a high number of messages between nodes, we 150

believe that a good trade-off is to limit the sharing of information to the descriptions of incoming IoT 151

Services. 152

The Knowledge Propagation algorithm also uses an indoor location model – implemented in each 153

node and described in the following Section 2.2 – in order to share the information with nearby 154

nodes (recall that a node is mapped to a geographic area). This indoor location model allows 155

localizing a place relatively to others (e.g. Chemistry lab is next to Computer Science lab) and serves 156

as a basis to initialize and keep updated the federation system by defining how nodes are 157

interconnected. 158

2.2 Interconnecting nodes and creating the federation system 159

To build a federated system composed of aforementioned nodes, we propose to create 160

interconnections based on a ‘container’ approach, meaning that a place ‘containing’ other places 161

results in as many interconnections as number of contained places (see for instance the curved 162

arrows in Fig. 2 interconnecting N2 to N4 and N5 as a consequence of having the Chemistry lab and 163

the Computer Science lab located in the 2nd floor of a given building). In our vision, the place 164

containing other places acts as a ‘manager’ of the places it ‘contains’. As a consequence, the 165

resulting federated system has a ‘top-node’ i.e. having no manager. By following this simple 166

placement of rooms relatively to corridors, floors, etc. we enable a federated system to be quickly 167

deployed and extended, i.e. when a room is newly mapped to a node, such a node only needs to 168

contact its ‘manager’ in order to declare itself as a new node of the federated system. This approach 169

must however be used in conjunction with another process, enabling information acquired by a 170

given node to be shared only with relevant nodes, i.e. those mapped to places nearby the place 171

managed by the given node. As an example, Fig. 2 presents the nodes of the Computer Science lab 172

and the Chemistry lab as being interconnected to the node mapped to the 2nd floor of a University 173

Building. However, it is not because both labs are in the 2nd floor that they should exchange 174

knowledge (consider for instance the case of a floor being 300m long, with both labs localized at the 175

opposite corners. Exchanging knowledge may, in this case, be irrelevant as the distance separating 176

both labs seems too high). 177

5

 178

Figure 2: gathering overall nodes' location of a given federation network 179

To address this issue and to ensure sharing knowledge with the right nodes, it is necessary to be able 180

to describe a place relatively to others, in order to decide whether a place is ‘close’ enough to 181

another to share information with. Although vocabularies such WGS-841 or GeoNames [14] allow 182

describing outdoor places based on their GPS coordinates, describing indoor location places requires 183

a more granular description of the location concept. Towards this aim, we use Semantic Web 184

technologies and in particular the Web Ontology Language (OWL) [15] due to its ability of providing 185

richer descriptions for any kind of resource. The resulting model, depicted in Fig. 3, contains indoor 186

location concepts gathered under a Place concept and representing structures of buildings, rooms, 187

or other premises. 188

 189

Figure 3: Indoor location concepts 190

1
 Basic RDF Geo Vocabulary, http://www.w3.org/2003/01/geo/wgs84 pos#

6

Due to the various types of places that may be described, the Place concept has a broad meaning 191

that can be narrowed to a Building, a Floor, a Premise or other kind of structures2. Some of these 192

concepts are formally defined (based on logical predicates), allowing reasoning tasks to be 193

performed. As an instance, a Building concept is modelled as an entity not contained by another 194

Place but that contains at least one Floor and its formal definition is given by the following equation: 195

 (1) 196

We complete this model by defining the Region concept. Mapped to each place, a Region is defined 197

as a geographical area (i.e. built from coordinates and distances of a place) enabling spatial 198

associations to be derived (see Section 4). 199

Finally, along with these concepts, we define some OWL properties allowing different places to be 200

interlinked and localized relatively to others (e.g. a Room can ‘give access’ to another Room). This 201

set of properties, summarized in Table 1, provides a small but necessary core of relations between 202

different places enabling to define knowledge sharing rules (see Section 5). 203

Note that although this model contains a small set of premises and properties, the import 204

mechanism tied to OWL allows extending it. Consequently, other types of premises can be modelled. 205

Besides, more complex relationships between places may be envisioned. Finally, note that the 206

current proposed model assumes that places have a simple geometrical form (we only consider 207

rectangular or circular places) to compute their Region and describe their relative localizations. 208

Additional properties and concepts may therefore be defined in order to take into account places 209

with more complex geometrical form (e.g. torus, L-shaped structures, etc.). 210

Table 1: OWL Properties interlinking places 211

Property Name Domain Range

Description

Contains Place Place

Allows a place to contain other places (e.g. a floor containing some rooms)

isAdjacentTo Place Place

Models that two places are separated by some boundaries

inEast Place Place

inWest Place Place

inNorth Place Place

inSouth Place Place

Refinement of isAdjacentTo, including the cardinal direction(s) of a place relatively to another

2 Indoor location model, http://webofdevices.appspot.com/models/owl/complex/indoor location.owl

7

givesAccessTo Place Place

Means that a door exists in the boundary separating two places connecting them

isIncludedIn Place Place

Inverse property of ‘contains’

isPrivate/isPublic/isSemiPrivate Place Boolean

Allows to know if a place can be used or not when computing associations

 212

By implementing this model, each node can be aware of all its ‘neighbours’ i.e. the ones it will share 213

information with. This is made possible through a double cascading process (represented by straight 214

and dashed arrows in Fig. 2) executed by each node when ‘initializing’ (recall that a node is a piece of 215

software that is mapped to a place. Equipping a place with a node consists of starting this piece of 216

software). Hence, at initialization, each node communicates the description of the place it manages 217

to the top node using a cascading process. The top node uses a semantic engine to merge this data 218

from all nodes to obtain the overall distribution of nodes in the federation. The same cascading 219

process is then used to relay this inferred distribution data to all nodes. When a new node (i.e. a 220

place implementing some indoor location model concept and containing some connected objects) is 221

added, the above cascading process is performed again. The new node can then begin sharing 222

knowledge about the IoT Services it manages. 223

3 Models for physical entities and IoT Services 224

This section presents the ontology models that we have used in this paper to allow associations to 225

be discovered between IoT Services and physical entities and correspond to the Semantic Models 226

block in Fig.1. These models have been proposed as part of our work done in the EU FP7 project IoT-227

A3 and are presented in detail in [10]. Here, we briefly present the important concepts and 228

properties of the models which are pertinent to forming associations. 229

A physical entity can have certain attributes which are its observable or actionable features. These 230

attributes can be related to the domain of the entity and hence be specified in terms of a domain 231

ontology, e.g. temperature attribute in the environmental domain. The domain attribute name is 232

specified as a string, whereas the attribute type could link to other models, for instance, a 233

vocabulary of physical phenomena, such as the Ontology for Quantity Kinds and Units (QU)4 . The 234

value itself has a literal ‘value’ and associated metadata information (ValueMetadata). The entity 235

location is defined in terms of a modelled WGS-84 Location concept (hasLatitude, hasLongitude, has 236

Altitude). The location concept also has properties that link to global (hasGlobalLocation) location 237

models and to our proposed indoor location (hasLocalLocation) model. To specify the global 238

location, an instantiation of the Entity Model could specify a URI from existing standards such as 239

