
Harnessing Cross-Layer Design

Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der RWTH
Aachen University zur Erlangung des akademischen Grades eines Doktors der

Naturwissenschaften genehmigte Dissertation

vorgelegt von

Dipl.-Inform. Ismet Aktaş

aus Velbert, Deutschland

Berichter:

Prof. Dr.-Ing. Klaus Wehrle
Prof. Dr. rer. nat. Jörg Widmer

Tag der mündlichen Prüfung: 24.11.2015

Diese Dissertation ist auf den Internetseiten der Universitätsbibliothek online verfügbar.

Abstract

The success of today’s Internet can partly be attributed to the design of the lay-
ered protocol stack. This design organizes communication protocols, that establish
the rules of communication between different communicating entities, in hierarchical
layers. These layers are strictly separated and offer only limited interfaces among
adjacent layers. Essentially, protocols at each layer have a very specific task and they
need to fulfill this task independently. Although this self-contained design of proto-
cols worked well in wired networks, several problems appeared with the emergence
of wireless and mobile communication. A prominent example is TCP’s performance
drop in wireless networks as it misinterprets packet loss, due to poor link condi-
tions, as congestion in the network. In principle, the missing knowledge of higher
layers about volatile wireless conditions and in case of lower layers about higher
layer requirements leads to misinterpretation and misbehavior causing suboptimal
performance.

A promising concept that addresses the lack of information availability is the cross-
layer design paradigm which in fact circumvent the rules of strict layer separation
and allows the interaction across non-adjacent layers. Many specific solutions, i.e.,
problem-oriented and tailor-made implementations, have demonstrated the utility of
this paradigm by highlighting adaptivity advantages and performance improvements
of applications and protocols. But a typical consequence of the very specific focus of
the tailor-made solutions was the violation of software engineering principles such as
maintainability and extensibility which are the major driving factors for the success
and proliferation of software in general.

As a result of this observation, a few static cross-layer architectures have been pro-
posed that facilitate systematic design and the integration of several specific solu-
tions. Unfortunately, in static cross-layer architectures the cross-layer coordination
algorithms are deeply embedded into the operating system (OS) and are realized at
compile-time. This static and deep integration into the OS has several drawbacks.
First, the design of cross-layer coordination algorithms requires relevant expertise
to understand and modify protocols residing in the OS. Second, the experimen-
tation with cross-layer coordination algorithms is tedious since their modification
requires a recompilation. Third, coordination algorithms are always active even if
not needed. Finally, application developers who know best about their application
requirements and constraints are prevented from specifying and providing their own
set of cross-layer coordination algorithms.

In this thesis, we present Crawler, a flexible cross-layer architecture that allows
the specification, realization, and adaptation (i.e., addition, removal and modifica-
tion) of cross-layer coordination algorithms at runtime. Based on the detection of
underlying environmental changes, Crawler allows to automatically load the ade-
quate set of coordination algorithms. It alleviates the problem of complicated access
to relevant application, protocol, and system information by enabling a declarative
and abstract way to describe cross-layer coordination algorithms and by providing
a unified interface to inject such abstractions into the system. The generic design
of this unified interface further enables the extensive experimentation with diverse
compositions of cross-layer coordination algorithms and their adaptions. Moreover,

the interface allows applications to provide own coordination algorithms, to share
information with the system and system monitoring. In this context, we classify
problems such as conflicts when adding multiple cross-layer coordination algorithms
and support developers to tackle them. In general, we enable an unprecedented de-
gree of flexibility and convenience to monitor, experiment and run several cross-layer
coordination algorithms. To further support the developer while experimenting, we
even allow to remotely add, remove, and modify cross-layer coordination algorithms
and their monitoring. We demonstrate the usability of Crawler for monitoring
and experimentation with cross-layer coordination algorithms in five diverse use cases
from different areas of wireless networking such as manipulating TCP behavior, VoIP
codec switching, jamming detection and reaction.

Kurzfassung

Der Erfolg des Internets ist unter anderem zurückzuführen auf den hierarchischen
Entwurf des Protokollstapels. Dieser ist in voneinander unabhängige Schichten un-
terteilt, deren Interaktion auf direkt benachbarte Schichten beschränkt ist. Die
Schichten bestehen aus Protokollen, welche die Regeln der Kommunikation zwischen
verschiedenen Kommunikationsentitäten vorgeben. Jedes Protokoll hat eine spezifis-
che Aufgabe und muss diese unabhängig von anderen Protokollen erfüllen. In kabel-
gebundenen Netzen hat sich dieser geschichtete Ansatz über Jahre hinweg sehr gut
bewährt. In mobilen und drahtlosen Netzen jedoch, in der sich die Funkschnittstelle
ständig und unvorhersehbar ändert, führt der geschichtete Ansatz häufig zu einer
zu langsamen und suboptimalen Anpassbarkeit. Ein bekanntes Beispiel ist der Leis-
tungsabfall von TCP in drahtlosen Netzen. Hierbei geht TCP bei Paketverlusten
fälschlicherweise immer von einem Stau im Netz aus, obwohl Paketverluste auch
aufgrund schlechter Funkverbindungsqualitäten auftreten können. Im Allgemeinen
führt die fehlende Kenntnis bei höheren Schichten über unvorhersehbare Netzbedin-
gungen, die in unteren Schichten auftreten, und bei unteren Schichten das mangelnde
Wissen über die Anforderungen, welche von den höheren Schichten vorgegeben wer-
den, zu Fehlinterpretationen und zum Fehlverhalten.

Als vielversprechender Lösungsansatz für die oben genannten Probleme hat sich
die sogenannte Cross-Layer-Koordination (CLK) erwiesen, die eine schichtenüber-
greifende Interaktion und Koordination zwischen allen Protokollschichten erlaubt.
Viele Ansätze, die sich das Paradigma der CLK zu nutze gemacht haben, demonstri-
erten bereits in der Vergangenheit das immense Potential der Leistungsverbesserung.
Jedoch waren diese Ansätze unsystematisch implementiert und jeweils auf sehr
spezielle Probleme fokussiert, die sich meist auf die Interaktion zwischen zwei Schicht-
en beschränkten. Eine direkte Folge solch einer unsystematischen Implementierung
ist die Verletzung von Software-Entwicklungsparadigmen wie die Wartbarkeit und
die Erweiterbarkeit, welche aber die Hauptantriebsfaktoren für den Erfolg und die
Verbreitung von Software und somit auch des heutigen Protokollstapels sind.

Als Ergebnis dieser Beobachtung wurden einige statische Cross-Layer-Architekturen
vorgeschlagen, die einen allgemeineren Ansatz verfolgen und den systematischen En-
twurf und die Integration von mehreren spezifischen Ansätzen unterstützen. Leider
sind bei statischen Architekturen die CLKs tief in das Betriebssystem eingebettet
und zum Kompilierzeitpunkt erstellt, welches zu diversen Nachteilen führt.

Beispielsweise erfordert der Entwurf einer CLK fundierte Systemkenntnisse, um Pro-
tokollabläufe, die innerhalb des Betriebssystems ablaufen, zu verstehen und zu mod-
ifizieren. Ein anderes Problem ist, dass das Experimentieren mit CLKs mühsam ist,
da eine Änderung der Optimierung ein erneutes Kompilieren und einen Neustart des
gesamten Systems erfordert. Außerdem sind CLKs immer aktiv, auch wenn diese
zeitweise nicht benötigt werden. Des Weiteren können Anwendungs-Entwickler, die
am besten über ihre Anwendungsanforderungen und Einschränkungen wissen, nicht
ihre eigenen Optimierungen dem System zur Verfügung stellen.

In dieser Arbeit wird die flexible Cross-Layer-Architektur Crawler vorgestellt,
die je nach Bedarf erlaubt, CLKs zur Laufzeit einzuspeisen, zu entfernen und zu

modifizieren. Insbesondere ermöglicht Crawler basierend auf der Erkennung von
Umgebungsänderungen, vordefinierte CLKs automatisch ins System zu laden oder
wieder zu entfernen. Um den Zugang zu relevanten Anwendungs-, Protokoll- und
Systeminformationen zu erleichtern, bietet Crawler zum einen eine deklarative
Konfigurationssprache an, um von Systemdetails zu abstrahieren und um CLKs
einfach zu beschreiben, und zum anderen eine einheitliche Schnittstelle, um Op-
timierungen dem System zur Verfügung zu stellen. Ferner erlaubt der generische
Entwurf dieser einheitlichen Schnittstelle das umfangreiche Experimentieren mit un-
terschiedlichen Zusammensetzungen von CLKs. Insbesondere können Anwendungen
diese Schnittstelle verwenden, um Informationen mit dem System austauschen, das
System zu beobachten oder um eigene Optimierungen dem System bereitzustellen.
In diesem Zusammenhang klassifizieren wir auch Probleme wie beispielsweise Kon-
flikte, die entstehen können, wenn mehre Optimierungen in das System eingespeist
werden und schlagen Ansätze vor, um diese zu beseitigen. Folglich bietet Crawler
ein noch nie dagewesenes Maß an Flexibilität und Komfort, um mehrere CLKs
einem System zu Verfügung zu stellen, wenn erwünscht zu experimentieren oder
auch das ganze System (inklusive Optimierungen) zu beobachten. Um das Experi-
mentieren noch weiter zu vereinfachen, erlaubt Crawler sogar das netzwerkweite
Hinzufügen, Entfernen oder Modifizieren von CLKs und deren Monitoring. Wir
demonstrieren Crawler anhand von fünf verschiedenen prototypischen Beispielen
aus unterschiedlichen Bereichen der drahtlosen Kommunikation: TCP-Optimierung,
VoIP-Code-Wechsel, Jamming-Detection und Reaktion.

Danksagung

An dieser Stelle möchte ich den besonderen Menschen danken, die mich während
der Zeit der Promotion begleitet haben. Als erstes danke ich meiner Familie, weil
Sie mir immer wieder klargemacht hat, dass es wichtigere Dinge im Leben gibt,
als die Promotion. Im Speziellen möchte ich meinem Vater Mehmet dafür danken,
dass er mich immer wieder mit seinen Geschichten über sein Leben motiviert hat.
Meiner Mutter Sevim danke ich, dass Sie mir vorgelebt hat, wie man immer wieder
aufsteht und kämpft, auch wenn das Leben manchmal die Karten anders mischt als
erwartet. Bei meinem Bruder Ilker weiß ich, dass er für mich da ist, wenn nötig,
sogar Berge für mich versetzen würde, danke! Meiner Schwester Ilkay danke ich für
ihre Fürsorglichkeit, Kraft und Liebe, die Sie immer wieder für Andere aufbringt,
auch für mich. Wo du bist läuft es wie am Schnürchen. Du erreichst alles was
du willst, daran habe ich keinen Zweifel. Meiner Schwester Yildiz danke ich für
Ihre liebenswerte, sympathische, süße und höfliche Art. Du bist mit deiner Art
sehr speziell und etwas Besonderes. Dich gibt es garantiert nicht zwei Mal. Es ist
immer wieder schön mit dir zu reden und zu träumen. Ein besonderer Dank gilt
meiner Frau Dilek. Du warst immer wieder für mich da. Mit dir kann ich durch
dick und dünn gehen. Ich danke dir für die wundervolle vergangene Zeit und freue
mich auf die Momente, die noch auf uns zukommen. Meine liebe Familie Ihr habt
mich aufgemuntert und unterstützt. Ich hoffe, dass ich euch mit dieser Arbeit etwas
zurückgeben kann.

Aus ganzem Herzen danke ich folgenden Freunden. Cem und Azime Mengi über
euch beide könnte ich so viel Gutes schreiben, es würde mehrere Bücher füllen. Ihr
zwei seid tolle und vorbildliche Menschen. Woher findet ihr die Kraft, um so oft für
andere Menschen da zu sein? Ich bin sehr dankbar euch kennengelernt zu haben.
Wir haben gemeinsam sehr viel erlebt und ich hoffe, dass wir noch mehr gemeinsam
erleben werden. Ihr habt so viel Gutes vorgelebt, ihr wart immer für mich da, vielen
dank! Ibrahim und Ebru Armac sind auch zwei sehr liebenswerte Menschen, die
ohne mit der Wimper zu zucken, für andere Menschen da sind. Ihr habt mir immer
euer Ohr geschenkt und mich unterstützt wo es nur ging. Ihr lebt leider jetzt ein
wenig weiter weg, aber ihr seid immer in meinem Herzen. Auch nicht anders sind
Murat und Yasemin Basaran. Murat ist zwar die personifizierte Schnecke, aber
wenn ich sage

”
ich brauche dich“, dann ist er da wie Speedy Gonzales. Er ist eine

Art Papa für uns alle, aber wir alle wissen, dass eigentlich Yasemin das Sagen hat.
Yusuf Bayram ist, wie einst mein lieber Freund Maurice sagte, der Italiener unter
den Türken. Mit seiner lässigen, spontanen aber temperamentvollen Art ist er für
jeden Spaß zu haben. Danke für die schöne und lustige Zeit, auch dir mein Freund
Maurice. Ich vermisse die gute alte Zeit. Baris Tutar ist die Sympathie in Person.
Wenn jemand den Kopf frei kriegen möchte, dann sollte er sich eine Woche Baris

verschreiben lassen. Außerdem kann er unglaublich gut motivieren, aber am Ende
muss man aufpassen, dass man noch auf dem Boden bleibt. Ich danke dir für die
vielen Motivationseinheiten und die lustigen Momente in den letzten Jahren. In
meiner freien Zeit haben meine Freunde dafür gesorgt, den nötigen Abstand von der
Arbeit zu bekommen. Ich danke euch für die schöne gemeinsame Zeit, ich habe es
genossen und denk gerne mit einem Lächeln zurück.

Ich hatte das Glück mit großartigen Studenten arbeiten zu können. Ich durfte viel
von diesen Studenten lernen und hoffe, dass ich auch ihnen ein wenig weitergeben
konnte. Ihr habt einen großen Beitrag zu dem Ergebnis dieser Arbeit geleistet. Mit
Tobias sind wir einen langen Weg über Seminararbeit, Hiwi-Job, Bachelorarbeit bis
hin zur Masterarbeit gemeinsamen marschiert. Egal welches Problem, auf Tobi war
verlass. Es war eine Freude mit dir zu arbeiten. Jens Otten war mein erster Stu-
dent, den ich betreut habe. Wir haben in den Anfängen unglaublich viel diskutiert
und sehr intensiv miteinander gearbeitet. Ich habe es genossen. Er hat mit seiner
Arbeit einen großartigen Ausgangspunkt für die Architektur geschaffen. Mit Do-
minik Dennisen und Caj-Julian Schnelke habe ich mit zwei sehr motivierten und
begabten Studenten an dem Thema Jamming gearbeitet. Dank euch hat mir das
Thema unglaublich viel Spaß gemacht und ich denke wir haben es gut gemacht. Ihr
seid zwei super Typen. Des Weiteren möchte ich Christoph Habets, Gloria Abidin,
Kevin Möllering und Nikolas Koem für die gute Zusammenarbeit danken.

Ein weiterer Grund, warum das Thema Jamming mir so viel Spaß gemacht hat, lag
auch an Oscar Puñal. Mit Oscar konnten wir schon immer gut gemeinsam lachen,
aber während der Zusammenarbeit war es sogar noch mehr. Es war aber auch eine
sehr produktive Zusammenarbeit, welches ich als meine Lieblingspublikation zähle.
Bei Ericsson geht zumindest das gemeinsame lachen weiter. Wer weiß, vielleicht ar-
beiten wir bald wieder zusammen. Lieber Florian, niemand schenkt jedem einzelnen
Wort in einem Paper so viel Liebe wie du. Wenn ich schreibe, denke ich oft daran,
wie du es wohl formulieren würdest. Du konntest jeden guten Satz in einen noch
schöner verwandeln. Außerdem danke ich dir für die vielen guten Unterhaltungen
über Gott und die Welt. Es war und bleibt immer schön mit dir zu diskutieren.
Mein lieber Raimondas, wir haben viel gelacht und viel über die Zukunft geträumt.
Ich danke dir für die vielen schönen und lustigen Momente. Du bist ein Meister
der Unterhaltung. Wir haben uns oft aus Spaß provoziert und geneckt. Ich hätte
dich gerne noch länger beobachtet und mit dir gelacht. Wer weiß, vielleicht lachen
wir noch weiter gemeinsam, wenn wir die erste Million machen. Dir traue ich es
als einer der wenigen zu. Mein lieber Hamad, du kannst das Wesentliche klar auf
den Punkt bringen. Ich bin sehr froh und dankbar, dass ich mit dir arbeiten durfte
und erfahren konnte wie du die Dinge angehst. Ich danke dir, dass du mich mit
dieser Arbeit unterstützt hast. Du bis jemand, der hilft ohne eine Gegenleistung zu
erwarten. Du bist mein heimlicher Held. Lieber Tobias, du bist ein super Motivator.
Du weißt, wie man Dinge angeht und wie man Leute begeistert. Oft hast du auch
mich motiviert. Du bist jemand der konstruktiv kritisiert, danke. Lieber Elias, viel
Zeit musste vergehen bis ich dich verstanden hatte. Ich habe erst nachdem du den
Lehrstuhl verlassen hast bemerkt, dass ich viele deiner Eigenarten mag und sehr
sympathisch finde. Deine offene und neugierige Art gegenüber allem finde ich toll.
Was macht die Kunz? Ich habe dich so oft geärgert. Du wirst mein Lieblingsopfer
bleiben, aber ich habe noch nie jemanden gesehen, der sich so wenig beschwert und
immer so höflich ist. Du bist mit jedem befreundet. Ich weiß nicht, was das für mich

bedeutet. Bin ich etwa doch nicht besonders? Na ja, zum Glück kann ich noch die
Zeit mit dir bei Ericsson genießen. Jeden Morgen und Abend habe ich das Glück,
dass du mir dein Ohr schenkst und wir wirres Zeug reden. Ich danke dir dafür,
nicht immer nur über Informatik und Kommunikation zu reden, sondern es kurios
und bizarr du praktizieren. Man könnte sagen es ist Kunz. Wenn man mal eine
Idee hat oder eine braucht, dann muss man zu Jo Ágila Bitsch. Man kann natürlich
googlen, man kann aber auch Jo fragen, er weiß einfach alles. Google hatte einst
das Ziel das Internet auf mehreren Servern zu speichern, aber Jo hat es bereits seit
Jahren im Kopf. Er kann dir genau sagen, ob es die Idee gibt oder er sagt dir wie
es neuartig werden kann. Es war immer super spannend und ein tolles Erlebnis mit
dir zu diskutieren. Kennt ihr das Lachen von Uta? Wenn sie gelacht hat, dann
musstest du mitlachen, auch wenn du mal eine Etage darüber warst. Sie war die
gute Stimmung des Lehrstuhls. Sie hat für die gute Laune gesorgt. Janosch dagegen
war der Logistiker. Dank ihm haben wir überhaupt einiges organsiert bekommen.
Janosch du bist Mr. Smiley, immer ein Lächeln im Gesicht. Da gibt es auch noch
den Benjamin Schleinzer für gute Laune, aber den darf man sich erst ab FSK18 an-
hören. Der Gesetzgeber kennt ihn leider nicht, sonst müsste man bei ihm eigentlich
FSK30 einführen. Was der für Witze kennt und dann noch so viele, da ist der Bauch-
muskelkater vorprogrammiert. Ein großer Dank gilt unseren beiden Sekretärinnen
Petra Zeidler und Ulrika May. Sie sind liebevolle Menschen. Es war mir eine große
Freude mit euch zu arbeiten. Zwei weitere liebenswerte Powerdamen, die ich noch
sehr vermissen werde, sind Mónica Lora und Sepideh Ebrahimi. Mit euch konnte
man sich nicht nur sehr gut fachlich unterhalten, sondern auch über alles Andere.
Man konnte immer zu euch und ihr hattet immer Zeit. Vielen dank ihr Zwei! Mit
Rainer Krogull hatte ich immer sehr amüsante Gespräche. Wenn ich Pausen hatte,
habe ich ihn immer ziemlich gut geärgert und er hat sich nie beschwert. Gemeinsam
haben wir an vielen Ecken des neuen Gebäudes rumgewerkelt und dank ihm konnten
wir viele Dinge für den Lehrstuhl realisieren. Des Weiteren möchte ich mich bei Jan
Rüth, Martin Serror, Martin Henze, Christian Dombrowski, Oliver Hohlfeld, Dirk
Thißen, Torsten Zimmermann, Hendrik vom Lehn, Jan Henrik Ziegeldorf, Kai Ja-
cobs, Donald Parruca, Nicolai Viol, Marco Weyres, Otto Spaniol und Rene Hummen
bedanken. In der letzten Phase dieser Arbeit hat mich mein neuer Kollege Junaid
Ansari und mein Vorgesetzter Michael Meyer unterstützt. Junaid ist wie ein großer
Bruder, der sich meine Beschwerden viel zu häufig anhörte und auch immer einen
guten Ratschlag zu geben wusste. Ich danke Michael, dass er mir die notwendige
Zeit und die Unterstützung gegeben hat, um diese Arbeit zu beenden. Außerdem
danke ich meinem Betreuer Klaus Wehrle zur Möglichkeit der Promotion und Herrn
Jörg Widmer für die Zweitbetreuung dieser Arbeit. Zuallerletzt möchte ich mich
auch bei den Menschen bedanken, die es mir nicht so einfach gemacht haben im
Leben. Durch sie weiß ich, dass ich nicht werden möchte wie sie.

Contents

1 Introduction 1

1.1 Problem Analysis . 2

1.1.1 Problem Statement . 3

1.1.2 Research Questions . 5

1.2 Contributions . 6

1.2.1 Relationship between Research Questions and Contributions . 7

1.3 Outline . 8

2 Background and Related Work 9

2.1 Layered Design . 9

2.2 Cross-Layered Design . 11

2.2.1 Cross-Layer Design Definitions 12

2.2.2 Information Exchange Alternatives 13

2.2.3 Architecture Classifications 15

2.2.4 Cross-Layer Information Processing 16

2.2.4.1 Synchronous and Asynchronous Processing 17

2.2.4.2 User and Kernel Space Separation 17

2.3 Related Work . 20

2.3.1 Specific Cross-Layer Solutions 21

2.3.2 Approaches of Varying Scope 21

2.3.3 Cross-Layer Architectures . 24

2.3.3.1 Static Cross-Layer Architectures 25

2.3.3.2 Flexible Cross-Layer Architectures 30

3 A Generic and Flexible Cross-Layer Architecture 31

3.1 Motivation . 32

3.2 Problem Analysis . 32

3.3 Design Overview . 35

3.3.1 Goals . 36

3.3.2 Relationship of Research Questions and Goals 37

3.3.3 Design Scope and Limitations 38

3.4 Architectural Details . 39

3.4.1 Manageability . 39

3.4.1.1 Configuration . 40

3.4.1.2 Interpreter . 42

3.4.1.3 Repository . 42

3.4.2 Application Support . 43

3.4.3 Runtime Flexibility & Extensibility 47

3.4.3.1 FU Wiring . 47

3.4.3.2 Stubs – Accessing Signaling Information 49

3.4.4 Context Adaptability . 50

3.5 Implementation and Architectural Overhead 53

3.5.1 Implementation . 53

3.5.2 Architecture Overhead . 54

3.6 Conclusion . 56

4 Practical Use Cases and Evaluation with CRAWLER 59

4.1 Use Case: Manipulating TCP’s Congestion Window and Application
Behavior . 60

4.1.1 Motivation . 60

4.1.2 Setup and Monitoring . 60

4.1.3 Cross-Layer Coordination Approach 61

4.1.4 Realization with CRAWLER 61

4.1.5 Validation . 62

4.1.6 Summary and Discussion . 62

4.2 Use Case: Switching TCP’s Congestion Control Algorithm 62

4.2.1 Motivation . 63

4.2.2 Setup and Monitoring . 63

4.2.3 Cross-Layer Coordination Approach 64

4.2.4 Realization with CRAWLER 65

4.2.5 Validation . 65

4.2.6 Summary and Discussion . 66

4.3 Use Case: VoIP Codec Switching . 67

4.3.1 Motivation . 68

4.3.2 Setup and Monitoring . 68

4.3.3 Cross-Layer Coordination Approach 70

4.3.4 Realization with CRAWLER 70

4.3.5 Validation . 72

4.3.6 Related Work . 74

4.3.7 Summary and Discussion . 74

4.4 Use Case: Dynamic Adaptation of Jamming Detection and Reaction
Strategies . 75

4.4.1 Motivation . 75

4.4.2 Setup and Monitoring . 76

4.4.3 Cross-Layer Coordination Approach 78

4.4.4 Realization with CRAWLER 78

4.4.5 Validation . 82

4.4.6 Summary and Discussion . 84

4.5 Use Case: Machine Learning-based Jamming Detection 84

4.5.1 Motivation . 85

4.5.2 Setup and Monitoring . 86

4.5.2.1 Sensitivity of Metrics to Jamming 87

4.5.2.2 Threshold Identification Problem 89

4.5.3 Cross-Layer Coordination Approach 90

4.5.4 Realization with CRAWLER 90

4.5.5 Validation . 92

4.5.5.1 Indoor Detection Accuracy 92

4.5.5.2 Impact of Outdoor Mobility 93

4.5.5.3 Cooperation Between Nodes 94

4.5.6 Related Work . 95

4.5.7 Summary and Discussion . 96

4.6 Conclusion . 96

5 Coping with Multiple Cross-Layer Coordination Algorithms 99

5.1 Motivation . 100

5.2 Problem Analysis . 100

5.3 Cross-Layer Conflict Detection . 101

5.3.1 Classification of Cross-Layer Conflicts 101

5.3.2 Detecting Direct Conflicts . 102

5.3.3 Detecting Indirect Conflicts 104

5.3.4 Related Work . 105

5.3.5 Summary and Discussion . 105

5.4 Cross-Layer Redundancy Removal . 106

5.4.1 Generic Design . 107

5.4.1.1 Constraints . 107

5.4.1.2 Equality of Module Compositions 108

5.4.2 Graph-based Iterative Merge Algorithm 109

5.4.2.1 Input Equality . 109

5.4.2.2 Behavior Equality 110

5.4.2.3 Merging Modules . 111

5.4.2.4 Runtime and Memory Consumption 111

5.4.3 Runtime Adaptation . 112

5.4.3.1 Challenges when Adding/Removing Modules and Con-
nections . 112

5.4.3.2 Splitting Affected Modules 113

5.4.4 Specific Design for CRAWLER 114

5.4.4.1 Handling Runtime Adaptation 114

5.4.5 Evaluation and Validation . 116

5.4.6 Related Work . 118

5.4.7 Summary and Discussion . 119

5.5 Conclusion . 120

6 Evaluation Support for Cross-Layer Coordination 121

6.1 Motivation . 121

6.2 Problem Analysis . 122

6.3 Remote Cross-Layer Evaluation . 123

6.3.1 Design Overview . 125

6.3.2 Architectural Details . 126

6.3.2.1 Remote Automation 127

6.3.2.2 Remote Configuration 130

6.3.2.3 Remote Monitoring 132

6.3.2.4 Graphical and Interactive Front-End 136

6.3.3 Implementation . 138

6.3.4 Evaluation . 138

6.3.4.1 Evaluating Remote Automation 140

6.3.4.2 Evaluating Remote Configuration and Monitoring . . 140

6.3.5 Related Work . 142

6.3.6 Future Work . 145

6.3.7 Summary . 145

6.4 Network Emulation Tool – Fantasy 146

6.4.1 Design Overview . 147

6.4.2 Architectural Details . 149

6.4.2.1 Host Configuration Unit (HCU) 149

6.4.2.2 Guest Configuration Unit (GCU) 152

6.4.3 Implementation . 154

6.4.4 Evaluation . 154

6.4.4.1 Demonstrating Areas of Application 154

6.4.4.2 Demonstrating Scalability, Automation and Rapid
Testing . 158

6.4.5 Related Work . 159

6.4.6 Future Work . 160

6.4.7 Summary . 161

6.5 Conclusion . 161

7 Summary and Conclusions 163

7.1 Contributions . 164

7.2 Future Work . 168

7.2.1 Increasing the Toolbox of Reusable Functional Units and Stubs 168

7.2.2 Conflict Resolution . 168

7.2.3 Timing Constraints . 168

7.2.4 Potential Use-Cases . 170

7.2.5 Realization on Further Platforms 170

Glossary 172

Bibliography 175

A Syntax of CRAWLER’s Configuration Language 189

B Available Stubs and FUs in CRAWLER 191

B.1 Stubs . 191

B.2 FUs . 194

C Configuration of Machine Learning-based Jamming Detection 195

1
Introduction

Traditional network protocol stacks are logically organized in layers. These layers
are strictly separated and the interaction between them is restricted by concise
interfaces, which in effect only allow few limited procedure calls and responses such
as passing packets up and down the stack. Interaction between nonadjacent layers
is prohibited. Thus, layers are designed to fulfill their functionality independently
by only interacting with adjacent layers and not across layers. History shows that
this works well in wired and static environments [Pen00].

