

WestminsterResearch
http://www.westminster.ac.uk/research/westminsterresearch

Multi-Party Trust Computation in Decentralized Environments
in the Presence of Malicious Adversaries

Tassos Dimitriou1, 2
Antonis Michalas3, 4,*

1Computer Technology Institute, Greece
2Computer Engineering Dept., Kuwait University, Kuwait
3 Athens Information Technology, Greece
4 Aalborg University, Denmark

 *Now working in the Faculty of Science and Technology, University of
Westminster, UK

NOTICE: this is the accepted version of a manuscript of an article that was accepted for
publication in Ad Hoc Networks. It does not include copy-editing, formatting, technical
enhancements and (if relevant) pagination. Changes may have been made to this work
since it was submitted for publication. A definitive version was subsequently published
in Ad Hoc Networks, 15 (Apr), 2014 pp. 53-66. ISSN 1570-8705
doi:10.1016/j.adhoc.2013.04.013

© 2014. This manuscript version is made available under the CC-BY-NC-ND 4.0
license http://creativecommons.org/licenses/by-nc-nd/4.0/

The WestminsterResearch online digital archive at the University of
Westminster aims to make the research output of the University available to a
wider audience. Copyright and Moral Rights remain with the authors and/or
copyright owners.

Whilst further distribution of specific materials from within this archive is
forbidden, you may freely distribute the URL of WestminsterResearch:
(http://westminsterresearch.wmin.ac.uk/).

In case of abuse or copyright appearing without permission e-mail
repository@westminster.ac.uk

Multi-Party Trust Computation in Decentralized
Environments in the Presence of Malicious Adversaries

Tassos Dimitriou∗

Computer Technology Institute, Greece
and

Computer Engineering Dept., Kuwait University, Kuwait

Email: tassos.dimitriou@ieee.org

Antonis Michalas

Athens Information Technology, Greece
and

Aalborg University, Denmark
Email: amic@ait.edu.gr

Abstract

In this paper, we describe a decentralized privacy-preserving protocol for se-
curely casting trust ratings in distributed reputation systems. Our protocol
allows n participants to cast their votes in a way that preserves the privacy
of individual values against both internal and external attacks. The protocol
is coupled with an extensive theoretical analysis in which we formally prove
that our protocol is resistant to collusion against as many as n−1 corrupted
nodes in both the semi-honest and malicious adversarial models.

The behavior of our protocol is tested in a real P2P network by measuring
its communication delay and processing overhead. The experimental results
uncover the advantages of our protocol over previous works in the area;
without sacrificing security, our decentralized protocol is shown to be almost
one order of magnitude faster than the previous best protocol for providing
anonymous feedback.

Keywords: Decentralized Reputation Systems, Security, Voter Privacy,
Anonymous feedback

∗Corresponding Author.

Preprint submitted to Ad Hoc Networks April 18, 2013

1. Introduction

During the last few years, online communities have met great develop-
ment. The main reasons for this lie on the fact that comprehension and use
have become easier, but also on the availability of information and accessibil-
ity of services. There is no doubt that we have become a society of sharing to
the detriment of our personal privacy since we continue over-sharing without
considering the privacy ramifications. Social media for example, provide a
way to share every aspect of our life not only with people we know but with
strangers as well. Corrupted users can take advantage of the freedom that
they are given to create counterfeit identities and steal, damage or alter the
information and data of legitimate users.

The difficulty of gathering (reliable) evidence about unidentified transac-
tion partners makes it hard to decide if a user is legitimate or corrupted, or
to differentiate between a high and a low quality service provider. As a re-
sult, the topic of trust in computer networks is receiving significant attention
in both the academic community and the e-commerce industry [1]. Trust
management has been proposed by many researchers as a solution for pro-
viding a minimum level of security between two or more entities that belong
to the same network and want to make reliable transactions or interactions
with each other.

An established technique that aims at assisting users to avoid interacting
with malicious or unreliable agents is the use of reputation systems. A
reputation system assesses the behavior of users according to the quality of
the service(s) provided, and reveals this information to the community in
order to decide whether a network entity is trustworthy or not. A user’s
behavior and the conclusions of a reputation system regarding that user are
referred to as evidence. Evidence can be collected offline as well as online
and may be linked to already established trust relations. Hence, trust has a
significant role in the decisions reached by network communities.

Nevertheless, feedback providers’ privacy is a problem regarding reputa-
tion systems that has been scarcely answered in literature. Notwithstanding
the existence of numerous reputation and trust establishment schemes, only
a few deal with securing the ratings (or votes) of participating nodes. Lack
of privacy of this type can lead to various problems, including the operation
of the network itself. Furthermore, the lack of schemes providing privacy in
decentralized environments, e.g. ad hoc networks, is even more accentuated.
According to observations in [2], users of a reputation system may abstain
from providing honest feedback since they are afraid of retaliation, in case
reputation scores cannot be computed in a method that secures privacy. As

2

a result, eBay changed the feedback policy in order for sellers not to leave
negative/neutral feedback for buyers, claiming that “it will help buyers leave
an honest feedback” [3].

Consequently, developing reputation protocols that can be used to pro-
vide anonymous feedback is necessary for the survival of online communities
and electronic marketplaces. One could say that providing anonymous feed-
back to a reputation system is analogous to that of anonymous voting in
electronic elections. Secrecy provides freedom from explicit or implicit in-
fluence but also encourages truthfulness. Even though this freedom could
potentially be exploited by dishonest feedback providers who tend to report
exaggerated feedbacks, it seems highly beneficial to honest users, protecting
the latter from being influenced by malicious behavior [4].

Until now, many reputation and trust establishment schemes that pre-
serve privacy have been proposed mostly for traditional (centralized) envi-
ronments where there is a standard topology and the connectivity between
nodes is not an issue. In contrast, there is a lack of research that targets de-
centralized environments such as ad hoc networks. These kinds of networks
offer new challenges and opportunities for research for two main reasons:
First, because collection of evidence is difficult due to the mobility or the
resource constraints of the nodes that further restrain the trust evaluation
process. Second, not only because submission of “votes” must be kept hid-
den from all nodes but also because it has to be distributed to the whole
network due to lack of trusted authorities.

Contribution. The contribution of this work is twofold. We first present a
protocol that preserves the privacy of votes in decentralized environments
under the semi-honest adversarial model. The protocol allows n participants
to securely cast their ratings in a way that preserves the privacy of individual
votes against both internal and external attacks. More precisely, we analyze
the protocol and prove that it is resistant to collusion even against up to
n−1 corrupted insiders. The insights we obtain from this analysis allow us to
refine the protocol and come up with a lighter version that is equally secure
and uses only standard cryptographic mechanisms. This lighter protocol
compares favorably with protocols for secure multi-party sum computation
and we consider it as another important contribution of this work. While the
previous two protocols work against semi-honest adversaries, we show how to
extend these protocols to handle adversaries that can exhibit more malicious
behavior. The whole analysis is coupled with extensive experimental results
that demonstrate the protocol’s validity and efficiency over previous works
in the area.

3

Second, we present a list of attacks that can be applied to additive rep-
utation systems. We use this analysis to guide us in the development of our
secure protocol but also demonstrate the inefficiencies of existing systems.
This comprehensive list of protocol flaws provides essential knowledge to
protocol designers. By answering questions of the form “Did you know that
sort of attack?” they can avoid common pitfalls and design even better
feedback systems.

Organization of the paper. In Section 2, we review some of the most im-
portant schemes that provide private trust ratings in decentralized environ-
ments. In Section 3, we describe the problem of secure trust aggregation and
we define the basic terms that we use in the rest of the paper. In Section 4,
we describe two basic (yet insecure) protocols that will help us understand
the vulnerabilities of existing systems through a series of attacks that can
be applied to additive reputation protocols. In Section 5, we present StR,
our main protocol, while in Section 5.1 we provide a security discussion
in which we show the resistance of our protocol against numerous attacks.
Section 6 describes the more efficient version of StR while in Section 7, we
present experimental evidence that shows the effectiveness of our protocol.
In Section 8 we present StRM , an extension of StR, that provides security
under the malicious adversarial model. In Section 9, we elaborate on the
applications that can benefit from the use of our scheme. Finally, Section 10
concludes this paper.

