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a b s t r a c t

In this work, we develop an anchor-less relative localisation algorithm aimed to be used in
multi-robot teams. The localisation is performed based on the Received Signal Strength
Indicator (RSSI) readings collected from the messages exchanged between nodes. We use
the RSSI as a rough estimate of the inverse of distance between any pair of communicating
nodes, and we claim that such estimates provide a coarse information of the nodes relative
localisation that is still suitable to support several coordination tasks. In addition, we intro-
duce a relative velocity estimation framework based on the RSSI measurements. This
framework uses consecutive distance measurements and position estimates to provide
the relative velocity vectors for all the nodes in the network.

To accomplish this, we propose using a Kalman filter and the Floyd–Warshall algorithm
to generate smooth RSSI pairwise signal distance for all nodes. Then we use Multidimen-
sional Scaling to obtain relative positions from the pairwise distances. Finally, due to
anchor unavailability, relative positions are adjusted to reflect the continuous mobility
by using geometric transformations, thus obtaining smoother trajectories for mobile nodes.
This allows us to estimate velocity and to establish a correspondence between orientation
in the physical world and in the relative coordinates system.

Additionally, we study the impact of several parameters in calculating the network
topology, namely different approaches to provide a symmetric distances matrix, the period
of the matrix dissemination, the use of synchronisation of the transmissions, and the filter-
ing of the RSSI data. Experimental results, with a set of MicaZ motes, show that the period
of matrix dissemination is the most relevant of the parameters, specifically with larger
periods providing the best results, however, shorter periods are shown to be possible as
long as the transmissions are synchronised.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Multiple-robot systems can accomplish tasks that can-
not be achieved individually. That is why a cooperating
team of mobile robots, joining together to accomplish a
common objective with no human intervention, is an inter-
esting possibility. Sample applications include surveil-
lance, exploration, manufacturing, and large volume
transportation [1–3].

Consider a small team of robots working in a relatively
small area. Each of the robots is equipped with identical
basic platform and communication module so that they
can communicate in a predefined channel and move in a
coordinated pattern. For the sake of cost, robots may have
different sensing or actuating components, which means
that some tasks have to be accomplished by specific robots.
When one special event is detected by one robot, it may
have to notify another robot which is far from the event
area, but equipped with specific actuating component, to
deal with such event. For example, in a mine sweeping
application, it is advisable to spread a team of robots with
mine detecting capability and equip only a small portion of
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them with sweeping ability, thus reducing the cost of
equipment. A typical scenario is depicted in Fig. 1. The
mine field is divided into smaller areas according to the ro-
bots sensing range and the robots sweep the areas one by
one with certain formation to guarantee coverage. When
mines are detected, a robot with sweeping ability is in-
formed to approach the specific spot. For both maintaining
the formation and relocating the sweeping robot, relative
positions have to be managed. In both cases, it is important
to know the relative positions in order to make the deci-
sions involving moving robots from one place to another.
In some situations, a possible solution is to build an infra-
structure that enables every robot to know its own abso-
lute position. But, building infrastructure is costly and it
is probably unavailable in urgent scenarios. For outdoors,
GPS may be a possible solution; however, it only provides
coarse-grained positions and it is satellite dependent, thus
it is not available everywhere, such as in indoor spaces and
street canyons. A possible solution, which is considered in
our work, is to derive relative positions from local
communication.

In our work, we are interested in the relative positions
of the nodes, the accuracy in terms of absolute locations
is not a concern. Therefore, we define proximity to a given
node as a function of Received Signal Strength Indicator
(RSSI), i.e. a node is closer than another one if the RSSI of
its transmission is higher. Thus, instead of measuring the
distance between nodes, we use RF signal strength as a
measure of proximity, despite the coarse relationship be-
tween them, in the absence of a propagation model. A
rough map of the nodes is produced with the coarse loca-
tions obtained using their signal proximity in terms of
RSSI. Our method has the advantage of providing relative
localisation based on the strength of the communication
links, i.e. a pair of nodes that posses a good link are consid-
ered closer to each other, whereas nodes that have poor or
no links are considered to be ‘‘far’’ apart from each other.

In order to work effectively with the RSSI, we imple-
ment a scheme for filtering and sharing the RF signal
strength sensed in each node via the propagation of a sig-
nal space distance matrix. Then, we calculate the relative
position of the nodes using MultiDimensional Scaling
(MDS). Experiments show that signal strength information
can be used to manage the relative positions of wirelessly
connected nodes without central supervision.

This paper extends our previous work in [2] with:

1. A detailed and improved explanation of the relative
localisation and the relative velocity estimation frame-
work for mobile robots based on RSSI measurements.

2. A new experimental sensitivity analysis with respect to
several configuration parameters.

This paper is organised as follows, Section 2 discusses
the related work. Section 3 addresses the problem of shar-
ing the signal space distance matrix. Section 4 addresses
the problem of generating relative positions using the clas-
sical MDS algorithm and some data filtering techniques.
Section 5 addresses the estimation of signal space velocity
vectors. Section 6 describes a set of practical experiments
to validate the robustness of the MDS algorithm under sev-
eral conditions. Finally, Section 7 concludes the paper.

2. Related work

The location of the nodes in a network of mobile robots
is an essential information required in order to put into
practice a diversity of coordination algorithms, such as
team formation and path planning. For example, in [4]
the idea of using feedback laws to control multiple robots
together in a formation is explored. In this work it was as-
sumed that each robot has the ability to measure the rela-
tive position with respect to its closest neighbours. Also, in
[5], the robots path is computed to ensure that the network
partition never occurs during the robots motion, but the
knowledge of global location (e.g. GPS) is assumed avail-
able at each robot. The work in [6] explores the sensor relo-
cation in order to deal with sensor failure or respond to
new events. Methods of finding redundant sensors and
moving sensors to specific areas are proposed, assuming
that sensors are placed into grids and global information
is shared to support relocation planning. None of these
works consider the practical position management of mo-
bile robots or sensors.