However, today’s applications and protocols for wireless and mobile systems have
to deal with volatile environmental conditions such as interference, fading, and
mobility. In order to adapt to the rapidly and frequently changing network con-
ditions, a more sophisticated interaction between protocols than in a traditional
layered architecture is beneficial. For example, TCP interprets packet loss as con-
gestion in the network and decreases its sending rate. In a wired environment,
with the usage of a traditional layered protocol stack, this behavior is appropriate
and improves the overall network performance, but in a wireless environment this
behavior leads to performance degradation [SRK03, Pen00]. One major reason is
that the packet losses in the wireless medium are much higher due to interference,
signal fading, mobility, etc. compared to packet losses in wired networks which
usually caused by congestion in the network [BSAK95, DCY93]. The knowledge
about the wireless medium and the procedures at lower layers would help TCP to
avoid such misinterpretations, keep its sending rate and accordingly improve perfor-
mance [BSK95, BSAK95, CRRP04, SRK03].

A promising research concept to deal with conditions such as the volatile wireless
medium and mobility is cross-layer coordination [LSS06, SRK03, SM05], that is, the
exchange of information across non-adjacent layers. Utilizing information from other
protocols and system components can improve the performance and responsiveness
of applications and protocols. For example, in mobile and wireless systems, even
a single cross-layer coordination process at the MAC layer can achieve throughput
increases of 20 times and latency reduction of 10 times over regular TCP [BSK95].

2 1. Introduction

Despite this tremendous potential to enhance system performance and boosting a fair
share of research investment in recent years, the cross-layer design pardigm has not
been able to leverage its utility beyond few promising yet problem-oriented research
efforts [SM05, Yu04, RI04a]. Among other reasons, this can partly be attributed
to the solution-oriented, tailor-made, and naive utilization of this design paradigm.
Since the emergence of this design paradigm, it lacks a generic and flexible system
architecture that enables developers to specify and experiment with diverse cross-
layer coordination processes. Before being able to design such an architecture, we
have to analyze and fully understand the problem space which we will bring closer
in the following section.

1.1 Problem Analysis

Existing approaches either offer a specific cross-layer coordination process or a static
architecture that combines several coordination processes but neither supports dy-
namic adaptation (i.e., addition, removal and modification) of cross-layer coordina-
tion processes nor context adaptation, i.e., automatically loading the adequate set
of coordination processes at runtime based on the detection of underlying environ-
mental changes.

In particular, a specific cross-layer coordination process is a tailor-made solution to
optimize a certain behavior of the system, for example, a wireless MAC implemen-
tation monitoring TCP acknowledgments to prevent overzealous congestion control
behavior [BSK95].

In contrast, a static cross-layer architecture [WAR03, SKC05, CMTG04, RI04b] facil-
itates easy manipulation of protocol-stack parameters and combines several specific
cross-layer coordination processes. In current architectures of this type, cross-layer
coordination processes are composed offline (i.e., at compile time) and are deeply em-
bedded within the operating system (OS). Moreover, static cross-layer architectures
have three key limitations that motivate the ideas presented in this thesis.

First, the process of cross-layer coordination development is tedious due to two
reasons: (i) The deep integration of protocols and system components into the OS
requires expert knowledge and significant effort to realize the desired cross-layer
coordination process [AAS+14] and (ii) the ability to flexibly (de)activate cross-
layer coordination processes based on environmental and network condition changes
requires their detection and an immediate automatic adaptation [SM05].

Second, when independently developed coordination processes are added into the
system this can cause two possible performance degradations: (i) contradicting co-
ordination goals, i.e., coordination conflicts [Wil08] and (ii) redundant processing
resulting in unnecessary memory usage and a waste of CPU time [AHA+14]. De-
tecting cross-layer conflicts remains one of the major unresolved challenges in the
cross-layer development domain [KKTC05, SM05, Wil08].

Third, testing and subsequent analysis of test results is difficult and inconvenient
when cross-layer coordination processes are involved since: (i) the unpredictable and
frequently changing nature of the wireless medium complicates the interpretation of
results. While physical layer issues such as noise and interference are one reason,

1.1. Problem Analysis 3

there exist also further reasons such as competition regarding the shared wireless
medium or mobility. (ii) Many testing scenarios require the preparation of many
nodes including the installation of programs and cross-layer coordination makes the
testing tedious. Moreover, while and after running a test, system variables which
might be difficult to access need to be logged and manually collected for later eval-
uation likely with different preferences on each node.

Designing an easy-to-use and generic cross-layer architecture that is able to auto-
matically adapt to permanent network changes requires to tackle all these major
problems. In the next section, we discuss the identified problems in more detail and
derive three major research questions that are addressed by this thesis.

1.1.1 Problem Statement

From the problem analysis presented in the previous section we derive four ob-
servations that hinder the successful utilization and proliferation of a cross-layer
architecture to develop, evaluate, debug, and run cross-layer coordination processes
for current and upcoming wireless and mobile systems.

Lack of a generic and flexible cross-layer architecture for system monitoring,
cross-layer design and experimentation

Developers face three major problems when designing their cross-layer coordination
processes.

First, the process of adding or removing a cross-layer coordination is cumbersome:
a coordination processes needs to be patched with the architecture, and because the
architecture is deeply embedded into the OS, recompiling the kernel and rebooting
the system are typical consequences. Hence, the developer has to deal with many
system internals before designing efficient cross-layer coordination processes. Ideally,
a developer should be relieved from the burden of system details and only focus on the
pure design of cross-layer coordination processes which will simplify and accelerate
their development.

Second, due to the same reason of deep integration into the OS and the fact that
the design of a cross-layer coordination process requires several steps of improve-
ments until finalization, experimentation and development cycles are too long and
inconvenient. Hence, in an ideal case a developer should have the opportunity to
add, remove and fine-tune cross-layer coordination processes at runtime and the
ability to monitor any parameter in the system to analyze the behavior of the coor-
dination process. Both features will help developers to experiment with cross-layer
coordination processes and to finalize them.

Third, because of the static nature of existing architectures, a coordination process
will adapt the system behavior even if it is not needed. For example, an application
or environment-specific coordination process is not required when that application is
not running or the underlying network conditions have changed in a mobile network.
Hence, this coordination process and its interaction with the network stack is super-
fluous and may even adversely effect other active applications. We strongly believe
that this is against the original idea of the cross-layer design paradigm [AOSW10]

4 1. Introduction

which underlines the need for dynamic adaptation of the system behavior (i.e., pro-
tocols, hardware components like sensors, and applications) based on application
requirements, system state and the network conditions.

Lack of an available cross-layer architecture and use-cases

Many specific cross-layer solutions have been proposed that demonstrate the useful-
ness of cross-layer design [BSK95, BSAK95, CRRP04]. However, the practical use
for most of them is questionable since they are not built with software engineering
principles (such as modularity, maintainability, reusability, and usability) in mind.
Including all or even some of them will likely result in unbridled cross-layer design
(i.e., the so-called spaghetti design [KKTC05]) which could lead to unmanageable
and complex interdependencies in the code. As a consequence of this observation
a couple cross-layer architectures have been proposed that leverage software engi-
neering advantages [CMTG04, RI04b]. Unfortunately, these architectures lack useful
examples since they only provide simple showcases to demonstrate their mechanisms
rather than real-world cross-layer coordination use-cases. Moreover, the suggested
architectures and showcases are not open to the public, hindering the credibility and
acceptance of the community. Accordingly, one major problem of the cross-layer
design research field is the lack of an available cross-layer architecture that shows
convincing and novel cross-layer coordination examples and which also demonstrates
the improved development support, convenience and freedom of more flexibility in
designing cross-layer coordination processes.

Lack of developer support to handle multiple coordination algorithms

The process of designing and finalizing a single specific cross-layer coordination pro-
cess as such is already very cumbersome. But when adding multiple coordination
algorithms into the system, interdependencies are created which may lead to a pe-
culiar system behavior. While a single specific coordination process is designed to
improve the system behavior, multiple cross-layer coordination processes may have
contradicting effects. Moreover, even when a set of multiple cross-layer coordination
processes might improve performance in a specific scenario, e.g., multiple energy co-
ordination processes that trade improved energy consumption for lower throughput
while running in the battery mode, the same set of coordination processes could lead
to performance degradation in another scenario, e.g., unnecessary tradeoff between
energy and throughput when plugged into power. Therefore, developer support
while experimenting with a set of coordination processes is a necessity to create
the right set of coordination algorithms for a particular scenario. Redundancy is
another resulting problem that occurs when different developers may decide to add
coordination algorithms into the system where parts of the coordination algorithms
may have similar instructions which waste CPU time and memory. All in all, a de-
veloper lacks support when experimenting with multiple or even a single cross-layer
coordination.

Lack of evaluation support

After the design and implementation of a cross-layer coordination idea a next step is
its validation, i.e., testing that the coordination is working as intended and demon-
strating its benefits. This task has two major problems. First, due to the volatile
nature of the wireless medium such as interference or other factors such as pro-
gramming faults, evaluating cross-layer coordination processes and identifying root

1.1. Problem Analysis 5

causes of (mis)behavior in wireless environments is tedious. Hence, to ensure that
a cross-layer coordination process is working and improving the performance as in-
tended and to exclude misbehavior, many test runs have to be conducted and very
likely in many varying scenarios. Accordingly, having more control and transparency
about these factors will simplify testing and improve developers to eliminate a range
of potential problems. Second, many of the suggested cross-layer coordination pro-
cessess target at wireless scenarios where several nodes are involved. Setting up such
scenarios requires much effort. For instance, many programs including cross-layer
coordination processes have to be manually started and coordinated among the test
nodes. Finally, test results have to be manually gathered from all devices. When
repeating these experimentations, for instance, to gain more credibility in volatile
wireless scenarios, all the exhausting steps have to be reapplied. Therefore, devel-
opers would significantly benefit when such experiments are automatized and the
collection of test results is supported, preferably very conveniently, without physical
interaction, and centrally controlled.

In the following section, we highlight the research questions that arise with the
presented problems and present our contributions to tackle these questions.

1.1.2 Research Questions

From the problems presented in the previous section we derive the following three
research questions. In the remainder of this thesis we present answers to these
questions.

Question Q1 - How to enable a generic and runtime-flexible cross-layer archi-
tecture that facilitates rapid system monitoring, cross-layer design and
experimentation?
We present the design of Crawler, a generic and flexible cross-layer architec-
ture that, based on a given abstract configuration, derives cross-layer coordina-
tion processes and (de)activates them when specified conditions are satisfied.
Crawler’s rich interface allows to inject coordination processes into the sys-
tem which can also be used by applications to exchange variables with the
system. The intended coordination processes are achieved through the use of
modules that can be freely composed at runtime.

Question Q2 - How to handle problems caused by multiple cross-layer coordi-
nation processes?
We investigate and classify problems such as conflicting coordination goals
and redundant cross-layer coordination processing which occur when multiple
coordination processes are enabled in the system and provide mechanisms to
handle such circumstances.

Question Q3 - How to improve the evaluation of cross-layer coordination algo-
rithms?
We support developers by providing two different frameworks which enable
control of influencing factors, effective testing, central system monitoring and
analysis of cross-layer coordination algorithms running on several devices, even
at runtime.

6 1. Introduction

1.2 Contributions

We address the aforementioned questions with Crawler, a cross-layer architecture
for wireless networks and its extensions. In particular, we present four complemen-
tary contributions which are listed in Table 1.1.

Contributions Peer-reviewed
international
publications

Non-peer-
reviewed

preliminary work

C1) A generic and flexible cross-layer architecture to con-
veniently and rapidly realize runtime adaptive cross-layer coordi-
nation algorithms, their monitoring, and experimentation.

[AOSW10]
[ASA+12]
[AAS+14]

[Ott09] [Drü10]
[Den09]

C2) Novel cross-layer coordination use-cases to demon-
strate the versatility and convenience of Crawler in various
networking fields to realize and monitor cross-layer coordination
algorithms.

[ASW+12]
[ASA+12]
[AAS+14]
[APS+14a]

[Sch11] [Den12]
[Sch13] [Abi13]

C3) Handling support for multiple cross-layer coordination
algorithms to deal with unintended contradicting effects and to
solve parts of redundant processing caused by multiple running
cross-layer coordination algorithms.

[AAS+14]
[AHA+14]

[Koe11] [Möl11]

C4) Evaluation support for cross-layer coordination to sim-
plify and accelerate the testing, monitoring, and validation of
cross-layer coordination algorithms.

[AvLH+12]
[APS+14b]

[Hab11] [Drü13]

Table 1.1 Contributions of this thesis.

In the following we briefly discuss each of these contributions.

Contribution C1 - A Generic and Flexible Cross-Layer Architecture
We designed Crawler, a generic and flexible cross-layer architecture that
facilitates the monitoring of system information (protocols and system compo-
nents) and the realization of cross-layer coordination algorithms at a high level
of abstraction. To provide the abstraction, Crawler offers a rich interface
which can be used by applications to exchange information with the system
and to provide own coordination algorithms. Crawler also offers flexibility
that is essential for adjusting and experimenting with different sets of cross-
layer coordination algorithms and, furthermore, extensibility for involving all
possible protocols and system components. In addition, Crawler allows de-
tecting underlying environmental changes and to automatically (un)load the
adequate set of cross-layer coordination algorithms.

Contribution C2 - Novel Cross-Layer Coordination Use-Cases
By using Crawler, we show how we realized novel specific cross-layer coor-
dination use-cases from various fields of networking. Especially, we highlight
Crawler’s monitoring capability to detect peculiar application and protocol
behavior under certain networking conditions. Based on observations gained
with Crawler’s monitoring capability, we formulate coordination ideas and
show their convenient and rapid realization by using Crawler. Dependent on
the use-case, we present the achieved flexibility or relative performance gain.

1.2. Contributions 7

Contribution C3 - Handling Support for Multiple Cross-Layer Coordination Al-
gorithms
Giving developers the freedom to add their own cross-layer coordination algo-
rithms into the system without knowledge about existing cross-layer coordi-
nation algorithms in the system might lead to two problems: (i) Coordination
conflicts, i.e., running multiple cross-layer coordination algorithms in parallel
could lead to unintended contradicting effects resulting in severe performance
degradations. Crawler supports developers by providing debugging sup-
port for monitoring cross-layer coordination algorithms and their effects. (ii)
Redundancy, i.e., the overall resulting union of cross-layer coordination algo-
rithms may become suboptimal as some of the added cross-layer coordination
algorithms are already in the system and have redundant instructions utilizing
more CPU and memory than necessary. Crawler enables automatic detec-
tion and resolution of such redundancies without developer interaction.

Contribution C4 - Evaluation Support for Cross-Layer Coordination
Testing cross-layer optimizations in wireless environments is tedious. On the
one hand, setting up the experiment requires huge effort to install the relevant
software involving the cross-layer coordination algorithms and to coordinate
them among different devices. On the other hand, an experiment usually re-
quires many test runs and effort since the volatile nature of the wireless medium
makes the evaluation results hard to interpret. To tackle these problems, we
provide two extensions to Crawler. First, we coupled Crawler with sim-
ulation (ns-3) resulting in a network emulation architecture that allows the
fully automated setup and execution of an experiment in a controllable en-
vironment to improve the monitoring and analysis of cross-layer coordination
algorithms; Second, we extended Crawler’s interface to remotely (a) allow
the automation of test runs on different devices, (b) add, remove and modify
cross-layer coordination algorithms at runtime and (c) live monitor and log
different parameters in the system.

These contributions were partially developed in supervision and cooperation with
students in the context of their Bachelor, Master and Diploma thesis [Ott09, Drü10,
Den09, Koe11, Hab11, Sch11, Möl11, Den12, Drü13, Sch13, Abi13]. Table 1.1 shows
the correlation between the supervision and the contribution of this thesis. At this
point, I would like to explicitly thank these students for their contributions to this
thesis.

1.2.1 Relationship between Research Questions and Contribu-
tions

The four previously presented contributions provide answers to the three identi-
fied research questions. Figure 1.1 provides the relationship between the research
questions and the contributions.

In particular, question Q1 targets at enabling a cross-layer architecture for con-
venient realization, monitoring and runtime adaptation of cross-layer coordination
algorithms. On the one hand, developers should be supported to build their cross-
layer coordination algorithms. On the other hand, developers should be supported

8 1. Introduction

How to enable a generic and runtime
flexible cross-layer architecture that
facilitates convenient system
monitoring, cross-layer design and
experimentation?

How to handle problems
caused by multiple cross-
layer coordination
algorithms?

How to improve the
evaluation of cross-layer
coordination algorithms?

C1 – CRAWLER
C3– Handling Support for
Multiple Cross-Layer
Coordination Algorithms

Q1: Q2: Q3:

C4 –Evaluation Support for
Cross-Layer Coordination

Chapter 3 Chapter 5 Chapter 6

C2 – Novel
Cross-Layer
Use-cases

Chapter 4

Figure 1.1 Overview presenting the relationship between research questions and contributions
of this thesis.

to have a flexible and adaptive system to experiment and finalize their cross-layer
coordination algorithms. This is tackled by our contribution Crawler (C1). More-
over, Crawler’s features enabled us to experiment and design novel cross-layer
coordination algorithms in divers fields of networking which highlight the versatility
and practical use of Crawler and mark our second contribution, namely Novel
Cross-Layer Use-Cases (C2).

The research questions Q2 and Q3 are answered on a one-to-one basis by the con-
tributions C3 and C4, respectively. Contribution C3 particularly classifies and ad-
dresses issues that are involved when running multiple cross-layer coordination al-
gorithms in the system. In contrast, contribution C4 targets the general case of
supporting the developer during experimentation with cross-layer coordination al-
gorithms. Thus, we focus on aspects such as improving the convenience, automation,
monitoring and control over the experimentation.

1.3 Outline

The remainder of this thesis is organized as follows. In Chapter 2, we lay out the basis
of the thesis by introducing the fundamental aspects of cross-layer design. We discuss
problems and limitations when establishing cross-layer optimizations and formulate
requirements for an architecture. Based on these requirements, we look deeper into
existing cross-layer architectures and discuss their eligibility. Chapter 3 presents
the design of our cross-layer architecture Crawler with all of its components and
shows its performance. In the subsequent Chapter 4 we demonstrate the practical
use of Crawler by means of four real-world use cases from diverse networking
fields. Thus, we prove the real applicability of Crawler in order to explore novel
solutions of cross-layer coordination algorithms. Afterwards, Chapter 5 presents
our contributions to tackle problems involved with multiple cross-layer coordination
algorithms. Chapter 6 targets at simplifying and improving the evaluation process
of cross-layer coordination algorithms. Finally, Chapter 7 concludes the thesis by
summarizing our contributions and discussing future work.

2
Background and Related Work

Cross-layer design is a is a widely used term in the research field of communica-
tion. The literature comprises a very diverse set of approaches including theoretical
analysis, simulation-based and real-world implementations of single specific cross-
layer coordination algorithms, or cross-layer architectures enabling to run several
specific coordination algorithms. But before we interrelate these investigations to
each other, we first introduce the relevant fundamentals that lay the foundation for
this thesis. After providing a sound knowledge about the basics, we give a brief
overview of state-of-the-art cross-layer architectures and derive the missing features
that are relevant for providing a generic and flexible cross-layer architecture.

2.1 Layered Design

A major milestone that has contributed to the success of today’s Internet is the
design and realization of the layered protocol stack, that is, the TCP/IP protocol
suite [For02]. It consist of hierarchically organized protocol layers where each layer
has a specific task. The protocol fulfilling this task is restricted to only use few
interfaces to adjacent layers. In particular, the interfaces only allow to use specific
procedure calls such as passing packets up and down to an adjacent layer. One
intention for a clear separation of the layers was to make protocols modular and
self-contained, i.e., without the reliance on other protocols and applications. This
has several architectural benefits such as (i) better maintainability of the whole
protocol due to encapsulation and grouping of functionality, (ii) extensibility to add
new protocols and algorithms without affecting remaining protocols in the system
which allows to deal with the persistent evolution of functionality and requirements,
and (iii) flexibility to adapt or exchange specific functionalities.

With the permanent evolution of the Internet partially driven by user demands and
partially by technological development, many protocols at different layers appeared.
Figure 2.1 gives an overview about the protocol stack structure of today’s commu-
nication systems.

10 2. Background and Related Work

Linphone Firefox Youtube Skype Mail

HTTP SMTP

IP

WLAN
Driver Ethernet

RTP

Ethernet WLAN

UDP TCP

Fiber

UMTS
Driver

UMTS

GPS Battery Sensors

Layer 1-2:
A dozen technologies

and system components
(hardware)

Layer 2-4:
Few protocols

within few different OSs
(kernel space)

Layer 5:
Many applications

(user space) … …

…
…

…

…

…
…

… …
…

…

…

… …
…

…

…

…
…

…

…

…

…
…

…

…

…

…

…
…

…
…

…

…
…

…

…
…

…
…

…

… …

…
…

…

Many programmers
at different layers for
different protocols

…

…

Figure 2.1 The layered TCP/IP protocol suite: A dozen technologies exist at layer one and
two that are realized monolithically and in hardware, whereas in few cases layer two is also
provided in software and resides in the kernel space of the operating system. Even lesser
protocols exists in layer three and four which also reside in the kernel space. In contrast, in
the range of hundreds and thousands applications exist running in user space.

The layers one and two which are referred to as physical and data link layer are typi-
cally built monolithically in hardware and combined into a single specific technology
such as Ethernet for wired networks or WLAN or UMTS for wireless networks. Only
a dozen technologies (realizing layer one and two) have been established since the
emergence of the Internet. In contrast to the application layer where many appli-
cations such as browsers, messaging clients and VoIP clients are available. These
applications utilize application layer protocols such as RTP, HTTP, FTP and SMTP
to support their communication with their counterparts residing on remote hosts.
In-between the application layer and the data link and physical layer, there are few
network and transport layer protocols. Unfortunately, network and transport pro-
tocols do not offer much freedom in selection. Especially this holds true for the
network layer where the majority of the users still use IPv4 although its improved
version (IPv6) has been formally described in 1998 [KV13]. One major reason is
that a change of the the network protocol involves the costly adoption of millions of
routers in the core of the Internet.

An interesting fact, however, is that the TCP/IP protocol suite was originally not
intended and designed to become the de-facto standard of the today’s Internet, as
at the time of its initial deployment nobody could image about its potential [MS03].
Therefore, the design of TCP/IP was never a one-size-fits-all implementation. It
was continuously enhanced with the availability of new and enhanced protocols and
applications to deal with various arising problems. Thus, the TCP/IP protocol suite
underwent and still follows an evolutionary process.

To conclude, many protocols at different layers mainly for a couple of prominent op-
erating systems have been implemented by different programmers. Although, many
different and independent developers are involved, the layered and systematic de-
sign of the TCP/IP protocol suite ensured long-term sustainability and proliferation.

2.2. Cross-Layered Design 11

Nonetheless, there are some drawbacks of the layered design in wireless and mobile
environments which we present in the following.

2.2 Cross-Layered Design

The layered protocol stack worked well in wired networks due to the static nature
such as a fixed topology of devices, absence of mobility, not changing medium con-
ditions, etc. But with the emergence of wireless and mobile communications several
problems appeared [AXM04]. One problem, among others, can be attributed to
the layered and self-contained nature of protocols. While this design paradigm of-
fers software engineering advantages such as maintainability, at the same time it
suffers from missing contextual knowledge. For example, the missing awareness of
protocols about application needs, or in case of applications, the missing knowledge
about network conditions [SM05] leads to a misinterpretation and misbehavior of
the respective layer. In other words, one protocol layer has the information that
other protocol layers need but the design paradigm prohibits the access. Due to this
fact, protocols are limited in performing their task since they are forced to smartly
use what their layer scope provides although the system could reveal more (context)
information. Many works [SM05, Yu04, RI04a] have shown that using the so-called
cross-layer design paradigm [LSS06, SRK03, SM05], which in fact breaks the con-
ventional rules and allows the interaction across layers, improves performance.