2. Related Work

Although there are many reputation and trust establishment schemes,
only some of them deal with the problem of securing the vote(s) of each
individual node. The difficulties of building reputation systems that can also
preserve privacy can be found in [5]. Furthermore, the absence of schemes
that provide (partial) privacy in decentralized environments, such as ad hoc
networks, is even bigger. In this section, we classify the most widely known
decentralized systems that preserve the privacy of votes according to the
adversarial model (semi-honest or malicious) used.

2.1. Protocols Under the Semi-Honest Model

The authors in [6] presented an inclusive analysis of trust and privacy in
which they showed that these two notions are strongly related to each other.
More precisely, they dealt with the questions of how much privacy is lost
and how much trust is gained by revealing a specific credential and what

4

is the minimal degree of privacy that must be lost to gain a satisfactory
amount of trust.

In [7], a secure framework was proposed to handle trust relationships
in super peer networks. Privacy of the nodes is guaranteed with the use of
threshold cryptography and homomorphic encryption. The use of a thresh-
old cryptosystem ensures that no faulty or malicious node can decrypt the
report submitted by a node. Furthermore, the sum of votes from all voters
is calculated step by step in an encrypted manner and thus it is impossible
for a malicious node to infer this result since each vote is encrypted with
the public key of a trusted Certification Authority. The key difference from
the work presented in this paper is the fact that super peers are trusted to
handle the votes correctly, something that is not necessarily true here.

In [8], the authors considered the problem of distributed reputation man-
agement in large systems of autonomous and heterogeneous agents. In such
systems, it is generally inadvisable to assume that there exist trustworthy
entities who can declare the trustworthiness of different users. Instead, both
the reputation of users and the ratings they provide are stored locally and
known only to the corresponding entity. The challenge therefore is to com-
pute the reputation while maintaining private data. Three works that deal
with the problem of computing ratings in decentralized reputation systems
can be found in [4, 9, 10].

Pavlov et al. [4] showed that when n − 1 malicious nodes collude with
the querying node to reveal the vote of the remaining node then perfect
privacy is not feasible. Furthermore, they proposed three protocols that
allow voting to be privately provided in decentralized additive reputation
systems. The first protocol is not resilient against collusion of nodes and
can be used when there are no dishonest peers. The other two protocols are
based on a probabilistic peers’ selection scheme and are resistant to collusion
of up to n− 1 peers only with a certain degree of probability.

Hasan et al. [9] proposed a privacy preserving protocol under the semi-
honest adversarial model. It’s main difference from Pavlov’s protocols is
that each Ui sends her shares to at most k < n−1 nodes that are considered
“trustworthy” by Ui. During initialization, the querying agent Aq sends to
each Ui the whole list of participating users U . Each Ui selects up to k nodes
from U in such a way that the probability that all the selected nodes will
collude to break Ui’s privacy, is low. Then it splits the vote into k shares
and distributes it among the k trustworthy agents. The role of Aq is simply
to accumulate the shares into a collective vote.

Dolev et al. [10] proposed two main decentralized schemes where the
number of messages exchanged is proportional to the number n of partic-

5

ipants (however, the length of each message is O(n)). The first protocol
AP (and its weighted variant WAP) assumes that the querying agent Aq is
not compromised while the next protocol, namely MPKP (and its weighted
variant MPWP) assumes that any node can act maliciously. Apart from
that, all the proposed schemes rely on the use of homomorphic encryption.
More precisely, the AP and WAP protocols are based on the Paillier cryp-
tosystem [11], while the more secure MPKP and MPWP are based on the
Benaloh cryptosystem [12]. It is exactly this dependency that makes de-
cryption cumbersome. The weakness of Dolev’s protocols is the fact that
unnecessary and inefficient computations are taking place.

One cannot help but notice the relevance of this problem to secure multi-
party computation, where a number of distributed entities collaborate to
compute a common function of their inputs while preserving the privacy of
these inputs. One such well known example is the secure sum protocol [13],
which uses randomization to securely compute the sum of the individual
inputs. This protocol is a natural fit for the problem at hand but it suffers
from a number of attacks and falls prey to honest-but-curious insiders which
can easily infer the private input of any entity.

The protocols in [4, 9, 10] can be thought as attempts to recover from
the security inefficiencies of secure sum, properly applied to the context
of reputation management. Our protocol, shown in Section 6, not only
improves upon these schemes but can also be applied directly for secure
sum computation, refining earlier results in this area [14].

2.2. Protocols Under the Malicious Model

Dolev et al. [15] proposed CEBP, a protocol that is functioning un-
der the malicious adversarial model in the sense that the query agent Aq
can easily verify that all submitted votes lies in a certain range. Moreover,
authors manage to avoid the use of zero-knowledge proofs and thus avoid
complex computations, since at the last round Ag receives a list with all the
individual votes in a random order. However, their protocol is using com-
mutative encryption schemes, like the Pohlig-Hellman scheme [16]. Existing
commutative encryption schemes in general do not provide formal methods
of security [17], and may lead to security breaches in real world applica-
tions. Furthermore, the protocol does not support robustness since users,
especially the last one (Un) can change all the votes of the previous n − 1
users and thus send to Aq a false voting list.

Pavlov et al. presented a decentralized privacy preserving scheme [4] for
the malicious case as well. The protocol is based on Pedersen’s [18] verifiable
secret sharing scheme to support validity checking of the feedback values

6

provided by voters. In other words, they provide a mechanism to ensure that
reputation ratings lie within a predefined range. The main disadvantage of
the protocol is the fact that it requires O(n3) messages primarily due to a
costly witness selection scheme. In addition to that, there is an insufficient
description of the protocol. For example, there is no explanation regarding
the zero-knowledge proofs that the protocol requires. Also, it is not clear if
a vote can belong to any interval [a, b] or should be bounded to a smaller one
(e.g [0, 1]) which would change the required computations for the verifier of
a vote.

In [19], Hasan et al. presented the Malicious-k-shares protocol, a dis-
tributed privacy preserving reputation protocol for the malicious adversarial
model. The protocol is more efficient in comparison with Pavlov’s and is
based on set-membership and plain-text equality non-interactive zero knowl-
edge proofs and an additive homomorphic cryptosystem. The main draw-
back though is the fact that one cannot sustain that the protocol has a
decentralized behavior since the query agent Aq acts like a central authority
since all messages are transfered to her and then she forwards them to the
actual receivers. In addition to that, at the second step of the protocol, each
Ui selects k other agents in such a way that the probability that all of the
selected agents will collude to breach agent Ui’s privacy is low. However,
it is not clear how does this witness selection scheme effects computation
complexity of the whole protocol.

3. Problem Statement & Definitions

We start by providing a definition of decentralized additive reputation
systems as described in [4].

Definition 1. A Reputation System R is said to be a Decentralized Additive
Reputation System if it satisfies the following two requirements:

1. Feedback collection, combination and propagation are implemented in
a decentralized way.

2. Combination of feedbacks provided by nodes is calculated in an additive
manner.

In this paper, we focus on the following problem:

Problem Statement: A querying node Aq, receives a service request
from a target node At. Since Aq has incomplete information about At, she

7

asks other nodes in the network to give their votes about At. Let U =
{U1, · · · , Un} be the set of all nodes that will provide an opinion to Aq.
The problem is to find a way that each vote (vi) remains private while at
the same time Aq would be in position of understanding what voters, as a
whole, believe about At, by evaluating the sum of all votes (

∑n
i=1 vi).