Static sensor positioning has been widely investigated
in recent years, where the dominant time-based tech-
niques to obtain distance measurements include the Time
of Arrival (ToA), the Time Difference of Arrival (TDoA), the
Angle of Arrival (AoA), and the Time of Flight (ToF). Time of
Arrival is a technique that is used to measure the time a gi-
ven message needs to travel between the sender and sev-
eral receiving nodes [7–9]. To do that, the sending node
timestamps the message with global time and sends it.
Then, the receiving nodes timestamp the message upon ar-
rival and compute the message travelling time. Finally,
knowing that the waves travel at the speed of light, the
nodes can calculate the distance between themselves and
the sender. However, due to the speed at which the waves
travel, all the nodes clocks synchronised with very high
precision, since a small timing error translates into a large
distance error. Another popular method is TDoA. This
method, similarly to ToA, measures the time a given mes-
sage needs to travel between nodes, but unlike ToA it mea-
sures the time difference between receiving times. This
method only requires the nodes performing the tracking
to be synchronised, thus partially solving the global clock

Fig. 1. A scenario of mine sweeping.
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synchronisation issues [10–12]. Despite that, this method
only brings advantages to situations where only some
nodes can be easily synchronised to perform the tracking,
such as the AoA. The AoA is a positioning technique that in-
volves measuring the angle from which the received mes-
sage comes from, thus obtaining the direction of the
transmitter node [13,14]. This is done by means of antenna
arrays, that can be more easily synchronised to use tech-
niques such as TDoA to infer the direction of the incoming
transmission. However, for mobile robotic applications, an-
tenna arrays may be prohibitive in size. A technique that
eliminates the need for global clock synchronisation is
ToF [15]. This technique is also very similar to ToA in that
it allows measuring the time a message needs to travel be-
tween communicating nodes. However, in order to remove
the need for global clock synchronisation, instead of mea-
suring the time of one-way trip, it measures the time that
a message needs to go to the receiver and return to the
transmitter. Despite that, since some local processing
needs to be done on the receiver before sending the reply,
the processing time has to be very well known, thus it
should be done in hardware. Adding to that, since the rang-
ing operation is between two units, it needs a long time to
range several units, thus it may not accommodate fast
moving robots.

Another method to perform ranging between commu-
nicating nodes is to measure the Received Signal Strength
Indicator (RSSI). As the name implies, RSSI-based methods,
obtain range estimation from the strength of the received
RF signal [16]. In open space and without interference
there is a relationship between RSSI and distance. How-
ever, in the presence of interference, reflection, and refrac-
tion, this relationship can be easily destroyed. Despite that,
methods other than RSSI-based ranging require either
specialised and expensive hardware, or require global time
synchronisation, which may be difficult to attain. There-
fore, if the application requires a coarse localisation, only,
either for navigation or topology estimation purposes, the
RSSI can still be useful. Several RSSI-based methods rely
on a priori channel measurements [17,18]. However, those
may be unavailable or unreliable due to lack of previous
knowledge on the environment or severe changes that
might have affected it. Other methods perform online
channel estimation, frequently based on measurements
between anchor nodes [19,20]. However, these are incom-
patible with unknown environments, or require sensors
beyond communication devices [18].

Once ranging data is collected, several techniques can
be used to generate sensor positions [21–25]. One of such
techniques [26,22] uses an improved versions of MDS, i.e.
MDS-MAP(P) and MDS-MAP(C), to obtain node positions
based on the distances between nodes. MDS-MAP(C) is a
method that after running classic MDS uses an extra step
to transform the relative positions to a global frame using
anchor node information. MDS-MAP(P) applies MDS-
MAP(C) to a set of nodes up to a maximum of n hops. Then,
each of the generated maps is stitched together with the
neighbours until a map of the full network is produced. Fi-
nally relative positions are adjusted to a global frame using
anchor node information. Also in the same work, the
authors present an extended version of both algorithms,

MDS-MAP(P,R) and MDS-MAP(C,R). In these variants a
final refinement step, using least-squares minimisation to
make the distances between neighbouring nodes better
match the provided measured distances. The work in [27]
uses SISR (Snap-Inducing Shaped Residuals) to perform
an iterative refinement to the positions returned by
MDS-MAP(C,R). This method is able to tolerate ranging er-
rors by de-emphasising bad data, and was shown to local-
ise nodes in non-convex topologies. These variations of
MDS, despite performing better than the regular MDS,
are not worth the extra computational cost for our applica-
tion, since we target small size networks with just a few
hops. In order to improve results under unknown line-of-
sight/non-line-of-sight (LOS/NLOS) conditions and scarce
ranging information [28], uses another variant of MDS
based on Weighted Least Squares algorithm, whose
weights are assigned according to the reliability of the
ranging measurements. The work in [29] provides a com-
plete theoretical analysis of node localisation using MDS.
However, most of the existing work either assumes known
position of anchor nodes, which is unavailable or unneces-
sary in a scenario like ours, or only provides simulation
results.