The most cited problem in this regard is TCP’s performance degradation in wireless
networks which is a results of TCP’s misinterpretation of packet losses as congestion
even when packet losses occur on the wireless part of the communication [SRK03,
Pen00]. Work [CRRP04, RI04a, SM05, FGA08] showed that using cross-layer in-
formation from lower layers helps to avoid such misinterpretations and keeps TCP
sending rate which improves TCP performance in wireless environments [BSK95,
BSAK95, CRRP04, SRK03]. However, this is only one example out of a wealth
of many other cross-layer coordination examples from diverse fields of networking
such as security [TS07, XWY06], handoff (mobility) [MA06, TYCH05, CC08], auto-
nomic communication [RDN07b, Wód11], routing [IKSF04, YLA02, QK04], sensor
networks [MVP06, AVA06, MLM+05], quality of service [KHZ+03, ZZ08, BPY09],
and energy [KKT04, MHLS09, EBPC05]. Thus, without doubt the cross-layer de-
sign paradigm has demonstrated its potential to improve the system performance.
But performance is not the only incentive to use the cross-layer design paradigm.
For few research areas such as quality of service or cognitive radio it is in fact the
only feasible concept, since in both cases, different layer information need to be
provided to other layers for adequate adaptation. For example, in cognitive radio
the selection of suitable wireless channels in the vicinity depends on the application
(or user) requirements and available network conditions [MMJ99, TFDM07]. As a
result, such a degree of adaptability necessitates versatile coordination and coopera-
tion between all protocols which leads to the inevitable utilization of the cross-layer
design paradigm.

Figure 2.2 sketches the allowed interactions for the traditional layered protocol stack
in comparison to the potential interactions that the cross-layer design paradigm fa-
cilitates. The traditional layered protocol stack only allows applications to use few

12 2. Background and Related Work

Applica'on	 Applica'on	

Battery

O
pe

ra
tin

g
S

ys
te

m
 &

 H
ar

dw
ar

e

S
ys

te
m

co

m
po

ne
nt

s
Network

Transport

Data Link

Physical

P
ro

to
co

ls

GPS

Accelerometer

Applica'on	

(a) Traditional layered system.

Battery

O
pe

ra
tin

g
S

ys
te

m
 &

 H
ar

dw
ar

e

S
ys

te
m

co

m
po

ne
nt

s

Network

Transport

Data Link

Physical

P
ro

to
co

ls

GPS

Accelerometer

Applica'on	 Applica'on	 Applica'on	

(b) System following the cross-
layer design paradigm.

Figure 2.2 Comparison of allowed interactions in traditional layered systems and the systems
using the cross-layer design paradigm. The former strictly restricts the interactions to a degree
where layers are only allowed to interact with adjacent layers and applications are only allowed
to use APIs provided by the operating system. The later allows the interaction between any
system component and protocol layers including applications.

specific interfaces, the so-called application programming interfaces (APIs). These
APIs offer limited functionality. For example, an application is not able to interact
with any protocol layer. Similarly with system components such as batteries and
accelerometer which are also not easily accessible. Typically, the OS does not of-
fer the interfaces for applications to directly access the information of interest. In
contrast, the cross-layer design paradigm allows the interaction between any system
component and protocol layers including applications.

2.2.1 Cross-Layer Design Definitions

The definition of cross-layer design1 varies marginally in literature. For instance,
[SRK03] gives the following definition which is very limited in its scope: “the physi-
cal and MAC layer knowledge of the wireless medium is shared with higher layers”.
In contrast, [VDS+05] provides a more holistic view: “an optimization with the ob-
jective to select a joint strategy across multiple OSI layers”. Another very interesting
definition is given in [SM05] as follows: “protocol design by the violation of a ref-
erence layered communication architecture is cross-layer design with respect to the

1Note that in the remainder of this work, we consider the terms cross-layer design, cross-layer
optimization, cross-layer coordination algorithm and cross-layer interaction synonymously. Although
we mainly use the term cross-layer coordination algorithm to emphasize the mechanism (algorithm) to
realize the interaction across layers. Thus, we consider a cross-layer optimization as the result of a
cross-layer coordination algorithm.

2.2. Cross-Layered Design 13

particular layered architecture”. This definition leaves much space for interpreta-
tions, but includes the essential properties and draws a clear distinction between the
traditional layered and cross-layer design. Although we agree with this definition,
we want to add few comments especially regarding what cross-layer design is not.

Cross-layer design should not replace the layered architecture, it should be rather
an evolutionary extension to preserve and reuse the well-established design method-
ologies used in the Internet. Ideally, cross-layer design should enhance the tradi-
tional layered architecture symbiotically by providing the ability to share informa-
tion across all layers in addition to existing interfaces without losing the advantages
that the layered architecture provides. In contrast to existing definitions, we also
include (supplementary to the exchange between protocol layers) the exchange of in-
formation with system components such as batteries and sensors (i.e., accelerometer,
gyroscope, and compass). The simple reason is that examples showed that protocols
(e.g., position-based routing [MWH01]) and applications (e.g., indoor navigation us-
ing accelerometer and compass [LSVW11]) can benefit from system information and
vice versa (e.g., energy efficient protocol design [MHLS09]).

Furthermore, few papers consider cross-layer design as the exchange of information
not only across protocols within a single system but also among nodes [WSNB06,
RDN06]. For example, MAC layer information could be provided from one node to
another node’s TCP layer. From our viewpoint this is not cross-layer design. The
exchange of information among nodes is rather the task of a protocol. Accordingly,
we limit the scope of cross-layer design to only exchange information within a system.
However, for network-wide optimizations we believe that a cooperative approach,
thus, using a protocol, is the right way to go. How such a protocol could be designed
is presented in Section 4.5.4 where we cooperatively detect the presence of a jammer
by exchanging protocol information collected from several nodes.

To conclude, by breaking the rules inherited from traditional layered design, the
cross-layer design paradigm has a great potential to improve performance in many
fields of networking. But cross-layer design is not only a matter of performance, but
also a very essential concept to provide a high degree of adaptability. Thus, it is not
a a question of whether cross-layer design should be enabled but rather a question
of how it should be established properly. In the following we turn our focus towards
this question and begin with an overview about how information can be exchanged
between protocols in general.

2.2.2 Information Exchange Alternatives

Based on investigated work on cross-layer coordination algorithms, Srivastava et
al. categorized and suggested in [SM05] possible information exchange alternatives
as shown in Figure 2.3. The authors also refer to these alternatives as layered
architecture violations. Note that the categorized schemes are not exhaustive (i.e.,
there might exists different schemes) and they can be combined to realize more
complex cross-layer interactions. For the categorization in Figure 2.3 Srivastava
et al. used the seven layered ISO/OSI protocol stack for their sketch, but the
categorization is similarly applicable to the five layered TCP/IP protocol suite.

However, Srivastava et al. differentiate between the following three types of exchange
schemes:

14 2. Background and Related Work

Interface
for explicit
notification
from a
lower to
higher
layer.

(a) Upward information flow.

Interface
to set a
lower layer
parameter.

(b) Downward information
flow.

(c) Back-and-forth
information flow.

Super
Layer

(d) Merging of adjacent
layers.

Designed
Layer

Fixed
Layer

(e) Design coupling. (f) Vertical cali-
bration.

Figure 2.3 Cross-layer information exchange alternatives suggested by Srivastava et al.
[SM05].

Creation of new interfaces: New interfaces are created with three different func-
tionalities: (i) upward information flow (cf. Figure 2.3(a)) to provide lower
layers hints about how application data should be treated, (ii) downward in-
formation flow (cf. Figure 2.3(b)) to notify higher layers about underlying net-
work conditions, and (iii) back-and-forth information flow (cf. Figure 2.3(c))
to allow the collaboration between two different layers.

Merging of adjacent layers: In this scheme, two or several adjacent layers are merged
resulting in a super layer that encapsulates all services and parameters as
shown in Figure 2.3(d). Thus, this scheme does not require to provide new
interfaces. The super layer can be interfaced by using the existing interfaces
to the merged layers.

Design coupling without new interfaces: This scheme describes the coupling of
layers at design time without creating additional interfaces. While design-
ing one layer (e.g., designed layer in Figure 2.3(e)), the presence and specific
mechanisms about another layer (e.g., fixed layer) are assumed and exploited.
Thus, the independence of the designed layer is relinquished and the exchange
of the fixed layer would directly influence the behavior of the designed layer.

2.2. Cross-Layered Design 15

New
Interfaces

(a) Direct communication
between the different lay-
ers.

Shared
Database

(b) A shared database.

New
Abstractions

(c) Clean slate: completely new
abstractions.

Figure 2.4 Cross-layer architecture variations according to Srivastava et al. in [SM05].

Vertical calibration across layers: This scheme involves the adjustment of param-
eters that span across all layers as shown in Figure 2.3(f). It can be considered
as a joint tuning of all layers to achieve better performance compared to in-
dependent adjustment of parameters in a specific layer which is the case when
using the layered design. Srivastava et al. further differentiates between static
and flexible vertical calibration. In the former case, parameters are adjusted at
design time and left untouched afterwards. In the latter case, the adjustments
are allowed at runtime which requires additional mechanisms to access and
modify the values during protocol operation.

For particular examples of each violation, we refer the interested reader to [SM05].
In the following, we discuss further classifications of Srivastava et al. with respect
to cross-layer architectures.

2.2.3 Architecture Classifications

Out of the investigated work, Srivastava et al. differentiate between three architec-
ture types:

Direct communication between the different layers: In this architecture type each
layer directly exchanges information with another layer as shown in Figure 2.4(a).
One possible way is to create interfaces that can be called from another
layer [WAR03]. Another approach such as in [WBLO99] attaches cross-layer
information to packet headers that are accessed at another layer.

A shared database across the layers: In this category all layers provide their in-
formation to a variant of a database (plane) that can be accessed from all
layers as shown in Figure 2.4(b). This layer can be considered as a new layer
that allows several layers to store and retrieve data. Example architectures
using a shared database are [SKC05, CMTG04, RI04b, GFTW06].

Completely new abstractions: The third case falls into the category of clean slate
approaches which in fact completely reorganize and structure communication
systems. For example, the proposal in [BFH03] organize protocol layers in
so-called heaps as shown in Figure 2.5(c). Although such schemes enable to-
tally new ways of information exchange and flexibility to organize functionality

16 2. Background and Related Work

W

PR +

(a) The access (cf. R©) and pro-
cessing (cf. P©) of a cross-layer
coordination is incorporated into
a layer, based on the coordina-
tion algorithm another layer is
manipulated (cf. W©).

WP

R

+

(b) After accessing the infor-
mation at one layer (cf. R©),
it is provided to another layer
where the information is pro-
cessed (cf. P©) and the re-
spective procedures are realized
(cf. W©).

W

P

R

(c) The processing (cf. P©) of a
cross-layer coordination is sepa-
rated from the access (cf. R©)
of information and the manipu-
lation of a layer (cf. W©).

Figure 2.5 A cross-layer coordination consist of three steps: (i) accessing or reading information
from a layer (indicated by R©), processing of the information, e.g., aggregation or computation
of variables (indicated by P©), and (iii) manipulation of another layer by writing into a variable
or triggering a function (indicated by W©). Each of the three steps can be performed at different
places.

of protocols, we omit them in this thesis as we focus on practical solutions.
Clean slate approaches require complete new implementations and also require
changes to the core of the Internet which we do not want to change.

In the following sections, we will discuss the pros and cons of different architectures
mainly belonging to the former two types.

2.2.4 Cross-Layer Information Processing

So far, a cross-layer coordination is considered as a single piece of algorithm. But
technically, a cross-layer coordination algorithm consist of three steps. First, the
access (read) of information available at a specific layer. Subsequently, this informa-
tion is used for aggregation or computation (process). Finally, based on the outcome
of the processing a pre-specified variable residing in a layer is modified (write) or a
specific function is triggered.

However, each of the steps could reside at different places in the system as illustrated
in Figure 2.5. In the first case, the access to information and its processing could
be integrated into the layer being accessed. The processed information is afterwards
provided to the layer which is intended for modification as shown in Figure 2.5(a). In
the second case, the accessed information from a layer is directly provided to another
one before processing. The processing is integrated into the layer being intended
for modification as shown in Figure 2.5(b). Finally, the processing is completely
separated from the access at one layer and the modification at another layer as shown
in Figure 2.5(c). Later in Section 2.2.4.2 we will further elaborate the placement
of processing as it is dependent on the target system and it might influence the
system behavior and performance, but beforehand we present the different processing
alternatives which have an impact on the system performance.

2.2. Cross-Layered Design 17

Cross-Layer
Information
Processing

Asynchronous Synchronous

Per Packet Per Flow Across Flows
(System-wide)

Figure 2.6 Synchronous versus asynchronous information processing according to Raisinghani
in [Rai06].

2.2.4.1 Synchronous and Asynchronous Processing

Dependent on the interplay between access, processing, and manipulation, the per-
formance of the system could be influenced. Raisinghani differentiates in [RI06,
Rai06] between synchronous and asynchronous processing. In the former case, a
protocol layer’s processing is coupled with the processing of the cross-layer coordi-
nation, i.e., whenever a layer is accessed by an cross-layer coordination, it is not
allowed to proceed its regular execution as long as the execution of the cross-layer
coordination is finished. In the latter case, layers and cross-layer coordination algo-
rithms are decoupled and executed in parallel.

Furthermore, cross-layer coordination algorithms are not only based on information
from protocol layers, but also from their processed packets or packet flows. In this
conjunction, Raisghani [Rai06] differentiates between the following three cases: (1)
per packet, i.e., a cross-layer coordination accesses each passing packet, (2) per flow,
i.e., a cross-layer coordination manipulates a certain flow (established connection),
or (3) across flows, i.e., a system-wide adaptation for all flows. The relationship
between synchronous and asynchronous packet processing and the three different
cases are shown in Figure 2.6. The per-packet and across-flows cases can be per-
formed synchronously and asynchronously, however, the per-packet case can only be
performed synchronously since the adaptation needs to be performed as soon as the
packet is being processed at a layer. Thus, when there is a need to treat each packet
specifically, this introduces a per packet processing delay in the whole protocol stack.

2.2.4.2 User and Kernel Space Separation

Although Srivastava et al. give a well-elaborated overview about the interaction pos-
sibilities of cross-layer design proposals and how architectures can be designed, the
presented classifications are rather abstract without considering specific properties
of the operating system such as the separation of memory between user and kernel
space. In previous sections we motivated the three essential steps of a cross-layer
coordination and discussed how these three steps can be realized at different places

18 2. Background and Related Work

of the layers or the system. But dependent on the memory management, the real-
ization can vary significantly. For example, in a operating system for a sensor node
such as TinyOS, the access to protocol layers from the application layer and vice
versa is rather simple as all layers including the applications run in a single dedicated
environment from where the whole memory is accessible and thus all layers.

In contrast, in many other today’s operating systems, the memory is subdivided into
two differently privileged parts namely kernel and user space. This thesis focuses
more on this complex case of user and kernel space separation. The separation mainly
serves for robustness and security reasons. The kernel space contains the core of the
operating system; amongst others, it also contains the protocol layers and controls
system components. This part of the memory cannot be directly accessed by the
processes such as from applications that run in the restricted user space. The access
of the kernel space form the user space is limited to few so-called system calls. As a
result of this restrictions, applications are constrained in influencing the operating
system performance and stability.

With respect to the cross-layer design paradigm, this separation between kernel and
user space leads to several challenges for developers which are sketched in Figure
2.7. Dependent on the realization of the cross-layer coordination, the access to
information could reside in the kernel space (case (b) – (d) in Figure 2.7) which
contains protocols and system components or in the user space which contains the
applications (case (a) and (e) in Figure 2.7). Similarly, the manipulation could also
take place in kernel space (case (a),(c) and (e) in Figure 2.7) or in user space (case
(b)–(f) in Figure 2.7).

However, after accessing the information at one layer and before the manipulation
of another layer, the accessed information is processed, e.g., aggregated or computa-
tions are conducted. The developer could opt for realizing the processing in the user
space (case (a) – (c) in Figure 2.7) or the kernel space (case (d) – (f) in Figure 2.7),
whereby each decision offers different advantages and disadvantages. For instance,
programming in kernel space is considered as being more complex for several reasons
such as the confrontation with a bulk of undocumented code, programming errors,
tedious memory management, less availability of libraries for functionality reuse, etc.
Moreover, modification can also require a lot of effort due to compiling, patching,
and system reboot. Thus, in cases where the processing may require adjustments,
development of the cross-layer coordination may become tedious. In contrast, in
user space implementation testing is much simpler since code or libraries are usually
better documented and compilation does not require a system reboot. However, this
advantage possibly comes along at a high cost of performance or responsiveness when
much information has to be passed between kernel and user space which is referred
to as a context switch. A context switch requires copying information from one part
of the memory to another which is time- and CPU-consuming. High amounts of
context switches and the size of copied data could lead to significant performance
drops. Thus, keeping the size and the amount of exchanged information between
kernel and user space as low as possible is reasonable.

On the other hand, in case of updated values in one of the spaces (which have
to be passed to another space) could reach the other space too late leading to false
reactions. For example, due to delayed information passing, layer two is not initiating
a handoff at the right time although the signal strength is significantly below a

2.2. Cross-Layered Design 19

ApplicationApplication

System  
Components

Protocols

Application
User  
Space

Kernel  
Space

PR

W

(a) Processing in user space, down-
ward information passing: After appli-
cation information is accessed, its process-
ing is also conducted in user space for
more adaptability. Based on the process-
ing, functions need to be triggered in ker-
nel space to manipulate protocol or system
behavior. Problem: Could lead to many
context switches or late manipulation.

ApplicationApplication

System  
Components

Protocols

Application
User  
Space

Kernel  
Space

PW

R

(b) Processing in user space, upward
information passing: After system infor-
mation is accessed, it needs to be passed to
the user space for flexible processing which
is then used to modify application behav-
ior. Problem: Could lead to many context
switches or late triggering of manipulation.

ApplicationApplication

System  
Components

Protocols

Application
User  
Space

Kernel  
Space W

P

R

(c) Processing in user space, applica-
tion not involved: Moving the process-
ing to user space allows a developer more
adaptability which also avoids patching
and rebooting of the system. Problem:
Could lead to many context switches that
decrease system performance.

ApplicationApplication

System  
Components

Protocols

Application
User  
Space

Kernel  
Space W

PR

(d) Each step in kernel and if appli-
cation not involved: As each step is
completely running in the kernel, passing
information to user space not necessary.
Problem: kernel programming complex,
programming faults lead to system crash,
changes of processing likely requires patch-
ing and reboot of system.

ApplicationApplication

System  
Components

Protocols

Application
User  
Space

Kernel  
Space

R

PW

(e) Processing in kernel space, down-
ward information passing: application
information residing in user space needs to
be passed to kernel space for fast process-
ing and protocol behavior manipulation.
Problem: kernel programming complex,
system crash possible, changes of process-
ing likely requires patching and reboot of
system.

ApplicationApplication

System  
Components

Protocols

Application
User  
Space

Kernel  
Space

W

PR

(f) Processing in kernel space, upward
information passing: After system infor-
mation is accessed it is subsequently pro-
cessed and then passed to the user space
to modify application behavior. Prob-
lem: kernel programming complex, system
crash possible, changes of processing likely
requires patching and reboot of system.

Figure 2.7 Alternatives to realize cross-layer coordinations in architectures which are subject
to user and kernel space separation. Reading or accessing layer information is indicated by
R©, processing, aggregation or computation of information is indicated by P©, and writing,

manipulation of a layer variable or function triggering is indicated by W©.

20 2. Background and Related Work

Cross-Layer Design

Specific Solutions

Examples
Balakrishnan [BSAK95]
Khan [KPS+06]

Surveys
Carneiro [CRRP04]
Raisinghani [RI04a]
Srivastava [SM05]
Foukalas [FGA08]

Approaches of
Varying Scope

Examples
ISP [WBLO99]
ICMP-based [SB01]
PMI [IBW97]
Profile-based [CSN02]
XIAN [ACLL06]
GRACE [SYH+04]
CR [TFDM06]

Cross-Layer
Architectures

Static
Architectures

Examples
CLASS [WAR03]
CATS [SKC05]
MobileMAN [CMTG04]
POEMS [GFTW06]
WIDENS [KNB+04]
CrossTalk [WSNB06]
ECLAIR [RI04b]
Razzaque [RDN06]

Flexible
Architectures

Presented concept
in this thesis.

Figure 2.8 An overview about investigations in the field of cross-layer design.

predefined threshold. Or in the other direction, where layer two decides to initiate
a handoff although the values are already stable again. Another problem regarding
the information-passing between the kernel and user space concerns the interface.
Typically, operating systems offer only few limited interfaces which do not easily
allow to pass any kind of information. As a result, a developer needs deep expert
knowledge and the will to put significant effort into realizing its information exchange
scheme between the kernel and the user space.

To conclude, a developers faces several additional challenges when memory is sepa-
rated into kernel and user space. Especially, the placement of the processing leads
to a tradeoff between performance and flexibility. In this thesis, we show an ap-
proach where we dissolve this tradeoff and provide a solute where we keep the flex-
ibility while offering an efficient realization of cross-layer coordination algorithms.
But before presenting our approach, we discuss related work on cross-layer design
and highlight the missing key features to successfully harness the cross-layer design
paradigm.

2.3 Related Work

Many proposals utilizing the cross-layer design paradigm is available in the liter-
ature. As illustrated in Figure 2.8, we classify these proposals into the categories
specific cross-layer solutions, approaches of varying scope, and cross-layer architec-
tures which we describe in the following in more detail.

2.3. Related Work 21

2.3.1 Specific Cross-Layer Solutions

A plethora of specific cross-layer solutions have been proposed that focus only on
a certain behavior or performance improvement. These proposals are tailor-made
and solution-oriented implementations which mainly target at realizing a single spe-
cific coordination idea. While in some cases the behavior of only a single layer is
optimized by using information from other layers such as improving TCP by us-
ing link layer information [BSK95, BSAK95], in other cases two or more layers are
are jointly optimized such as in [KPS+06] where quality of service adaptations are
jointly optimized at multiple layers (application, data link, and physical layer) to
improve video streaming quality. Nevertheless, from a system designer’s perspec-
tive these solutions belong to the same problem category as none of these solutions
follow software engineering principles. Therefore, these solutions are typically hard
to maintain, to extend and to understand. Gaining a performance or behavior im-
provement by using the cross-layer design paradigm should not be at the cost of
losing the well-established software engineering advantages that come along with
the layered protocol stack design. Ideally, these two paradigms should be built in a
synergetic fashion and advantages from both should be carried over. We omit the
description of particular specific cross-layer solutions as it is does not provide more
understanding from a system designer’s point of view, but we refer the interested
reader to the following surveys [CRRP04, RI04a, SM05, FGA08] that give several
examples layer by layer.

To conclude, specific cross-layer solutions are tailor-made implementations which
mainly focus on a single specific coordination idea and typically not implemented in
a generic way to realize further cross-layer coordination algorithms.

2.3.2 Approaches of Varying Scope

Another category of proposals that use the cross-layer design paradigm are the ap-
proaches of varying scope. These solutions are either too limited in their scope, e.g.,
only allow the signaling of information in one direction (from lower layers to upper
layers but not vice versa), or have a very broad scope where cross-layer design is
only one aspect and the focus is on specific scenarios or algorithms operating on the
information gathered with cross-layer design.

For instance, inter-layer signaling pipe (ISP) [WBLO99] is a proposal with a
limited scope which tries to reuse or exploit established system mechanisms. ISP
utilizes packet headers to provide cross-layer feedback from upper layers to lower
layers as indicated by the pipe in Figure 2.9(a). This approach is implemented in
a simulator. Unfortunately the authors did not mention how applications, which
in fact should not know about structures such as (network layer) packet headers,
provide their information to lower layers. Another problem of this approach is the
layer by layer processing which could be inefficient and lead to outdated information
since each layer has to inspect and process packet headers. For example, the link
state information could be not up-to-date anymore when reaching the higher layers
and leading to inappropriate reactions.

Similarly, Sudame et al. [SB01] suggested to exploit Internet control message
protocol (ICMP) messages to provide feedback from lower layers to upper layers

22 2. Background and Related Work

(a) Inter-layer signaling pipe
(ISP) [WBLO99].

(b) ICMP-based approach
[SB01].

(c) Physical media indepen-
dence (PMI) [IBW97].

High-Layer
Profile

Low-Layer
Profile

(d) Profile-based [CSN02].

XIAN API

(e) XIAN [ACLL06].

Application Application Application

Network

Operating
System

Hardware G
lo

ba
l C

oo
rd

in
at

or

Internal
Adaptation

Per-App
Adaptation

Global
Adaptation

(f) GRACE [SYH+04].

Figure 2.9 Overview of semi-manufactured approaches.

as illustrated in Figure 2.9(b). Originally, the ICMP protocol resides in the network
layer and was designed to gain feedback information from network devices such as
routers that are on the path to a destination host. Note that ICMP messages, in their
original version, reach only the network layer. But in contrast to the ISP approach, in
the real-world implementation of the ICMP-based approach an appropriate handler
is implemented to pass the encapsulated information in ICMP messages to a specified
socket used by an application.

Another approach of passing information upwards is physical media indepen-
dence (PMI) [IBW97]. In this approach each layer is extended by so-called adap-
tation modules which pass information to its adjacent upper adaptation module as
sketched in Figure 2.9(c). Again, information is inspected and processed layer by
layer leading to the aforementioned weaknesses.

A solution that is even more limited in scope and applicability is the profile-based
approach [CSN02] that allows only the exchange between a middleware and the
routing layer as shown in Figure2.9(d). The exchange of information between these
two entities is performed in form of so-called system profiles. For example, the
routing layer provides information such as node’s location and movement pattern
to the middleware, for instance, to predict future connectivity. On contrary, the
middleware provides priority information of applications to the routing layer for
scheduling purposes. In a nutshell, only two layers are involved and the variability
of exchangeable parameters is limited.

XIAN [ACLL06] is another approach that is limited in its ability to support the
interaction between all layers. XIAN is implement for the Linux operating system
and offers an API to only WiFi-related information (in particular access to the Mad-
Wifi driver) but the API is accessible from all layers as illustrated in Figure2.9(e).