Similar to existing work in the area, the protocols that are presented in
Sections 5-6 assume that the adversary is semi-honest. In the semi-honest
adversarial model, malicious nodes correctly follow the protocol specifica-
tion. However, nodes overhear all messages and may attempt to use them
in order to learn information that otherwise should remain private. Semi-
honest adversaries are also called honest-but-curious. In Section 8, we build
upon the previous protocols to devise a scheme that can withstand more ma-
licious behavior; the adversaries not only may attempt to disrupt protocol
execution but can even bias the results in order to lead to wrong outcomes.

Protocol Setup: We assume that the reader is familiar with the concept
of public key cryptography. For the needs of our protocols, each node (Aq,
Ui, i ∈ [1, n]) has generated a public/private key pair (kAq/KAq , kUi/KUi).
The private key is kept secret, while the public key is shared with the rest
of the nodes. These keys will be used to secure message exchanges between
the nodes, hence the communication lines between parties are assumed to
be secure. It is also assumed that nodes are familiar with the public keys
of nodes they interact with. Our first protocol also relies on the use of
homomorphic encryption for the collection of votes by the querying agent
Aq. The vote of Ui concerning At is denoted by vi.

Definition 2 (Homomorphic Encryption). Let E(.) be an encryption
function. We say that E(.) is additive homomorphic iff for two messages
m1,m2 the following holds:

E(m1) · E(m2) = E(m1 +m2).

The notation E(.) will refer to the results of the application of an homo-
morphic encryption function (as per Definition 2) that Aq can decrypt with
her private key. Pailler’s Cryptosystem [11] is an example of cryptosystem
where the trapdoor mechanism is based on such a homomorphic function.
The semantic security of Pailler’s cryptosystem is proved under the deci-
sional composite residuosity assumption: Given N = pq, it is hard to decide
whether an element in ZN2 is an N − th power of an element in Z∗N2 .

8

4. Toy Protocols

In this section we present two protocols, the second protocol being a
more “secure” version of the first one. This exposition has mostly ped-
agogical character. We describe these protocols in order to expose their
vulnerabilities and thus create a starting point that will help us design our
main protocol. In the course of this process we will be able to characterize
the different types of attacks that can be applied to decentralized reputa-
tion systems thus helping researchers avoid common pitfalls while designing
secure reputation systems. Our final protocol will provide resistance against
these attacks, thus successfully preserving the privacy of submitted trust
ratings.

4.1. Toy Protocol 1

During the initialization step, Aq creates the set U with all voters, orders
them in a circle Aq → U1 → · · · → Un and sends to each Ui the identity of
its successor in the circle. Each Ui adds its vote to the sum of previous votes
by using the homomorphic property of Paillier’s cryptosystem [11]. At the
end, the last node Un sends to Aq the sum of all n votes encrypted with the
public key of Aq. Upon reception, Aq decrypts E(

∑n
i=1 vi), finds the sum of

all votes and divides by the number of voters n to find the average value.

Figure 1: Querying Node Attack

9

Analysis. This toy protocol (which is reminiscent of the AP protocol of [10])
is rather simple and achieves privacy of the submitted votes only if Aq is
not considered malicious. External attackers have no chance recovering the
votes since they are encrypted with Aq’s public key. However, because Aq
can overhear all messages, she can decrypt them one by one and find all
the individual votes. More precisely, Aq decrypts the first message E(v1)
and finds the vote v1 of U1, then decrypts the second message E(v1 + v2)
subtracts v1 and finds v2. By doing this n times, she can find all vi, i ∈ [1, n]
and thus break the privacy of the protocol. We call this type of attack the
Querying Node Attack (see also Figure 1 for a graphical representation).
Notice that even in the case where Aq cannot overhear all messages, this
protocol still falls prey to other attacks by malicious voters, however we
delay the description of these attacks for the next section.

4.2. Toy Protocol 2

This is an extension of the protocol of the previous section. In this
protocol (shown in Figure 2), we propose a solution that can be used to
overcome the Querying Node Attack. However, this protocol is still not
secure as we will describe in while.

Figure 2: Toy Protocol 2

10

During the initialization stage, Aq sends to each node a list which con-
tains only the previous and the next node in U . U1 who is the first node in
the list, generates a random number r1. Then she adds her vote v1 for At
to r1 and encrypts the result b1(= v1 + r1) with kAq to obtain Eq(b1). At
this point, U1 sends to the next node U2 the message 〈Eq(b1), E2(r1)〉.

U2 calculates b2(= v2 + r2) adds it to Eq(b1) and finds r1 by decrypting
E2(r1) with KU2 . Once she finds r1, she calculates r1 + r2, encrypts it with
kU3 and sends the following message to U3: 〈Eq(b1 + b2), E3(r1 + r2)〉. By
extrapolation, the last node will receive the following message〈

Eq

(
n−1∑
i=1

bi

)
, En

(
n−1∑
i=1

ri

)〉
.

Un decrypts En

(∑n−1
i=1 ri

)
with KUn and sends back to Aq the message

Eq(
∑n−1

i=1 bi −
∑n−1

i=1 ri + vn) = Eq(
∑n

i=1 vi). Upon reception, Aq decrypts
Eq(
∑n

i=1 vi), divides it by n and finds the average of submitted votes.

Analysis. This protocol is more secure than the first one. Every node Ui
instead of adding vi to E(.), generates a random number ri and use it to
mask its vote vi. This means that even if Aq is malicious and overhears all
messages, she cannot find the individual votes, since she does not know the
random numbers that have been used to hide these votes. However, this
protocol is still vulnerable to numerous attacks by malicious insiders, as we
describe below.

• First Node Attack (Figure 3): In this scenario, Aq and the second
voter U2 are considered malicious. So, Aq and U2 can collaborate in
order to find the vote v1 of U1. When U2 receives 〈Eq(b1), E2(r1)〉, she
decrypts E2(r1) with her private key (KU2) and sends toAq the random
number r1 that U1 generated in the previous step. Now, Aq can easily
find v1 = b1−r1 since she knows both r1 and b1 (by decrypting Eq(b1)).

• Last Node Attack: By symmetry, Aq and the penultimate voter
Un−1 are considered malicious. This means that Aq and Un−1 can
cooperate in order to find the vote vn of Un. When Un−1 sends〈
Eq

(∑n−1
i=1 bi

)
, En

(∑n−1
i=1 ri

)〉
to Un, she informs Aq about the value

of
∑n−1

i=1 ri. Thus, Aq can find
∑n−1

i=1 vi, since
∑n−1

i=1 vi =
∑n−1

i=1 bi −∑n−1
i=1 ri. As we mentioned before, Aq receives from Un the value

Eq(
∑n

i=1 vi) which decrypts and finds
∑n

i=1 vi. Now, Aq can find vn
by calculating vn =

∑n
i=1 vi −

∑n−1
i=1 vi.

11

Figure 3: First Node Attack

If Aq is malicious and has only two compromised nodes in U , then she
will place them in such a way that can achieve both last node and first
node attacks. That way, Aq will manage to find the maximum number
(v1 and vn) of individual votes that she can. Another alternative is for
Aq to use these two malicious nodes to find the vote of any user Ui by
“sandwiching” Ui between two malicious ones as explained below.

• Sandwich Attack (Figure 4):

A generalization of the previous attacks is when a (malicious) Aq ar-
ranges the voters in such a way that a legitimate node Ui will always
be between two malicious ones Ui−1 and Ui+1. This way, Aq can use
values from adjacent malicious nodes to calculate the random number
ri that was used to blind the vote vi of Ui. Aq can thus find all the
votes of legitimate nodes in the set. The first and last node attacks de-
scribed previously are simple variants of the sandwich attack in which
Aq acts as one of the two malicious nodes.

5. Splitting the Random values (StR)

In this section, we present our main protocol (StR) in which we use both
homomorphic encryption and random numbers to secure the privacy of votes
for each node.