Adding mobility to sensor nodes appears to make local-
isation more complex and uncertain. The work in [30] em-
ploys Monte Carlo Localisation methods to improve
accuracy. Nodes that know their own location – called
seeds – and nodes with unknown location form a network,
where at least one kind of sensors is moving. Despite the
improved localisation, Monte Carlo solutions are computa-
tionally expensive, consequently very hard to implement
in real-time. Another approach to mobile robots localisa-
tion can be found in [31], however each robot is equipped
with a range sensor to identify distance to other robots and
odometry, thus increasing the cost.

Our paper differs from the previously referred work in
several aspects. Firstly, we investigate the problem in
which no anchor node exists. We use MDS [32] and RF sig-
nal strength readings (only) to compute approximate rela-
tive positions within small teams of mobile nodes
(approximately up to 10), with the purpose of managing
the nodes mobility. Thus, we are not interested in accurate
physical localisation. We claim that such approximate rel-
ative positioning system is sufficient for a set of navigation
purposes in particular to drive certain nodes to the vicinity
of other ones. In addition, we provide an experimental sen-
sitivity analysis with respect to the impact of several con-
figuration parameters in the MDS algorithm. Finally, we
present a relative velocity estimation framework, also
based on the RSSI measurements alone.

3. Building the signal space distance matrix

Due to high mobility together with nodes joining and
leaving the team at run time, we need a scheme to keep
track of the connectivity information within the group.
The authors of [33] proposed a concept called the connec-
tivity matrix, which enables every mobile node to keep a
global vision of the team composition and network
topology.
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However, as [2] points out:

1. The binary representation of a link state provides
insufficient information on the link quality, and is
prone to instability.

2. This method requires synchronisation in a strict
TDMA fashion.

3. Multi-hop communications require one extra
TDMA slot per hop, thus leads to substantial time
slot reassignments due to topology changes.

Therefore, in order to have a more accurate link state
representation we propose a signal space distance matrix,
stemming from the Extended Connectivity matrix in [2],
and drop the TDMA-based synchronisation.

3.1. Signal space distance matrix

The extended connectivity matrix is defined in [2]. In-
stead of binary information, it contains the RSSI values of
the received packets (in dBm) for every link. However,
since in this work the raw RSSI values are not used directly,
we redefine this matrix using signal space distance (D),
that represents the ‘‘distance’’ to a maximum value of RSSI
(RSSImax) as in (1). RSSImax is an offset that can be used to
define distance according to the offset of the transceiver
being used, i.e. if the data obtained by the transceiver has
no offset then RSSImax = 0.

Dkði; jÞ¼
RSSI max�RSSI i;j; LQIPLQI threshold

?; packet lost or LQI<LQI threshold

�

ð1Þ

Each mobile node maintains an signal space distance ma-
trix D. Dk is the matrix stored in node k. For each row i,
Dk(i) stores the signal space distance readings measured
by node i, or ‘‘?’’ representing the absence of such measure-
ment, including for i = k. Fig. 2 shows an example of an sig-
nal space distance matrix with 6 nodes and their wireless
links represented on the right side.

3.2. Absence of synchronisation

In our system model, we do not rely on clock synchro-
nisation. It is generally recognised that in lightly loaded
communication conditions, the cost of retransmissions is

lower than the cost of preventing them. For example, the
MicaZ motes communicate in 2.4 GHz with a transmission
rate of 250 Kbps, thus, a packet of 300 bytes needs less
than 2 ms to be transmitted. Since the usage of the band-
width is only 4%, with a long enough message broadcast
period, e.g. 500 ms, the probability of message collision
for 10 nodes is negligible.

3.3. Updating algorithm

The signal space distance matrix is filled in by all
nodes in a distributed way. Each node contributes with
the signal space distance values of the messages it
receives, and fills its own line. Then, the matrix is broad-
cast to the other nodes, that in turn merge the received
matrix with their own and disseminate it closing the
cycle. The merging of the matrices must be done with
care, though. In order to avoid keeping stale data and
replacing fresh data with old data, we use the following
control variables:

Algorithm 1. Updating algorithm for node k signal space
distance matrix, Dk(i, j), with time-stamps and sequence
control.

Receive phase:
1: IF node k receives the expected Dwthen
2: for alli – kdo
3: IFSequencew(i) > Sequencek(i) then
4: Dk(i) = Dw(i)
5: Sequence

k(i) = Sequencew(i)
6: end if
7: end for
8: if (LQIw?k > LQIThreshold) then
9: SamplesBuffer(w).add (Dw?k, LQIw?k,

localtime)
10: else
11: SamplesBuffer(w).add (?,LQIw?k,

localtime)
12: end if
13: end if
Broadcast phase:
1: if timer triggered for node k to broadcast Dk then
2: for all jdo
3: Dk(k, j) = Filter((SamplesBuffer(j)))
4: end for
5: Sequence

k(k) = Sequencek(k) + 1
6: Broadcast (Dk,Sequencek)
7: end if
Eliminate outdated data phase:
1: if timer triggered for eliminating outdated data

then
2: for alli – k
3: iflocaltime � Time

k(i)
> OutdateThreshold

4: Dk(i) = {?}
5: end if
6: SamplesBuffer (i). removeOutdated ()
7: end for
8: end if

Fig. 2. Signal space distance matrix: The matrix represents the distance
between every pair of nodes in the network.
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1. Local time-stamps, indicating the freshness of the
data.