2.3. Related Work 23

At the user space applications can use an API to XIAN and similarly protocols re-
siding in the kernel space have also an available interface for interaction. Around
180 different WiFi-related information, which are in fact provided by the MadWifi
driver, are accessible from all layers. Nonetheless, the scope to enable the access
to parameters is limited to only layer one and two. Thus, the interaction between
remaining layers such as between application and network layer is not possible with
XIAN.

The research project Global Resource Adaptation through CoopEration
(GRACE) [SYH+04] at the University of Illinois has a much broader scope. GRACE
targets at a system-wide resource adaptation of applications, operating system, net-
work and hardware (referred to as system layers) through cleanly defined interfaces
as illustrated in Figure 2.9(f). To achieve this, GRACE uses a three level hierarchi-
cal adaptation scheme. The finest granularity is the internal adaptation that only
adapts a single system layer or application. For instance, it is invoked per packet or
after every hundred instructions. The next level is the per-application adaptation
which considers one specific application and adapts all other system layers accord-
ingly. It is invoked per job basis (not clearly defined). The coarsest granularity is
the global adaptation which considers all applications and system layers. It could
be triggered, for example, when an application joins or leaves the system. However,
the focus of GRACE is the application-driven and system-wide optimization of few
specific parameters such as energy usage, CPU and time and bandwidth. Therefore,
it has very specific goals which limit its applicability. Moreover, although applica-
tions and the network can exchange information, signaling within the (system layer)
network and thus across protocols is not feasible.

Another investigation ranging across the layers, amongst others (e.g., security and
quality of service), is the cognitive radio (CR) research field. The term cognitive
radio was originally introduced by Joe Mitola in [Mit00] as “wireless personal digital
assistants (PDAs) and related networks that are sufficiently computationally intel-
ligent about radio resources and related computer-to-computer communications (a)
to detect user communications needs as a function of use context, and (b) to pro-
vide radio resources and wireless services most appropriate to those needs.” After
this fundamental work, the whole cognitive radio community was driven by tun-
able parameters in software defined radios and the goal to equip them with more
“intelligence”, particularly with abilities such as learning, self-awareness and adapt-
ability. Inspired by this ability to build adaptive and cognitive radios, the scope
has been continuously extended to cognitive radio networks which not only con-
sider the network-wide optimization (and thus the cooperation between nodes) but
also the optimization of each involved system and, hence, the cooperation across all
protocols and applications. For instance, Ryan et al. [TFDM06] consider cross-layer
design as an essential and inherent part of cognitive radio networks since it indirectly
share information that is not available externally in the strict layered architecture.
Ryan et al. also argue that another key feature of cognitive radio networks but not
covered by cross-layer design is the ability of learning to improve future behavior.
To achieve this, many concepts from artificial intelligence are utilized. However,
proposals providing an architecture are the End-to-End Reconfigurability Project II
(E2R II) [BMS+06], the Value-Chain Research (CTVR) [SDN06], the m@ANGEL
platform [DSB+06], and the cognitive resource manager (CRM) [MPRW06]. Ac-
cording to [TFDM06] these proposals are focused on particular applications (such as

24 2. Background and Related Work

4G or wireless), implementations such as cognitive mechanisms or associated APIs,
or specific problems such as mobility or management. To summarize, cognitive radio
networks differ from cross-layer design in their goals and scope [TFDM06]. In par-
ticular, while cross-layer design is a node centric instrument to access and optimize
protocols and application (local scope), the observations of cognitive radio networks
consider multiple nodes in the network and their optimization (network-wide scope)
[TFDM06]. We concentrate in this thesis only on the part of cross-layer design and
not on the cognitive process belonging to cognitive radio networks.

To conclude, approaches of varying scope either have a too limited or a too broad
scope. In the latter case, cross-layer design is considered only as one integrated part
to realize a bigger goal (e.g., network-wide optimization). In the former case, the
approaches only allow signaling between few layers or in one direction. Accordingly,
the realization of cross-layer interactions between any layers is not feasible. But
this is an essential prerequisite of what we expect from a full-fledged cross-layer
architecture. In the following, we present further requirements and based on them
rate popular cross-layer architectures.

2.3.3 Cross-Layer Architectures

In recent years, a number of cross-layer architectures have been proposed that allow
to run several (specific) cross-layer coordination algorithms and facilitate signaling
across all layers and in both directions, i.e., any-to-any layer signaling. We distin-
guish between static and flexible architectures. In static cross-layer architectures
a cross-layer coordination are realized offline (i.e., at compile time) and are deeply
embedded within the operating system. In other words, the cross-layer coordination
algorithms are hard-wired with the remaining system and always active even if not
always necessary. For example, energy-saving cross-layer coordination algorithms
might not be necessary when plugged into power. Such cross-layer coordination
algorithms should be adaptable (add, remove, modify) at runtime.

This is tackled by flexible cross-layer architectures that allow the adaptation of run-
ning cross-layer coordination algorithms at runtime, for instance, when conditions
are satisfied. Later we will give more details about flexible cross-layer architec-
tures. But beforehand we want to review static architectures with respect to how
well they support developers in case of user and kernel space separation. Particu-
larly, we investigate how well the following set of requirements are satisfied by these
architectures.

Applicability to real systems: Although simulation is a well-established method-
ology to validate a concept, it is often too abstract and does not take into account
important effects that are caused by an operating system such as context switches,
scheduling and buffering. Therefore, from a system developer’s point of view we
consider a conceptual design or even its validation in a simulator as insufficient since
such architectures neglect user and kernel space separation challenges (as discussed
in Section 2.2.4.2) and applicability to real-world scenarios which are essential for
real use and proliferation.

Any-to-many layer signaling: The signaling of information should not only be
enabled from one layer to any other, but also from one layer to many other layers.

2.3. Related Work 25

For example, not only the transport layer is interested in link layer information to
adapt its congestion control mechanism, but also a VoIP application could benefit
from this information and switch its codec adequately. Thus, an architecture needs
to support the sharing of cross-layer information with many other layers. Ideally,
not only a polling scheme should be supported but also an event-based scheme to
allow multiple layers the reaction to sudden events such a significant and sudden
link quality changes, for instance, to initiate a layer two and three handover.

Maintainability: If cross-layer coordination algorithms are established arbitrarily
and unsystematically, this will likely result in unbridled cross-layer design (i.e., the
so-called spaghetti design [KKTC05]) which leads to unmanageable and complex
interdependencies in the code. Thus, an architecture should support and steer the
developer to systematically establish its cross-layer coordination algorithms to im-
prove code maintainability and understanding. Moreover, to keep maintainability of
the protocol stack, the cross-layer architecture should as less as possible modify the
protocol stack or protocols, respectively.

Flexibility and extensibility: The architecture should offer the flexibility to sup-
port a wide range of cross-layer coordination algorithms. Therefore, a developer
needs support in accessing the desired information in the whole protocol stack and
the ability to modify the processing of the accessed information. Especially when
adding novel protocols to the system, an architecture should support the developer
in extending the set of accessors to the novel protocols. At the same time, adding
new cross-layer coordination algorithms into the system should not force a devel-
oper to subsequent amendments of not directly involved protocols. For instance,
when adding a cross-layer interaction that establishes signaling between layer two
and four, this should not enforce the modification of any of the remaining layers.

Based on these requirements, we review the proposed cross-layer architectures in the
following.

2.3.3.1 Static Cross-Layer Architectures

We present and rate the following popular static cross-layer architectures.

Cross-Layer Signaling Shortcuts (CLASS) [WAR03] enables direct signaling
between all layers by message passing as illustrated in Figure 2.10(a). CLASS is
only a conceptual design which distinguishes between the two messaging types in-
ternal and external. External messages are standard protocol packets. For internal
messages, which are in fact the cross-layer interactions, the authors suggest the use
of the ICMP-based approach [SB01]. But as discussed earlier, this scheme allows
only the upward signaling and as the authors do not go into much detail, many
open questions remain regarding the realization of the signaling. From the available
information we derive that CLASS allows to run several cross-layer coordination
algorithms. Furthermore, since the authors suggest the use of a destination address
field, we assume that any-to-(m)any layer signaling, i.e., addressing several layers at
once, is theoretically possible. Unfortunately, due to missing implementation details,
we rate maintainability, flexibility and extensibility requirements as not supported.

Cross-layer Approach To Self-healing (CATS) [SKC05] is a shared database-
based approach that allows to establish cross-layer interactions by using a so-called

26 2. Background and Related Work

Application

Transport

Network

Data Link

Physical

Direct
Signaling

(a) CLASS [WAR03]:
Direct signaling be-
tween all layers by
message passing (ICMP
messages).

Application

Transport

Network

Data Link

Physical

Management
Plane

C
ro

ss
-L

ay
er

 P
la

tfo
rm

(b) CATS [SKC05]:
The cross-layer platform
stores the cross-layer
information and makes
it accessible from all
layers.

Application

Transport

Network

Data Link

Physical

Network
Status

S
ec

ur
ity

 &
 C

oo
pe

ra
tio

n

E
ne

rg
y

M
an

ag
em

en
t

Stackwide
Features

(c) MobileMAN [CMTG04]:
Each layer can store protocol
information in the network status
and make it accessible to other
layers. It also considers the
coordination of security and energy
management functionalities

Physical!

Data Link!

Network!

Transport

Application

Control
Plane

C
om

m
on

 O
pt

im
iz

at
io

n
La

ye
r (

C
O

O
L)

User
Plane

(d) POEM [GFTW06]: A
shared-database approach
that consists of a con-
trol plane containing the
common optimization layer
(COOL) that in fact allows
the cross-layer interaction
between the layers.

Application

Transport

Network

Data Link

Physical

At Deployment On Operation

Param
eter M

apping

State Info & 
Parameters

State Info & 
Parameters

State Info & 
Parameters

State Info & 
Parameters

State Info & 
Parameters

Sy
st

em
 C

on
st

ra
in

ts
 &

N
et

w
or

k
/ A

pp
lic

at
io

n
 

C
ha

ra
ct

er
is

tic
s

Protocol’s Auto
Configuration

Cross-Layer  
Extension

(e) WIDENS [KNB+04]: At deploy-
ment, it allows the reconfiguration of
protocols. During operation, it extends
each protocol with a cross-layer exten-
sion. Each extension contains the state
information and parameter values of
the layer which is only shared with ad-
jacent layers.

Application

Transport

Network

Data Link

Physical

Local View Global View

System
Components

(f) CrossTalk [WSNB06]:
Consists of two data planes.
Local view contains information
from each layer and enables the
actual cross-layer interactions.
Global view represents the
disseminated information of
the local view with neighbors.

Application

Transport

Network

Data Link

Physical

APP1-TL

TCP-TL

IP-TL

80211-
MAC-TL

80211-
PHY-TL

Protocol
optimizer 1

Protocol
Optimizer 2

Protocol
Optimizer N

Optimizing
Subsystem

Tuning
Layer

(g) ECLAIR [RI04b]: Specific tuning layer per
layer that provides access to protocol data struc-
tures. The optimizing subsystem consist of sev-
eral protocol optimizers that contains the algo-
rithms and data structures to realize the actual
cross-layer coordination algorithms. Protocol
optimizers can call functions of different tuning
layers for reading and modifying protocols.

Application

Transport

Network

Data Link

Physical

Contextor

Contextor

Contextor

Contextor

Contextor

Optimizing  
Algorithm 1

Optimizing  
Algorithm 2

Optimizing  
Algorithm N

Knowledge
Plane

Layer’s
Client

Global
View

Local
View

Database

(h) Razzaque [RDN06] et al.: Is a mixture of
ECALIR and CrossTalk. Similar to ECLAIR’s tun-
ing layer, contexttors access protocol information
which are accessed by the knowledge plane. The
knowledge plane contains a database similar to
CrossTalk, i.e., with a local and global view. The
knowledge plane also includes the optimizing al-
gorithms similar to ECLAIR.

Figure 2.10 Overview of static cross-layer architectures.

2.3. Related Work 27

management plane as shown in Figure 2.10(b). The management plane collects in-
formation from all layers and provides them to the cross-layer platform which stores
the information and makes it accessible from all layers. Depending on how the cross-
layer platform offers the ability to distribute the cross-layer information to all layers,
any-to-(m)any layer signaling might be achievable. Similar to CLASS, CATS is also
a conceptual design without any implementation. From the available information,
CATS seems to have a monolithic architecture, i.e., the management plane mecha-
nisms are jointly designed with the protocol layers leading in the respective case to
difficult maintainability. Since no information about interfaces between the manage-
ment plane and the protocol stack are available, we rate flexibility and extensibility
as not supported.

MobileMAN [CMTG04] is an EU funded project that targets to define and de-
velop a metropolitan area and self-organizing wireless ad-hoc network. The proposed
architecture is a shared-database approach where each layer can store protocol in-
formation in the so-called network status and make it accessible to other layers in
a unified fashion as illustrated in Figure 2.10(c). MobileMAN also considers the
coordination of security and energy management functionalities with the help of the
network status since these functionalities require cross-layer interactions by nature
[CMTG04]. In order to interact with the network status, protocols need to imple-
ment specific interfaces. These interfaces define the way how protocols are allowed
to interact with the network status and accordingly with each other. In the project
webpage an implementation of the architecture is not available. Implementation
details are not given in [CMTG04], it is only mentioned that the implementation of
the interfaces are placed besides normal protocol processing. MobileMAN requires
a couple of protocol modifications to enable database interactions via the unified in-
terfaces. The interfaces are designed such that the replacement of modified protocols
with their original is possible, if necessary. This should also allow a decoupled inte-
gration of novel protocols from other protocol layers and thus supporting flexibility
and extensibility. Details about how the interfaces could look like are not provided
in detail making it hard to rate the degree of interdependencies between the pro-
tocols and the cross-layer coordination algorithms. As a result, we rate flexibility,
extensibility and maintainability of the architecture as average.

Performance-Oriented referencE Model (POEM) [GFTW06] is a proposal
towards a self-optimizing protocol stack for autonomic communication. The pro-
posed architecture is a shared-database approach that consists of a control plane
containing the common optimization layer (COOL) that in fact allows the cross-
layer interaction between the layers as illustrated in Figure 2.10(d). The user plane
contains the protocol stack. It is intended that the user plane works independent of
the control plane. The interaction between the two planes are performed through so-
called common operation interfaces. Unfortunately, the work neither provides details
about how the interfaces could be implemented without effecting original protocol
behavior nor describes how to design a cross-layer coordination in particular. Due
to too the abstract presentation, it is hard to decide which of our requirements are
satisfied.

WIreless DEployable Network System (WIDENS) [KNB+04] was an EU
funded project targeting on easily deployable ad-hoc networks for public safety or-
ganizations. At deployment the proposed architecture allows the reconfiguration of

28 2. Background and Related Work

protocols to adjust their functionality to available system constraints and environ-
ments as shown in Figure 2.10(e). During operation, the architecture extends each
protocol with a so-called cross-layer extension. Each layer’s extension contains the
state information and parameter values of the layer. The information available at
the extension is mapped only to adjacent layers. In particular, each layer has to
individually process and pass information to its adjacent layer. Thus, cross-layer
interactions are controlled via adjacent layers. The authors argue that each layer
can benefit and decide how to react upon receiving the cross-layer information. This
might lead to delayed dissemination of cross-layer information since each layer has
to inspect and process information and then prepare and pass it to the adjacent
layer.

Furthermore, a developer has to specify what to do upon receiving such information.
This implies that a developer knows which information is necessary and how to adapt
a certain layer and this in turn makes the involvement of all layers and the layer by
layer processing superfluous. However, it seems that new protocols are not easy to
integrate into the existing protocol stack as it requires extensive changes to make it
work with the remaining part. The tight coupling with the adjacent layers decreases
maintainability, flexibility, and extensibility. Implementation details are not given in
[KNB+04] and the project web page is also not available to verify the latest available
state.

CrossTalk [WSNB06] is a shared-database approach that consists of two data
planes, local and global view, as shown in Figure 2.10(f). While the local view is a
shared database that consists of information from each layer and enables the actual
cross-layer interactions, the global view represents the disseminated information of
the local view with neighbor nodes for network-wide optimization. For the global
view CrossTalk provides a data dissemination procedure which adds the local view
information to outgoing packets. We believe that exchanging information with other
nodes is a nice to have feature, but not a must-have since the exchange of information
with other nodes in the network is not a real challenge and is in fact the core
property of a protocol. CrossTalk is implemented for the network simulator NS-2
and a couple of examples are applied to demonstrate and validate its effectiveness.
Implementation details about the interfaces between the layers and the local view
are missing, making the direct applicability to a real system questionable. Due to
the lack of information, we rate maintainability, flexibility and extensibility of the
architecture as poor.

ECLAIR [RI04b] is the most advanced cross-layering architecture that is com-
posed of a modular database (referred to as optimizing subsystem) containing sev-
eral coordination algorithms and interfaces to access protocols (the so-called tuning
layer) as shown in Figure 2.10(g). In particular, there exists a specific tuning layer
per layer that provides the access to protocol data structures (with the goal of
marginal protocol modification). This also facilitates extensibility of ECLAIR to
support novel protocols, since only few modifications to the respective protocol and
the implementation of its tuning layer are needed to establish cross-layer coordina-
tion algorithms. For portability, a tuning layer is further subdivided into a specific
part towards the protocol and a generic part towards the optimizing subsystem.
Since each operating system has a different implementation of protocols, the spe-
cific part is customized to the operating system needs and enables read and write

2.3. Related Work 29

requests to protocol information (with less infiltration). The generic part facilitates
protocol stack abstraction and platform independence and is accessible from the
optimizing subsystem. The optimizing subsystem and the protocol stack work asyn-
chronously. Hence, the protocol stack processing can not be blocked or slowed down
by a cross-layer coordination. ECLAIR support portability only on a conceptual
level since the architecture is only validated on a Linux OS. But from all known
approaches ECLAIR is, to the best of our knowledge, the only approach that is
implemented for and validated on a real system with user and kernel space separa-
tion. Unfortunately, the code is neither open source nor was available after request.
However, the optimizing subsystem consist of several so-called protocol optimizers
that contains the algorithms and data structures to realize the actual cross-layer co-
ordination algorithms. The protocol optimizers can register at several tuning layers
to get notifications whenever certain events occur. Similarly protocol optimizers can
call functions of different tuning layers for reading and modifying protocols. Thus,
any-to-(m)any layer signaling is possible. Interestingly, single protocol optimizers
or even the whole optimizing subsystem can be enabled or disabled. This fact and
the modularization of protocol optimizers facilities a high degree of maintainability.
Unfortunately, this feature is only available at compile time. Therefore, activation
or deactivation of protocol optimizers dependent on contextual changes at runtime
is not feasible.

Razzaque et al. [RDN06] proposed a shared-database approach that is a mixture
of ECLAIR and CrossTalk. Similar to ECLAIR, the information residing in layers
are accessed by so-called contexttors which can be compared with the tuning layers in
ECLAIR as shown in Figure 2.10(h). However, there is one interesting claim where
the authors argue that there is no modification required to the existing protocol
stack. This is probably due to the fact that the authors (in [RDN07a]) implemented
their approach for the NS-2 network simulator where information is inherently easily
accessible. But real protocols of popular operating systems typically reside in the
kernel space and are by nature self-contained and difficult to access as discussed
in Section 2.2.4.2. Therefore, the goal of a cross-layer architecture should be to
modify protocols as little as possible since even modifying a single variable could
already lead to significant behavior variations. However, the accessed information
is provided to the so-called knowledge plane which contains a database similar to
CrossTalk, i.e., with a local and global view. Moreover, the knowledge plane also
contains the optimizing algorithms that similar to ECLAIR operate on the interfaces
provided by the contexttor or tuning layer, respectively. Razzaque et al. describe
the knowledge plane as an intelligent database that allows the manipulation and
inference of data (including uncertain reasoning). In contrast to CrossTalk, the
global information is not received by piggybacking information to outgoing packets,
instead a gossiping service is built at the application layer to collect information
from other nodes.

To conclude, we presented several static cross-layer architectures that facilitate the
signaling between any layers and allow to run several specific cross-layer coordina-
tion algorithms. Most of them are only described on a conceptual level while few are
validated with simulation. ECLAIR is the most advanced architecture as it is imple-
mented for a real OS, offers a generic interface to facilitate platform independence,
and uses a modular design where whole cross-layer coordination algorithms can be
activated or deactivated. Unfortunately, this feature is only available at compile-

30 2. Background and Related Work

Architecture
CLASS

[WAR03]
CATS

[SKC05]
MobileMAN

[CMTG04]
POEM

[GFTW06]
WIDENS
[KNB+04]

CrossTalk
[WSNB06]

ECLAIR
[RI04b]

Razzaque
[RDN06]

Crawler

Static Architecture Requirements

Possibility to run mul-
tiple coordination algo-
rithms

4 4 4 4 4 4 4 4 4

Any-to-any layer
signaling

4 4 4 4 4 4 4 4 4

Applicability to real sys-
tems

7 7 Ø 7 7 Ø 4 Ø 4

Any-to-many layer
signaling

7 Ø 4 Ø Ø 4 4 4 4

Maintainability 7 7 Ø 7 7 7 4 4 4

Flexibility and exten-
sibility

7 7 Ø 7 7 7 4 4 4

Flexible Architecture Requirements

System detail abstrac-
tion

7 7 7 7 7 7 7 7 4

Runtime flexibility &
extensibility

7 7 7 7 7 7 7 7 4

Application support 7 7 7 7 7 7 7 7 4

Context adaptation 7 7 7 7 7 7 7 7 4

Handling support for
multiple coordination
algorithms

7 7 7 7 7 7 7 7 4

Evaluation support 7 7 7 7 7 7 7 7 4

Table 2.1 Comparison of cross-layer architectures: 4 good, Ø mean, 7 poor.

time since protocol optimizers can not be (ex)changed at runtime. Thus, it does not
support the adaptation of cross-layer coordination algorithms at runtime. However,
this feature, amongst others, is a prerequisite of a flexible cross-layer architecture
which we describe next.

2.3.3.2 Flexible Cross-Layer Architectures

Although static architectures support developers in building and running several
specific cross-layer coordination algorithms, they neither provide the ability to add,
remove or modify cross-layer coordination algorithms at runtime nor allow the auto-
mated (de)activation of coordination algorithms based on the presence of a certain
context such as chaining network (e.g., wireless versus wired) or system conditions
(e.g., battery connection versus power supply).

In this thesis, we present the flexible cross-layer architecture Crawler and our
main distinctive key features from existing work is that Crawler (i) allows the de-
velopers to specify cross-layer coordination ideas at a very high level of abstraction,
(ii) enables runtime adaptability of cross-layer coordination algorithms depending
upon the underlying network conditions, (iii) provides rich application support by
enabling applications to interact with Crawler and provide their own coordination
algorithms at runtime, (iv) provides the necessary support for developers to handle
problems involved when adding multiple cross-layer coordination algorithms, and (v)
supports developers in testing, monitoring and analyzing cross-layer coordination al-
gorithms. To the best of our knowledge, these key features are not supported by any
of the existing cross-layer architectures. An overview of the presented architectures
and their support with respect to all presented requirements is given in Table 2.1.

In the following we present Crawler and discuss these listed key features in detail.

3
A Generic and Flexible Cross-Layer
Architecture

After introducing the problem space, presenting a descriptive background and dis-
cussing related work in the previous chapters, we now turn our focus towards the
major contribution of this dissertation. We begin with answering our first research
question, i.e., how to enable a generic and flexible cross-layer architecture that fa-
cilitates convenient system monitoring, cross-layer design and experimentation?

So far, we have introduced the cross-layer design paradigm and discussed problems
when using this design paradigm. In this conjunction, we have presented static ar-
chitectures that partly addressed these problems. In static architectures the process
of realizing cross-layer coordination algorithms is deeply integrated into the system
and thus they neither provide the ability to add, remove or modify cross-layer coor-
dination algorithms at runtime nor allow the automatic (de)activation of cross-layer
coordination algorithms based on the availability of a certain context such as chain-
ing network conditions. In this chapter we address these issues, amongst others,
and present Crawler, a cross-layer architecture for wireless networks that (even
for non-domain experts) enables convenient and versatile adaptation of protocols,
system components, and applications at runtime, if desired triggered by contextual
changes.

The remainder of this chapter is structured as follows. Section 3.1 motivates the lack
of a generic and flexible cross-layer architecture for convenient realization, monitor-
ing and experimentation of cross-layer coordination algorithms. For this purpose, in
Section 3.2 we analyze problems that come along with designing cross-layer coordina-
tion algorithms to highlight the requirements for an ideal architecture. Subsequently,
based on the problem analysis, we present the design goals that shape our proposed
cross-layer architecture in Section 3.3. We then present the details of the architec-
ture using a goal driven description in Section 3.4, followed by a presentation of
the implementation and architecture overhead in Section 3.5. Finally, Section 3.6
concludes this chapter.

32 3. A Generic and Flexible Cross-Layer Architecture

3.1 Motivation

Many specific cross-layer coordination algorithms have been suggested in the past.
Unfortunately, all of these are tailor-made implementations to realize a specific cross-
layer coordination without the focus on integrating further coordination algorithms
into the system. Thus, these tailor-made implementations lack focus on software
engineering principles such as maintainability and extensibility which is the crucial
prerequisite for real use and proliferation of software. As a result of this observation,
few static cross-layer architectures have been proposed that focused more on software
engineering principles.

Although static architectures facilitate easy manipulation of protocol-stack parame-
ters and allow cross-layer developers to run several specific cross-layer coordination
algorithms, from an application and system develops point of view still further chal-
lenges remain. First, the process of realizing a cross-layer coordination process is still
tedious as the information required for the cross-layer coordination processes and
the coordination process itself are deeply embedded into the operating system (OS)
and can only be realized at compile time. For experimentation reasons adding, re-
moving and manipulating cross-layer coordination algorithms at runtime will highly
accelerate and simplify the realization of desired coordination algorithms. Second,
the realization of a cross-layer coordination process requires being a system expert as
modifications of protocols require OS and protocol behavior understandings. Third,
due to the static nature of existing architectures once a coordination algorithm is
added into the system, it is always running and adapts the system behavior even
if it is not necessary. For example, an energy efficient but performance suboptimal
cross-layer coordination is not needed if plugged into power. Therefore, the statically
added cross-layer coordination could become superfluous and may even adversely ef-
fect other active applications and protocols. Finally, application developers who
know best about their application requirements and constraints can not specify and
provide their own set of cross-layer coordination processes into the system.