12

Figure 4: Sandwich Attack

During the initialization step, Aq creates the set U with all voters, orders
them in a circle Aq → U1 → · · · → Un and sends to each Ui the identity of
its successor in the circle. Each Ui splits its random number ri into n pieces
and shares one with the rest of the nodes. Then, it creates a blinded vote
and adds it to the sum of previous votes by using the homomorphic property
of Paillier’s cryptosystem [11]. At the end, the last node Un forwards to Aq
the sum of all n votes encrypted with the public key of Aq. Upon reception,
Aq decrypts the result and finds the sum of all votes. A detailed description
of StR follows below. Figure 5 illustrates the two rounds of StR.

First round

During the initialization step, Aq sends to all nodes the list of all voters
U . Each node Ui generates a random number ri and splits it into n integers
in such a way that the ith share will be encrypted with the public key of Ui.
So, if U1 has generated a random number r1, the shares will be

r1 = r1,1, E2(r1,2), . . . , En−1(r1,n−1), En(r1,n).

The next step for each Ui is to distribute the shares to the remaining n− 1
nodes in U . This means that each Ui will receive the following n−1 messages

Ei(r1,i), . . . , Ei(ri−1,i), . . . , Ei(rn−1,i), Ei(rn,i).

13

Figure 5: The two rounds of StR.

Since all n− 1 numbers that Ui received are encrypted with her public key,
she decrypts them and calculates the blinded vote bi which is equal to

bi = vi + ri − (

n∑
j=1

rj,i). (1)

When all nodes (in parallel) compute their blinded votes, the second round
begins.

Second round

U1 calculates Eq(b1) and sends it to U2. U2 adds b2 to Eq(b1) by using the
additive homomorphic property (Eq(b1) · Eq(b2) = Eq(b1 + b2)) of Paillier’s
cryptosystem and sends Eq(b1 + b2) to U3. At the end of this round Aq will
receive from Un the following: Eq(

∑n
i=1 bi) = Eq(

∑n
i=1 vi). Upon reception,

Aq decrypts the message, finds the sum of all votes and divides by n in
order to find the average of votes. A concise description of StR is shown in
Algorithm 1.

5.1. Security Analysis

In this section we analyze the behavior of StR in the presence of cor-
rupted agents. First, we will consider the case of a well-behaving query

14

Algorithm 1 StR Protocol

Aq generates and distributes U = {U1, · · ·Un}
Round 1 - All nodes in parallel
for all Ui ∈ U do
Ui generates ri.
Ui calculates the n-shares: ri = ri,1 + . . .+ ri,n
for all Uj ∈ U \ {Ui} do
Ui sends Ej(ri,j) to Uj

end for
Ui receives all shares destined to it and calculates the blinded vote bi = vi +

ri −
(∑n

j=1 rj,i

)
.

end for
Round 2 - All nodes sequentially
for i = 1 to n do
Ui obtains

∏i−1
j=1Eq (bj) from Ui−1 (or Eq(0) from Aq, if i = 1).

Ui encrypts bi with kAq to obtain Eq(bi).

Ui calculates the homomorphic product
∏i−1

j=1Eq (bj) · bi
Ui sends

∏i
j=1Eq(bj) = Eq(

∑i
j=1 bj) to Ui+1 (or Eq(

∑n
i=1 vi) to Aq, if i = n).

end for

agent Aq. Such an agent respects the privacy of participating users and
does not form malicious coalitions with corrupted agents in the set U (how-
ever, among the agents in U there can be corrupted ones). Then, in Section
6, we will proceed to discuss the case where Aq is malicious as well. This
will also lead to the development of an even more efficient but equally secure
version of StR.

Theorem 1 (Uncompromised Aq). Assume an honest-but-curious adver-
sary ADV corrupts at most k < n users out of those in the set U . Then
ADV cannot infer any information about the votes of the legitimate users.

Proof. We will prove the robustness of the protocol by reducing its security to
the semantic security property of the encryption function E(·). A cryptosys-
tem is called semantically secure, if it is infeasible for a computationally-
bounded adversary to derive significant information about a message (plain-
text) when given only its ciphertext and the corresponding public encryption
key. An equivalent definition for semantic security is that of ciphertext in-
distinguishability [20]. Indistinguishability under Chosen Plaintext Attacks
is defined by a game in which an attacker generates two messages m0 and

15

m1 and has to determine which of the two messages was chosen by an en-
cryption oracle with probability significantly greater than 1/2 (i.e. better
than random guessing).

We will prove the privacy of the StR protocol using a standard simulation
argument. In particular, we will show that for any adversary that corrupts
(or controls) a subset of the participating users, there exists a simulator
that, given the corrupted parties data and the final result, can generate a
view that, to the adversary, it is indistinguishable from a real execution of
the protocol. This guarantees that whatever information the adversary can
obtain after attacking the protocol can be actually generated by herself,
using the simulator. As a result, no useful information about legitimate
users’ data is leaked (see also Chap. 7 of [21]).

Let C = {Ui1 , Ui2 , . . . , Uik} denote the set of compromised users, where
k < n. Consider the information available to protocol users in C: this in-
cludes their votes {vi1 , vi2 , . . . , vik}, their random numbers {ri1 , ri2 , . . . , rik}
and the sequence of messages E(

∑i1
j=1 bj), . . . , E(

∑ik
j=1 bj) received by each

one of them during the second round of the protocol, where by definition

bi = vi + ri − (

n∑
j=1

rj,i).

A simulator has access to the shares of the random numbers ri,j , i 6= j
that ended up in corrupted users during the first round but cannot possibly
generate the exact sequence of encrypted sums since it does not know the
private data of legitimate users. So, the simulator will have to replace the
private data with random quantities αi as indicated below

b′i =


bi, if Ui is corrupted/compromised

αi, otherwise

and compute E(b′i) for all i = 1, . . . , n. The simulator can now replace
E(
∑il

j=1 bj) with E(
∑il

j=1 b
′
j).

To complete the analysis we need to argue that if there exists an ad-
versary A that distinguishes between the encryption of the observed values
E(
∑il

j=1 bj) and the random ones E(
∑il

j=1 b
′
j) produced by the simulator,

then there is an adversary B that can attack the semantic security of E(·).
Such an attacker B would operate as follows: Its input is a sequence of

values E(xi), i = 1, . . . , n and its goal is to determine whether the values
xi correspond to the values provided by the users, or is simply a sequence

16

of random values αi. Adversary B, using the homomorphic property of
E(), computes E(

∑il
j=1 xj) and provides the encryption of the partial sums

E(
∑i1

j=1 xj), . . . , E(
∑ik

j=1 xj) as input to A. It then returns whatever answer
A returns.

Obviously B would be able to break the semantic security of E() with
the same probability that A could distinguish between the real views and
the random values produced by the simulator. Since E() is assumed to be
semantically secure, such A cannot exist. Hence the security of the StR
protocol is guaranteed provided at most k < n users are compromised, but
Aq is not. �

6. A More Efficient StR

In this section we will consider the case where node Aq is compromised
as well. Since Aq knows the private key and Aq has been compromised by
ADV (or is member of the colluding group), Aq can simply decrypt any com-
municated message. Hence we cannot rely on the semantic security property
of the underlying cryptosystem. The semantic security of the cryptosystem
protects the nodes from seeing intermediate results but it is the added ran-
domness which keeps ADV from obtaining those intermediate values. In
this scenario the security is therefore solely based on the randomness which
is used to blind the individual votes.

To see this, observe that in the second round of StR, homomorphic en-
cryption is used to compute the sum of the blinded votes,

∑
i bi, around the

ring. However, a compromised Aq can learn these values by collaborating
with a set of malicious agents. Hence homomorphic encryption does not
offer any real benefit and can be dropped entirely! This also suggests that
during the second round the nodes can send the blinded votes directly to
Aq without having to go around the ring, thus increasing the efficiency of
the algorithm, as we will see in the experimental section. The new protocol
is shown in Algorithm 2. Round 2 is a degenerate one and can clearly be
combined with Round 1.

The more efficient StR also provides an improvement over previous pro-
tocols in the field of secure multi-party sum computation [14]. In particular,
in [14], a distributed protocol is presented that requires O(n2) message ex-
changes that must be sequentially executed, one after the other, by a set of
nodes ordered in a ring. Our protocol is completely parallelized and does
not even require placing the nodes around such a ring.