GeoNames that models well-known location aspects such as cities, districts, countries and 240

3
 IoT-A: Internet of Things – Architecture (http://www.iot-a.eu/public) contract number: 257521

4
 http://www.w3.org/2005/Incubator/ssn/ssnx/qu/qu-rec20.html#Section_dim

8

universities. Also captured are optional temporal features and links to known vocabularies (e.g. 241

FOAF5) for specifying ownership. Part of the entity ontology is shown in Fig. 4. 242

 243

Figure 4: Model describing semantics of a physical entity 244

The IoT digital component may be a sensor (including RFID tag), actuator or a storage device that 245

stores information obtained from other sensors. Such components can be abstracted as ‘resources’, 246

as detailed in [10]. Many ontologies already exist to detail such devices, e.g. SSN ontology for 247

sensors. Due to the different types of digital components possible in the IoT domain and the 248

resulting hardware and software heterogeneity, the IoT Service model has been designed to provide 249

a uniform abstraction for exposing the functionalities provided by them. Fig. 5 depicts the main 250

properties of the IoT Service model. The ‘exposes’ property represents the mapping of the IoT 251

Service to the corresponding digital component, which could be of different types (rm:hasType 252

property) depending upon the kind of digital component. The resource abstraction allows for both 253

hardware (e.g. sensor, actuator) and software specification (e.g. in the case of storage device) of the 254

digital component. 255

5
 The Friend Of A Friend project, http://www.foaf-project.org/

9

 256

Figure 5: IoT Service Model 257

The IoT Service model provides the capability to gather information about entities that can be 258

associated with the digital components or to manipulate physical properties of the associated 259

entities. This is modelled using the IOPE (input, output, preconditions and effects) parameters. The 260

functionality of the digital component is captured by the hasOutput (e.g. for sensor services) and 261

hasInput (e.g. for actuator services) properties. The input and output parameters can be specified in 262

terms of the generic instance quantities from the QU ontologies, such as ‘temperature’ or 263

‘luminosity’. This is then employed for deriving associations. For instance, a physical entity can have 264

an attribute that represents its ‘indoorTemperature’. The generic type of this particular attribute is 265

‘temperature’. Then, if there is a service that measures temperature, specified as the service’s 266

hasOutput parameter, the corresponding service can be a candidate for a possible association to the 267

relevant entity. For actuating services, the impact on the entity attribute being controlled after the 268

service execution is also important. This post-condition state is modelled through the hasEffect 269

parameter in the service model. Similarly, any pre-conditions that need to be met before the service 270

execution can be specified through the hasPrecondition parameter. The actual technology used to 271

invoke the service is modelled through the ‘hasServiceType’ parameter, which could take a value 272

such as ‘REST’ for a RESTful Web Service. The area affected by the service is specified through the 273

‘hasServiceArea’ property. For sensing services, this would be the observed area, while actuating 274

services would specify the area of operation. The service area is defined in terms of the indoor 275

location model ‘Place’ concept. The possibility of specifying time constraints on service availability is 276

10

captured through the ‘hasServiceSchedule’ property. The IoT Service also has ID (‘hasID’) and name 277

(‘hasName’) properties. 278

4 Associations along thematic-spatial-temporal Axes 279

The concept of a Semantic Sensor Web with thematic, spatial and temporal information was first 280

introduced by Sheth et al. [16], wherein the authors aimed to provide web accessible semantic 281

descriptions of sensor networks and archived sensor data. The sensor data had temporal and 282

location information embedded within the descriptions. There are well-defined thematic or domain-283

specific ontologies for a number of domains and applications. Specifically, in the sensor domain, 284

different ontologies cover sensor descriptions, sensor site information and sensor observation and 285

measurements. Along with these thematic models, temporal and spatial models are increasingly 286

employed for capturing meaning from data [3]. These can then aid semantic computations, 287

inference and rule-based reasoning that enable semantic search and other IoT applications. 288

The Association Manager of a node specifies forming the associations between physical and IoT 289

digital objects along the thematic-spatial-temporal axes. Associations between a physical entity and 290

an IoT Service link an attribute of the physical entity to either the IoT Service’s input or output. Thus, 291

according to the IoT Service model detailed in Section 3, the service may either provide information 292

about a physical entity, in which case the service output is of interest, or the service may bring about 293

a change in the physical entity, when we are interested in the service input. In this section, we 294

discuss forming the associations between IoT Services and physical entities through a first set of 295

rules that can be applied when a node’s triple store is updated with new IoT Service instances. 296

An association is defined along thematic (feature), location and temporal axes, as depicted in Fig. 6. 297

The feature dimension is defined as an intersection between an entity’s domain attribute and the 298

IoT service’s input or output properties. The location axis takes into account the concept of place as 299

defined in the indoor location model. For the location match, the entity needs to be in the IoT 300

service’s service area to allow an association between them. Whenever the location and feature 301

dimensions meet at the same time, associations can be established automatically. 302

 303

Figure 6: Derivation of Associations along thematic-temporal-spatial axes 304

11

Fig. 6 shows a floor of a building with a number of rooms and corridors, with each room having 305

multiple sensors (and hence IoT Services) deployed in it. The placement and boundaries around each 306

depicted sensor corresponds to its service area. A mobile physical entity is situated in the Chemistry 307

Lab on this floor at time t1 and having a temperature attribute, is thus associated to the IoT Service 308

exposed by the temperature sensor in this room. At time t2, the entity has moved to corridor 1 and 309

since there are no sensors with a service area matching this corridor, the entity is no longer 310

associated with any service. However, the association mechanism then considers the next higher 311

level space in the indoor location ontology and finds a temperature sensor with service area 312

specified as the floor 2. Thus, the entity is then associated to its IoT Service (shown as t2’ in Fig. 6). As 313

a consequence, we propose the following rule as typified in the Rule Manager block: 314

A thematic association is asserted if there is a non-empty intersection between the output (or input) 315

of a service and the attribute types of the entity. 316

4.1 Spatial analysis 317

Following a match along the thematic attributes, the next step of the association logic is to consider 318

various levels of spatial relations. The location-specific rules follow an incremental approach and 319

make use of the knowledge inferred by the thematic association rules, i.e. only entity-IoT Service 320

pairs matched along the thematic axis are considered for location matching. Since the indoor 321

location ontology allows specifying logical locations for entities as well as the area served by an IoT 322

Service, this can then serve as the basis for deriving spatial associations. However, the current logical 323

location may not be known in all scenarios, e.g. in unfamiliar environments. In such cases, the 324

current location according to the indoor location model needs to be ascertained first. Thus, the 325

Geolocation Mapper block considers the nearest known geographical coordinate and defines an 326

inference mechanism for determining the logical location of a mobile entity. We follow a top-down 327

approach for the inference mechanism as follows: 328

a) Consider all known ‘place’ concepts from the location ontology (i.e. 329

premises/building/room) and their corresponding ‘regions’. We assume that a region is 330

defined as a polygon including geo-coordinate information (e.g. a sphere, with the 331

coordinate as its centre and a known radius). 332

b) Starting from the top-node of the federation, i.e. considering a Premise instance, determine 333

its area. Then calculate if the entity’s known coordinate is within the area defined by the 334