From these challenges we derive the need for a runtime flexible and generic cross-
layer architecture that enables the adaptation of system behavior (i.e., protocols,
hardware components like sensors, and applications) based on application require-
ments, system state and network conditions. However, designing an runtime flexible
and generic cross-layer architecture requires to tackle all these major problems. In
the next section, we discuss the identified problems in more detail and derive the
three research questions that we address in this chapter.

3.2 Problem Analysis

From the motivation we derive three limiting key factors that hinder cross-layer
development, real use and accordingly proliferation of a cross-layer architecture. In
the following we discuss the details of these limiting key factors.

3.2. Problem Analysis 33

Lack of an easy-to-use and systematic development support for cross-layer
coordination algorithms

The process of designing a cross-layer coordination is cumbersome. It requires to
consider three steps: (1) the access to protocol state information (stored in variables),
(2) aggregation or computation and (3) manipulation of further parameters based
on the previous step. Each of the steps may lead to many hindrances. For example,
in each OS the access to a certain variable could be implemented variously and
located differently within the code. This requires OS expertise to understand the
OS peculiarities and programming language expertise to realize the intended access
to the parameter. Moreover, the variable could be modified and used at different
functions of the protocol which also require understanding of protocol behavior.

Another problem is where to realize the aggregation or rather computation of the
accessed parameters. Typically, protocols and system parameters are placed in the
kernel and implementing computations in the kernel is not a trivial task as it requires
expert knowledge. On the other hand, a move of the computation to the user space
of the operating system could lead to unnecessary context switches which can lead
to performance drops.

Finally, after accessing the parameter and deciding where to implement the compu-
tation, patching and compiling is a common next step which is very time consuming
and cumbersome when finding and fixing programming faults is necessary. To con-
clude, all of these steps require expert knowledge and significant effort from the
developer. But we believe that by introducing an adequate abstraction, develop-
ers (especially these who are not system experts) will be released from the burden
involved with these three steps mentioned above.

However, when we assume these steps are implemented arbitrarily for many coor-
dination algorithms, then this will likely lead to violation of software engineering
principles such as maintainability and reuse of code. Accordingly, on top of the
previous requirements, a systematic realization of these three steps are necessary to
ensure long-term benefits and sustainability.

In a nutshell, we believe that an architecture needs to support a systematic devel-
opment of cross-layer coordination algorithms while making it utilizable, even by
non-system experts.

Lack of a monitoring and experimentation platform for cross-layer coordination
algorithms

Till finalizing cross-layer coordination algorithms many experimentation runs and
adjustments of the cross-layer coordination algorithms are necessary. We believe that
a developer needs support in the experimentation process by providing the ability to
monitor many parameters within the system and to fine-tune cross-layer coordination
algorithms. Such a capability requires the selection of relevant parameters at runtime
to identify interesting (mis)behavior and to compare the relative differences after
adjustment. Moreover, from an application developer point of view this further
requires to have easy-to-use interfaces for monitoring and modification purposes as
they are not system experts and accordingly should not be impaired with additional
effort except designing their applications. In particular, developers should be able

34 3. A Generic and Flexible Cross-Layer Architecture

to add, remove, or modify coordination algorithms whenever they want and also
should have the ability to monitor the desired variable in the whole system.

Lack of a runtime context adaptive cross-Layer architecture

Specific cross-layer coordination algorithms are build with a certain scenario in mind.
For example, many cross-layer coordination algorithms have been suggested to im-
prove TCP in wireless environments. But when conditions change, for example, an
Ethernet connection is available for the device, the TCP cross-layer coordination
built for wireless environments is superfluous. Accordingly, such a case necessities a
system where coordination algorithms can be activated and deactivated when nec-
essary. Similarly, application designers know best about their application and their
needs in terms of parameters from the system in order to build adaptive software. Ac-
cordingly, application designers need to share their variables and their coordination
algorithms with the system and vice versa for a joint coordination. But applications
start and terminate unpredictably, i.e., caused by user demands. Therefore, there
is a need to detect such changes and the ability to feed the required coordination
algorithms at runtime into the system and make application variables accessible.
In other words, we need a system where cross-layer coordination algorithms can
automatically be loaded and unloaded based on specified conditions.

From these observations we derive following research questions that we tackle in this
chapter.

Question Q1 - How to enable convenient & systematic cross-layer development?
We designed an architecture that allows to express cross-layer coordination
processes at a high level of abstraction or configuration. The configuration is
automatically parsed and subsequently mapped to module compositions which
ensures software engineering principles and thus support developers in design-
ing their cross-layer coordination algorithms.

Question Q2 - How to enable a monitoring and experimentation architecture?
The generic design of the modules and their interfaces allow flexible compo-
sitions at runtime. At the abstraction level this flexibility enables to specify
which, when and how modules should be composed to achieve the desired set
of cross-layer coordination algorithms. To further support this, for experimen-
tation and monitoring purposes we provide a generic interface to add, remove
and modify cross-layer coordination algorithms.

Question Q3 - How to achieve a runtime context adaptive system?
We provide a generic interface for applications to provide their desired set of
cross-layer coordination algorithms into the system. For this, only a configu-
ration needs to be provided which includes the conditions, i.e., availability of
certain context, to load or unload coordination algorithms. The architecture
takes over the responsibility to automatically check for these conditions and
to load the predefined set of coordination algorithms whenever the conditions
are satisfied.

In the following, we present a design overview of our cross-layer architecture and our
design goals or rather contributions that tackle the aforementioned problems.

3.3. Design Overview 35

Battery

O
pe

ra
tin

g
Sy

st
em

 &
 H

ar
dw

ar
e

Sy
st

em
  

co
m

po
ne

nt
s

Network

Transport

Data Link

Physical

Pr
ot

oc
ol

s

GPS

Accelerometer

Application
Application

Application

Logical Component (LC)

Cross-Layer Processing  
Component (CPC)

Behavior
Realization

Behavior
Description

battery

motion

TCP.CWND
TCP.RTT

x,y,z

IP.TTL

DLL.FER

PHY.WLAN.RSSI

Stubs
FUs

Uniform
Interface

Figure 3.1 Concept view of Crawler. The logical component (LC) abstracts from the im-
plementation of cross-layer coordination algorithms via an easily usable but powerful rule-based
configuration language. The cross-layer processing component (CPC) realizes the coordination
algorithms given by the LC which can be readjusted flexibly at runtime. The uniform interface
allows applications to provide coordination algorithms and share variables with the system.
Stubs provide access to protocol information and system components.

3.3 Design Overview

In this section we present a design overview of Crawler1, a cross-layer architecture
for wireless networks that even for non-domain experts enables convenient and
versatile adaptation of protocols, system components, and applications at runtime.
Crawler consists of two main components as shown in Figure 3.1:

The logical component (LC) allows cross-layer developers to express their monitoring
and coordination needs in an abstract and declarative way. For this purpose, we have
created a rule-based language customized to cross-layer design purposes. Using this
language, developers can specify cross-layer signaling at a high level without needing
to care about implementation details. Additionally, the LC offers a uniform interface
that allows applications (i) to provide their own coordination algorithms on demand,
and (ii) exchange information with the protocol stack, system components and other
applications.

1The content of this and subsequent sections are partially based on the joint work with Muhammad
Hamad Alizai, Florian Schmidt, Hanno Wirtz, and Klaus Wehrle published in ”Harnessing Cross-Layer
Design”, Elsevir Ad-hoc Networks Journal, November 2013 [AAS+14]. The aforementioned journal pa-
per in turn is based on the joint work with Florian Schmidt, Hammad Alizai, Tobias Drüner and Klaus
Wehrle published in ”Crawler: An Experimentation Platform for System Monitoring and Cross-Layer-
Coordination”, 13th International IEEE Symposium on a World of Wireless, Mobile, and Multimedia
Networks, 2012 (WoWMoM’12) [ASA+12] and Tobias Drüner’s bachelor thesis [Drü10]. Finally, sub-
sequent sections are also partially based on the joint work with Jens Otten, Florian Schmidt and Klaus
Wehrle published in ”Towards a Flexible and Versatile Cross-Layer-Coordination Architecture”, 29th In-
ternational Conference on Computer Communications (INFOCOM 2010) [AOSW10], and Jens Otten’s
diploma thesis [Ott09].

36 3. A Generic and Flexible Cross-Layer Architecture

Battery

O
pe

ra
tin

g
S

ys
te

m
 &

 H
ar

dw
ar

e

S
ys

te
m

co

m
po

ne
nt

s

Network

Transport

Data Link

Physical

P
ro

to
co

ls

GPS

Accelerometer

Application Application
Application

Logical Component (LC)
Application

Support

Context
Adaptability

Cross-Layer Processing
Component (CPC)

Runtime
Flexibility and
Extensibility

Manageability

battery

motion

TCP.CWND
TCP.RTT

position

IP.TTL

DLL.FER

PHY.RSSI

Stubs
FUs

Commands

Figure 3.2 Goal-driven view of Crawler’s components. The logical component (LC) con-
tains the goals Application Support, Manageability and Context Adaptability. The cross-layer
processing component (CPC) provides Runtime Flexibility and Extensibility.

The cross-layer coordination algorithms as specified in the LC are realized by the
cross-layer processing component (CPC). Here, rules are mapped to compositions
of self-written functional units (FUs). Finally, stubs provide read/write access to
protocol information and sub-system states via a generic interface that abstracts
from a specific implementation. Thus, additions and changes in coordination rules
can be done at runtime using the LC. These changes are reported to the CPC, which
adapts the FU compositions accordingly.

Before going into further details of the architecture, we present our design goals and
briefly highlight the scope of our approach. Details about the architecture will be
presented subsequently centered around our design goals.

3.3.1 Goals

Based on the observations stated in the motivation and the problem analysis above,
we define four goals that shape our design as shown in Figure 3.2:

Goal 1 - Manageability: We believe that using cross-layer coordination algorithms
should not impair the key software engineering properties, such as modularity,
maintainability, and usability, of the layered protocol stack despite introducing
dependencies across non-adjacent layers. Providing a systematic solution, for
instance in form of a cross-layer architecture, should not impose additional
requirements such as protocol dependencies when developing new protocols
and system components. Moreover, we believe that cross-layer coordination
algorithms should be easily maintainable and usable for application and system
developers without requiring too much knowledge about system details and
architectural requirements. Accordingly, developers of cross-layer coordination
algorithms should primarily focus on designing the cross-layer interaction and

3.3. Design Overview 37

not be complicated and slowed down by system details. Nevertheless, we
believe that since system developers are experts of their system, it is beneficial
if they already provide access to the protocol and system variables to support
cross-layer interactions.

Goal 2 - Application Support: Unlike existing approaches, the architecture should
provide a unified interface for application developers to (i) specify and add
their own monitoring and coordination needs into the system, and (ii) bundle
these coordination algorithms with their applications, without needing to deal
with OS level details. Moreover, it should simplify the process of accessing
protocol and system information typically placed in the OS which only offers
few limited interfaces. Ideally, application developers should not be impaired
with manual inspection and adaptation of the very large OS code base.

Goal 3 - Runtime Flexibility and Extensibility: The architecture should offer flex-
ibility that is essential for adjusting and experimenting with different sets of
coordination algorithms, and further, the extensibility for involving all possible
protocols and system components. In other words, for designing a coordina-
tion algorithm, the exchange of information between any number of layers and
system components and the composition of any number of specific cross-layer
coordination algorithms should be possible at runtime. To achieve this, the
design of an architecture has to offer sufficient versatility to cope with the
diversity and permanent evolution of protocols and application requirements.

Goal 4 - Context Adaptability: The architecture should offer the ability to (i) de-
tect the underlying environmental changes, and (ii) respond to the changing
application monitoring and coordination demands (e.g., when starting/termi-
nating applications), by automatically loading the adequate set of coordination
algorithms at runtime. For example, energy saving coordination algorithms
may not be necessary if the device is plugged-in to a power supply. This ne-
cessitates detecting the right condition (i.e., plugged to power) and loading
the right set of coordination algorithms (e.g., better performing but energy-
consuming coordination algorithms).

In the following we briefly discuss the relationship of our research questions and
goals.

3.3.2 Relationship of Research Questions and Goals

The four previously presented goals will provide answers to the three identified re-
search questions. Figure 3.3 provides the relationship between our research ques-
tions and goals. While the three goals manageability (G1), runtime flexibility &
extensibility (G3) and context adaptability (G4) answer the research questions on
a one-to-one basis, the application support goal (G2) affects all research questions.
The major reason is that the application support contribution is an interface that is
used by the other contributions to realize their functionality.

In the following we discuss limitations or rather the design scope of the architecture
that also shaped the design of our architecture. Subsequently, we present the details
of the architecture following a goal-driven order as listed above.

38 3. A Generic and Flexible Cross-Layer Architecture

How to enable
systematic &
simple cross-
layer
development?

How to enable a
monitoring and
experimentation
architecture?

How to achieve a
runtime context
adaptive
system?

G1 - Manageability

G2 – Application Support

G3 – Runtime
Flexibility &
Extensibility

G4 – Context
Adaptability

Q1: Q2: Q3:

Figure 3.3 Overview presenting the relationship between research questions and contributions
of this chapter.

3.3.3 Design Scope and Limitations

Crawler runs on end hosts and coordinates local information such as from the pro-
tocol stack and system components. Crawler itself does not establish information
exchange among nodes in a network, such as in [WSNB06], because we believe that
a monitoring and cross-layer experimentation architecture should not be responsible
for establishing such information exchange mechanisms as it is rather the responsi-
bility of a communication protocols. Nonetheless, a combination of such a protocol
with Crawler could be used to share cross-layer information between nodes in a
network. For example, in Section 4.4 we show a use case of Crawler where we
shared a monitored parameter among neighboring nodes in an ad-hoc network in
order to improve the detection of a jammer. Moreover, in Section 6.3 we extended
Crawler’s application support interface to remotely monitor and control (i.e., add,
remove and modify) cross-layer coordination algorithms. Accordingly, we provided
support to provide cross-layer information among nodes, however, from a design per-
spective we clearly separated the access to information and their exchange between
nodes.

Another major design decision is to place the major part of the realization into kernel
space of the OS. Since protocols and system information such as sensors lie within the
kernel space of the OS, we wanted to keep their cross-layer coordination processing
in the kernel space. The major reason is that information exchange between kernel
and user space requires time which likely could lead to performance bottlenecks, for
instance, if many coordination algorithms run in parallel. Nonetheless, if applications
exchange information with the remaining part of the system, then context switches
are not avoidable and we accordingly provide support for applications to exchange
information (provide own information to and gather information from the kernel
and thus share information with protocols and system components) which will be
explained later in detail.

However, although we believe that the design of Crawler is very generic (i.e., in
terms of supporting heterogeneous operating systems), we implemented and tested
it specifically for Linux due to its open source nature. In particular, we have real-
ized it for the Ubuntu and Vyatta distribution with kernel 2.6.32 for Ubuntu and
2.6.37 for Vyatta. The cross-layer realization component (CPC) of Crawler is
implemented in C and is very generic. We have not used any third party library
and believe that it could be easily adapted to any other OS (if they would be open

3.4. Architectural Details 39

source). The implementation of the logical component is in C++ and considered
similarly hard to adapt as any other application. The major problem here are the
interfaces between the LC and CPC. Although our exchange format between these
components can likely be reused, the interfaces among the OSs are very divers.
We have used the generic netlink sockets as an interface for exchange information
between both components. Other operating systems will require significant adapta-
tions on both components and the accessors to information, i.e., our stubs, have to
be reimplemented as protocols and drivers will significantly vary.

Furthermore, Crawler does not suggest cross-layer coordination algorithms. It is
rather a framework for rapid design, realization, and monitoring in order to find
out the right set of cross-layer coordination. Similarly this holds also for problems
involved when running multiple cross-layer coordination algorithms. For instance,
although Crawler also offers support for conflicting coordination algorithms (see
Chapter 5.3), it nonetheless relies on cross-layer developers to provide the proper
set of configurations and to ensure that the coordination algorithms are doing what
they are aimed for or not conflicting with each other. All in all, Crawler allows
to easily experiment with optimizations for different sets of use cases before being
deployed on commercial systems.

In the following we present the details about the architecture following a goal-driven
approach.

3.4 Architectural Details

We present a goal-driven description of Crawler by highlighting, with the help of
simple examples, how our design achieves the four goals we laid out in Section 3.3.1.
character

3.4.1 Manageability

The LC is the interface between developers and the CPC. Its major goal is to increase
the usability and maintainability of cross-layer coordination processes for developers,
allowing them to easily express their desired optimizations without paying too much
attention to implementation details. For this purpose, the LC is divided into four
subcomponents as shown in Figure 3.4. The configuration subcomponent allows
a developer to express cross-layer coordination processes on an abstract level. It
thus hides or rather abstracts for developers the implementation details of the cross-
layer coordination processes within a particular operating system. The interpreter
subcomponent is responsible for parsing and mapping this abstract description to
so-called commands. These commands instruct the CPC on how to realize the
given cross-layer description. In addition, these commands are stored in a repository
subcomponent that maintains a view of the current realized cross-layer coordination
processes in the CPC and stores all changes made to that state. The application
support subcomponent allows applications to share their variables for cross-layer
optimizations. Additionally, it allows applications to add their own monitoring and
optimization needs. In the following we discuss the first three subcomponents which

40 3. A Generic and Flexible Cross-Layer Architecture

Cross-Layer Processing Component (CPC)

Commands

Commands

Logical Component (LC)

(4) Application Support (1) Configuration (2) Interpreter

(3) Repository
Parameters

Figure 3.4 The LC comprises four subcomponents. (1) The configuration is an abstract de-
scription of a cross-layer optimization. (2) The interpreter parses the configuration. (3) The
repository saves snapshots of configuration setups, allowing easy access to the current and
past setups. (4) The application support component provides an interface to applications for
communication with Crawler in order to provide own optimizations and access to parame-
ters.

are intended to meet our design goal of manageability. We postpone discussion on
the application support subcomponent to Section 3.4.2 to dedicatedly describe how
this subcomponent realizes our second design goal of application support.

3.4.1.1 Configuration

The first step in Crawler’s functionality is to allow the developers to specify their
cross-layer optimizations. Crawler provides an easy to use but powerful rule-based
language for specifying coordination processes in an abstract and declarative config-
uration. Each rule is a behavioral description of a part of a cross-layer interaction
such as accessing protocol information and aggregation. Rules can be nested within
other rules to form rule chains, i.e., to develop cross-layer optimizations. In Listing
3.1, we present an example configuration with rules that specify how to access and
process protocol-stack information and when to notify it to the application. Each
line in the configuration is a rule. Figure 3.5 shows a (slightly extended) graphi-
cal representation of this configuration. The figure is marked with numbers which
correspond to the line numbers, i.e., rules, in the configuration.

The first rule my_rssi simply specifies which parameter, determined by a unique
fully qualified name, should be accessed (see Section 3.4.3.2 for further details re-
garding the access mechanism). The second rule my_history_of_rssi collects the
History (which saves a certain number, here 4, of collected values) of RSSI (received
signal strength indication) values, i.e., the last 4 RSSI values of the wlan0 interface
in this case. Similarly, the third rule my_rssi_is_bad determines if the average of
these RSSI values is below a certain threshold, in this example 55. Besides, the third
rule also demonstrates the freedom of how rules can be nested with other rules. We
have nested the Less and Avg rule without predefinition what we refer to as inline

3.4. Architectural Details 41

1 my_rssi:get("phy.wlan0.rssi")

2 my_history_of_rssi:History(my_rssi , 4)

3 my_rssi_is_bad:Less(Avg(my_history_of_rssi), 55)

4 my_rssi_is_bad ->my_appl_var1

5 my_rssi_is_bad ->my_TCP_Freezer

6 my_appl_var1:set(" application.app1.voip_var1", "bad")

7 my_TCP_Freezer:set(" transport.tcp.cwnd", "0")

8 my_timer:Timer (200)

9 my_Timer ->my_rssi_is_bad

Listing 3.1 A simple cross-layer signaling configuration in Crawler. This configuration
file defines the setup illustrated in Figure 3.5.

1 my_Avg:Avg(my_history_of_rssi)

2 my_rssi_is_bad:Less(my_Avg , 55)

Listing 3.2 An alternative to the third rule in Listing 3.1 when not using inline identifiers.
Although this increases code size, we suggest this notation for better reuse and runtime
onfigurability.

identifiers. Inline identifiers can be used, for instance, to save code lines. An alterna-
tive could be a separate definition similarly as in the first and second rule which we
show in Listing 3.2. Remark, we suggest the use of predefinition before nesting rules,
as they provide also provide better reuse of configuration code and easier editing in
case of runtime changes. For example, by using identifiers the separately defined
rules such as my_Avg can explicitly be modified or exchanged by another rule such
as with my_Max or my_Min as also indicated in Figure 3.5. We refer to Section 3.4.4
for more details.

So far, we have seen how computations and conditions can be specified using rules.
However, sometimes it is desirable to react to events, such as a sudden drop in signal
strength. This notification is denoted by an arrow such as in rules 4 and 5. The
link quality condition of rule 3 is used to inform an application about the bad link
quality (rule 6) and to reduce the sending congestion window of TCP connections to
0 (rule 7), i.e., to avoid triggering its congestion avoidance due to data corruption.

Crawler also allows developers to modify or add new rules during runtime. It
recognizes these changes in the configuration and adapts the internal composition of
cross-layer optimizations accordingly. For example, if we want to change the signal
strength threshold, we only need to modify rule 3. We again defer further discussion
on dynamic reconfiguration to Section 3.4.4.

Overall, the choice for a declarative and abstract language provides accessibility for
developers who don’t need to be cross-layer experts. Our language is customized to
cross-layer needs in a way that all necessary functionalities for any kind of cross-
layer interaction can be implemented. For the interested reader, we moved the details
about the syntax of Crawler’s declarative configuration language to Appendix A
as it is not necessary to understand Crawler’s abstraction concept.

However, as already mentioned, the configuration is only an abstract description of
cross-layer interactions that need to be realized. In the following we will explain
how the necessary information to realize the desired optimization is extracted from
the configuration.

42 3. A Generic and Flexible Cross-Layer Architecture

3.4.1.2 Interpreter

In the next step, such high level configurations of cross-layer interactions need to
be transformed into the actual, resulting optimization. To this end, the interpreter
subcomponent of the LC parses the configuration and maps rules to fine-grained
instructions called commands. These commands hold instructions for the CPC on
how to wire and parameterize different functional units FUs to compose a certain
cross-layer coordination process. FUs are special stateful functions that keep their
private variables between calls, and that have a uniform interface that allows to
wire any FU with any other FU. Thus, the uniform interface enables the required
flexibility to achieve the desired cross-layer optimization. Certainly, syntactically
correct but useless compositions of FUs can be created. But as mentioned before
Crawler does not protect from semantical misconfigurations. It is rather a support
for developers to experiment and finalize their optimizations.

To give an example on how rules are mapped to commands that gives instruc-
tions on how to wire FUs, we pickup rule 2 in Listing 3.1. Here, rule 2 is parsed
and the commands createFU(History), addParameter(my_rssi) and addParam-

eter(4) are gained which are then used to parameterize and wire the corresponding
FU History (cf. 3 in Figure 3.5) with the get-FU (cf. 1 in Figure 3.5). The details
about handling commands and the realization of cross-layer interactions are further
explained later in Section 3.4.3.

However, the interpreter also employs filters [BHS07] to debug configurations. For
example, filters can identify redundant rules, cycles in FU compositions or simply
print commands for debugging purposes. For instance, in Section 5.4 we use filters to
automatically detect redundant compositions in independently added optimizations.
Another usage for filters is to print the current FU compositions in the system before
or while optimizations are running. We have included various filters into Crawler
to conduct different tasks while running.

To conclude, the interpreter maps configurations to commands that give instruc-
tions about how to create, parameterize and compose functional units (FUs). The
composition of FUs lead to the specified cross-layer optimizations. Moreover, we
used filters to scan Crawler for predefined conditions in order to conduct specific
operations such as to create the adequate commands from configurations and to
troubleshoot cross-layer optimizations at a very early stage of the development.

3.4.1.3 Repository

The repository keeps track of all the changes in a configuration. As the name sug-
gests, it behaves similar to a revision control system: Each time the configuration
changes, the commands (as created by the interpreter) are automatically committed
as a new revision. As a result, several revisions of a configuration can be stored in
a preprocessed state. The benefit of this is twofold: First, this assists Crawler in
switching between different optimizations without needing to parse the rules again.
In a running system, this allows more efficient switching between preprocessed sets
of optimizations, e.g., if a certain context such as network connection type or certain
power state is available. Second, while designing and testing new cross-layer opti-
mizations, the repository allows the developers to roll back to a previous, well tested

3.4. Architectural Details 43

Battery

O
pe

ra
tin

g
Sy

st
em

 &
 H

ar
dw

ar
e

Sy
st

em
  

co
m

po
ne

nt
s

IP

TCP

Pr
ot

oc
ol

s

GPS

Accelerometer

phy.wlan0.rssi

Stubs

App1 application.app1.voip_var1

transport.tcp.cwnd

WiFi

cwnd

rssi

var1

Set

Get History Avg Less

Min

Max

Timer

 55

200

 4

 bad

Set
 0

Logical Component (LC)

Cross-Layer Processing
Component (LC)

notification
query

alternative query

(1) (2) (3)

(4)

(5)

(6)

(7)

Figure 3.5 A simple cross-layer configuration in Crawler. We change the behavior of the
TCP layer and an application based on signal strength.

and running optimization for debugging purposes. We used the repository very ex-
tensively in Section 5.4 where we continuously monitored the running optimization
in the system to detect and remove redundant (parts of) cross-layer optimizations.

Summarizing, the declarative approach of specifying cross-layer interactions en-
hances the usability and maintainability of Crawler. None of the existing ar-
chitectures simplify the specification of cross-layer optimizations to a degree where
even developers who are not experts can describe cross-layer optimizations. Thus,
because Crawler allows to specify cross-layer optimization at a high level of ab-
straction, it does not impose any system specific requirements on protocol and system
developers. Hence, the collaboration of these three subcomponents of the LC fulfills
our design goal of manageability.