In what follows we prove the security of the more efficient version of StR.

17

Algorithm 2 Improved StR

Aq generates and distributes U = {U1, · · ·Un}
Round 1 - All nodes in parallel
for all Ui ∈ U do
Ui generates ri.
Ui calculates the n-shares: ri = ri,1 + . . .+ ri,n
for all Uj ∈ U \ {Ui} do
Ui sends ri,j to Uj

end for
Ui waits until it receives all shares destined to it and calculates the blinded

vote bi = vi + ri −
(∑n

j=1 rj,i

)
.

end for
Round 2 - All nodes in parallel
for i = 1 to n do
Ui sends bi to Aq

end for
Upon reception of all votes, Aq computes

∑n
i=1 bi =

∑n
i=1 vi.

Theorem 2 (Compromised Aq). Assume an honest-but-curious adver-
sary ADV corrupts Aq and at most k < n − 1 users out of those in the
set U . Then ADV cannot infer any information about the votes of the le-
gitimate users.

Proof. Here, we consider the extreme case where all nodes collaborate with
a corrupted Aq except for two nodes Uk, Ul which are considered legitimate
(Figure 6).

To prove that StR protects the privacy of legitimate users, even if Aq
is compromised, we need to look at the data exchanged in StR. Recall that
during the first round, each node will receive n−1 shares from the remaining
nodes of U . Since n − 2 nodes are compromised, at the end of round one,
the adversary will know all the n · (n− 2) shares of the n− 2 compromised
nodes plus the n − 4 shares that Uk and Ul have sent to the compromised
ones.

From the four remaining shares, rk,k and rl,l will be known only to Uk
and Ul, since these are part of the shares they keep for the calculation
of their blinded votes bk, bl. Additionally, the last two remaining shares
(rl,k, rk,l) will be known only to Uk, Ul since they are encrypted with their
corresponding public keys and then exchanged between them. Since we have
assumed that these two nodes are legitimate, they will not reveal the value
of these shares to any other node (compromised information is shown next

18

Figure 6: Robustness up to n− 1 malicious nodes

to the two nodes in Figure 6).
To ease the analysis, in the following expressions we have circled the

variables that the adversary has not been able to compromise:

bk = vk + rk − (r1,k + · · ·+ rk,k + · · ·+ rl,k + · · ·+ rn,k) (2)

and

bl = vl + rl − (r1,l + · · ·+ rl,l + · · ·+ rk,l + · · ·+ rn,l). (3)

However, considering the fact that rk, rj are equal to the sum of the
corresponding shares, i.e. rk =

∑n
j=1 rk,j and rl =

∑n
j=1 rl,j , we obtain that

rk − rk,k =
∑
j 6=k

rk,j and rl − rl,l =
∑
j 6=l

rl,j .

Plugging these last two expressions to Equations (2) and (3), we obtain

bk = vk +
∑
j 6=k,l

(rk,j − rj,k) + rk,l − rl,k (4)

19

and
bl = vl +

∑
j 6=k,l

(rl,j − rj,l)− rk,l − rl,k . (5)

Treating the last term (rk,l − rl,k) as a single unknown quantity, we see
that it is impossible to correctly calculate the exact values vk, vl since the
adversary, even with the help of Aq, ends up with a system of two equations
and three unknown variables (the case is analogous when there are more
than 2 legitimate users). We conclude that the protocol remains secure as
long as there exist at least two nodes that are legitimate. �

Finally, observe that in both cases (Theorems 1 and 2) StR offers an
equivalent level of security as long as there are at least two nodes which are
not corrupted. In the first case, this is Aq plus another agent from the set U .
In the second case, these are two nodes from U . Thus, a legitimate node can
be sure of its private vote if and only if there is at least one more legitimate
node in the set U ∪ {Aq}. This observation serves as a nice introduction to
the following attack.

6.1. Alone in the List Attack

We conclude this section by considering one more attack that can be
thought as equivalent to the case where n−1 nodes are compromised. Hence
there can be no real defense against this scenario.

If Aq is malicious she can ask each node from U to give their vote sepa-
rately (i.e. the cardinality of U will be one). By doing so, she will be able
to find the value of all individual votes and thus easily break their privacy.
This attack is a special case of having n − 1 nodes compromised, in which
only one user is legitimate. In such a scenario, a corrupted Aq will create
a list with only one voter (U1) which means that she will be able to break
the privacy of U1 . We believe that for this kind of attack there cannot be a
complete solution and thus we propose two simple “countermeasures” that
could just give more possibilities to U1 to protect her privacy. In those situ-
ations where a node U1 is the only one in the list, she can ask a “friendly”1

node U ′1 to give her vote about At. U
′
1 encrypts her vote v′1 with kU1 and

sends it to U1. U1 decrypts it, adds v1 to v′1 and sends to Aq the sum of the
two votes v1 + v′1. This way, it is impossible for Aq to find the individual
votes, unless of course U ′1 is also malicious.

1The term ‘friendly’ refers to two nodes that have a previously-established connection
and both trust each other to some extent.

20

The above-mentioned solution can be also used in cases where |U | > 1
and n − 1 nodes are compromised. Assume that Ul is the only legitimate
node in U . At the initialization step where Ul receives the list U , she checks
to see if U contains any node that Ul trusts. In the case where Ul does
not find any “trustworthy” node or she suspects that the rest of the nodes
are compromised, she invites a node that does not belong to U to give her
vote about At. As before, Aq cannot infer the vote of Ul unless of course
the helper node is also malicious. In some sense, we decrease the number of
malicious nodes from n− 1 to n− 2 where StR provides protection.

7. Experimental Results

This section presents the implementation of StR, as well as a comparison
with Dolev’s Multiple Private Keys Protocol (MPKP) [10]. In order to prove
the effectiveness of StR, we implemented both protocols in Java and we used
JADE 4.0.1 [22] for the communication of the agents. Since we wanted our
experiments to be as close to reality as possible, we setup different JADE
agents in different computers. All agents (nodes of the protocols) were
connected to the Internet through a NetFasteR IAD 2 router over a 24Mbps
ADSL line.

Our experiments aimed at analyzing two main performance metrics; pro-
cessing time and communication overhead.

7.1. Processing Time

The first phase of our experiments involved measuring the processing
time of StR. To this end, we measured the completion time for the following
procedures:

• Secure Random Number Generation

• Encryption/Decryption

For the encryption and decryption, we used the RSA cryptosystem for
encrypting the random shares with a key length equal to 1024 bits. Figure 7
displays the results following 1000 test runs in a computer with a 1.6GHz
CPU and 1GB DDR RAM, where each node has to i) encrypt the n − 1
shares to be transmitted, and ii) decrypt the n− 1 shares received, where n
ranges from n = 5 to n = 100. As is evident from the graph, the required
processing time is negligible and does not constitute any real burden to
nodes of the StR protocol.

21

Figure 7: Processing time required by StR

Notice that this is not the case for Dolev et al.’s protocol. Decryption
of the homomorphic values is inefficient because it requires a trial-end-error
decryption in order to compute the encrypted trust ratings. This is due
to the use of the Benaloh cryptosystem which does not allow for efficient
decryption. Thus, processing time depends not only on n but also on the
allowable range of trust values. Despite this inefficiency, we treat both
times as comparable and we focus only on the communications aspects of
both protocols.

7.2. Communication Delay

7.2.1. First Round

By default, JADE uses the Message Transport Protocol (MTP) for the
communication between nodes. During the first phase of our experiments,
we wanted to measure the communication delay for the first round of StR.
For that purpose, we created nodes in different computers that generated n
encrypted shares (1024 bits long each); these were sent in parallel as single
messages to each of the n − 1 remaining nodes, where n was incremented
from n = 5 to 100 in steps of 5. As expected, the delay did not increase in a
strictly linear manner, since the overhead processing of collecting the shares
and computing the masked vote bi = vi + ri− (

∑n
j=1 rj,i) increased with the

number of nodes. Figure 8 illustrates the delay in seconds as a function of
the number of nodes n.