2. Sequence numbers, indicating which is the fresher
one, between the same line of information in two
matrices.

The time-stamps are organised in a vector with each
element controlling the age of one signal space distance
matrix line. A time-stamp is updated together with the
respective line. Then, every receiver keeps several signal
space distance samples per sender in a circular buffer for
filtering purposes. These samples also have time-stamps
associated with each one of them, which are also updated
whenever the samples are overwritten. The sequence
numbers are organised in a vector, each element corre-
sponding to a line in the signal space distance matrix. Each
node increases its sequence number right before sending it
together with the updated signal space distance matrix.
Note that the vector of sequence numbers concerns all
lines in the matrix, each value given by the respective pro-
ducer node. The referred data structures are shown in
Fig. 3. All nodes expect packets from each other in each
round and the sequence number allows them to reject old-
er lines. When packets are received with an LQI which is
above a certain threshold, the corresponding signal space
distance value is used and inserted in the respective sam-
ples buffer. On the other hand, if the LQI is below that
threshold, the signal space distance value is discarded.
Thus, the samples buffer stores the latest signal space dis-
tance and LQI accepted readings together with a local
time-stamp, tolerating a configurable time without receiv-
ing messages, before declaring a link disrupted. When it is
time to broadcast its own signal space distance matrix,

each node filters the signal space distance readings in the
samples buffer and stores the filtered value in the corre-
sponding row, updates its sequence number and transmits
the matrix. In addition, each node goes periodically
throughout the matrix and sample buffer, removing the
values whose age is greater that a given threshold. The
threshold value should be small enough to cope with the
team dynamics and large enough that tolerates a few miss-
ing packets. Algorithm 1 summarises our distributed algo-
rithm to update the signal space distance matrix.

3.4. Filtering the proximity measurements

There are two main non-idealities in our system. The
first one, is occasional packet loss, due to the unreliability
of wireless communication. This also poses a problem for
mobile nodes management given the difficulty in distin-
guishing node absence from packet loss. The second non-
ideality is the instability of the RSSI readings that propa-
gates to signal space distance. Two nodes, even placed in
fixed positions without human activity or electromagnetic
interference, receive fluctuating RSSI readings from each
other due to complex dependence with several parameters
of the medium. For a group of mobile nodes, this instability
becomes even harder to handle. Some previous studies use
techniques like averaging, frequency and space diversity,
and signal modelling to counteract the RSSI instability.
For the occasional packet losses, as explained before, each
node uses a sliding window for packet buffering (see Sam-
plesBuffer in Algorithm 1). In each broadcast period, if a
packet is received, the signal space distance value is put
into the respective sliding window. If, on the other hand,
the packet is lost, nothing is put in the window being the

Fig. 3. Control variables to update the matrix in node k: Top (from left to right) vector containing the local age of each line of the matrix, vector containing
the sequence number of each line of the matrix, the signal space matrix; Bottom buffer containing the samples of signal space distance.
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old values discarded later. Then, before broadcasting the
signal space distance matrix, the filter is applied. For this
work we propose to compare two different filters:

1. Using a 3 sample sliding window where all non-zero
samples are taken into account.

2. Using a 5 samples window with the following rejec-
tion rule:

(a) If only one non-zero value exists, it is used as is.
(b) If two exist, the larger is rejected.
(c) If more than two exist, the highest and the lowest

are rejected and the others are averaged.

In order to track the signal strength proximity over
time, a scalar Kalman filter [34] is employed for each ele-
ment di,j of the matrix D, Eq. (1). The time evolution of di,j

is modelled as a first-order autoregressive process. The
corresponding prediction rule is given by Eq. (2), where k
is the discrete-time index, w is the zero-mean white
Gaussian noise of the process with standard deviation rw,
and describes the shadow fading process.

di;jðkÞ ¼ ð1� �Þdi;jðk� 1Þ þwðkÞ; ð2Þ

The small value � 2 (0,1) introduces correlation between
successive true states and ensures the wide sense station-
ary property of the process. � depends on the channel
coherence time, as well as on the broadcast period of the
signal strength proximity matrix. The measurement equa-
tion is presented in Eq. (3), where v(k) is the white Gauss-
ian measurement noise with standard deviation rv,
uncorrelated to w(k).

di;jðkÞ ¼ di;jðkÞ þ vðkÞ; ð3Þ

The result is then used as the signal space distance value
for that node. The filtering process is illustrated in Fig. 4.
As shown in [2] this solution significantly improves the re-
sults by smoothing the measured data, and reduces unde-
sired fluctuations.

4. Generating signal space relative positions

Using the communication scheme of the previous sec-
tion, a small group of mobile nodes can share both topol-
ogy and signal space distance information for each pair of
nodes, in the form of the signal space distance matrix.
Based on those, an approximate global vision of the whole
relative positions can be generated in each node by the
process depicted in Fig. 5, which will be hereinafter
explained.

By deeming nodes with strong RF connection to be
neighbouring nodes and nodes with weak connection to
be further apart, the relationship between relative posi-
tions in physical space and proximity in signal strength
space can be illustrated as in Fig. 6. There, circles denote
the physical nodes positions and bricks denote positions
in signal strength space. As we may notice in Fig. 6, the
proximity in signal strength space only depends on the sig-
nal strength and not directly on the physical distance. Nev-
ertheless, this information is still sufficient for navigation
purposes, for example, to bring a given robot closer to an-
other one, and to allow a robot to know his neighbours.

4.1. Approximating missing measurements

In practice, collecting all pairwise distances is often
impossible. This is the case of wireless mobile nodes, since
some links can be broken due to mobility or limited com-
munication range. When this happens, the signal space
distance matrix will contain empty values – represented
with ‘‘?’’ – and the classical MDS algorithm cannot be di-
rectly applied. Several techniques have been proposed in
the literature in order to solve this problem, e.g. Map
Stitching [35,36], Iterative MDS [37], non-linear regression
(NLR) [38], and the extension to MDS proposed in [39]. De-
spite that, Map Stitching and Iterative MDS are not able to
recover the correct topology of weakly connected networks
such as in Fig. 7, a situation that can occur in formation

Fig. 4. The filtering process for D: The samples in the buffer are filtered
and used as input to the Kalman filter; the output is written in line k of Dk.