3.4.2 Application Support

In the previous section, we discussed how a cross-layer developer specifies rules to
describe cross-layer optimizations. However, to provide rich application support, we
also need an interface between applications and Crawler. Such an interface allows
developers to enable applications and the OS to work together to make informed
joint adaptation decisions. For example, in a device, this could allow the OS to opt
for a low-power mobile connection for background always-on services and switch over
to a high-speed WiFi connection if the application requires a high-volume streaming
connection. Similarly, an application could request a certain minimum and maxi-
mum required bandwidth and the OS could inform it about the bandwidth to be
expected. The application can then choose a suitable transmission quality.

44 3. A Generic and Flexible Cross-Layer Architecture

Battery

O
pe

ra
tin

g
S

ys
te

m
 &

 H
ar

dw
ar

e

S
ys

te
m

co

m
po

ne
nt

s
Network

Transport

Data Link

Physical

P
ro

to
co

ls

GPS

Accelerometer

Application Application
Application

Logical Component (LC)

Cross-Layer Processing
Component (CPC)

FUs

Commands

(i) Exchanging Parameters

Application
Support

Parameters

(ii) Providing Optimizations

Figure 3.6 Crawler’s application support provides rich interface for developers by providing
two functionalities: (i) accessing system information and sharing variables and (ii) the ability
to provide optimizations on an abstract level.

Crawler provides a rich interface for developers as shown in Figure 3.6. The
interface enables the applications to specify their needs (i) by accessing system in-
formation such as from protocols and sensor and sharing their own information with
the system and other applications, and (ii) by providing own cross-layer optimiza-
tions by providing a high-level abstract configuration, i.e., without needing to deal
with implementation details of the OS or Crawler.

We first describe the former feature by demonstrating how simple it is for an ap-
plication to share its variables and access system information. In a first step an
application has to create a configuration for Crawler in order to realize the neces-
sary cross-layer optimizations to access and share parameters. Let us consider the
following example configuration given in Listing 3.3.

1 my_rssi_is_bad:Less(Avg(History(get("phy.wlan0.rssi ") ,10)) ,55)

2 my_app1_var1_ReadFromApp:get(" application.app1.packetErrorRate ")

3 my_plr_is_bad:Bigger(my_app_var1_readFromApp ,4)

4 is_linkqualityBad:and(my_plr_is_bad ,my_rssi_is_bad)

5 checkLink:if(is_linkqualityBad ,1,0)

6 my_app1_var2_writeToApp:set(" application.app1.linkQuality",checkLink)

Listing 3.3 This configuration shows an application accessing system information (rssi),
sharing a variable with the system (packetErrorRate) and based on both values providing
feedback to the same application by manipulating another variable (linkQuality).

This extract of a configuration presents an example of information exchange between
an application and Crawler. In line 1 the RSSI of a WiFi device is accessed and
the average is compared to a certain threshold, similar to the initial configuration
example presented in Listing 3.1. In line 2 the application parameter packetError-
Rate is accessed and provided to Crawler, for instance, to coordinate protocols
and applications. For example, we have used the RSSI and the packet error rate (ma-
nipulated with netem) to switch the congestion control algorithm of TCP. We refer
the interested reader to Section 4.2 where we present in detail the implementation

3.4. Architectural Details 45

and evaluation of this specific use-case. Similarly, in this example, based on the RSSI
and packet error rate (cf. rule 4 in Listing 3.3) we decide about the presence of a bad
link quality. If rule 5 in Listing 3.3 is evaluated to “1” this indicates bad link condi-
tions, “0”otherwise. Based on that evaluation we inform the application (cf. rule 6 in
Listing 3.3) by setting its specific variable, here application.app1.linkQuality.

After providing such a configuration, applications need to register their correspond-
ing variables in order to facilitate the signaling of states via a system-wide shared li-
brary. This only requires an application to include the library’s header file crawler.h,
provide callback functions to read or write to the application variables, and link
against the library. The interaction between Crawler and applications is per-
formed by the shared library itself. Listing 3.6 shows the few lines of code for an
application in order to interact with Crawler.

1 #include "crawler.h"

2

3 int packetErrorRate , quality;

4

5 int getVariable(ValueD* result) {

6 if (result ->name == PACKETERRORRATE)

7 result ->setInt(packetErrorRate); //lib reads from variable

8 return 0;

9 }

10

11 int setVariable(ValueD* v) {

12 if (v->name == QUALITY)

13 quality = v->getInt (); //lib writes to variable

14 return 0;

15 }

16

17 int main() {

18 /* (...) */

19 callback_ops co = {& setVariable ,& getVariable ,NULL};

20 initializeLibrary(co,APPNAME ,strlen(APPNAME));

21

22 registerVariable(PACKETERRORRATE ,strlen(PACKETERRORRATE),

23 CL_INT ,VAR_READ , VALUEUPDATETIME);

24 registerVariable(QUALITY , strlen(QUALITY),

25 CL_INT ,VAR_WRITE ,VALUEUPDATETIME);

26 /* (...) */

27 addChains(configstr , strlen(configstr))

28 /* (...) */

29 return 0;

30 }

Listing 3.4 Registering an application and two functions via the shared library. Afterwards,
using these two functions, Crawler is able (i) to read a specific variable, here PACKETER-

RORRATE, to allow the application to share its variable with the remaining part of the system,
and (ii) to write to a specific variable, here QUALITY, in order to allow applications the
gathering of information from the system.

First, the header file for the shared library is included in line 1 and the variables (i.e.,
packetErrorRate and quality) that should be accessed by the shared library are
declared in line 3. Afterwards, for each variable that should be readable or writable
by Crawler, a getter or setter respectively have to be implemented. Here, in lines
5-9 a getter is shown that is called by the shared library to read the packet error

46 3. A Generic and Flexible Cross-Layer Architecture

rate from that corresponding application. Similarly, lines 11-15 show the setter that
is called by the shared library to write to the application’s variable quality. In the
main method of the application, first, both callback functions are declared (cf. line
19). Subsequently, the application is registered with both callback functions (cf. line
20). Afterwards, all the specified variables that are accessible by Crawler are
registered (cf. lines 22-25). In particular, the access type, i.e., readable or writeable,
and their update intervals which further specifies the time between accesses are also
defined.

At this time the architecture knows how to access the variables. But nonetheless
the architecture requires instructions about which optimization it should execute.
Therefore, as a next step the optimization or rather the configuration that we de-
scribed above needs to be provided into the system. This can be simply done by
the addChains method offered by the shared library (cf. line 27). From now on the
cross-layer optimization (e.g., as specified in the configuration shown in Listing 3.3)
is injected into the system and Crawler is able to access the variables shared by
that particular application in specified intervals or triggered by the optimization, for
example, based on satisfied conditions such as the bad link condition.

In the following, we present a helper application that demonstrates the simplicity
and power of the shared library.

Helper Application for Monitoring

In order to demonstrate the simplicity and power of our interface, we implemented
a show-case monitoring application that relieves the developer from any configura-
tion efforts and makes the usage for monitoring purposes much more convenient.
This show-case application does not only demonstrate how simple it is to use the
shared library but also provides a ready-made system monitoring application to con-
veniently monitor a versatile set of variables within the OS (around 100 variables).
For example, the monitoring application is called with the sending congestion win-
dow (snd_cwnd) of TCP as an argument as shown in the following listing.

1 $> ./ monitorapp "transport.tcp.snd_cwnd"

Listing 3.5 The monitoring app conveniently allows to monitor divers parameters within
the OS by a simple call in the console.

This simple call starts the application and constantly monitors and logs the desired
variable in a file. By simple exchanging the unique variable name by another name
from the set of variables that we already provide, a different variable in the system
can be monitored. Later in Section 6.3 we show extension to our shared library and
present three further helper applications.

So far, we have seen how applications can share and feed their specific optimizations
into the system. However, the ability to add and terminate these optimizations
during runtime is essential. This is because (i) application specific optimizations are
only known to application programmers and may not be known at system start time,
and (ii) these optimizations are only needed to be employed when the application is
running. We will describe our support for application start / termination or rather
context adaptability in Section 3.4.4. But before understanding how Crawler

3.4. Architectural Details 47

adapts optimizations to certain context, we present how Crawler facilitates the
modification of cross-layer optimizations at runtime which is the prerequisite of
context adaptability support.

3.4.3 Runtime Flexibility & Extensibility

The flexibility of Crawler is associated with how a cross-layer optimization is
composed and modified. Crawler provides a flexible wiring mechanism between
FUs, the basic building blocks of an optimization, to enable developers to experiment
with different compositions of an optimization. Similarly, extensibility deals with
the underlying mechanism employed to access protocol-stack and system-component
information. Crawler provides stubs as an extensible interface between cross-layer
optimizations and the OS.

However, in the previous sections we have seen how rules are mapped to commands
which in turn are instructions to CPC to wire FUs. In the following we present how
we realized the wiring of FUs within the CPC.

3.4.3.1 FU Wiring

FUs possess two properties which form the basis for dynamic reconfigurability and
adaptability of cross-layer optimizations.

First, FUs are stateful functions that maintain a record of the data and provide
results based on that record each time they are called. In contrast to stateless
functions, whose output only depend on the input and the global state of the system,
each FU keeps its private state (variables) as long as Crawler runs, much like an
object in an object-oriented language. The output of an FU therefore depends on
input, global system state, and private state of the FU. For example, every instance
of History keeps its collected values between calls. As long as a configuration does
not delete FUs but only changes their wiring, they will keep their current state and
collected information.

Second, FUs share a unified interface so that they can be flexibly wired with each
other. For example, by changing rule 3 in Listing 3.1, we can exchange the Avg

FU in Figure 3.5 with Min or Max at runtime due to the uniform interface, and still
use the collected data from History. This is because a change in the wiring does
not re-instantiate all FUs. This opens up new possibilities especially for developers
to utilize already established cross-layer optimizations. For example, an application
can exploit already collected information such as localization information to provide
future predictions based on past and recent data. However, the uniform interface
of FUs also facilitates easy extension as newly designed FUs can easily be wired
with the existing ones. Crawler supports two mechanisms to wire FUs, queries
and events. Both types together cover the full range of information retrieval and
aggregation to design any kind of cross-layer signaling.

Query-based Signaling: The query interface allows to explicitly request informa-
tion. If the query interface of an FU is called, it returns the result to the inquiring
FU. The query result of an FU may depend on the result of further FUs, leading

48 3. A Generic and Flexible Cross-Layer Architecture

FuncPre Succ
Query
Information flow

(1) (2) (3)

(6) (5) (4)
(a) Generic example of a query-based signaling: (1) Func-FU receives a query from predeces-
sor Pre-FU, (2) Func checks its current state, (3) this might lead to cascading queries, here,
Func queries successor Succ-FU, (4) Succ answers to Func, (5) based on Succs return value,
Func computes its own return value, and (6) Func answers it result to predecessor Pre-FU.

Func
N

Succ
Query
Information flow

(1) (2) (3)

(4) X
Notification

(b) Generic example of a event-based signaling: (1) event from notifier (2) check current
state (3) query (multiple) Succ FUs (4) notify interested FUs

Figure 3.7 FU wiring

to cascading queries. In case of providing the most up-to-date values, this is the in-
tended behavior. In Section 3.5.2 we show benchmark test for the architecture that
demonstrate that performance influences are practically not noticeable. However, to
reduce the computational overhead, we suggest that each FU can cache its previously
returned value and set a validity time for it. For example, on a query the History-
FU returns immediately its collected and stored values instead of recollecting them.
Thus, in case of a new incoming query, the FU can then decide to return the cached
value or recompute a new one. Incorporating caching has to be implemented by FU
developers as they know best about what to cache and how long these values are
valid, i.e., the time to provide useful and reasonable results. However, Figure 3.7(a)
describes the concept of our query-based signaling between three FUs. (1)The FU
Pre queries the FU Func. (2) Func checks the validity of its return value. Here we
assume that the validity time for its return value has expired, therefore (3) Func

queries Succ. (4) Based on the return value of Succ, (5) Func computes its own new
return value and updates its validity time correspondingly. Finally, (6) Func sends
the result to the predecessor FU Pre. An example composition of FUs utilizing the
query interface is also shown in Figure 3.5. Less queries Avg for an average of RSSI
values provided by History.

Event-based Signaling: The query-based interface for compositions between FUs
results in a polling architecture. To avoid unnecessary polling and to allow to react
to sudden events, Crawler also supports an event-driven signaling that notifies
interested FUs about the occurrence of an event, for example a significant change
in a certain value measured by another FU. The notified FU can then act based
on that triggering. In Listing 3.1, triggers that send notifications are defined in
rules 4,5 and 9. Figure 3.7(b) depicts our concept of event-based signaling. (1) The
N-FU notifies the FU Func. This can be, for instance, due to an elapsed timer or
a measured change in a monitored value. (2) Func can now decide to act on that

3.4. Architectural Details 49

notification, e.g., perform a specific calculation and / or (3) query further multiple
FUs, here the Succ-FU is queried. Here again, we suggest that FU developers
should decide how to react on a notification, this could be, for example, the same
behavior similar to an incoming query or could completely differ. In Crawler we
perform for all FU (so far) a query on an incoming notification. However, based
on the configuration further FUs can also be notified, here (4) X-FU is notified. As
an example in Figure 3.5, Timer acts as a trigger to periodically notify History,
which then takes RSSI samples to save it and to provide it to other querying FUs.
Furthermore, Less triggers two stubs (cf. Section 3.4.3.2) to set values in the TCP
layer and the application.

Finally, to enhance the extensibility of the architecture, Crawler also maintains a
toolbox that stores FUs. It helps in reusing generic FUs, such as Timer and History,
or compose more complex FUs, such as a handoff estimation, by combining several
small FUs.

Flexibility of Crawler is achieved with both signaling schemes which allow (i) the
composition of FUs, the building blocks of optimizations, to realize the desired cross-
layer optimization and (ii) their adaptability at runtime. In contrast, extensibility
requires mechanisms to adapt to evolving nature of the OS, i.e, new or enhanced
protocols and system-components. Therefore, this mechanisms should avoid depen-
dencies between the cross-layer architecture and the OS. Crawler provides stubs
as an extensible interface between cross-layer optimizations and the OS which we
describe next.

3.4.3.2 Stubs – Accessing Signaling Information

Stubs provide read and write access to protocol and system information. They act
as a glue element between the cross-layer optimizations and the OS. Stubs offer
a common interface and a very fine-grained access to system information: Proto-
col and system variables have their own get and set stubs. Thus, to access the
desired protocol or system variable, stubs need fully qualified, i.e., unique and hi-
erarchical, names. For example, a stub’s name begins with the name of the corre-
sponding layer followed by the protocol name and the variable name, e.g. trans-

port.tcp.congestion_window. As we differentiate between stub for reading and
writing, the interpreter resolves the corresponding stub based on the prepended key-
word get and set. Hence, reading that specific variable can be achieved by specify-
ing in the configuration get(transport.tcp.congestion_window) and for writing
set(transport.tcp.congestion_window) respectively (compare line 1 and 7 in
Listing 3.1). In cases where writing values is not possible, e.g., sensors that pro-
vide read-only variables, stubs with only get functionality can be used such as the
phy.wlan0.rssi” in Listing 3.1.

In Crawler’s runtime the CPC automatically associates set and get FUs with
each stub included in the architecture, as shown in Figure 3.5. However, protocol
information often changes non-periodically and unpredictably as network conditions
change. Because a stub is accessed by Crawler via FUs, these FUs can use the
event-based signaling to notify other interested FUs about any change in protocol
information. This increases the responsiveness of rules to changing conditions.

50 3. A Generic and Flexible Cross-Layer Architecture

Data path

TCP
Layer

Stub
HOOK

Set

tcp_set_congestion_control(sock,
 currCongControl)

currCongControl

CRAWLER

tcp_transmit_skb(sock)

(1)

tcp_set_congestion_control()

(2a)

(2b) (3)
(4)

IP Layer

Application
 Layer

Figure 3.8 Stub for changing TCP’s congestion control algorithm works as follows: (1) While
processing a packet in TCP, the function tcp_transmit_skb is called. (2a) Here we hook
into the processing and redirect the processing to the stub. (2b) In parallel (asynchronous),
CRAWLER sets the adequate congestion control algorithm via a Set-FU. (3) Based on the given
value, the congestion control algorithm is selected. (4) Finally, processing continuous.

Figure 3.8 shows an example of a stub that changes TCP’s congestion control al-
gorithm. The basic four steps to change TCP’s congestion control algorithm are as
follows: (1) After receiving and processing a packet from the upper layer, the func-
tion tcp_transmit_skb is called in TCP right before delivering the packet to IP.
(2a) Here, we inject a hook that redirects the processing to the stub. (2b) The stub
receives the current congestion control algorithm currCongControl from Crawler
via a Set-FU in parallel (asynchronous). (3) If a change in the congestion control
algorithm is requested, TCP’s tcp_set_congestion_control algorithm is called for
a certain socket. (4) Afterwards, the packet processing continues as normal. This
stub is later used in the evaluation (see Section 4.2) to demonstrate a use case of
Crawler.

Overall, stubs allow Crawler to monitor and coordinate a diverse set of protocols,
system components and applications. Moreover, with a unified wiring interface
between FUs, their different types of interconnection, and the ability to reuse and
wire further FUs, a very high degree of extensibility and flexibility at runtime are
achieved in Crawler.

3.4.4 Context Adaptability

Context adaptability is one of the key features of Crawler that allows to (de)activate
cross-layer optimizations when necessary. For example, application support is not
possible with a static set of rules that cannot adapt to application demands. Specif-
ically, application specific rules might not be known at system start time; they have
to be loaded when the application starts and removed when it terminates.

Examples presented so far have been rather static, i.e., the rules specified in the
configuration in Listing 3.1 were available in a central configuration that is loaded
automatically on Crawler’s start and put into effect. But to load cross-layer

3.4. Architectural Details 51

z1 d1

a1
s

my_s

a1

n

m
b1

my_r

r

a2

b2
a

b
c

d

replace (my_r, my_s)

a1

n

m
b1

s

d1

b2

z1
Query
Notify

Figure 3.9 An example of the replace command where a running rule chain my_r is replaced
with a rule chain my_s. The replacement of a rule is difficult, as it requires to rewire some of
the connections of its representing FU, here r-FU. Moreover, connections into r-FU are also
resolved and rewired to the FUs of the new rule my_s.

optimization when a certain context is available, we first need a mechanism for more
control of cross-layer optimizations, i.e., to dynamically add, modify, and remove
rules at runtime. To realize this Crawler provides the following three keywords
that can be used in the configuration:

load(rule name): The rule rule_name is loaded at runtime. This instruction is
needed to add Crawler rules into the system, for instance, in a running system rules
for monitoring a certain variable or several rules realizing a cross-layer optimizations.
Dependencies between rules are automatically satisfied, for instance, if rule_name

references another rules which are not loaded in the CPC they will be also loaded.
For example, load(my_rssi_is_bad) in the configuration defined in Listing 3.1,
will also automatically load my_history_of_rssi. The new rules (including rules
having dependencies) are processed and composed into FU compositions as discussed
in Section 3.4.1.2. Remark, the new FU compositions (described by our rules) can
also be wired with already running FUs which we emphasized in Section 3.4.3.1.

unload(rule name): The rule rule_name is unloaded at runtime. This instruction
allows to remove rules from the system, e.g., if a developer wants to analyze and
compare the system behavior without a specific optimization. The internal handling
of unloading a rule is more complex than loading it since a näıve unloading can result
in unreferenced FUs. To address this problem, Crawler associates a reference
counter with each FU. As an example, unload(my_rssi_is_bad) will also unload
the rule my_history_of_rssi unless it is used by another rule that is not listed in
Listing 3.1. Sometimes there is a demand for keeping some rules. For example, if
we consider again the configuration, the collected values by the History FU can
be used later in time, e.g, an application may need the history of old localization
information and corresponding RSSI values to predict future localization and / or
connection quality values. Hence, if a developer is willing to prevent the automatic
removal of an FU, this could be done by keeping a reference to the FU.

52 3. A Generic and Flexible Cross-Layer Architecture

1 [manual]

2 rssiavg:avg(history(get("wlan0.qual.rssi ") ,10))

3 less1:less(rssiavg ,60)

4 packetLossRate:get("app.switchCwnd.packetLossRate ")

5 less2:less(4, packetLossRate)

6 changeCwnd:and(less1 ,less2)

7 cwndAlg:if(changeCwnd ," westwood","vegas")

8 initPort:set("tcp.activate.outgoingPacketsPort " ,5001)

9 setCwndAlg:set("tcp.cong_control_5001", cwndAlg)"

10

11 [contextEnter]

12 loadOpt:get("app.switchCwnd.loadOpt ")

13 loadOpt ->load(setCwndAlg)

14

15 [contextExit]

16 removeOpt:get("app.switchCwnd.removeOpt ")

17 removeOpt ->unload(ALL)

Listing 3.6 Configuration of an application-specified optimization: TCP’s congestion con-
trol algorithm is changed based on packet loss rate (PLR) and RSSI values. If the PLR is
high and the RSSI is low, TCP’s congestion control algorithm is set from TCP CUBIC to
TCP Westwood. If either of the conditions is not satisfied, the congestion control algorithm
is set back to TCP CUBIC.

replace(rule old, rule new): The rule rule_old is replaced with rule_new at
runtime. Internally the replacement of rules is a difficult task as some connections
within the exchanged FU compositions have to be rewired. Figure 3.9 depicts an
example where a rule chain my_r is replaced by the new rule my_s. As every rule,
even if it is referenced multiple times in the configuration, only has a single corre-
spondent FU representation, all connections and occurrences of the old rule needs
to be resolved and replaced by the new rule. Thus, all the connections of my_r are
re-wired to my_s. In particular following four types of connections indicated with
(a)–(d) in Figure 3.9 have to be resolved: (a) outgoing query connections, (b) in-
coming query connections, (c) incoming notify connections, and (d) outgoing notify
connections.

These three keywords trigger the functionality to add, modify, and remove rules
at runtime. But before using these keywords to automatically load or unload the
adequate set of cross-layer optimizations, it is necessary to provide the ability to
describe and detect the underlying environmental changes.

Consequently, Crawler also provides mechanisms to automatically execute the
rules associated with these three keywords based on context changes such as environ-
mental conditions. For example, Listing 3.6 shows a configuration do demonstrate
how application specified rules are automatically loaded or unloaded at runtime
based on different conditions. Again using keywords, the configuration is divided
into three sections. The [manual] section contains rules that are parsed by the In-
terpreter but are not directly applied in the CPC. [contextEnter] specifies which
rules from the [manual] section should be loaded when a certain condition (also
specified in the form of a rule) is met. Therefore, lines 12 and 13 specify that the
rule setCwndAlg will be loaded when the application sets its variable loadOpt to
true. Note that this configuration will be later used in the evaluation section to
demonstrate the change of the congestion control algorithm of TCP. However, the
section [contextExit] is used in the opposite way compared to [contextEnter],

3.5. Implementation and Architectural Overhead 53

namely to unload rules when a certain condition is met. For example, in line 16 and
17 based on the application’s variable removeOpt all rules are unloaded.

Summarizing, by supplying keywords to load, unload, and replace rules, Crawler
achieves reconfigurability at runtime. Moreover, by using further keywords Crawler
also allows to describe the conditions when a certain context is available and if the
conditions are satisfied, Crawler automatically (un)loads a specified set of cross-
layer rules.

So far, we have presented our four goals of Crawler that answer our research
question of how to enable convenient realization, monitoring and experimentation
of cross-layer optimizations. In the following we discuss implementation details of
Crawler and show benchmarks to highlight its efficient realization.

3.5 Implementation and Architectural Overhead

In this section we discuss the implementation details of the architecture and evaluate
the architectural overhead when running Crawler.

3.5.1 Implementation

We implemented Crawler2 for Linux (kernel 2.6.32). The LC and all its subcom-
ponents are implemented in C++. It runs as a daemon in user space. The CPC
resides in kernel space and is implemented in C. Remember that the CPC realizes
the cross-layer optimizations. Since system components and protocols which we
wanted to coordinate reside in the kernel, we opted to move the CPC into kernel
which reduces the number of expensive context switches between kernel and user
space during runtime. The communication between LC and CPC takes place via
flexible interfaces provided by generic netlink sockets [NAGL10].

To utilize Crawler as an application developer, applications can link against a
shared library that contains all the functionality to interact with the LC. The in-
terface itself uses unix domain sockets. Via these sockets, we transmit information
about changing variable values. They are also used to send application-specific opti-
mization rulesets, such as the one shown in Listing 3.6 and discussed in Section 3.4.4.
Furthermore, multiple running applications can also utilize this interface to allow an
exchange of variables among these applications and Crawler. Although we used
unix domain sockets to realize the inter process communication, in our design we
considered this scheme to be flexible exchangeable.

The wiring between FUs is implemented using a special data type that can contain
characters, integers, boolean values, arrays, and a struct-like compounds of these
types. Each FU can act accordingly to the received type, i.e., slightly different
behavior depending on whether it receives a single value or an array of values. This
has to be considered by the FU developer. So far, we have implemented about 20

2This article focuses on the main features of the Crawler architecture that support our design
goals. The source code and documentation of the whole architecture can be accessed via http:

//www.comsys.rwth-aachen.de/research/projects/crawler/

http://www.comsys.rwth-aachen.de/research/projects/crawler/
http://www.comsys.rwth-aachen.de/research/projects/crawler/

54 3. A Generic and Flexible Cross-Layer Architecture

FUs and 100 stubs, with the numbers growing with every new sample scenario. In
Appendix B we give an overview of available stubs and FUs.

To evaluate the quality of our implementation, in the following we present bench-
marks that verify different aspects of the architecture.

3.5.2 Architecture Overhead

We now measure the runtime overhead of our architecture. During Crawler’s
runtime, the CPC, provides two main functionalities: (i) registering and wiring FUs
and stubs, (ii) signaling between FUs and stubs to access protocol and component
information. The registration of FUs and stubs is not time-critical since this only
happens when a new optimization is loaded into the system. During the registration,
each newly created FU and stub is checked to prevent duplicates. This has a runtime
of O(n) + O(m) where n and m are the number of already existing FUs and stubs,
respectively.

Query-based and event-based signaling (cf. Section 3.4.3.1) play a vital role in de-
termining the processing overhead of Crawler. To measure this, we use a simple
benchmark of several wired Forwarder FUs. These do not contain any complex
logic: they simply relay the query to the next FU. The idea here is to keep the
complexity of the FUs as low as possible to measure the signaling overhead between
FUs.