7.2.2. Second Round

While in StR only one message (the blinded vote) is transmitted from
each node to Aq, this is not the case for Dolev’s protocol as each node must

22

Figure 8: Communication Delay of first round of StR

send to the next one in the ring the result of the homomorphic encryp-
tion. Thus, in this case, we wanted to calculate the communication delay of
transmitting a message of size 1024 bits long (the result of the homomor-
phic encryption) between successive nodes in the list U . We have run 1000
experiments in our JADE platform and we have found that, on average, the
time to sent a single message between two successive nodes is approximately
equal to 0.115 seconds.

We have summarized these findings in Figure 9. This figure shows a
comparison for the communication delay of both rounds of StR and Dolev’s
protocol. While both protocols show a quadratic behavior – Dolev’s protocol
sequentially propagates, for a total of n times, a large message of length
O(n), while in StR each node sends, in parallel, (n − 1) messages of size
O(1) – StR outperforms Dolev’s protocol. This is something to be expected
since during the first round of StR time is saved by sending the shares in
parallel and not sequentially. Additionally, during the second round time is
saved by eliminating the need to visit the nodes in the ring. Thus, without
sacrificing security, the communication delay of StR for a list of up to one
hundred voters, is almost an order of magnitude smaller than that of Dolev’s
protocol (13.7sec vs. 124sec) and is expected to be magnified even further
for larger values of n.

23

Figure 9: Communication Delay for StR and Dolev et al. protocols

8. StRM : Beyond honest-but-curious behavior

The main drawback of the protocol described in the Section 6 is the fact
that it is effective only under the semi-honest model. However, if we wish to
prevent real malicious behavior, we have to build protocols that will assume
that every adversary acts under the malicious model. It is obvious that in
comparison to the semi-honest model, secure protocols within the malicious
model enhance security. However, it is important to note that a malicious
model may provide tighter security, at the expense of a greater computa-
tional costs. In this section, we present an extension of StR that effectively
manages malicious adversaries, adversaries that may provide dishonest input
to bias the protocol or try to disrupt protocol execution.

The new protocol, StRM , is based on the improved StR shown in Algo-
rithm 2. However, to make this protocol resistant to malicious attacks, we
need to augment it with certain cryptographic operations that will allow us
to argue about its correctness in the malicious case. The two sub-protocols
that will be used by StRM are zero-knowledge proofs of plaintext equality
and set membership.

8.1. Sub-protocols

In a zero-knowledge proof of plaintext equality (ZK-PEQ), a prover con-
vinces a verifier that two messages which are encrypted under different public
keys correspond to the same plaintext message. In our case, we will be en-
crypting messages using the Pailier cryptosystem. So, if Ei(m) and Ej(m)
are the encryptions of the message m using the public keys of users i and
j, respectively, then a prover can convince a verifier that these ciphertexts

24

correspond to the same plaintext m. This operation is very critical to the
correctness of StRM as it will allow node Ui to convince the remaining nodes
that the shares it sends to the other parties are the same like the ones used
in the construction of its random number and its blinded vote.

Such a protocol for plaintext equality is described in [23]. This protocol
can be made non-interactive by making the challenge of the verifier equal to
the hash of the protocol messages. A description of the protocol can be found
in the Appendix. In what follows we will denote by ZK-PEQ(Ei(m), Ej(m))
an execution of the protocol on ciphertexts Ei(m) and Ej(m) encrypted with
the public keys of nodes i and j, respectively.

Another useful building block is a protocol that can be used to prove in
zero knowledge that a ciphertext encrypts a message that lies in a predefined
range R of values. This is required in order to ensure that each voter cannot
bias the sum of the secret votes by sending votes that are not within some
allowable set of values. Such a protocol for plaintext equality is described in
[23]. A non-interactive version of the protocol can be found in the Appendix.
In what follows we will denote by ZK-RANGE (R,E(v)) an execution of the
protocol where a prover convinces a verifier that E(v) is the encryption of
a message v from the range R.

8.2. Description of StRM

We are now ready to proceed with the description of StRM . Our goal
would be to make the protocol resistant to adversaries that will not conform
to protocol specifications. Such malicious adversaries may attempt to devi-
ate from the protocol in order to violate the privacy of other participants.
In particular, they may (i) refuse to participate in certain protocol steps or
drop messages that are supposed to forward, (ii) provide incorrect values
in order to bias the final result, and (iii) modify protocol messages or tam-
per with communication channels in order to gain an advantage over well
behaving users. In what follows we describe in detail how the protocol man-
ages to address these issues. As a result misbehaving users can be detected
and can be penalized (say by adding them to a blacklist or even removing
them from future consideration), which will also affect their reputation in
the community.

Let Aq be the querying agent and let U = {U1, U2, . . . , Un} be the set
of users providing feedback to Aq. During the initialization phase of the
protocol, each user i picks n random numbers ri,1, ri,2, . . . , ri,n. These will
be used to blind its vote vi later on. Next, user i encrypts its vote vi and
the ri,j ’s to produce Ei(vi) and Ei(ri,j), respectively. It also encrypts each
share ri,j with the public key of user j to produce the encryptions Ej(ri,j).

25

Algorithm 3 StRM Protocol

Aq generates and distributes U = {U1, · · ·Un}
Round 1 - All nodes in parallel
for all Ui ∈ U do
Ui generates ri and calculates the n-shares ri,1, . . . , ri,n

Ui computes Ei(vi), Ei(ri,j) & Ej(ri,j))

for all Uj ∈ U \ {Ui} do
Ui sends Ei(ri,j) and Ej(ri,j) to Uj

Ui proves that vi is valid using protocol ZK-RANGE (R,Ei(vi))

Ui proves that Di(Ei(ri,j)) = Dj(Ej(ri,j)) by using protocol ZK-PEQ(Ei(ri,j), Ej(ri,j))

end for
Ui waits until it receives all encrypted shares Ei(rj,i) destined to it and cal-

culates the encrypted blinded vote Ei(bi) = Ei(vi)
∏

j 6=i Ei(ri,j)∏
j 6=i Ei(rj,i)

= Ei(vi +∑
j 6=i ri,j −

∑
j 6=i rj,i)

end for
Round 2 - All nodes in parallel
for i = 1 to n do

Ui Computes Eq(bi) and sends to Aq the values Eq(bi), Ei(bi) & ZK-PEQ(Eq(bi), Ei(bi))

to prove that Dq((Eq(bi)) = Di(Ei(bi))

end for
Aq computes Ei(bi) itself from the shares published in the first round and

verifies that all shares were incorporated correctly

Aq decrypts Eq(bi) & and computes
∑n

i=1 bi =
∑n

i=1 vi

User i then proceeds to send these values to all participants of the protocol
(without loss of generality we will assume that this step can be implemented
by a bulletin board where participants may post messages that can be seen
by everybody). It then goes on to prove in zero knowledge that (i) its vote
vi lies in the specified range using protocol ZK-RANGE (R,Ei(vi)), and (ii)
the plaintext equality of the ciphertexts Ei(ri,j) and Ej(ri,j) using protocol
ZK-PEQ(Ei(ri,j), Ej(ri,j)). This last part is necessary in order to ensure
any third party that these ciphertexts correspond to the encryption of the
share ri,j using the public keys of nodes i and j, respectively. It then sends
the encrypted share Ej(ri,j) to Uj as in the simplified StR (Algorithm 2).