Premise instance. 335

c) If the entity is within the Premises, then consider all Building instances. Similarly, if it is 336

determined that the entity is within the area of a building, then consider individual rooms 337

with asserted dimension properties. 338

d) If the physical entity is inferred to be within a particular room’s area, its ‘haslocalLocation’ 339

property is asserted to be that of the ID of the room. If the entity is not within any room, but 340

within a building, then the ‘haslocalLocation’ property is set to be the building location and 341

so on. 342

Once the local location is known, the matching of the physical entity and the IoT Service along the 343

spatial dimension can be defined. The following rules consider four levels of spatial association, 344

depending upon the proximity of the physical entity and the IoT Service: 345

12

a) sameLocation: the entity’s current logical location, as denoted by the ‘localLocation’ 346

attribute falls within the service’s service area. 347

b) nearby: the proximity of the connected device to the local location of the entity is not an 348

exact match, but can be inferred by the location model that outlines spatial relationships 349

between locations. For instance, if the entity’s location is adjacent to the IoT Service area, or 350

the device is in a corridor that gives access to the room the physical entity is in, the 351

association is then annotated as ‘nearby’. 352

c) samePremise: if the adjacency and access properties yield no valid spatial associations, the 353

association derivation process looks at the next higher level in the location model, i.e. 354

employing the place containment captured in the indoor location model. This can be, for 355

instance, co-location within company offices or houses. The association is then labelled to be 356

within the same premise. 357

d) sameRegion: the resource location matches the global location of the entity, e.g. same city, 358

or county or geographically defined regions. 359

The temporal logic for the association derivation process follows an event driven strategy tied to the 360

federation framework, i.e. we assume that the rules are triggered based on some context change 361

(e.g. IoT Service/physical entity added to the triple store of a node). Thus, the associations are 362

automatically kept up-to-date regarding the physical entities and IoT Services known to the node at 363

that instant of time and as a result, we do not explicitly employ any temporal variables in the rule-364

set. 365

5 Knowledge propagation between nodes 366

As mentioned in the introduction of this paper, we believe that sharing information between nodes 367

of the federated system can optimize the set of associations obtained by the process described in 368

the previous section. In other words, we believe that a given node will be able to extend the 369

associations it can compute by knowing the IoT Services and the physical entities that ‘live’ in 370

neighbour nodes. To realize this sharing of information, we design a knowledge sharing process 371

implemented by the Knowledge Propagation block of each node. Triggered each time the triple store 372

of a node is modified (e.g. when adding or removing IoT Service descriptions), this process consists 373

of using the aggregated location information (described in Section 2.2) as well as a list of knowledge 374

sharing rules (Section 5.1). Based on the semantic models defined in Section 3, the rules use 375

Semantic Web technologies. Depending on the rule results, messages are sent to all ‘neighbours’ of 376

the node with the information to be shared (Section 5.2). 377

5.1 Knowledge sharing rules 378

Sharing knowledge between federated nodes is about extending the knowledge of nodes to allow 379

them to derive more associations. Resulting in sharing descriptions of IoT Services or physical 380

entities, this process make use of Semantic Web technologies and is specified in the Rule Manager 381

component of a node. Although many rules could be defined, this section focuses on six particular 382

rules forming a basic strategy about the way a node could exchange knowledge with others. These 383

rules use the generic term resources to refer to semantically described physical entities or IoT 384

Services. Note however that in our vision, the sharing knowledge strategy should be defined by the 385

node manager as being the only one able to decide whether he wants to share information or not. 386

Consequently, the six following rules may be adapted in each node. 387

13

The two first rules, trigger a message when an IoT Service (or physical entity) joins or left a place. 388

1) When a resource has joined a place P, notify all the places accessible from P about this fact. 389

2) When a resource has left a place P, notify all the places accessible from P that the resource 390

could reach them. 391

The two following rules, replace the two first ones by ’adjacency‘ concept. Compared to the two first 392

rules, applying these two ones results in sharing information with more nodes (i.e. not only the ones 393

that can be accessed but also the one that have a boundary in common). 394

3) When a resource has joined a place P, notify all the places adjacent to P about this fact. 395

4) When a resource has left a place P, notify all the places adjacent to P that the resource may 396

reach them. 397

The final two rules take into account mobility of resources by associating a learning process allowing 398

nodes to notify other selected nodes that a resource should join them in the near future. In detail, 399

the fifth rule consists of notifying a place P2 that a resource may reach it soon. P2 can then discover 400

beforehand the associations between this resource and the other resources it currently manages. As 401

such associations are predicted, P2 “locks” them (i.e. makes them not retrievable from search) by 402

tagging them as being “prepared”. The sixth rule, finally, consists of unlocking these aforementioned 403

associations by tagging them as being “available” (i.e. retrievable if searched). Note that although 404

not described in this paper, such learning process associates a confidence score to each of these two 405

rules. The more this process has learnt, the higher the confidence score is. 406

5) When it has been learned that any mobile resource always reaches a place P2 after having 407

reached P1 and if a resource has just joined P1, notify P2 that such resource will join. 408

6) When the previous pattern has been learned and that a resource leaves P1, notify P2 that a 409

resource joins. 410

The benefit of using SWRL rules to define how knowledge between nodes has to be exchanged is 411

twofold. First, it allows any node manager to define additional rules, processable by a Semantic Web 412

engine without requiring code to be developed (as long as the rules do not contain calls to custom 413

built-ins unassociated with the engine). Second, SWRL allows custom built-ins to be developed. In 414

particular, some built-ins have been developed (see Section 6) to enable notification features to the 415

‘head’ of a rule. Therefore, assuming someone having access to the implementation of the Sharing 416

knowledge process, allows developing specific exchange protocols and rules. This flexibility allows 417

policies to be associated to a strategy of knowledge sharing. As an example, two different place 418

managers may decide two different strategies to share knowledge between nodes of the same 419

federated network. Two different federated networks could also lead to different knowledge 420

exchange models. Finally, different policies may be applied depending on their associated business 421

models. 422

5.2 Notification mechanism 423

Having selected a set of nodes with which to share some knowledge, a given node needs to send 424

appropriate messages so that its ‘neighbours’ will be notified of new content. Towards this aim, the 425

Result Dispatcher component of the Knowledge Propagation block of a node specifies a notification 426

mechanism. This mechanism leads to generating messages composed of a payload containing results 427

14

to share and a header containing the appropriate routes that the messages have to follow to reach 428

their respective recipients. Knowledge to share arises from the execution of aforementioned rules 429

(Section 5.1) and is therefore a set of triples. 430

Determining the path between a given node and the recipient of a message relies on the 431

organizational aspect of the federation (recall Section 2.2 and Fig. 2). Such a path is exactly the list of 432

nodes that need to be crossed, in order to find a ’common manager’of both considered nodes. 433