Figure 3.10(a) shows the results for both of the signaling mechanisms of Crawler
when compared with a standard Linux function call (note the logarithmic scale on
both axes). We created chains of Forwarder FUs of different lengths, from one to
one thousand chained FUs. Afterwards, we measured the CPU cycles required to
traverse all Forwarder FUs, repeating each benchmark 100 times. The results show
that query-based and event-based signaling mechanisms introduce an overhead of a
factor 2.1 and 2.8 when compared with native Linux function call, respectively. This
can be mainly be attributed to locking mechanisms that protect the FU’s states from
concurrent access. We can clearly see that our two signaling schemes induce little
overhead which increases linearly with the length of the chains. Thus, the overhead
that our FUs and their composition create is negligable.

Furthermore, this processing overhead does also not increase the processing time of
network packets. To show this, we connect two notebooks via a Gigabit Ethernet.
The sender notebook runs the Crawler implementation with an optimization that
changes each outgoing packet by manipulating the TTL field of the IP header. The
second notebook ran an Iperf server [TQD+04] to create an endpoint for the first
notebook that was running the Iperf client. We configured optimizations consisting
of the following two rules: Rule 1 creates a chain of Forwarder FUs of different
lengths. At the end of this FU chain, we added a simple FU that incremented an
integer value. Rule 2 registers a netfilter hook in the IP output path that sets the
TTL to that value. We successively increased the amount of UDP traffic via Iperf.

The results for our benchmark are shown in Figure 3.10(b) which clearly highlight
that the length of rule chains does not contribute noticeably to the per-packet pro-
cessing time. For comparison, we added a measurement of Iperf traffic generation

3.5. Implementation and Architectural Overhead 55

100 101 102 103

Number of composed FUs

103

104

105

106

107

CP
U

cy
cl

es

Query-based Signaling
Event-based Signaling
Function Call

(a) Signaling overhead for query-based signaling and event-based signaling

0 200 400 600 800 1000
Bandwidth [Mbits/s]

0

200

400

600

800

1000

1200

CP
U

cy
cl

es

Crawler, 1000 FUs
Crawler, 100 FUs
Without Crawler

(b) Packet processing duration within the protocol stack

0 200 400 600 800 1000
Generated traffic [Mbits/s]

0

200

400

600

800

1000

M
ea

su
re

d
th

ro
ug

hp
ut

 [M
bi

ts
/s

]

Crawler, 1000 FUs
Crawler, 100 FUs
Without Crawler

(c) Measured throughput for different FU composition sizes

Figure 3.10 Performance measurements of Crawler. (a) The signaling overhead has a linear
increase of CPU cycles with increasing amount of wired FUs. (b) As Crawler’s rules run asyn-
chronously, packet processing time is independent of the amount of wired FUs. (c) Likewise,
throughput is not influenced.

56 3. A Generic and Flexible Cross-Layer Architecture

without Crawler running at all which we refer to as ”Without Crawler”. The
curves of our results for all three cases show a similar behavior with Crawler only
utilizing marginal more CPU cycles, independent of the amount of composed FUs.
The only exception occurs for generated bandwidth above 800Mbits/s where inter-
estingly the number of CPU cycles is marginally higher for the case without running
Crawler. We have conducted the benchmark several times which always lead to
the same behavior. We assume that the case are differently affected by the mem-
ory management of the OS providing an marginal advantage for the case running
Crawler. However, our results reflect the fact that Crawler works asynchronous
to packet processing. That is, stubs accessing information in the system are not
blocking the packet processing. In particular, the value of a variable that is being
accessed by the stub is copied and Crawler works only on the copied version of the
variable. In case of a setter stub it writes the values back to the original variable.
Therefore, the packet processing is not affected. For details, we refer to Section
3.4.3.2.

This fact is also underlined in Figure 3.10(c) which depicts the throughput measure-
ments for the same experiments. We see that even with a huge amount of wired
FUs, the throughput is not significantly affected. Both of these results also un-
derline, asynchronous packet processing is the right mechanism towards an efficient
cross-layer architecture.

Overall, these results conclude that, while Crawler introduces processing overhead,
this overhead does not deteriorate network performance in terms of throughput and
packet processing time.

3.6 Conclusion

In this chapter we have presented Crawler, a cross-layer architecture for wireless
networks that enables flexible and versatile adaptation of protocols, system com-
ponents, and applications. We described the architecture following a goal-driven
description which lead to the following four contributions of this thesis.

First, we presented Crawler’s manageability contribution which enables conve-
nient and systematic cross-layer development. In particular, we have introduced
a declarative rule-based language to specify cross-layer optimizations. Specifically,
the abstraction level of the declarative language does not impose any system specific
requirements on protocol and system developers, consequently, even non-domain
experts can specify cross-layer optimizations. After providing a configuration, the
cross-layer coordination processes are mapped to module compositions which enables
software engineering principles such as maintainability and extensibility.

Second, Crawler provides a rich interface for application developers which we re-
fer to as application support. The interface allows application developers to benefit
from two functionalities. On the one hand, it allows applications to access protocol
and system component information and to share their own information with pro-
tocols, system components and other applications. On the other hand, it enables
applications to provide their own cross-layer optimizations by feeding a high-level
abstract configuration into the system.

3.6. Conclusion 57

Third, Crawler’s degree of flexibility and extensibility contribution is the necessary
basis for convenient and rapid experimentation with different set of protocols, system
components and applications. In terms of flexibility, Crawler allows developers to
add, remove and modify cross-layer optimizations at runtime which is achieved by
the ability to map configurations to FU compositions. Here, the interface between
FUs is designed in a generic way to enable the reuse and (re)composition of FUs at
runtime. In terms of extensibility, Crawler allows to involve all possible protocols
and system components and their interactions by using our stub concept which
allows the actual read and write access to protocol and system information.

Fourth, by supplying keywords to load, unload, and replace optimizations when a
certain context is available, Crawler’s context adaptability contribution allows
to automatically react to certain network conditions in a device’s environment by
adapting a specified set of optimization, i.e., executing a predefined set of rules
depending upon satisfied conditions (determined by keywords) that are defined by
the developers.

However, after introducing our four contributions, we applied different benchmarks
to Crawler where we showed that Crawler does not deteriorate the network
performance parameters such as throughput and packet processing time. In the
following chapter, we further evaluate Crawler by demonstrating the utility and
correctness of Crawler’s implementation with help of use cases from diverse fields
of networking.

58 3. A Generic and Flexible Cross-Layer Architecture

4
Practical Use Cases and Evaluation
with CRAWLER

This section focuses on how Crawler can be utilized for monitoring, experimen-
tation, and cross-layer adaptation purposes in diverse networking areas. For this
we show five different use cases from different research fields. We first focus on
the classical and well-known cross-layer problem, namely TCP’s congestion control.
In particular, we show two cross-layer optimizations that adapt the behavior of
TCP. Afterwards, we show how we use Crawler to realize a VoIP codec switching
scheme to improve perceived user quality. Finally, we demonstrate Crawler’s ver-
satile monitoring and cross-layer adaptation features on two examples of jamming
detection and reaction.

In particular, for all use cases we mainly highlight the following five aspects:

1. Motivation of the considered scenario and the need for cross-layer coordination.

2. Crawler’s monitoring capabilities to observe varying behavior of applications
and protocols under certain networking conditions in that particular scenario.

3. Proposal of a specific cross-layer coordination idea that takes advantage of
earlier observations.

4. Realization of the cross-layer coordination idea with Crawler. We aim at
highlighting the little effort, simplicity, and convenience to realize the solution
by using Crawler.

5. Validation of proposed cross-layer coordination algorithms by demonstrating
the proper reaction or adaptation to changing (network) conditions. Moreover,
depending on the use case, also the evaluation of the relative improvement
gained with our proposed cross-layer coordination algorithm.

For all use cases we highlight these five steps to demonstrate Crawler’s versatility
beginning with the use case for adapting TCP’s congestion window.

60 4. Practical Use Cases and Evaluation with CRAWLER

4.1 Use Case: Manipulating TCP’s Congestion Win-
dow and Application Behavior

The aim of the first use case1 is to have a rather comprehensible example to under-
stand the interplay between abstract behavior description and concrete realization
in Crawler. For this we observe wireless conditions and based on that adapt the
behavior of TCP and a particular application accordingly.

4.1.1 Motivation

A prominent example associated with cross-layer coordination is TCP’s congestion
control behavior [Yu04]. In particular, in wired networks TCP considers packet loss
as an indication for congestion. In such a case, TCP decreases its sending rate
to avoid more congestion in the network. This behavior performs well in wired
networks, but unfortunately leads to performance drops in wireless networks due
varying link characteristics. In highly dynamic environments, the resources to ac-
cess the shared medium are limited and vary over time. In addition, higher loss
probability is an important issue to handle. In literature many works have shown
that the availability of cross-layer information, such as the information from the link
layer, helps to improve TCP’s performance [Yu04, RSI02, RNS13]. We wanted to
follow a similar approach to improve TCP’s congestion control algorithm in an IEEE
802.11g networks by using Crawler.

4.1.2 Setup and Monitoring

We first implemented two stubs to observe (i) the RSSI given by the Atheros WLAN
card running the ath9k driver [ath] and (ii) the send congestion window ”snd_cwnd”
variable of TCP which is adapted by the sender depending on the number of bytes
the sender can still send without requiring an acknowledgement from the receiver
and the congestion state of the network. Afterwards, we set up two PCs where both
are placed in a small office room but separated by a corridor (20 m range) in the
computer science building E1 located at RWTH Aachen University. One PC was
running Crawler and was equipped with a WLAN network card. The other PC
was placed at the end of the corridor and connected to the router via Ethernet to
avoid the impact of an additional wireless connection. Throughout our experiment,
we ran iperf [TQD+04] to continuously create TCP traffic. Please note that we used
the default settings for generating TCP traffic with Iperf.

We monitored both variables (i.e., RSSI and snd_cwnd). We observed that at certain
RSSI levels the snd_cwnd decreased significantly and started to slowly increase again
for high RSSI values. This type of growth is also known as the slow start algorithm
of TCP [STE97]. The behavior is reflected in Figure 4.1 between 6 and 8 seconds.
Here, even for short drops of the RSSI value, the snd_cwnd is also dropping and
rising after a while.

1The content of this use case is partially based on the joint work with Jens Otten, Florian Schmidt
and Klaus Wehrle published in“Towards a Flexible and Versatile Cross-Layer-Coordination Architecture”,
29th International Conference on Computer Communications (INFOCOM 2010) [AOSW10].

4.1. Use Case: Manipulating TCP’s Congestion Window and Application Behavior 61

si
gn

al
 s

tr
. [

R
S

S
I]

time [s]

0 5 10 15 20
0

20

40

60

80

100

w
in

do
w

 [s
nd

_c
w

nd
]

0

100

200

300

400

sk
yp

e voice

chat

Figure 4.1 Results from our testing setup. From bottom up: (1) The measured RSSI and
the threshold value of 55. (2) The congestion window, which (on three occasions) is set to
0 when the recent RSSI average is less than the threshold, and re-released when the average
rises again. (3) On top, Skype chat is always available, VoIP is deactivated at low RSSI.

4.1.3 Cross-Layer Coordination Approach

Based on our observation, we defined a fixed threshold for the RSSI values to trigger
two mechanisms if the value falls below that threshold: (i) storing the send conges-
tion window snd_cwnd and (ii) informing a particular application. After the RSSI
values recuperate, i.e., are for a while again above the predefined threshold, we again
trigger two functionalities: (i) restore the stored value of snd_cwnd and accordingly
avoid TCP’s slow start mechanism and (ii) again inform an application.

The reason for informing an application is that we do not only wanted to control
a protocol but also an application at the same time when certain conditions are
satisfied. For this, we used the application Skype, which provides a scriptable API
[Ltd08], and created a shell script to start and stop a UDP voice stream during the
test, which acted as the application endpoint of our cross-layer setup. Note that
the other PC was also running Skype and was connected to a WLAN access point
(having Internet connectivity) via Ethernet and served as the other endpoint of our
connection endpoint. The idea here is (1) to stop the VoIP conversation under poor
wireless link conditions, i.e., RSSI is below a given threshold, (2) send a chat message
to inform the callee about poor wireless link conditions and (3) start the VoIP call
again after recovered wireless link conditions.

4.1.4 Realization with CRAWLER

We already described the configuration of this use case as an introductory example
in Section 3.4.1.1. The used configuration is shown in Listing 3.1 and its graphical
representation in Figure 3.5. We used a stub to read the RSSI value. The His-

tory FU that read the value was triggered every 100 ms by a Timer, and kept the
last four values. IfLess monitored the values, and if the average of these dropped
below a certain threshold (in our case 55), it triggered two notifications. The con-
gestion window of ongoing TCP connections was set to zero (by setting the variable
snd_cwnd in tcp_sock in the Linux kernel), and Skype was notified to stop its VoIP

62 4. Practical Use Cases and Evaluation with CRAWLER

stream, leaving only text chat. If the average increased above 55 again, the conges-
tion window was reset to the previous value, and Skype was allowed to use VoIP
again.

4.1.5 Validation

In Figure 4.1 three marked areas indicate the times where the notifications took
place, roughly between three and four seconds, 12 and 13 seconds, and 17 and 18
seconds. The drop of the congestion windows to zero (caused by a drop of RSSI which
we achieved by putting tinfoils on top of the antennas) and its recovering (after re-
moving tinfoils again) are clearly visible shortly after 13 and 18 seconds respectively.
Furthermore, the uppermost part of the figure visualizes how our signaling stopped
and reactivated voice communication at the same time.

4.1.6 Summary and Discussion

This use case demonstrated how convenient and simple it is to monitor and realize a
cross-layer coordination algorithms by using few lines of our rule-based configuration
language. Based on our observations, we established a cross-layer coordination algo-
rithm that based on a variable from the MAC layer (RSSI) adapted the behavior of
two different layers, namely TCP and application layer. The major effort that was
involved with this use case was the implementation of the stubs. However, we will
see in the next use case the reuse of these stubs. Thus, the implementation effort
for stubs is required only once for a developer, but afterwards they can be reused
several times for different cross-layer coordination algorithms.

4.2 Use Case: Switching TCP’s Congestion Control
Algorithm

In this use case2 we again demonstrate Crawler’s versatility and convenience to
discover behavior and performance differences of TCP. We analyze the performance
of different TCP congestion control algorithms under different link conditions. Based
on our observations, we propose a cross-layer coordination algorithm that based on
available link conditions switches TCP’s congestion control algorithm at runtime and
without reestablishing the connection. This use case again demonstrates the power
of Crawler’s monitoring capability and Crawler’s runtime flexibility feature to
modify protocol behavior. Moreover, these use cases demonstrate our application
support feature (see Section 3.4.2) to inject (at runtime) cross-layer coordination
algorithms provided by an application into the system.

2The content of this use case is partially based on the joint work with Muhammad Hamad Alizai,
Florian Schmidt, Hanno Wirtz, and Klaus Wehrle published in ”Harnessing Cross-Layer Design”, Elsevir
Ad-hoc Networks Journal, November 2013 [AAS+14]. The aforementioned journal paper in turn is based
on the joint work with Florian Schmidt, Hammad Alizai, Tobias Drüner and Klaus Wehrle published
in ”Crawler: An Experimentation Platform for System Monitoring and Cross-Layer-Coordination”,
13th International IEEE Symposium on a World of Wireless, Mobile, and Multimedia Networks, 2012
(WoWMoM’12) [ASA+12].

4.2. Use Case: Switching TCP’s Congestion Control Algorithm 63

0 5 10 15 20
Packet Loss Rate [%]

0

2

4

6

8

10

12

14

Go
od

pu
t [

M
Bi

t/s
]

Veno
Vegas
Westwood
Cubic

Figure 4.2 Performance comparison of different TCP congestion control algorithm for varying
packet loss rates.

4.2.1 Motivation

Many congestion control algorithms have been proposed in the past for TCP, such
as Vegas [BP95], Reno [MLAW99], Westwood [MCG+01], Veno [FL03], and CU-
BIC [HRX08]. These algorithms perform differently well depending on environ-
mental conditions and fairness requirements (between different flows). However, we
wanted to analyze how well these algorithms perform under different packet loss
rates (PLR) in a WLAN network.

4.2.2 Setup and Monitoring

Our test setup consists of two PCs. One PC runs Crawler and is equipped
with an 802.11g WLAN card. We use Iperf [TQD+04] to create TCP traffic, and
netem [Hem05] to create different packet loss rates (PLRs) and to produce repeat-
able results in order to stress test our architecture. The other PC connects to an
802.11g WLAN access point and serves as the destination for Iperf traffic. Again,
similar to the previous scenario, the two PCs are placed in a small office room but
separated by a corridor (20 m range) in the computer science building E1 located at
RWTH Aachen University.

However, we model different loss conditions and measure TCP goodput via Iperf. We
monitor four different TCP congestion control algorithms: Vegas, Veno, Westwood
and CUBIC. The results of our test runs are shown in Figure 4.2, where each mark
in the graph corresponds to one test run. All test runs were conducted sequentially
at daytime. While under low packet loss rates all congestion control algorithms per-
form similarly good, at around 4 % PLR and above Veno and Westwood performed
significantly better.

As we observed many different neighboring WLAN networks which might have in-
fluenced our results, we have conducted several test runs and observed always that

64 4. Practical Use Cases and Evaluation with CRAWLER

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 2 4 6 8 10

G
oo

dp
ut

 [M
Bi

t/s
]

netem additional packet loss rate [%]

TCP CUBIC
TCP Westwood

CRAWLER adaptive switching

Figure 4.3 Adapting TCP’s congestion control: The switch from CUBIC to Westwood is
performed at a packet loss rate of 4 %. The error bars represent the 95 % confidence interval
of ten repeated experimental runs. Crawler successfully adapts the TCP behavior.

Westwood and Veno performed better for higher packet loss rates (i.e., 4 % – 12 %).
As the testing effort for all TCP congestion algorithm under different PLRs takes
long time when aimed at collecting enough data for high confidence, we opted for the
two congestion control algorithms CUBIC and Westwood to perform further anal-
ysis. We selected CUBIC since it is the standard congestion control algorithm in
the Linux kernel since 2.6.19 due to its superior performance and fairness properties
under different network conditions. Although we observed that Veno and Westwood
preformed similarly good with high PLRs, we opted for Westwood as it is specifi-
cally developed for wireless communications (such as WLAN), and provides better
throughput under challenging wireless conditions as it not very sensitive to random
errors [CGM+02].

To obtain comparison results, we measured the performance of TCP CUBIC and
Westwood in our specific setup with different PLRs. To also decrease the impact of
neighboring WLAN networks, we measured at night. Due to these additional effects
and the fact that packet losses during a transmission influences the congestion control
behavior, we conducted ten test runs of two minutes for each data point. The results
for both algorithms CUBIC and Westwood are shown in Figure 4.3. It can be seen
that Westwood outperforms CUBIC for high packet loss rates. The variation in
the results (specified by the 95 % confidence intervals) can be attributed to different
environmental conditions observed during the campaign of ten repeated experimental
runs in an indoor environment with several co-exiting WLANs deployments in the
same frequency range.

4.2.3 Cross-Layer Coordination Approach

The goal of this coordination approach is to dynamically switch between the two
different congestion control algorithms CUBIC [HRX08] and Westwood [MCG+01]
depending on the underlying network conditions. Note that the switch should be
conducted at runtime and without reinitializing the TCP connection. In particular,

4.2. Use Case: Switching TCP’s Congestion Control Algorithm 65

Battery

O
pe

ra
tin

g
Sy

st
em

 &
 H

ar
dw

ar
e

Sy
st

em
  

co
m

po
ne

nt
s

IP

TCP

Pr
ot

oc
ol

s

GPS

Accelerometer

phy.wlan0.rssi!

Stubs

App1 application.voip.plr !

tcp.cong_control !
!

WiFi

cong*!

rssi!

plr!

Get

Get History Avg Less
 60 10

Set

Logical Component (LC)

query

Bigger And

 If

True à Westwood
False à CUBIC

 4

Cross-Layer Processing
Component (LC)

Figure 4.4 Graphical view of the TCP congestion control switching scheme: It changes TCP’s
congestion algorithm based on packet loss rate (PLR) and RSSI values. If the PLR is high
and the RSSI is low, TCP’s congestion control algorithm is set from TCP CUBIC to TCP
Westwood. If either of the conditions is not satisfied, the congestion control algorithm is set
back to TCP CUBIC.

it should be monitored whether the packet loss rate and the RSSI value fall below the
specified thresholds. Based on that, TCP should switch from CUBIC to Westwood
congestion control. A switch back to CUBIC should be initiated when the network
conditions improve again, i.e., high PLR and RSSI.

4.2.4 Realization with CRAWLER

The complete configuration is presented in Listing 3.6 and its graphical representa-
tion is shown in Figure 4.4. The configuration specifies that the switch from CUBIC
to Westwood shall be performed when the average RSSI of the last ten values falls
below 60 dBm and the packet loss rate goes beyond 4 (which is a significant PLR
for TCP). The choice of the thresholds was based on observations of several test
runs. However, the configuration including the cross-layer coordination algorithm is
provided by an application and can be activated at anytime through user interaction
at the console by setting a parameter. The stub to change the congestion control
algorithm at runtime is discussed in detail in Section 3.4.3.2 (see also Figure 3.8).

4.2.5 Validation

The effect of this coordination is shown in Figure 4.3 and indicated by Crawler
adaptive switching. Note that a switch at a lower PLR of 3 % could also improve
performance of the optimization. However, as our main goal is to show an exemplary
optimization, the switch at 4 % already highlights its effects.

Figure 4.5 shows our results for a longer experimental run, and also highlights the
possibility to load rules at runtime. For the first 60 seconds, we did not load the

66 4. Practical Use Cases and Evaluation with CRAWLER

TCP = CUBIC
PLR = 10%

TCP = Westwood
PLR = 10%

TCP = CUBIC
PLR = 0%

Figure 4.5 Goodput of a TCP transmission over time under varying environmental conditions
and congestion control algorithms. The cross-layer coordination algorithm is loaded after 60
seconds which triggers the switch from CUBIC to Westwood. The switch back to CUBIC is
triggered when the packet loss rate (PLR) falls below the application-specified threshold of
4 %.

cross-layer coordination algorithm into the CPC, as depicted by the low TCP good-
put achieved during this time. The coordination algorithm is loaded at 60 seconds
which triggers the switch from CUBIC to Westwood and subsequently improves the
goodput. Similarly, at 120 seconds, when we adjusted the PLR with netem below
the 4 % threshold, TCP switches back to CUBIC and thus achieves a consistently
higher goodput.

In addition to our coordination algorithm, we also investigate if our on-the-fly algo-
rithm change produces undesirable side effects. For example, we were interested in
the behavior of TCP’s congestion window (cwnd) across different congestion control
algorithms which could have been affected by our cross-layer coordination algorithm.
To monitor the behavior during the algorithm switch, we monitored the cwnd vari-
able via Crawler’s monitoring application (more details are given in Section 3.4.2
and Listing 3.5) by simply executing monitorapp ’transport.tcp.cwnd’ in the
console. In contrast, a manual setup would require changes to the kernel to in-
troduce hooks and to create an interface to access the collected data. Crawler
relieves the developer from these steps and expedites the testing and monitoring of
variables and setups. With the monitoring application we have not observed specific
side effects, but nonetheless were able to keep track of the variable behavior.

4.2.6 Summary and Discussion

In this use case we dynamically switched between parts of a protocol, namely be-
tween different TCP’s congestion control algorithms, depending on wireless channel
conditions. To achieve this, we used Crawler’s monitoring capability which helped
remarkably to discover the differences in performance for a set of TCP congestion
control algorithms.

4.3. Use Case: VoIP Codec Switching 67

After discovering the relative differences under different link conditions, we were
able to conveniently express the desired cross-layer coordination algorithm. A 15-
line configuration can be used to adapt TCP’s congestion control without the need
of re-initializing the end-to-end connection, which highlights Crawler’s manage-
ability feature (see Section 3.4.1). We also showed that a cross-layer coordination
algorithm can easily be added and removed at runtime, even an application can in-
ject coordination algorithms emphasizing both Crawler’s runtime flexibility (see
Section 3.4.3) and application support (see Section 3.4.2) feature. Note that we can
configure the rules to switch between any congestion control algorithm. Similarly,
we can also modify the thresholds for when to switch congestion control algorithms.
Additionally, we can define when to feed the coordination algorithm into the system,
for instance, on application start or triggered by a user interaction demonstrating
Crawler’s context adaptability feature (see Section 3.4.4).

In addition to our proposed cross-layer coordination algorithm, we utilized the con-
venient monitoring application. Please note that with this monitoring application,
as presented in Section 3.4.2, further parameters such as the congestion control win-
dow (that we also used in the previous use case) can easily be observed with a simple
instruction in the console.

4.3 Use Case: VoIP Codec Switching

In this use case3 we propose a cross-layer coordination targeting only at improving
the application performance defined by the Quality of Experience (QoE) of a user.
The proposed cross-layer coordination improves the user-perceived quality of Voice-
over-IP (VoIP) by automatically switching the codec during a phone call. This
automatic switching is based on the observed network parameters packet loss, jitter,
and bandwidth. These parameters strongly impact the user-perceived quality of a
VoIP call [KP09]. To collect all relevant network parameters, it was necessary to use
the application WBest [wbe] which in turn required a coordination with Linphone
(inter process communication). By using Crawler we show how simple it is to
realize coordination among different applications.

Similarly as in previous examples, after providing some base knowledge about the
problem space, we use the power of Crawler’s monitoring capability to compare
the speech quality of a set of standard VoIP codecs given different network condi-
tions. Subsequently, based on our observations, we propose an adaptive end-to-end
based codec switching scheme that fully conforms to the Session Initiation Protocol
(SIP) standard [RSC+02]. Afterwards, we show how we easily configured Crawler
to achieve the desired cross-layer coordination. Finally, before discussing related
work, our evaluation with a real-world prototype based on Linphone demonstrates
that our codec switching scheme adapts well to changing network conditions, im-
proving overall speech quality.