Ui then waits until it receives all encrypted shares Ei(rj,i), destined to it.
Using the homomorphic property of the Paillier cryptosystem it combines
these shares with its encrypted vote and the shares Ei(ri,j) it sent to the

26

other users in the previous step to compute the product

pi = Ei(vi)

∏
j 6=iEi(ri,j)∏
j 6=iEi(rj,i)

= Ei(vi +
∑
j 6=i

ri,j −
∑
j 6=i

rj,i) = Ei(bi), (6)

where bi = vi +
∑

j 6=i ri,j −
∑

j 6=i rj,i is the blinded vote.
It then encrypts bi with the public key of Aq to produce the ciphertext

Eq(bi) and sends Aq both pi and Eq(bi) along with a plaintext equality
proof ZK-PEQ(pi, Eq(bi)), thus demonstrating that these correspond to the
same plaintext bi. As Aq itself (or any other agent for that matter) can
compute the product pi from the encrypted values published in the first
round, it concludes that all shares were incorporated correctly by user i
in producing bi. After verifying this for every i, Aq decrypts the received
blinded votes Eq(bi) and computes the sum

∑n
i=1 bi =

∑n
i=1 vi. A concise

description of StRM is shown in Algorithm 3. The shaded parts in the
protocol highlight the extra operations needed compared to Algorithm 2 in
order to offer protection against malicious adversaries.

8.3. Security analysis of StRM

In Sections 5 and 6 we proved the resistance of our protocol against nu-
merous attacks regarding the privacy of individual votes. More precisely,
we showed that even if Aq and up to n − 2 voters are compromised, our
protocol protects the privacy of the remaining legitimate ones through se-
cret splitting. In the case of StRM , we entirely relied on the algorithm of
the improved StR (Algorithm 2) with the addition of some cryptographic
mechanisms that offer protection in the case of malicious adversaries. The
use of these cryptographic mechanisms does not affect the main operation
of the algorithm, hence the privacy of individual voters is also successfully
protected in the case of StRM even if Aq and n− 2 nodes are corrupted.

The main drawback of StR is its inability to ensure that (i) ratings
are provided correctly, and (ii) that are within a predefined range. StRM

circumvents this vulnerability with the use of zero knowledge proofs. The
zero knowledge proofs are characterized by the existence of public algorithms
that can distinguish between valid and invalid encrypted texts. The main
advantage of public verifiable schemes is the fact that the validity of the
shares distributed by an agent can be verified by anyone, not just the owner;
thus anyone can verify that the protocol run correctly and that each voter
acted according to the specifications of the protocol. Furthermore, during
the verification process, the original data are never revealed to anyone, even
those that take part in the process. As a result, Aq or any other agent

27

can verify that submitted values from the participating nodes are valid.
This is done with the use of plaintext equality proofs for the distributed
shares and the set membership proofs for the submitted votes. Hence not
only malicious behavior is detected but also the correct computation of the
results is guaranteed.

8.4. Comparison of Improved StR with StRM

StRM is based on the improved StR with the addition of some crypto-
graphic mechanisms that make the protocol resistant to malicious behavior.
However, while these mechanisms improve the robustness of the scheme,
they increase the number of messages that each agent needs to create and
exchange. More precisely, during the first round of the improved StR each
node sends n−1 shares to the rest of the participants, and just one message
(bi) to the query agent during the second round. Thus every node sends a
total of n messages overall, for a total of n2 messages.

During the first round of StRM , each node sends 2n− 2 encrypted mes-
sages. Additionally, one range proof is used to prove that a vote lies within
a certain range and n− 1 plaintext equality proofs to prove that the cipher-
texts Ei(ri,j) and Ej(ri,j) are equal. For the plaintext equality proof, each
agent has to send a message that contains five random numbers. For a range
proof that a vote v belongs to an interval [a, b], a prover must send a mes-
sage consisting of 3|a− b| random numbers. During the second round, each
node sends to the query agent two encrypted messages as well as a plaintext
equality proof. In total, each agent sends 3|a − b| + 7n messages which is
equal to (7 + o(1))n if we make the reasonable assumption that the range
|a − b| is o(n), say from 0 to 100. This makes the protocol about 7 times
slower than the improved StR but still faster than Dolev’s et al. algorithm
for the semi-honest case, as Figure 9 clearly demonstrates.

9. StR’s Application Domain

After the Napster era, all successful P2P file sharing networks have de-
veloped a common element - they have become decentralized. The most
successful networks such as Kazaa, LimeWire and Morpheus, although they
provide some form of legal protection to their users by giving them the
opportunity to distribute software, songs, movies, etc., they cannot, effec-
tively, protect them from downloading malicious software. For example,
many users distribute jpeg files that are infected with malicious code. The
result is that when a user opens the file, she sees an image, but at the same
time the computer is infected with the malicious code. The utilization of

28

feedback/voting can provide a solution to these kinds of attacks, as a user
will be notified that the other user or the requested file are considered as
insecure. Furthermore, by also providing this feedback anonymously, the
retaliation between nodes/users can be minimized. There are additional
reasons for using anonymity in P2P networks:

• Material is legal but socially deplored, embarrassing or problematic in
the individual’s social world (for example, anonymity is seen as a key
requirement for organizations like alcoholics, drug addicted, etc.)

• Fear of retribution (against whistleblowers, unofficial leaks, and ac-
tivists who do not believe in restrictions on information or knowledge)

• Censorship at the local, organizational, or national level

• Personal privacy preferences such as preventing tracking or data min-
ing activities.

Apart from that, anonymous feedback can also have a role in the education
field, as students (especially in the eLearning field) will benefit from the
ability to evaluate the services offered by the school/university. Students
will greatly benefit from this form of transparent and reliable anonymous
feedback. Furthermore, numerous web applications such as betterme.com
and rypple.com offer members of different communities the opportunity to
send anonymous feedback regarding their coworkers, classmates, friends,
landlord, boss etc. This feedback can be processed by StR in order to
improve the operation of the corresponding community.

10. Conclusions

In this work we presented StR, a decentralized privacy-respecting scheme
for securely casting trust ratings in additive reputation systems. Our proto-
col relied on the use of public key cryptography and homomorphic encryp-
tion and has been formally proved to be resistant to collusion even against
as many as n − 1 malicious insiders. In the course of this work, we have
also presented a lighter, but equally secure protocol, that can be thought as
an independent contribution to the field of secure multiparty sum compu-
tation. The effectiveness of StR was demonstrated by conducting extensive
experiments measuring its communication delay and processing overhead
in a real P2P network, showing its superior performance over the previous
best protocol to date. Finally, while the previous protocols worked well in

29

the semi-honest model, we were also able to extend these protocols to han-
dle the case of malicious adversaries, i.e. adversaries that can deviate from
the protocol steps by dropping messages, refusing to participate, tampering
with communications or providing out-of-range values in order to break the
secrecy of votes of the remaining participants.

References

[1] A. Jøsang, R. Ismail, and C. Boyd, “A survey of trust and reputa-
tion systems for online service provision,” Decis. Support Syst., vol. 43,
pp. 618–644, Mar. 2007.

[2] P. Resnick and R. Zeckhauser, “Trust among strangers in internet trans-
actions: Empirical analysis of ebay’s reputation system,” in The Eco-
nomics of the Internet and E-Commerce, volume 11 of Advances in
Applied Microeconomics, SFCS ’85, (Washington, DC, USA), pp. 383–
395, IEEE Computer Society, 1985.

[3] eBay, “Buyer accountability,” http://pages.ebay.com/services/forum/
sellerprotection.html.

[4] E. Pavlov, J. S. Rosenschein, and Z. Topol, “Supporting privacy in
decentralized additive reputation,” Second International Conference on
Trust Management (iTrust 2004), pp. 108–119, 2004.

[5] R. Dingledine, N. Mathewson, and P. Syverson, “Reputation in P2P
Anonymity Systems,” in In Workshop on Economics of Peer-to-Peer
Systems, 2003.

[6] L. Lilien and B. Bhargava, “Privacy and trust in online interactions,”
pp. 85–122, IGI Global, 2009.

[7] T. Dimitriou, G. Karame, and I. Christou, “Supertrust - a secure
and efficient framework for handling trust in super peer networks,”
9th International Conference on Distributed Computing and Network-
ing (ICDCN 2008), pp. 350–362, 2008.