Fig. 5. Generating positions from the signal space distance.

Fig. 6. Relative positions in physical space and in signal strength space:
Top – real network; Bottom – signal space network.
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control of small mobile teams. Moreover, the Iterative MDS
and NLR both need to perform iterations, consequently,
due to the dynamics of mobile robot, they are undesirable.
Finally, the extension to MDS assumes that there are two
groups of nodes: (1) nodes forming a fully connected net-
work; (2) nodes which are fully disconnected amongst
each other, but that are able to communicates with each
node in the first group. This assumption, however, is not
valid for mobile networks, whose dynamics are high. For
these reasons, we use Classical MDS [32] plus the Floyd–
Warshall [22] algorithm to estimate missing distances, be-
cause even with only 50% of links, the resulting positions
are acceptable [2]. In addition, the obtained topology is
more accurate than with the Map Stitching and Iterative
MDS approaches (Fig. 7).

We herein assume a connected network (despite possi-
bly not fully linked), meaning that there exists at least one
route between any pair of nodes, consequently the net-
work is not partitioned. Let E denote a route between i
and j, which contains several links, and let the pair of nodes
a and b be the extremes of a generic link in E. We thus de-
fine Fk(i, j) according to expression (4), approximating the
distance between two nodes that are not directly con-
nected, with minimum accumulated signal space distance.

Fkði; jÞ¼
Dkði; jÞ if i and j are linked

min
P
8ða;bÞ�EDkða;bÞ

� �
if i and j are not linked

8<
:

ð4Þ

As shown in Fig. 8, the physical distance between two indi-
rectly connected nodes is probably smaller than the mini-
mum accumulated distance of a connection route. For
example: Dist13 < Dist12 + Dist23. This introduces an-
other source of deformation in the nodes relative position-
ing with respect to their physical position. However, as we
said before, we are just targeting for relative position esti-
mates for navigation purposes and the referred deforma-
tion should not be an obstacle to that purpose. On the
other hand, this distance estimation is deterministic and
easy to compute, enabling a smooth position estimation
in scenarios of moving nodes. Similarly to what is ex-

plained in [2] we use the Floyd–Warshall algorithm for
computing the shortest signal distance for every pair of
nodes. After completion, this algorithm provides a com-
plete matrix of pairwise signal space distances. Our dis-
tance approximation approach requires an additional
time complexity of Oðn3Þ due to the Floyd–Warshall algo-
rithm. We consider this affordable for small teams of mo-
bile nodes in which n is typically ten or less.

4.2. Creating a symmetric matrix

Since pairwise distances should be reciprocal, one of the
Multidimensional Scaling technique requirements is the
symmetry of the signal space distance matrix. However,
due to communication uncertainty, slightly different trans-
mission power in different nodes, non-omnidirectional
antennae, etc., the signal space distance matrix is seldom
symmetric. That being said, in order to create and feed a
symmetric distance matrix to the MDS algorithm, we pro-
pose the following options:
� Use one of the triangles of the matrix, either upper

or lower, and replace the other one.
� Use the mean between the upper and lower trian-

gles of the matrix (i.e.: mean between the signal
space distance values of both directions in each
link).

� Use the maximum signal space distance value
between the upper and lower triangles of the matrix
(i.e.: minimum RSSI value between the two direc-
tions in each link).

� Use the minimum signal space distance value
between the upper and lower triangles of the matrix
(i.e.: maximum RSSI value between the two direc-
tions in each link)

.To the best of our knowledge, a study on the impact of
such options on MDS performance has not been carried out
before, thus we assess the problem in the experiments that
are shown later on.

4.3. Multidimensional Scaling

As proposed in [2], we use MDS [32] to compute the rel-
ative positions. This choice was made due to the relative
simplicity to implement MDS, as well as to evaluate the
ability of MDS to create a topology assessment. MDS is a
technique used in multivariate analysis that transfers a
known n � n matrix (A) of dissimilarities to n points of
an m-dimensional Euclidean space in such a way that the
pairwise distances between points are compatible with

Fig. 7. Joining weakly-connected networks using iterative methods: There is nothing pushing disconnected nodes apart resulting in a very distorted
topology.

Fig. 8. Approximating the distance for missing SSDist measurement.
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the dissimilarities matrix. Being [dij]n�n the matrix with
pairwise distances, this algorithm can be used to find an
X = [xij]n�m matrix of approximate positions.

Our goal is to avoid using a channel model (e.g. log dis-
tance path loss model) that would require calibration
based on measurements, i.e. additional parameters to be
estimated. The mapping from the physical distances to sig-
nal space distances is a log function, and this defines our
new disparities used in the MDS [32, Ch. 9]. This is a rea-
sonable assumption, as we are only coarse interested in
relative positions, and not in accurate physical positions
of the nodes.

4.4. Adjusting the relative coordinates

So far, we discussed the relative position of a team of
mobile nodes with no physical anchor. However, for the
MDS algorithm, a small perturbation in the distances ma-
trix would bring totally different results for the coordinates
X. One of the causes for such behaviour is the way MDS
sorts out certain ambiguities that are inherent to the rela-
tive localisation process, e.g. eigenvector switching in the
subspace selection process causes map flips. Since the
nodes position is only recovered up to rigid motion, orien-
tation of the team cannot be determined just with pair-
wise distances, neither can the symmetry relationships.
To obtain relative position estimates that vary smoothly,
we carry out the following adjustments of the coordinates
provided by the MDS (considering only the result pre-
sented in 2D space, i.e. m = 2). Let R = [rij]n�2 = (r0, r1, -
. . . , rn�1) denote the coordinates determined with MDS
(Fig. 9a) and S = [sij]n�2 = (s0, s1, . . . , sn�1) denote the final
coordinates (Fig. 9d). We consider the three nodes with
the smallest IDs as being local references (herein referred
to as 0, 1, and 2).