Computing this path relies on the gathered and inferred location of all nodes and involves the 434

anonymous property ’inverse of contains‘ (with contains – a defined property – and its inverse 435

provided by a Semantic Web engine). This property allows finding the ancestors of both the issuer 436

and the recipient nodes. Hence, with this property, we build two sub-graphs, one starting with the 437

issuer and the other one starting with the recipient. Each time we find ancestors, we check if the two 438

sub-graphs have a common node. If so, we merge them into a single graph, which gives the shortest 439

– and only – path between both nodes. Because the nodes cannot have more than one ‘manager’ 440

the federation has no undirected cycles, which ensures that the algorithm converges to one unique 441

solution. For a given result to share the notification mechanism consists then of the generation of K 442

messages (assuming K neighbours). Each message contains a payload composed of a simple 443

envelope to be routed properly as well as the result to. Once having received a result, a selected 444

node processes it and updates its triple store. 445

6 Implemented framework 446

This section presents the prototype that we have realized to assess the processes described in 447

Sections 4 and 5. Section 6.1 presents our implementation of the architecture components 448

described in Section 2, while Section 6.2 presents the implementation of the notification process 449

that allows sharing knowledge between nodes. 450

6.1 Implementation of architecture components 451

6.1.1 Implementation of a node 452

Our implementation considers that a node of the federated system is embodied in a Java Web 453

application deployed in a servlet container such as Tomcat. This Web application orchestrates the 454

three blocks presented in Fig. 1 that have been implemented as follows. 455

The Processing and Storage functionality block uses an RDF-based API capable of processing 456

semantic descriptions. Reading and processing these descriptions is performed using the OWL API 457

[17] coupled with Pellet [18], a semantic engine capable of reasoning on OWL ontologies. Once 458

checked, these descriptions are inserted into OWLDB [19], acting as the triple store of a node. 459

The Geolocation Mapper of the Association manager determines if an entity’s geographical 460

coordinates lies within the area defined by a known location (premise/building/room).This is 461

implemented by using the JTS Topology Suite [20] APIs. The steps are as follows: (a) create an object 462

of class jts.geom.Polygon for the relevant Place instances, (b) take the physical entity’s geographical 463

coordinate and create an object of class jts.geom.Point and (c) determine if the Polygon covers the 464

Point. If it is true, then the entity is within the area defined by the matching place instance. Since this 465

functionality is only executed in certain specific conditions as specified in Section 4.1, the associated 466

complexity does not impact the federated system working. 467

15

The Rule Engine then implements an expert system using the SWRL Factory Java APIs and the Jess 468

inference engine. It is worth noting that the rules are independent of the inference engine used, 469

allowing the SWRL-Jess bridge to be replaced with another implementation of an inference engine 470

that can execute SWRL rules. The derived property assertions are not inserted into the actual service 471

or entity models, thus avoiding violating OWL’s monotonicity. However, the inferred knowledge is 472

held within the rule engine, so that subsequent rules and queries can make use of the inferred 473

associations. The derived associations are stored in a triple, with the entity-ID and the IoT service ID 474

associated by the corresponding entity attribute. These triples are then written into the Association 475

Repository in the node for subsequent queries. Table 2 shows a SWRL realization of some of the 476

association rules: 477

Table 2: SWRL association rules 478

Rule-1:

srv:Service(?s) ∧ srv:hasOutput(?s, ?out) ∧ em:Entity(?et) ∧ em:hasA(?et, ?da) ∧ em:hasAttributeType(?da,
?atype) ˚ sqwrl:makeSet(?sr, ?out) ∧ sqwrl:groupBy(?sr, ?s) ∧ sqwrl:makeSet(?se, ?atype) ∧
sqwrl:groupBy(?se, ?et) ˚ sqwrl:intersection(?in, ?sr, ?se) ∧ sqwrl:size(?n, ?in) ∧ swrlb:greaterThan(?n, 0)
→ assoc:sameFeatureAs(?s, ?et)

Rule-2:

assoc:sameFeatureAs(?s, ?et) ∧ srv:hasServiceArea(?s, ?sa) ∧ em:Entity(?et) ∧ em:hasA(?et, ?l) ∧
em:hasLocalLocation(?l, ?loc) ˚ sqwrl:makeSet(?rsa, ?sa) ∧ sqwrl:groupBy(?rsa, ?s) ∧ sqwrl:makeSet(?eloc,
?loc) ∧ sqwrl:groupBy(?eloc, ?et) ˚
sqwrl:intersection(?in, ?rsa, ?eloc) ∧ sqwrl:size(?n, ?in) ∧ swrlb:greaterThan(?n, 0) →
assoc:isAssociatedWith(?s, ?et)

Rule-3:
assoc:sameFeatureAs(?s, ?et) ∧ srv:hasServiceArea(?s, ?sa) ∧ em:Entity(?et) ∧ em:hasA(?et, ?l) ∧
em:hasLocalLocation(?l, ?loc) ∧ loc:givesAccessTo(?sa, ?loc) → assoc:isAssociatedWith(?s, ?et)

Rule-4:
assoc:sameFeatureAs(?s, ?et) ∧ srv:hasServiceArea(?s, ?sa) ∧ em:Entity(?et) ∧ em:hasA(?et, ?l) ∧
em:hasLocalLocation(?l, ?loc) ∧ loc:isAdjacentTo(?sa, ?loc) → assoc:isAssociatedWith(?s, ?et)

 479

Rules in Table 2 use the namespaces referring to the use of the service (srv prefix), entity (em prefix) 480

and location models (loc prefix) defined in Sections 2 and 3, the defined association model (assoc 481

prefix) and the SWRL (swrlb prefix) and SQWRL (sqwrl prefix) built-in libraries. 482

Rule-1 implements the feature association, expressed as a ‘sameFeatureAs’ property. It infers a 483

match between sensor services and entities, if there is a non-null intersection between the output of 484

a service, (‘hasOuput’ object property) and the attribute types of the entity (‘hasAttributeType’ 485

property), made possible since both property ranges map to the QU ontology instances. Both being 486

object properties, rules out a literal string matching operation through SWRL built-ins for string 487

comparison. Moreover, an entity may have multiple domain attributes and thus, multiple attribute 488

types. Thus, we use the SQWRL collection operators for set theory operations to derive a non-null 489

intersection. First, the instances of the ‘hasOutput’ and ‘hasAttributeType’ property ranges are 490

grouped into their respective sets using the makeSet operator. Then, each set is grouped by the 491

services and entities, respectively, through the groupBy operator. This constructs a new set for each 492

service matched in the service-related query and all the instances of the ‘hasOutput’ property are 493

16

added to that set. The standard set theoretic intersection operation is then employed to find the 494

intersection between the two grouped collections and a non-null intersection associates the relevant 495

service-entity pairs through the same feature property. A similar rule can be written for actuating 496

services, with the ‘hasInput’ property of the service being considered. 497

The rules to derive location association build upon the feature association rule results, i.e. the 498

service and entity instances considered in these rules is the subset that are already associated along 499

the feature axis. Thus, Rule-2 starts by considering only the service-entity pairs that are already 500

inferred to have a feature match, through the sameFeatureAs property, as a result of Rule-1 501

execution. It asserts an association when the physical entity’s current location and the IoT service’s 502

service area intersect. Rules 3 and 4 implement the ‘nearby’ association where the service area is 503

adjacent to, or gives access to (as known from the indoor location model properties) the entity’s 504

current location. Other rules can be formulated along similar lines to derive ‘sameArea’ association 505

by matching the premises of the service areas and entity locations. The ‘sameRegion’ association 506

matches the service area with the global location of the entity; this can be the case when the service 507

area covers the same city where the entity is located. 508

Finally, the Rule Manager of the Knowledge Propagation block extends the features offered by SWRL 509

and makes use of customized built-ins to create rules containing directives that initiate the exchange 510

of information messages between different nodes. These built-ins implement an interface of Pellet 511