[8] B. Yu and M. P. Singh, “Detecting deception in reputation manage-
ment,” in Proceedings of the 2nd International joint Conference on Au-
tonomous agents and multiagent systems, AAMAS ’03, (New York, NY,
USA), pp. 73–80, ACM, 2003.

30

[9] O. Hasan, L. Brunie, and E. Bertino, “k-shares: A privacy preserving
reputation protocol for decentralized environments.,” in SEC (K. Ran-
nenberg, V. Varadharajan, and C. Weber, eds.), vol. 330 of IFIP Ad-
vances in Information and Communication Technology, pp. 253–264,
Springer, 2010.

[10] S. Dolev, N. Gilboa, and M. Kopeetsky, “Computing multi-party trust
privately: in o(n) time units sending one (possibly large) message at a
time,” in Proceedings of the 2010 ACM Symposium on Applied Com-
puting, SAC ’10, (New York, NY, USA), pp. 1460–1465, ACM, 2010.

[11] P. Paillier, “Public-key cryptosystems based on composite degree resid-
uosity classes.,” in EUROCRYPT (J. Stern, ed.), vol. 1592 of Lecture
Notes in Computer Science, pp. 223–238, Springer, 1999.

[12] J. Benaloh, “Dense probabilistic encryption,” in In Proceedings of the
Workshop on Selected Areas of Cryptography, pp. 120–128, 1994.

[13] C. Clifton, M. Kantarcioglu, J. Vaidya, X. Lin, and M. Y. Zhu,
“Tools for privacy preserving distributed data mining,” SIGKDD Ex-
plor. Newsl., vol. 4, pp. 28–34, Dec. 2002.

[14] R. Sheikh, B. Kumar, and D. K. Mishra, “A distributed k-
secure sum protocol for secure multi-party computations,” CoRR,
vol. abs/1003.4071, 2010.

[15] S. Dolev, N. Gilboa, and M. Kopeetsky, “Computing trust anonymously
in the presence of curious users,” in In Proceedings of the International
Symposium on Stochastic Models in Reliability Engineering, Life Sci-
ence and Operations Management, (Beer Sheva, Israel), Feb. 2010.

[16] S. Pohlig and M. Hellman, “An improved algorithm for computing log-
arithms over gf(p) and its cryptographic significance (corresp.),” IEEE
Trans. Inf. Theor., vol. 24, pp. 106–110, Sept. 2006.

[17] S. A. Weis, New foundations for efficient authentication, commutative
cryptography, and private disjointness testing. PhD thesis, Cambridge,
MA, USA, 2006. AAI0810110.

[18] T. P. Pedersen, “Non-interactive and information-theoretic secure ver-
ifiable secret sharing,” in Proceedings of the 11th Annual International
Cryptology Conference on Advances in Cryptology, CRYPTO ’91, (Lon-
don, UK, UK), pp. 129–140, Springer-Verlag, 1992.

31

[19] O. Hasan, L. Brunie, E. Bertino, and N. Shang, “A Decentral-
ized Privacy Preserving Reputation Protocol for the Malicious Ad-
versarial Model,” Tech. Rep. RR-LIRIS-2012-008, LIRIS UMR 5205
CNRS/INSA de Lyon/Universit Claude Bernard Lyon 1/Universit Lu-
mire Lyon 2/cole Centrale de Lyon, June 2012.

[20] S. Goldwasser and S. Micali, “Probabilistic encryption,” Journal of
Computer and System Sciences, vol. 28, no. 2, pp. 270 – 299, 1984.

[21] O. Goldreich, “Foundations of cryptography,” vol. 2, Cambridge Uni-
versity Press, 2004.

[22] F. Bellifemine, A. Poggi, G. Rimassa, and T. Italia, “Jade,” 1999.

[23] O. Baudron, P.-A. Fouque, D. Pointcheval, J. Stern, and G. Poupard,
“Practical multi-candidate election system,” in Proceedings of the
20th annual ACM symposium on Principles of Distributed Computing,
PODC ’01, (New York, NY, USA), pp. 274–283, ACM, 2001.

[24] S. Goldwasser, S. Micali, and C. Rackoff, “The knowledge complexity
of interactive proof-systems,” in Proceedings of the 17th Annual ACM
symposium on Theory ofCcomputing, STOC ’85, (New York, NY, USA),
pp. 291–304, ACM, 1985.

Appendix A. Zero-Knowledge Proofs

Zero-knowledge proofs were introduced by Goldwasser et al. [24] and are
interactive protocols that allows a party (the prover) to convince another
party (the verifier) that a statement is true without revealing any informa-
tion except the fact that the statement is true. In this section we will present
the non-interactive versions of the proofs that we used in the description of
StRM (Section 8). The proofs can be considered as an extension of the
interactive protocols that were presented in [23].

Appendix A.1. Non-Interactive Proof of Plaintext Equality

In a zero-knowledge proof of equality we assume that Ei(m) and Ej(m)
are encryptions of a message m with the public key of Ui and Uj respectively.
In such a proof, a prover P can convince a verifier V that Di(Ei(m)) = m =
Dj(Ej(m)).

Let (Ni, g) be the public key of Ui where Ni is an RSA modulus Ni = pq
such that p and q primes. Let g be an integer of order multiple of Ni modulo
N2
i andH a secure cryptographic hash function. The non-interactive version

of the interactive protocol presented in [23] follows:

32

Algorithm 4 Non-Interactive Proof of Plaintext Equality

Prover (P)
Picks a random ρ ∈ [0, 2l)
Randomly picks si ∈ Z∗Ni

and sj ∈ Z∗Nj

Computes ui = gρi s
Ni
i mod N2

i and uj = gρj s
Nj

j mod N2
j

Computes e = H(ui, uj)
Computes z = ρ+me
Computes vi = sir

e
i mod Ni and vj = sjr

e
j mod Nj

Sends to V the following: z, ui, uj , vi, vj
Verifier (V)
Computes e = H(ui, uj)
Validates that z ∈ [0, 2l)

Validates that gzi v
Ni
i = uiEi(m)e mod N2

i and gzj v
Nj

j = ujEj(m)e mod N2
j

Appendix A.2. Non-Interactive Range Proof

In a zero-knowledge range proof a prover P can convince a verifier V that
an encrypted message is an element of a certain set S. More precisely, if we
assume that S = {m1, . . . ,mp} is a public set of p messages and Ei(m) is an
encryption of a message m with the public key of Ui then P can convince V
that Ei(m) encrypts a message in S.

The non-interactive version of the protocol presented in [23] follows:

Algorithm 5 Non-Interactive Range Proof

Prover (P)
Picks a random ρ ∈ Z∗N
Randomly picks p− 1 values {ej}j 6=i ∈ ZN & p− 1 values {vj}j 6=i ∈ ZN
Computes ui = ρN mod N2 &

{
uj = vNj (gmj/EP (m))ej mod N2

j

}
Computes e = H

(
{uj}j∈{1,...,p}

)
Computes ei = e−

∑
j 6=i ej mod N and vi = ρreigei/N mod N

Sends to V the following: {uj , vj , ej}j∈{1,...,p}
Verifier (V)

Calculates e = H
(
{uj}j∈{1,...,p}

)
Checks that e =

∑
j ej mod N

Checks that vNj = uj(EP (m)/gmj)ej mod N2, j ∈ {1, . . . , p}

33

	Introduction
	Related Work
	Protocols Under the Semi-Honest Model
	Protocols Under the Malicious Model

	Problem Statement & Definitions
	Toy Protocols
	Toy Protocol 1
	Toy Protocol 2

	Splitting the Random values (StR)
	Security Analysis

	A More Efficient StR
	Alone in the List Attack

	Experimental Results
	Processing Time
	Communication Delay
	First Round
	Second Round

	StRM: Beyond honest-but-curious behavior
	Sub-protocols
	Description of StRM
	Security analysis of StRM
	Comparison of Improved StR with StRM

	StR's Application Domain
	Conclusions
	Zero-Knowledge Proofs
	Non-Interactive Proof of Plaintext Equality
	Non-Interactive Range Proof