The coordinates adjustment includes shift (Fig. 9b),
rotation (Fig. 9c) and reflection (Fig. 9d) so that node 0 is
at the origin point (0,0), node 1 on the positive y-axis
and node 2 on the right half-plane. Thus, we first let "06i<n-

ti = ri � r0 as in Eq. (5), obtaining T where node 0 is in the
origin.

T ¼ ðt0; t1; t2; . . . ; tn�1Þ
¼ ðr0 � r0; r1 � r0; r2 � r0; . . . ; rn�1 � r0Þ ð5Þ

Then, we compute the clockwise angle a from vector t1 to
y-axis, and rotate all nodes a around the origin as in Eq. (6)
deducing the intermediate positions Y.

Y ¼ ðy0; y1; y2; . . . ; yn�1Þ ¼ T�
cosðaÞ � sinðaÞ
sinðaÞ cosðaÞ

� �
ð6Þ

Finally, we check if y2 is on the right half-plane, i.e. if node
2 has a positive x-coordinate. If so, S = Y, else we reflect Y
over the vertical axis as in Eq. (7).

S ¼
Y; if y2 is in the right plane

Y �
�1 0
0 1

� �
; otherwise

8><
>: ð7Þ

5. Estimation of signal space velocity based on RSSI

In this section, we show the importance of the coordi-
nates adjustment and filtering for scenarios with mobility.
In addition, we provide a method to estimate the relative
velocity of the nodes in the signal strength space based
on the difference of consecutive relative positions. Note
that since we estimate signal space velocity from the posi-
tions, using the former to further improve the latter would
not bring benefits.

(a) (b) (c) (d)
Fig. 9. Adjusting coordinates: (a) Positions given by MDS; (b) Positions after shifting node 0 to origin; (c) Positions after rotation of node 1; and (d) Positions
after flipping node 2 to the right plane.

(a) (b) (c) (d)
Fig. 10. Smoothing the moving trajectory: (a) Physical positions; (b) MDS; (c) MDS with coordinate adjustment; and (d) MDS with coordinate adjustment
and Kalman filter.
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5.1. Impact of data filtering and coordinate adjustment on
trajectory smoothing

Consider a simple case with 3 nodes in which one of
them approaches the other two as depicted in Fig. 10.
Fig. 10a depicts the physical position of nodes 0, 1 and 2.
Node 1 moves slowly to the dashed position 1’’. Three cases
where considered, pure MDS, MDS with coordinate adjust-
ment, and MDS with coordinate adjustment and Kalman
filter. Fig. 10b shows the dynamic relative position results
of pure MDS, before applying the coordinates adjustment,
and without the Kalman filter. The white circles (0,1,2) de-
note the initial position of the nodes, and the grey circles
(0
0
,1
0
,2
0
) denote a set of typical intermediate positions. Fi-

nal positions are illustrated by the black circles
(000,100,200). Due to the absence of a fixed reference, the cal-
culated positions are unstable. Even when the nodes are
stopped, small fluctuations in the RSSI readings cause
MDS to generate totally different results. Fig. 10c shows
the result after applying coordinates adjustment, but still
without the Kalman filter. The units trajectory is now more
consistent but occasional sudden jumps are still observa-
ble. Finally, Fig. 10d shows the results for the case when
a Kalman filter is used to track the RSSI readings. We ob-
tain smoother moving trajectories and no position jumps
or flips are observed. The signal distances provided to
MDS change smoothly, thus producing smooth variations
of the relative positions.

5.2. Estimating signal space velocity

Smoother trajectories allow us to assess the possibility
of estimating the relative velocity of the nodes in the signal

strength space. Our proposal is based on the difference of
consecutive relative positions and distances which can be
very useful to several applications, such as formation con-
trol. For each new estimate of relative positions, we can
compute the difference of the consecutive pairwise dis-
tance measurements for each pair of nodes ðdij � d�ij Þ
where, dij = F (i, j). Then, compute a unit vector si � sj/jsi -
� sjj pointing from i to j. The signal space velocity of node
i is estimated summing the relative movements to all other
nodes and dividing by the transmission period Tt as in Eq.
(8).

vi ¼
1
Tt

X
j¼1;...;n;j–i

ðdij � d�ij Þ �
si � sj

jsi � sjj
ð8Þ

Fig. 11a and b shows the case of two mobile nodes.
White circles represent the current position, grey circles
represent the previous position. On the left hand side of
the plot, the physical positions are depicted, with the ar-
rows representing the signal space velocity vectors. On
the right hand side of the plot, the results in signal strength
space are shown, with the arrows representing the relative
velocities. Note that although node 1 is not moving physi-
cally, the obtained signal space velocity vectors indicate
that both nodes are approaching each other or moving
apart, which is correct given the relative nature of the
determined positions and velocities. Fig. 11c and d shows
another example with three mobile nodes. When node 1
moves closer to, or away from nodes 0 and 2, the signal
space velocity vectors of all three nodes correctly indicate
a convergence or divergence among them. The signal space
velocity estimation is an important result of this paper, be-
cause it allows obtaining information on orientation from

(a) (b)

(c) (d)
Fig. 11. Observing relative mobility: (a) Node 1 approaches node 0; (b) Node 1 moves away from node 0; (c) Node 1 approaches both node 0 and 2; and (d)
Node 1 moves away from both node 0 and 2.
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the relative positions estimates. When node a wants to
move closer to node b or group C of several nodes, it can
perform a tentative physical move and obtain feedback
from the corresponding signal space velocity va, and thus
adjust its orientation accordingly to move towards the de-
rived target location.