(com.clarkparsia.pellet.rules.builtins.GeneralFunction), are packaged in a library and are loaded 512

when the node starts. Custom built-ins are further registered to Pellet through a BuiltinRegistry 513

class. Only once all built-ins have been registered, an instance of Pellet is created enabling rules 514

using such custom built-ins to be processed by the semantic engine. 515

Table 3 denotes a SWRL realization of rules (1) and (5) detailed in Section 5.1. These rules make use 516

of prefixes referring to the indoor location model described in this paper (loc prefix), the service 517

models (the srv prefix), SWRL built-ins connected to machine learning processes (the pattern prefix) 518

or notification mechanisms (alert, notify and pnotify patterns). They involve concepts, properties 519

and constants that can be found in the aforementioned semantic models. 520

Table 3: SWRL expressions of rules 1 and 5 presented in section 4.2 521

loc:Place(?p1) ∧ loc:Place(?p2) ∧ loc:givesAccessTo(?p1, ?p2) ∧
srv:IoTService(?s) ∧ alert:notify(?p1, ?s, loc:JOIN)
→ notif:notify(?p2, ?p1, ?s, loc:JOIN)

loc:Place(?p1) ∧ loc:Place(?p2) ∧ srv:IoTService(?s) ∧ srv:isMobile(?s, xsd:true) ∧
pattern:isNext(?p1, ?p2) ∧ alert:notify(?p1, ?s, loc:JOIN)
→ notif:pnotify(?p2, ?p1, ?s, loc:WILL_JOIN)

 522

About developed patterns, the features mentioned in these rules act as follows: 523

 pattern:isNext checks if the next node that a resource will join is a given node and returns a 524

probabilistic score. 525

 alert:notify simply checks if an entity has joined or left a given node. 526

 notif:notify sends messages to nearby nodes about a fact that has (or will) happen. Its 527

associated probability score is equal to 1. 528

17

 notif:pnotify sends messages to nearby nodes about a fact that may happen with a certain 529

probability. Getting such probability information is outside the scope of this paper. Thus, the 530

overall idea is to return a score taking into account the number of nodes that are accessible 531

from or adjacent to a considered node. 532

6.1.2 Interconnecting nodes as a federated system 533

As mentioned in Section 2, interconnection of nodes is realized by a double cascading process. In our 534

implementation, this process is achieved by attaching configuration parameters to each node. 535

Amongst these parameters, one is an accessible endpoint of the manager of a given node (recall N2 536

managing N5 in Fig. 2). As our nodes are embodied in Web applications, this accessible endpoint is a 537

URL mapped on a piece of code able to process incoming requests. The following shows an extract of 538

a web.xml document used to configure our Web application. Note that a node without the 539

‘manager’ parameter is supposed to be the top node of the federated system (see Listing 1). 540

 541

Listing 1 : Context parameter given the endpoint of the manager of a node 542

At initialization, a node is configured with the values of these parameters and becomes capable of 543

contacting its manager. Thus, it enables the implementation of the curved arrows shown in Fig. 2. 544

Initialization of a node continues by reading a second parameter giving a pointer to the semantic 545

description of the place this node supervises. This step is justified by the fact that we assume that a 546

node may not have explicitly said who all its neighbours are. 547

Computation of the neighbours of a node is described by Algorithm 1 and starts by a node sending 548

the description of its indoor location to its manager. This message is forwarded between different 549

managers until reaching the top node of the federated system (first cascading process). By receiving 550

this message, the top node aggregates this new amount of location data with those it is already 551

aware of (e.g. location data previously sent by other nodes). It then recomputes all neighbours of all 552

known nodes by calling a semantic engine and passing this aggregated information. Finally, this 553

manager notifies all nodes it has previously received location information with this updated location 554

model. The process is repeated until all nodes of the federated system received a notification 555

message. 556

18

 557

 558

6.2 Implementation of the notification process 559

 560
The Results Dispatcher of the Knowledge Propagation block uses the JGraphT6 open source library 561

that has features to build graphs to determine the path between two nodes willing to share 562

knowledge. To establish a graph between two nodes A and B, we fed JGraphT with data retrieved 563

from the aggregated and inferred location data. Considering that the knowledge has to be sent from 564

A to B, our implementation uses the property loc:givesAccessTo – loc being the prefix used to refer 565

to the location model of Section 2.1 – to build two subgraphs (see Algorithm 2), respectively called 566

left subgraph (starting with node A) and right subgraph (starting with node B). Building the left 567

subgraph consists of asking a Semantic Web engine to provide all nodes {Ni} such that “A 568

loc:givesAccessTo Ni” and to reiterate this request on the nodes having been found. The right 569

subgraph uses the inverse of loc:givesAccessTo property and therefore returns the list of nodes Nj 570

6
 JGraphT a Java graph library providing mathematical graph-theory objects and algorithms, http://jgrapht.org/

// initialization variables
indoor_location_desc ← Config.get_parameter(“indoor_location_desc”);
semantic_engine← Pellet.get_reasoner(“OWL_reasoning”);
manager ← Config.get_parameter(“manager”);
managed_descriptions ← []

// double cascading process triggered when a node starts
Procedure: start()
 send_message(“UPDATE_DESCRIPTION”, manager, indoor_loc_desc);

// the following procedure handles incoming messages, e.g. issued from other nodes
Procedure: handle_incoming_message(type, content)
 if content ≠ <> then
 if type = “UPDATE_DESCRIPTION” then
 // keep track of all nodes this one manages
 managed_descriptions ← content;
 // update description of this node by merging the received info
 indoor_location_desc.add_triples(content);
 // if this node is the top node of the federated system, infer on the merged location
 if manager = <> then
 // update the ontology used by the semantic engine
 semantic_engine.update_ontology(indoor_location_desc);
 // (re)infer relationships between places
 semantic_engine.infer();
 // send inferred triples back to all managed nodes
 foreach managed_node in managed_descriptions do
 send_message(“DESCRIPTION_UPDATED”, managed_node.endpoint,

semantic_engine.get_inferred_ontology());
 else
 send_message(“UPDATE_DESCRIPTION”, manager, indoor_location_desc);
 else if type = DESCRIPTION_UPDATED then
 // updates all managed nodes with the updated description
 foreach managed_node in managed_descriptions do
 send_message(“DESCRIPTION_UPDATED”, managed_node.endpoint,
semantic_engine.get_inferred_ontology());

Algorithm 1: Getting all the neighbours of a node with a double cascading process

19

such as “B inverseOf(loc:givesAccessTo) Nj”. Having no undirected cycles in the federated system 571

allows us to ensure that our algorithm terminates (i.e. as givesAccessTo is a symmetric property, 572

iterations on such a property may have led to infinite loops). Having obtained the two subgraphs, we 573

search if both contain common vertices. Searching for common vertices in these graphs is possible 574

due to the fact that each vertex is associated with a unique URI, as representing a Place, defined 575

using the indoor location model presented in Section 2.2. Finally, in the case of common elements 576

found, we merge both graphs and apply the Djikstra algorithm [21] to find the shortest path 577

between A and B. 578

Once the path between the two nodes is determined, the developed SWRL built-ins fire HTTP 579

messages containing the customized HTTP Request header (referred to as X-nodes in Listing 2) 580

containing the ordered list of nodes retrieved when establishing the path between the nodes. The 581

content of this HTTP message consists of a SPARQL Update query containing the triple(s) to push in 582

the triple store of the recipient node. This message is sent to the first node to cross and then goes 583

through all the other nodes appearing in X-nodes. Each time the message is forwarded by a given 584

node, its IP address appears in the standardized “via” header while it is removed from the X-nodes 585

one. The following Fig. 7 summed up this notification process. 586

 587

Listing 2: Message sent between two nodes 588

 589

Figure 7: Sharing associations between nearby nodes 590

POST <N3_ip_address>/store/update HTTP/1.1
Content-Type: application/sparql-update
X-nodes: <N4_ip_address>, <N5_ip_address>, <N6_ip_address>
Via:
Content-length: 340
Prefix assoc: <http://models.iot-a.eu/association.owl>
DELETE DATA { <http://[N1_ip_address]/service/webcam1234.rdf>

assoc:isAssociatedWith <http://dblp.l3s.de/d2r/resource/authors/
Benoit_Christophe> }

INSERT DATA { <http://[N1_ip_address]/service/webcam1234.rdf>
assoc:isAssociatedWith <http://dblp.l3s.de/d2r/resource/authors/
Suparna_De> }

20

 591

 592

Algorithm 2: Compute the left or right subgraph SG of a given node n 593

7 Evaluation and discussion 594

To evaluate our implemented framework, the indoor location model has been instantiated with 595

different types of premises, namely, floors, corridors and various types of rooms (offices, meeting 596

rooms and labs) across different buildings. A node has then been deployed in each described 597

premises to build up a federated architecture, comprising of four levels of management (i.e. the 598

// Create a DAG using JGraphT library

Procedure: create_subgraph(n):
Require:

Procedure: analyze(node, direction):
 // Analyze node to build its subgraph SG
Require:

 if direction=”left” then
 ;
 else

 end if

 for all sn in subnodes do

add_node(sn, node);

 end if
 end for
 end if

Procedure: add_node(node, parent):
 // Add a node in the DAG
Require:

 end if

Procedure: get_rdf_objects(subject, predicate):

//Get a collection of objects objet such that (subject, predicate, object) exists in the
knowledge base

Require:

 return objects;

21

maximum distance between the root and the leaf node). Our evaluation approach consists of testing 599

the applicability of the implemented mechanisms through a scenario validation and showing the 600

feasibility of the approach by quantitatively evaluating the scalability of the proposed framework. 601

7.1 Scenario validation 602

The proposed mechanisms have been applied to a scenario that is representative of dynamic IoT 603

systems. The testbed consists of a number of sensors deployed in rooms in a university building, 604

with four floors in the building. We limit the service areas of the IoT Services to the room location. 605

We organized the testbed into a federated network of nodes, comprising up to four management 606

levels (i.e. university premise, building, floor and room). The distribution on a given floor is as shown 607

in Fig. 8 (blue circles represent sensor locations). The deployment of the IoT Services in each node 608

triggers its Processing and Storage block which processes the corresponding semantic descriptions 609

and stores them in the triple store. Once this is done for each node, the double cascading process 610

allows the information related to the distribution of the nodes to be shared within the federation. 611

 612

Figure 8: Dataset visualization on a floor plan 613

The first case of the scenario consists of an entity, John, who moves around the university premises 614

and is interested in finding the relevant sensors that can give him an idea of his ambient 615

temperature at any given location. John’s current location is known in terms of geographical 616

coordinates. A user application allows this request to be received and triggers insertion of the entity 617

description (i.e. FOAF profile and temperature attribute) into the node’s triple store. This then feeds 618

the Geolocation Mapper which translates the received latitude, longitude pair to an indoor location 619

model instance, which is asserted to be John’s ‘localLocation’ property. In this case, this is 620

determined to be a room, corresponding to 12BA01 in Fig. 8. Since the room contains a temperature 621

sensing service (circled in green in Fig. 8), it is associated to John by the association rules executed 622

by the Association Manager’s Rule Engine. 623

22

The second case of the scenario showcases relocation of a sensor from one room to another, and 624

thus a change in the semantic description of its IoT Service. The generated event (IoT Service joining 625

a place) triggers the Rule Manager of the Knowledge Propagation block which executes the relevant 626

knowledge sharing rules to determine the set of nodes to be updated. The Results Dispatcher then 627

employs the notification algorithm to determine the path to the selected nodes and the IoT Service’s 628

semantic description is sent to these nodes. 629

7.2 Performance measurements 630

Our evaluation approach consisted of a number of performance related experiments. The first 631

experiment we performed was to assess the time taken to compute associations, by varying the 632

number of IoT Services to be taken into account by the Association Manager, from 20 to 2000. We 633

run this experiment on a Personal Computer with a standard configuration (Intel Core 2 Duo 634

processor – 2.26 GHz frequency – 2 GB RAM – Ethernet connection). We used a centralized triple 635

store containing all the semantic descriptions of the IoT services considered. To determine 636

associations, we also used a fixed set of five described physical entities. Associations were then 637

derived using the logic of the Association Manager. The results displayed in Figure 9 show the 638

exponential growth of the time required to derive associations, in function of the number of IoT 639

Services. 640

 641

Figure 9: Association computation measurements 642

This experiment highlights the computationally expensive task of recomputing associations and 643

validates the inappropriate use of a centralized approach to do so. As an example, Fig. 9 shows that 644

20s are required to recompute associations involving 200 IoT Services, a number that may however 645

be quickly reached when deploying sensors in a whole building. This conclusion bolsters our belief 646

that a federated architecture would be a more feasible deployment option in IoT scenarios, where 647

each node would manage only a limited number of IoT Services. 648

23

We assess the scalability of the federated framework by a second experimentation quantifying the 649

number of messages exchanged with different nodes sharing information as well as the time taken 650

to process these messages. For this experimentation, we used the 20 nodes of the federated system 651

associated to the Building displayed in Fig. 8 and deployed 50 IoT Services in each of them (i.e. the 652

overall system was managing 1000 IoT Services). We then simulated the relocation of groups of 653

sensors to evaluate how the number of sensors relocated was impacting the federated system 654

compared to a centralized approach. Tests involved respectively the relocation of 1, 20 and finally 50 655

IoT Services. For this experimentation, we used a node sharing knowledge with only one other node. 656