6. Experimental results

In this section, we describe an implementation of the
proposed relative localisation algorithm using Crossbow’s
MicaZ motes. MicaZ motes communicate in 2.4 GHz IEEE
802.15.4 running TinyOS 1.1.15 operating system. We used
the RSSI and LQI values measured at each packet recep-
tion.1 The program running on all nodes was identical ex-
cept for the unique node ID. The LQI values can range
between 0 and 255, and according to our observation, they
were typically above 100 when two nodes showed a good
link state, and dropped dramatically below 70 when nodes
showed a poor link with frequent errors and packet losses.
For the purpose of RSSI measurements we considered only
packets received with LQI P 100. For sensing data retrieval,
an arbitrary node was connected to an MIB600 board that
forwarded the data to a host computer via an Ethernet
TCP/IP interface.

6.1. Sensitivity to parameter selection

The main objective of this section is to validate the
proposed RSSI-based relative localisation for supporting
collaborative behaviours in small teams of mobile
robots.

We assess the impact of the choice of communications
period, of the use of synchronisation among the nodes,
and of data sampling and selection. For this purpose, we
carried out several experiments in which we set the trans-
mit power of six crossbow MicaZ motes to �10 dBm. Their
typical RF range with the original antenna in an indoor lab
is approximately 8–10 m. We conducted our test in a
5 m � 5 m area in which the RSSI reading ranged approxi-
mately between �48 dBm and �10 dBm and considered
that RSSImax = 0. The nodes were placed according to the
diagram presented in Fig. 12, sending a periodic transmis-
sion with the sensing data as referred in the previous

sections. A Matlab program running Java methods was de-
signed to get the sensing data from the programming
board via the TCP/IP port, capturing the information to a
file for offline processing. Note that since node 0 was con-
nected to the programming board. The results represent its
perspective of the network. Every node can compute its
own relative positions coordinate system. We ran four
experiments, capturing 300 samples in each of them, two
using a transmission period of 500 ms and the other two
with a period of 100 ms, both with and without synchroni-
sation. For the synchronisation algorithm we used the
Adaptive Time Division Multiple Access (A-TDMA) algo-
rithm [42,43]. The offline processing uses the data col-
lected in the several experiments. A sliding window filter
was applied to the data. First, a 3 sample window was
used, where all non-zero samples were taken into account.
Then, a 5 samples window was used with the previously
discussed rejection rule. The Kalman filter was applied to
the RSSI data, and then, the positioning with classical
MDS algorithm was used, complemented with the Floyd–
Warshall algorithm. The methods in Section 4.2 were used
to obtain a symmetrical matrix. Finally, the nodes coordi-
nates were adjusted, as described in Section 4.4. Note,
however, the processing was done offline in order to carry
out the analysis. As we will show hereinafter, the relative
positioning algorithm can run online.

Fig. 13 shows the results of the position estimates from
the perspective of node 0, where the dots represent single
estimations, and the ellipses characterise the whole sam-
ple for each individual node. In particular, the ellipses
show the standard deviation of the localisation errors
along the main axes. In order to simplify the visualisation
of the results, the plots show the case in which a symmet-
ric pairwise distances matrix was achieved using the min-
imum signal space distance of the two directions in each
link. Nevertheless, the results achieved with the other op-
tions in Section 4.2 were very similar.

6.1.1. Results on the transmission period
We considered two different periods for the nodes to

broadcast their matrix, namely 100 ms and 500 ms. The re-
sults are showed in Fig. 13a and b for 500 ms and Fig. 13c
and d for 100 ms. The former case presents higher preci-
sion, with significantly smaller standard deviation. On
the other hand, it is less reactive than the latter case, in
which changes in the physical topology are reflected in
the matrix and distributed among the nodes five times

1

4

2

50 3

Obstacles
Line of sight

Fig. 12. Node distribution.

1 For a comprehensive understanding of RSSI and LQI values provided by
CC2420 [40], see [41].

330 L. Oliveira et al. / Ad Hoc Networks 13 (2014) 321–335



Author's personal copy

faster. The difference in standard deviation may be ex-
plained by a lower residual probability of collisions and
interferences with longer periods, in the Adaptive-TDMA
synchronisation.

6.1.2. Results on the use of synchronised transmissions
Despite using short messages (a 6 � 6 byte matrix, a

6 � 1 byte ageing vector, a message header, and message
tail in a total of 55 bytes, thus with a low medium

(a) (b)

(d)(c)

(e) (f)

Fig. 13. Experiments concerning MDS: Position estimates using different sliding window filters, transmission periods, with and without synchronisation.
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occupancy), the experiments show that the absence of syn-
chronisation can cause a strong degradation in the quality
of the localisation. The degradation is caused by the higher
probability of collision with the other nodes and interfer-
ence with other transmitters in the same band, e.g., a WiFi
network was operating in the same area. This effect may be
noticed by comparing Fig. 13c and e with Fig. 13d and f,
respectively, where a transmission period of 100 ms was
used. On the other hand, when the transmission period in-
creases, the probability of collision reduces and the impact
of synchronisation becomes less significant. This is shown
in Fig. 13 a and b using a transmission period of 500 ms.