Consequently, respectively 1, 20 and 50 messages were generated. Upon receptions of these 657

messages, semantic descriptions of relocated sensors were retrieved by the node and, finally, 658

associations were derived. Fig. 10 summarizes the overall times that we have obtained. 659

 660

Figure 10: Measurements for maintaining the federated system when IoT Services are relocated 661

These times are decomposed in the time taken to send the set of messages, the time taken to load 662

the semantic descriptions associated to these messages and the time taken to recompute 663

associations. This figure indicates that the time spent in sending messages follows a linear growing 664

(function of the number of messages to send) resulting in a significant amount of time added by the 665

knowledge sharing process. Besides, this figure shows that the time taken to load semantic profiles 666

of sensors was constant. Finally the time to compute associations follows a similar curve than what 667

was presented in Fig. 9. Compared to a centralized approach deriving associations with 1000 IoT 668

Services, these times stay however much more acceptable (see Fig. 9 showing a time of 645s to 669

derive associations with 1000 IoT Services). 670

Finally, we did a third experimentation checking whether the number of nodes crossed by a 671

knowledge sharing message was impacting the federated system or not. We then run the scenario of 672

the relocation of one sensor multiple times; varying the route of this relocation by changing the 673

recipient room. Such scenario provided us with a set of messages, each having been propagated 674

differently (i.e. having crossed up to 5 nodes). Although the time increased linearly with the number 675

24

of nodes having been crossed, the results displayed in Fig. 11 shows that it could be disregarded 676

compared to others (i.e. time to load the semantic description of the relocated sensor and time to 677

recompute associations using 51 IoT Services). 678

 679

Figure 11: Maintaining the federated system when one IoT Service is relocated 680

8 State of the art 681

Due to the nascent IoT paradigm, it is relevant to look at on-going research in allied areas such as the 682

broad sensor Web community. In this section, we first review other research works that have looked 683

at linking sensor descriptions or data to existing data sources. An ontology-based event detection 684

system for wireless sensor networks by Danieletto et al. [22] automatically classifies any sensing 685

device based on its capabilities and any event based on its source and detection place. The device 686

classification method categorizes sensor types based on the detected data. The presented event 687

classification algorithm distinguishes between general, focused and outlier events based on the 688

number of sensors detecting the event values and agreed threshold values. Yu et al. [23] use the 689

Linked Data approach to integrate sensor Web data with geospatial, streaming and event data 690

sources in the context of integrated water resource decision support. The thematic-spatial-temporal 691

concept for annotating sensor Web observation data was first proposed by Sheth et al. [16]. This 692

concept was extended with the Linked Data concepts by Barnaghi et al. [24] to allow users to publish 693

linked sensor data for sensor site information that is associated to existing resources that are already 694

a part of the Web of data. In this proposed work, we take the theme, time and space concept and 695

extend it to the IoT world to associate physical world objects with digital world objects that can 696

provide information or mediate interaction with the physical objects. 697

Among the middleware approaches proposed for the IoT, some have applied semantics to objects to 698

leverage the benefits of interoperability that Semantic Web technologies provide. Katasonov et al. 699

[25] propose coupling of ontologies with agents, interconnected with the FIPA7 specification, to 700

develop a middleware allowing heterogeneous devices to cooperate. They employed Semantic Web 701

Service ideas [26] to create a Semantic Web of Things composed of agents presenting semantic 702

7
 FIPA Specification, http://www.fipa.org/specifications/index.html

25

profiles of devices that they were monitoring. The agents process incoming semantic requests by 703

triggering appropriate device functionalities. Boussard et al. developed a Web of Things (WoT) 704

framework exposing smart environments and their constituents as Web resources [27]. This 705

framework relies on the concept of Virtual Object (VO) and makes use of semantic profiles [28] 706

coupled with reasoning mechanisms to propose locally relevant objects [29]. A middleware to couple 707

the envisioned IoT architecture with enterprise applications has been proposed in [6]. The proposed 708

SOCRADES middleware architecture enables enterprise-level applications to interact with and 709

consume data from a wide range of networked devices, including sensors. Device abstraction is 710

achieved by device proxies that integrate low-capacity devices to the platform and expose the 711

offered functionalities as services on the middleware. It relies on Web Services for all 712

communication interfaces. The middleware supports composition of IoT-level services. It 713

implements a service implementation repository that stores all services that are available for 714

composition of new services, orchestration of business process or deployment. Pfisterer et al. [30] 715

have proposed an architecture allowing enhanced integration of sensor data and services. Their 716

approach includes defined vocabularies that facilitate integration of descriptions of sensors and 717

things with Linked Open Data (LOD) cloud8 and the search mechanisms take into account sensor 718

states (e.g. availability). User queries were answered by querying a triple store with SPARQL. 719

All of the middleware approaches reviewed here contain similarities with the one presented in this 720

paper. However, our approach differs in the fact that we integrate the geographical distribution of 721

objects (sensors, actuators etc.) into a federated architecture of nodes allowing efficient distribution 722

of knowledge. The above approaches consider a unique registry where all user requests are 723

processed. Although some approaches have mentioned that the registry could be implemented 724

across distributed servers, none of them have addressed the benefits of distributing the knowledge 725

gathered by a node with a selected set of geographically nearby peers. 726

9 Conclusions 727

This paper presents an exploratory, development-oriented approach for associating physical and 728

digital world objects forming part of the Internet of Things. The associations are defined in an 729

automated way, along the concepts of theme, time and space. We have also proposed a scalable, 730

distributed framework of nodes organized in a federated architecture, with each node capable of 731

processing the semantic descriptions of the objects comprising the IoT and their associations. 732

Though other approaches have also applied Semantic Web technologies for achieving 733

interoperability between the connected objects in the IoT domain, our approach additionally 734

considers a particular deployment infrastructure, with each node been mapped to an indoor physical 735

environment. This facilitates local reasoning capabilities and makes use of proximity knowledge for 736

inter node communication, thus allowing a solution to the scalability issue of IoT. Our approach also 737

takes into account mobility of entities or devices within the infrastructure, making use of SPARQL 1.1 738

update support. Our future initiatives involve expanding the temporal dimension for associations, 739

for alignment with the SWRL temporal ontology. Integration of the service model with on-going 740

initiatives like SSN and Linked USDL9 are also envisaged. 741

8
 Linked Open Data Cloud, richard.cyganiak.de/2007/10/lod/

9
 http://www.linked-usdl.org/

26

10 Acknowledgements 742

This paper describes work undertaken in the context of the IoT-A project, IoT-A: Internet of Things – 743