6.1.3. Results on the use of different sample window sizes and
sample selection strategies

Comparing the results in Fig. 13c and d with those in
Fig. 13e and f, obtained by using the same transmission
period, we may notice the performance in terms of stan-
dard deviation slightly better when using 5 samples, com-
pared to the case where 3 samples were used.

6.1.4. Testing the use of different approaches to produce a
symmetrical matrix

In our experiments none of the different approaches
tested showed a significant improvement over another

one. Thus, when the transmission power of all nodes is
approximately equal, as well as their antennas, the differ-
ences of the two halves of the matrix are not significant.
Consequently, in order to use MDS, the signal space dis-
tance matrix can be considered symmetrical and, as such,
the amount of transmitted data can be reduced from n2

to n � (n � 1)/2, by transmitting only half of the matrix.
This improvement may not seem significant since the com-
plexity remains Oðn2Þ, however, it halves the amount of
data that needs to be transmitted.

6.1.5. Final considerations
Based on our experiments, we conclude that communi-

cations cycle and synchronisation are very significant to
the localisation performance. When more stable results
are required, a longer transmission cycle is the best option.
However, when a more reactive system is required, a
shorter cycle is more adequate but then the transmissions
should be synchronised to reduce collisions and maintain a
low standard deviation of the values. This latter case might
be more suitable for navigation purposes.

Moreover, the implementation of the sliding window
filter, both in window size and data selection, seems to
have some impact on the standard deviation of the mea-
surements, albeit small. Consequently, it might be worth
exploring some more sophisticated filtering methods.

(a) (b)

(c) (d)

(e) (f)
Fig. 14. Experiment snapshots: Adding and moving nodes in the network (Video available at http://www.youtube.com/watch?v=hfjTys9kv1s). (a) Initial
setting – nodes 1 and 2 are static. (b) Node 3 joins the network – the system shows node 3 temporally far from node 1 and 2. (c) Network stabilises – within
a couple of periods of computation node 3 approaches nodes 1 and 2. (d) Node 3 moves away – the results show node 3 leaving nodes 1 and 2 (e) Node 2
moves – the positions are not yet refreshed. (f) Network stabilises – After a couple of periods of computation, the estimated relative positions are consistent
with the real ones.
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Finally, if all nodes are transmitting with equal power
and are equipped with similar antennas, the wireless chan-
nel is reciprocal, and therefore it is possible to transmit
only half of the signal space distance matrix, thus reducing
the amount of transmission overhead by approximately
half.

6.2. Relative position under mobility

In this section, we show the behaviour of our approach
with moving nodes in a few simple situations, as proof of
concept. We also show that this localisation system can
be used to estimate the signal space velocity of the nodes.
The experiments were conducted indoor in a 5 m � 5 m
area. The transmission power was set to �15 dBm. The
computations were carried out in a PC connected to the
MicaZ through the MIB600 board, using Matlab. Note that
these experiments were performed in real-time.

6.2.1. Estimating signal space velocity
Fig. 14 shows a series of experiment snapshots compar-

ing the physical positions and computed results. In each
sub-figure, the left part shows the computed result from
Matlab and the right one depicts the real positions from
a camera. The first row in Fig. 14a shows two static nodes,
1 and 2, placed slightly above the floor. We may notice that
the signal space velocity vectors are zero, i.e. the signal be-
tween nodes 1 and 2 is stable. Then, we added node 3 fur-
ther away from the two static nodes, as shown in Fig. 14b.
However, a couple of periods later, the result shows that
they are moving closer to each other, as shown in
Fig. 14c, until the relative position estimates with node 3
stabilise. Then, we moved node 3 away from nodes 1 and
2. Within a couple of periods, the system refreshed the rel-
ative positions. Then, node 2 was moved upward away
from node 1 and node 3 (Fig. 14e). Again, the computed
relative positions vary consistently to the true ones.

7. Conclusions

In this paper, we developed a relative localisation algo-
rithm based on the received signal strength indicator of
wireless communications as a rough estimate of distance
between any pair of communicating nodes. In order to per-
form the relative localisation, we introduce the so-called
signal space distance matrix. Floyd–Warshall algorithm
was employed to generate pairwise signal distance for
each pair of nodes that were not linked. Multidimensional
Scaling was then used to generate relative positions from
the pairwise distances, considering a few geometric trans-
formations to stabilise the position estimates. Due to the
inherent unreliability of the wireless communications, we
studied the impact of several parameters on the network
topology estimation, namely different approaches to pro-
vide a symmetric distances matrix, the period of the matrix
dissemination, the use of synchronisation of the transmis-
sions, and the filtering of the RSSI data. Experimental re-
sults with a set of MicaZ nodes showed that the
communications period and the use of synchronisation
have the highest impact on the network topology. Specifi-

cally, we showed that a large communications period
yields better precision despite reducing the reactivity of
the system. We also showed that shorter periods can be
used as long as the transmissions are synchronised, partic-
ularly by using the Adaptive-TDMA technique. On the
other hand, filtering techniques are shown to have an im-
pact, albeit smaller.

Finally, we showed that in a mobile scenario, using a
Kalman Filter together with appropriate coordinates
adjustment, it is possible to generate smooth trajectories.
Particularly, we showed how the proposed localisation
algorithm can be used to estimate signal space velocity
and establish a correspondence between orientation in
the physical world and in the relative coordinates system.
Currently, we are assessing the use of this localisation algo-
rithm in practical formation control situations both in sur-
veillance applications and in robotic soccer in the scope of
RoboCup.
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