Architecture (http://www.iot-a.eu/public) contract number: 257521. 744

11 References 745

[1] D. Miorandi, S. Sicari, F. De Pellegrini, I. Chlamtac. Internet of things: Vision, applications and 746
research challenges, Ad Hoc Networks, 10 (2012) 1497-1516. 747
[2] A. Gluhak, S. Krco, M. Nati, D. Pfisterer, N. Mitton, T. Razafindralambo. A Survey on Facilities for 748
Experimental Internet of Things Research, IEEE Communications Magazine, 49 (2011) 58 - 67. 749
[3] A. Sheth. Computing for human experience: Semantics-empowered sensors, services, and social 750
computing on the ubiquitous Web, IEEE Internet Computing, 14 (2010) 88-91. 751
[4] L. Atzori, A. Iera, G. Morabito. The Internet of Things: A survey, Computer Networks, 54 (2010) 752
2787–2805. 753
[5] H. Abangar, P. Barnaghi, K. Moessner, R. Tafazolli, A. Nnaemego, K. Balaskandan. A Service 754
Oriented Middleware Architecture for Wireless Sensor Networks, in: Proceedings of Future Network 755
& Mobile Summit 2010, Florence, Italy, 2010. 756
[6] D. Guinard, V. Trifa, S. Karnouskos, P. Spiess, D. Savio. Interacting with the SOA-Based Internet of 757
Things: Discovery, Query, Selection, and On-Demand Provisioning of Web Services, IEEE Transactions 758
on Services Computing, 3 (2010) 223-235. 759
[7] P. Spiess, S. Karnouskos, D. Guinard, D. Savio, O. Baecker, L. Souza, V. Trifa. SOA-based 760
integration of the internet of things in enterprise services, in: Proceedings of IEEE ICWS, Los 761
Angeles, CA, USA, 2009. 762
[8] W3C Semantic Sensor Networks Incubator Group (SSN-XG), 2011. 763
<http://www.w3.org/2005/Incubator/ssn/XGR-ssn-20110628/> (online, accessed August, 764
2012) 765
[9] M. Compton, P. Barnaghi, L. Bermudez, R.G. Castro, O. Corcho, S. Cox, J. Graybeal, M. Hauswirth, 766
C. Henson, A. Herzog, V. Huang, K. Janowicz, W.D. Kelsey, D.L. Phuoc, L. Lefort, M. Leggieri, H. 767
Neuhaus, A. Nikolov, K. Page, A. Passant, A. Sheth, K. Taylor. The SSN Ontology of the Semantic 768
Sensor Networks Incubator Group, Journal of Web Semantics, (2012). 769
[10] S. De, T. Elsaleh, P. Barnaghi, S. Meissner. An Internet of Things Platform for Real-World and 770
Digital Objects, Journal of Scalable Computing: Practice and Experience, 13 (2012) 45-57. 771
[11] D. Heimbigner, D. McLeod. A federated architecture for information management, ACM Trans 772
Inf Syst, 3 (1985) 253-278. 773
[12] M. Balazinska, H. Balakrishnan, M. Stonebraker. Contract-based load management in federated 774
distributed systems, in: Proceedings of the 1st conference on Symposium on Networked Systems 775
Design and Implementation - Volume 1, San Francisco, California: USENIX Association, 2004, pp. 15-776
15. 777
[13] S. Ternier, D. Olmedilla, E. Duval. Peer-to-Peer versus Federated Search: towards more 778
Interoperable Learning Object Repositories, in: Proceedings of World Conference on Educational 779
Multimedia, Hypermedia & Telecommunications, 2005, pp. 1421-1428. 780
[14] GeoNames. GeoNames ontology, 2011. [Online]. Available: 781
http://www.geonames.org/ontology/documentation.html. Accessed: June, 2012. 782
[15] OWL Web Ontology Language, W3C Recommendation, 2004. [Online]. Available: 783
www.w3.org/2004/OWL. Accessed: June, 2011. 784
[16] A.P. Sheth, C. Henson, S.S. Sahoo. Semantic sensor web, IEEE Internet Computing, 12 (2008) 78-785
83. 786
[17] M. Horridge, S. Bechhofer. The owl api: A java api for working with owl 2 ontologies, in: R. 787
Hoekstra, P.F. Patel-Schneider (Eds.) CEUR Workshop Proceedings of the 6th International Workshop 788
on OWL: Experiences and Directions (OWLED), 2009. 789

27

[18] E. Sirin, B. Parsia, B. Grau, A. Kalyanpur, Y. Katz. Pellet: A practical owl-dl reasoner, Web 790
Semantics: Science, Services and Agents on the World Wide Web, 5 (2007) 51-53. 791
[19] J. Henß, J. Kleb, S. Grimm, J. Bock. A Database Backend for OWL, in: R. Hoekstra, P.F. Patel-792
Schneider (Eds.) CEUR Workshop Proceedings of the 6th International Workshop on OWL: 793
Experiences and Directions (OWLED), 2009. 794
[20] V. Solutions. JTS Topology Suite, Developer’s Guide, 2003. 795
[21] E.W. Dijkstra. A short introduction to the art of programming, Aug. 1971. [Online]. Available: 796
http://www.cs.utexas.edu/users/EWD/ewd03xx/EWD316.PDF. 797
[22] M. Danieletto, N. Bui, M. Zorzi. An Ontology-Based Framework for Autonomic Classification in 798
the Internet of Things, in: IEEE International Conference on Communications Workshops (ICC), 799
Kyoto, 2011. 800
[23] L. Yu, Y. Liu. Using the Linked Data Approach in a Heterogeneous Sensor Web: Challenges, 801
Experiments and Lessons Learned, in: Proc Sensor Web Enablement (SWE) Workshop, Banff, 802
Alberta, Canada, 2011. 803
[24] P. Barnaghi, M. Presser, K. Moessner. Publishing Linked Sensor Data, in: Proc 3rd International 804
Workshop on Semantic Sensor Networks (SSN), in conjunction with the 9th International Semantic 805
Web Conference (ISWC 2010), 2010. 806
[25] A. Katasonov, O. Kaykova, O. Khriyenko, S. Nikitin, V. Terziyan. Smart semantic middleware for 807
the Internet of Things, in: J. Filipe, J. Andrade-Cetto, J.L. Ferrier (Eds.) 5th International Conference 808
Informatics in Control, Automation and Robotics (ICINCO’08), 2008. 809
[26] T.R. Payne, O. Lassila. Guest Editors Introduction: Semantic Web services, IEEE Intelligent 810
Systems, 19 (2004) 14-15. 811
[27] M. Boussard, B. Christophe, O. Le Berre, V. Toubiana. Providing user support in Web-of-Things 812
enabled Smart Spaces, in: Proceedings of the Second International Workshop on Web of Things 813
(WoT '11), San Francisco, USA: ACM, 2011. 814
[28] B. Christophe. Semantic Profiles to Model the "Web of Things", in: of the 2011 Seventh 815
International Conference on Semantics, Knowledge and Grids (SKG '11), Washington, DC, USA: IEEE 816
Computer Society, 2011. 817
[29] B. Christophe, V. Verdot, V. Toubiana. Searching the ‘Web of Things’, in: Proc Fifth IEEE 818
International Conference on Semantic Computing (ICSC'11), Palo Alto, CA, 2011, pp. 308 - 315. 819
[30] D. Pfisterer, K. Romer, D. Bimschas, O. Kleine, R. Mietz, T. Cuong, H. Hasemann, A. Kroller, M. 820
Pagel, M. Hauswirth, M. Karnstedt, M. Leggieri, A. Passant, R. Richardson. SPITFIRE: toward a 821
semantic web of things, Communications Magazine, IEEE, 49 (2011) 40-48. 822