3The content of this use case is partially based on the joint work with Florian Schmidt, Elias
Weingärtner, Caj-Julian Schnelke and Klaus Wehrle published in ”An Adaptive Codec Switching Scheme
for SIP-based VoIP”, 12th International Conference on Next Generation Wired/Wireless Networking
(New2An’12) [ASW+12] and Caj-Julian Schnelke’s bachelor thesis [Sch11].

68 4. Practical Use Cases and Evaluation with CRAWLER

4.3.1 Motivation

The constantly changing dynamics of wireless and mobile environments are a great
challenge for VoIP communications. Current VoIP software has only limited capa-
bilities to deal with these dynamics. They typically support a number of codecs
that differ in the optimal speech quality depending on prevalent network parame-
ters jitter, packet loss rate and bandwidth. However, these VoIP clients typically
negotiate one single codec for the entire duration of the call. While these codecs
might have the capability of self-adaptation to a limited degree (e.g., by adjusting
their internal codec parameters to increase or decrease redundancy dependent on
marginal network parameter changes), existing VoIP clients abide by their initial
codec choice. Hence, they often apply a codec that is not well suited for the present
network situation although better codec choices would be available. To our knowl-
edge, none of the existing VoIP clients implement an adaptive strategy to switch the
session’s speech codec for changing network conditions.

In the following, we present our test setup and analyze the influence of different
network conditions such as varying packet loss, jitter, and available bandwidth on
the speech quality of four different open codecs.

4.3.2 Setup and Monitoring

In order to objectively evaluate perceived speech quality, we rely on the PESQ
tool [pes, ITU01] that rates perceived quality with a MOS-LQO (mean opinion
score – listening quality objective) score ranging from 1 (bad quality) to 5 (excellent
quality). As reference file, we used the ITU-T test file u af1s03.wav (female voice
speaking two sentences with a short pause between them) [tes]. For VoIP communi-
cation, we employed the VoIP client Linphone [lin] as it is open source, SIP conform
and already offers a fair set of commonly used speech codecs.

Our test setup consists of two notebooks running Linux Ubuntu 10.04 and a router
in between. The two notebooks are connected to the router via a 100 Mbit/s Eth-
ernet connection. A wired connection was chosen to avoid uncontrollable wireless
interference that can impact PESQ-MOS results. The whole test was automated
to achieve repeatability and to conduct manifold tests for credible results. We used
the following four codecs: (1) Speex (8 kHz version), (2) GSM-FR, and G.711, also
known as Pulse Code Modulation (PCM) with its two variants (3) PCMU and (4)
PCMA.

We regard (1) packet loss, (2) jitter, and (3) available bandwidth as the factors
that define the current network condition. We opted for these parameters as they
are known for having a strong impact on VoIP communications [KP09]. All tests
followed the same order. We used netem [net] to insert jitter or packet loss into
the connection, and employed traffic shaping via the token bucket filter [tbf] to re-
duce the available bandwidth. For each combination of codec and a certain packet
loss/jitter/bandwidth, we repeated the experiment one hundred times. One note-
book, the sender, initiates the call and transmits the ITU-T test file via Linphone.
The other notebook, the receiver, answered the call and recorded the audio output.

4.3. Use Case: VoIP Codec Switching 69

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 5 10 15 20 25 30

Li
st

en
in

g
Q

ua
lit

y
[M

O
S-

LQ
O

]

Packet Loss [%]

GSM
Speex
PCMU
PCMA

(a) Influence of packet loss on perceived speech
quality for several voice codecs.

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 50 100 150 200 250 300

Li
st

en
in

g
Q

ua
lit

y
[M

O
S-

LQ
O

]

Maximum Jitter [ms]

GSM
Speex
PCMU
PCMA

(b) Influence of delay jitter on perceived speech
quality for several voice codecs.

Figure 4.6 All codecs are similarly impacted, no benefit achievable by switching codecs.

Figures 4.6(a), 4.6(b), and 4.7 show our results for the codecs GSM, Speex, PCMU
(PCM with µ-law encoding), and PCMA (PCM with A-law encoding) under differ-
ent network conditions manipulated with the help of netem [net] and token bucket
filter [tbf] traffic shaper.

Figure 4.6(a) shows the results for varying packet loss rates that are manipulated
with the help of netem. The results for the different codecs are very close to each
other with no codec having a real advantage over another. As the values above 10 %
packet loss are already too bad for a real communication, codec switching does not
provide any benefit.

Jitter was also manipulated with netem. The performance was tested with a packet
delay following a normal distribution and a maximum variation from ± 20 ms to
±100 ms in 20 ms steps and additionally for ±160 ms, ± 200 ms, and ± 300 ms. The
chosen delay variations ultimately led to packet reordering. Figure 4.6(b) shows
that the limit of the jitter buffer of all codecs is reached roughly between 60 ms and
80 ms. Beyond this point, the speech quality degrades sharply for all codecs, and
their MOS-LQO ratings converge.

In order to limit the bandwidth, we used the token bucket filter. Each audio codec
was tested with upstream bandwidths from 10 kbit/s up to 100 kbit/s in 10 kbit/s
steps. The results can be seen in Figure 4.7. The divergence between the value
reached in 10 kbit/s and the 20 kbit/s test cases of the PCMU and the PCMA codecs
may be due to the extremely low quality output. At these low bandwidth values
output is so garbled due to data loss that quality assessment fails to properly evaluate
the speech. From 20 kbit/s to 30 kbit/s the GSM codec performs slightly better than
the Speex codec. Up from 40 kbit/s until 90 kbit/s, the Speex codec outperforms all
other investigated codecs. After 90 kbit/s the PCMU and the PCMA codecs perform
better than the other. Further tests are not necessary as neither the Speex codec
nor the GSM codec are expected to outperform the PCMU or the PCMA codecs at
higher bandwidths.

The tests demonstrate that with the available set of codecs, bandwidth is the best
characteristic to select a codec, since it shows the highest impact on the quality.
In all remaining cases the codecs behave similarly well, resulting in no need for a
codec change. The experiments also show that the GSM codec can be dropped as

70 4. Practical Use Cases and Evaluation with CRAWLER

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 10 20 30 40 50 60 70 80 90 100

Li
st

en
in

g
Q

ua
lit

y
[M

O
S-

LQ
O

]

Upstream Bandwidth [kbit/s]

GSM
Speex
PCMU
PCMA

Figure 4.7 Influence of available bandwidth on perceived speech quality for several voice
codecs. Codec performance clearly depends on bandwidth, so codec switching depending on
available bandwidth is sensible.

a useful audio codec because it never outperforms the other codecs in any of the
experimented network conditions in a way that makes it reasonable to use.

4.3.3 Cross-Layer Coordination Approach

Even though PCMA and PCMU always perform marginally better than Speex in
the packet loss and jitter tests, we have to consider the low MOS-LQO value of the
two PCM codecs at upstream bandwidths smaller than 90 kbit/s. Here the selection
of Speex as a codec provides a better MOS-LQO value.

As a result, we draw the conclusion that switching between Speex and PCM4 on
available bandwidth is reasonable. In particular, we should use Speex for every
bidirectional bandwidth between 0 kbit/s and 180 kbit/s and PCM above 180 kbit/s.
Note that, since we only investigated a limited set of codecs, this proposed switching
decision is rather simple. The switching scheme proposed in the following will,
however, also work with more sophisticated switching decisions and more codecs.

4.3.4 Realization with CRAWLER

We used the VoIP client Linphone which uses SIP to establish, modify and termi-
nate sessions where two or several more participants are involved [RSC+02]. After
a session is established, the Real-Time Transport Protocol (RTP) is used to trans-
port VoIP data to the participant. RTP is usually used in conjunction with its
helper protocol Real-Time Control Protocol (RTCP) that provides periodic feed-
back about the reception quality. However, to implement a codec switching scheme
using Crawler, we used WBest [wbe] to measure bandwidth during a VoIP session
since Linphone does not offer such measurements. Crawler gets the IP addresses
of a call from Linphone and provides it to Wbest’s bandwidth measurements (cf. line
1 of WBest configuration in Listing 4.1). Similarly, it gets bandwidth measurements

4PCMA or the PCMU codec curves are very similar in all cases, therefore from now on we use only
the term PCM to indicate both

4.3. Use Case: VoIP Codec Switching 71

from Wbest, calculates a sliding window based average, and provides it to Linphone
to initiate an appropriate codec switching (cf. Linphone configuration in Listing 4.2).
Note that the Linphone configuration shows a threshold of 175 for codec switching
which we selected marginally lesser than the threshold 180 in order to avoid unnec-
essary ping pong effects. These two configurations highlight how conveniently we
achieved a cooperation or inter process communication among applications.

1 theIPget:get("app.linphoneapp.theip")

2 theIPset:set("app.wbestappsnd.theip",theIPget)

3 makeMeasureget:get("app.linphoneapp.makemeasure ")

4 makeMeasureset:set("app.wbestappsnd.makemeasure",makeMeasureget)

5

6 theIPget ->theIPset;

7 makeMeasureget ->makeMeasureset;

Listing 4.1 Crawler configuration used by WBest to access the required IP address to
perform bandwidth measurements.

1 appnv:get("app.wbestappsnd.newvalue ")

2 appbwidthget:get("app.wbestappsnd.bwidth ")

3 bwhistory:history(appbwidthget ,3)

4 avgbwidth:avg(bwhistory)

5 appwhich:if(less(get(app.linphoneapp.makemeasure),1),175, avgbwidth)

6 appbwidthset:set("app.linphoneapp.bwidth",appwhich)

7

8 appnv ->bwhistory;

9 appnv ->avgbwidth;

10 appnv ->appbwidthset;

Listing 4.2 Crawler configuration used by Linphone to obtain the bandwidth measure-
ments provided by WBest and to decide when to perform a switch between codecs.

In Figure 4.8 we graphically show the decision graph for our codec selection scheme.
In a first step we have to ensure that we use the best performing codec for the
current bandwidth when we start the call. Since Linphone does not offer a bandwidth
measuring functionality, we used WBest [wbe]. Although this causes longer initiation
time (around 1 second) for a call, we believe that such a short time is not annoying
for a user if it is at the beginning of a call. If the available bandwidth exceeds our
threshold (180 kbit/s), we send out a SIP-INVITE message with PCM as a codec.
If it is smaller than our threshold, we offer only the low bandwidth consuming codec
Speex.

Observing a decrease in the bandwidth is fairly easy. If the codec needs more band-
width than what is available, this ultimately leads to packet loss. RTCP reports
already provide information about packet loss. Packet loss information is directly
accessible from Linphone. If the reported packet loss increases above our threshold
of 10 %, we switch from the high bandwidth consuming codec to the low bandwidth
consuming one.

On the other hand, an increase of available bandwidth is harder to discover. A
packet loss of 0 % does not necessarily mean that we have enough bandwidth to
switch from a codec with low bandwidth consumption to one with a high bandwidth
consumption. So once again we have to use WBest to obtain the currently available
bandwidth. We measure the available bandwidth every 3 seconds as every measure-
ment with WBest generates overhead. This is a good trade-off between reaction

72 4. Practical Use Cases and Evaluation with CRAWLER

Start Measure
Bandwidth

Linphone receives
RTCP report
every second

true

Calculate packet
loss since last

report

SIP re-INVITE
with Speex

false

Measure
Bandwidth every 3

seconds

Calculate average
bandwidth

SIP INVITE with
PCM

true

true

SIP re-INVITE
with PCM

IF average
bandwidth >

threshold

IF packet loss >
threshold

IF bandwidth >
threshold

false

SIP INVITE with
Speex

false

Figure 4.8 Flowchart of the adaptive codec switching scheme.

speed and overhead. When using PCM we do not run WBest because there is no
benefit from finding out whether even more bandwidth is available. To ensure that a
bursty short-term increase in bandwidth does not lead to a premature codec change,
we calculate the bandwidth over a sliding window history of three measurements.
We switch from Speex to PCM conservatively because switching to PCM at a band-
width below 180 kbit/s leads to considerable degradation of the quality and should
be avoided. To coordinate the change with the callee, we used the SIP re-INVITE
message defined in the SIP standard. This message facilitates adding, removing, or
modifying a session.

4.3.5 Validation

We investigate the speech quality achieved by our codec selection scheme. We com-
pare our cross-layer coordination for codec switching with a static use of either Speex
or PCM. To highlight the effects of the switch in either direction, we present two
evaluation cases: a bandwidth increase and a bandwidth decrease situation.

In the bandwidth decreasing case, the bandwidth is limited to 200 kbit/s initially,
and is further reduced to 65 kbit/s after 24 seconds. Conversely, in the bandwidth
increasing case, the available bandwidth is increased from 65 kbit/s to 200 kbit/s
after 24 seconds. We use the same ITU-T test file for all experiments. We loop that
test file six times to create a 48-second test file out of the 8-second sample.

Note that each case was conducted 20 times with each approach (Speex, PCM, and
our codec switch scheme). The total MOS-LQO value for the whole test period of
48 seconds measured by the PESQ tool does not provide a fair comparison method,
since the longer the test file is the lower is the influence of the switching gap from
one codec to another. Therefore, we decided to divide each record to 8 second

4.3. Use Case: VoIP Codec Switching 73

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

0:00-0:08

0:08-0:16

0:16-0:24

0:24-0:32

0:32-0:40

0:40-0:48

Li
st

en
in

g
Q

ua
lit

y
[M

O
S-

LQ
O

]

Time [m:ss]

Adaptive Codec Switch
PCM
Speex

(a) MOS-LQO values for decreasing bandwidth.
At 24s, bandwidth was reduced from 200 kbit/s
to 65 kbit/s, and our scheme switched from PCM
to Speex.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

0:00-0:08

0:08-0:16

0:16-0:24

0:24-0:32

0:32-0:40

0:40-0:48

Li
st

en
in

g
Q

ua
lit

y
[M

O
S-

LQ
O

]

Time [m:ss]

Adaptive Codec Switch
PCM

Speex

(b) MOS-LQO values for increasing bandwidth. At
24s, bandwidth was increased from 65 kbit/s to
200 kbit/s, and our scheme switched from Speex
to PCM.

Figure 4.9 MOS-LQO comparison for our codec switching scheme and pure PCM and Speex
codec in case of changing bandwidth conditions.

chunks and compare those chunks with our original 8 second test file. This has the
further advantage that it also shows the perceived quality over the duration of the
experiment, instead of only one aggregated value.

The results for the decreasing bandwidth case are shown in Figure 4.9(a). As
expected, the speech quality of the Speex codec stays constant throughout the test,
because the bandwidth limitation to 65 kbit/s is still above Speex’s requirements.
On the other hand, PCM shows a strong degradation of quality after the band-
width reduction. Please note how Crawler correctly chooses PCM as the initial
codec. The effect of our codec switching scheme can be clearly seen. The tem-
porary degradation between 24 and 32 seconds can be attributed to two factors.
(1) The bandwidth decrease is detected due to frame losses, which reduces the lis-
tening quality for the time span before the switch takes place. (2) Linphone’s current
implementation reacts to a re-INVITE codec switch with a small playback gap of
about 200ms, which also decreases the perceived quality.

Similarly, Figure 4.9(b) shows the results for the increasing bandwidth case rang-
ing from 65 kbit/s to 200 kbit/s after 24 seconds. Again, Speex’s speech quality
stays constant. PCM benefits from the increased available bandwidth, which leads
to a strong quality improvements after the 24-second mark. Our codec-switching
scheme correctly decides on the better codec to use at any given point in time by
choosing Speex as initial codec, and switching to PCM after the bandwidth change
at 24 seconds. The slight degradation between 24 and 32 seconds can be attributed
to Linphone’s playback gap, which temporarily decreases the perceived quality.

To conclude our evaluation, our test shows that our codec switching scheme selects
the specified codec properly at the beginning and during the communication. In
addition, we can see how it improves listening quality compared to a static codec
choice, except for the short time of the switch itself. Note that we do not expect to
change codecs very frequently, so these evaluation results overemphasize the tempo-
rary quality loss during the switch; in a real setup with long conversations and only
occasional codec switches, the overall quality improvement will strongly outweigh
the short degradations.

74 4. Practical Use Cases and Evaluation with CRAWLER

4.3.6 Related Work

Related work on adaptive codec switching typically focuses on adaptation to de-
grading network conditions, and only discusses adaptation to improving conditions
briefly or not at all. Furthermore, to the best of our knowledge, none of these ap-
proaches provides a solution for choosing the optimal codec at the beginning of the
call. In [CDMM00] the authors suggest to use packet delay as an indicator to select
codecs. Their reasoning is to detect network congestion that way, and to preemp-
tively switch codecs before prohibitively high packet loss occurs. However, their
purely analytical approach does not focus on speech quality as a metric; therefore
it is not clear whether such a switching approach actually would improve quality.
In [NHS05] packet loss is used as an indicator to switch the codec under degrading
as well as improving conditions. However, how and when to infer from low packet
loss that additional bandwidth is available is not discussed. The adaptation to im-
proving conditions is not evaluated either, so this question remains open. Similarly,
the authors of [YCLT08] use packet loss as an indicator for both degrading and im-
proving channel conditions. Furthermore, they propose a handover scheme between
different types of networks (e.g., WiFi and WiMAX) that also takes signal strength
into account. Again, no evaluation for adaptation to improving network conditions
is presented. Both [NHS05] and [YCLT08] employ a SIP re-invite technique similar
to ours. The authors of [MK07] propose an adaptation that combines the goals of
quality and security. They continuously monitor the MOS via a no-reference scoring
algorithm and then decide on which codec to use, whether to introduce additional
forward error correction, and how much security overhead they can introduce with-
out compromising quality. However, the authors do not fully address the increasing
bandwidth case. Moreover, their design has neither been implemented nor tested,
so it is unclear how well their approach would work in reality.

4.3.7 Summary and Discussion

This use case demonstrated a cross-layer coordination algorithm provided by an ap-
plication to improve the user perceived quality of VoIP by automatically switching
the codec during a phone call. To achieve this, we used Crawler’s monitoring fea-
ture to first analyze the speech quality of several standard VoIP codecs for different
network conditions. The results of this analysis showed that bandwidth is the most
relevant metric for perceived quality.

Based on empirical evidence, we designed an adaptive codec switching scheme that
fully conforms to the SIP standard and integrated it into the Linphone [lin] VoIP
client. For the realization we used Crawler to coordinate the two applications Lin-
phone and WBest. Depending on available bandwidth, our adaptive codec switching
scheme performs three tasks: (1) choice of the currently best performing codec be-
fore the actual communication starts, (2) change to a low bandwidth consuming low
quality codec when the packet loss increases, and (3) change to a high bandwidth
consuming high quality codec when the bandwidth increases.

Our evaluation shows that our solution enhances the perceived listening quality
compared to a static codec choice at the beginning of the call. It improves listening
quality compared to a static codec choice, except for the short time required to

4.4. Use Case: Dynamic Adaptation of Jamming Detection and Reaction Strategies 75

perform the switching operation. However, in a real setup with long conversations
and only occasional codec switches, we expect the overall voice quality improvement
to strongly outweigh these short degradations.

4.4 Use Case: Dynamic Adaptation of Jamming De-
tection and Reaction Strategies

With this use case5 we present a powerful and convenient jamming detection and
reaction framework to dynamically (un)load own jamming detection and reaction
strategies which underlines Crawler’s runtime flexibility and extensibility feature.
We used this framework to dynamically coordinate a jamming detection and reaction
mechanism targeting at different layers. In particular, at runtime we feed two differ-
ent cross-layer coordination algorithms into the system provided by an application.
We propose a “näıve” detection strategy for 802.11 systems. Our evaluation demon-
strates, in a real-word outdoor and mobile scenario, how we successfully detect a
jammer and initiate a reaction strategy.

4.4.1 Motivation

The shared nature of the wireless medium enables a special kind of security at-
tacks, the so-called jamming attacks which target at disturbing the communication
sometimes even to a degree where communication is not feasible anymore. Past
and recent research shows the effectiveness of jamming in the context of 802.11 and
802.15.4 systems [BKL+08, PnAG12, XTZW05], as well as in the context of cel-
lular networks [HHT+02, SSC11]. With an increasing demand for (time-critical)
machine-to-machine applications and safety-critical applications in vehicular net-
works, the importance of jamming-detection and according reaction is expected to
increase in the future.

However, to effectively cope with the problem of jamming without costly and special
hardware such as spectrum analyzers, monitoring potential indicators in the system
that react to jamming is a necessity. Such potential indicators can be obtained
at different layers (e.g., packet delivery rate at the application layer and medium
access delay at the MAC layer, among others). Therefore, the use of a cross-layer
architecture such as Crawler can simplify the task of collecting necessary metrics
and, hence, of jamming detection [St̊a00].

Although various metrics for different radio access technologies have been investi-
gated, the field of 802.11 is not much explored. This has historical reasons, since
typically when secure and reliable communication was required, radio access tech-
nologies running on dedicated hardware and bands were used [St̊a00]. Nowadays,
802.11 is widely accepted and is even considered as a relevant technology in mili-
tary scenarios [KSHH04, Shy06]. The broad acceptance of this technology can be
attributed, amongst others, to the simplicity of the technology and wide range of
usage scenarios. But this fact makes the technology also very attractive for jamming
attacks. This motivates the development of a reliable jamming detection approach.

5The content of this use case is partially based on the joint work with Dominik Denissen and published
in his master thesis [Den12].

76 4. Practical Use Cases and Evaluation with CRAWLER

The majority of the proposed strategies [XTZW05, LKP07, SDv10] to detect jam-
ming are customized for a specific jammer in a certain scenario. Consequently, it is
difficult to use those approaches together even though this could help in obtaining
a unified system that can detect the presence of a jammer in an adequate man-
ner [PIK11]. For example, selection of the detection strategy based on the scenario
and the jammer type. Crawler provides a good basis to combine such strategies
as it allows (i) the monitoring of several protocol and system component informa-
tion (see Appendix B), (ii) the convenient design of detection and reaction strategies
by using Crawler’s abstract configuration language, and (iii) the ability to add,
remove and experiment (at runtime) with a set of jamming detection and reaction
strategies for different scenarios and jammer types.

In the following we highlight these features by adapting a popular jamming-detection
approach originally designed for IEEE 802.15.4 to the requirements of IEEE 802.11.

4.4.2 Setup and Monitoring

We aimed at reimplementing the strategy suggested by Xu et al. [XTZW05] as it is
the most widely used approach in the field of jamming detection for sensor networks.
But we wanted to rebuild this strategy for 802.11 by taking advantage of Crawler’s
features of accessing and monitoring parameters in the system. The strategy of Xu
et al. follows a cooperative approach using the packet delivery ratio (PDR) and the
radio signal strength (RSS). All sensor nodes measure their PDR and (cooperatively)
exchange this metric with their one-hop neighboring sensor nodes. Existing traffic
contributes to the PDR and RSS measurements. The detection strategy for this
approach is shown in Listing 4.3.

1 MaxPDR = max{PDR(N): N in Neighbors };

2 IF (MaxPDR <THRESHOLD1) THEN

3 SS = SampleSignalStrength ();

4 IF (SS>THRESHOLD2) THEN

5 Jammer detected;

Listing 4.3 Jamming detection strategy proposed by Xu et al. [XTZW05] using signal
strength consistency checks in 802.15.4 networks.

In a first step, the maximum PDR is selected from the PDR exchange messages that
are continuously exchanged between all neighboring nodes. In a next step, if the
maximum PDR falls below a predefined threshold, a signal strength measurement
is initiated . If the signal measurement exceeds a predefined threshold, the strategy
decides the presence of a jammer. The RSS consistency check helps to differentiate
between a low PDR caused by a large propagation distance, e.g., due to mobility, or
by the presence of jamming.

Although this approach is very practical for sensor networks, we experienced that
it is not practical when directly applied to 802.11 due to how signal strength mea-
surements are obtained. For 802.11 we observed cases where in the presence of a
jammer RSS (or radio signal strength indicator, RSSI6) measurements are not avail-
able. In the following we describe a test setup which highlights the problems and
their causes.

6Note that RSS is not provided by consumer network cards and the RSSI measurements are calculated
differently in each brand.

4.4. Use Case: Dynamic Adaptation of Jamming Detection and Reaction Strategies 77Jammer
detected

 0

 25

 50

 75

 100

MAX PDR
[dBm]

-120

-105

-90

-75

-60

Noise
[dBm]

-90
-75
-60
-45
-30
-15

 0

RSS
[dBm]

(a) Jammer absent.
Jammer
detected

 0

 25

 50

 75

 100

MAX PDR
[dBm]

-120

-105

-90

-75

-60

Noise
[dBm]

-90
-75
-60
-45
-30
-15

 0

RSS
[dBm]

(b) Jammer present.

Figure 4.10 Impact of the pilot jammer on the metrics RSS, PDR, and noise. The jammer is
located next to the node and prevents successful packet transmissions which leads to missing
RSS calculations in IEEE 802.11 network interface cards.

Our test setup consists of two Linux PCs equipped with an 802.11g/n Atheros WLAN
card running the ath9k driver. The two PCs are placed in a small office room with
a distance of one meter in the UMIC building located at RWTH Aachen University.
We let the two PCs build an ad-hoc network and continuously exchange messages
on channel 11 within the 2.4GHz band. We used the jammer as implemented and
described in [PnAG12] which we placed next to the nodes. The jammer is realized on
the Wireless Open-Access Research Platform (WARP) board [12], which provides an
802.11-like OFDM physical layer featuring a 10MHz bandwidth and an output power
of 18 dBm in the 2.4GHz band. In particular we used the OFDM pilot jammer which
targets to jam the four pilot subcarriers of OFDM instead of the whole bandwidth
(for details about the effectiveness we refer to [PnAG12]). We have also implemented
an ad-hoc PDR exchange messaging scheme where all nodes exchange their currently
measured PDR via broadcast with all their neighboring nodes.

Figure 4.10(a) shows the result under normal operation, i.e., when the jammer is not
active. In contrast, Figure 4.10(b) shows the impact of the jammer on our metrics.
After activating the jammer, the PDR dropped from 100 to 0%, RSS measurements
were not available and noise increased from -115 to -100 dBm. The reasons for
missing RSS values is that RSS measurements in 802.11 are coupled with packet
reception. That is, RSS is calculated over the preamble of a packet and if a packet is
not detected due to too low received signal strength or high interference, calculated
RSS measurements are discarded.

78 4. Practical Use Cases and Evaluation with CRAWLER

4.4.3 Cross-Layer Coordination Approach

Based on our observation, our first idea was to decouple the RSSI measurements from
packet reception. We used the ath9k driver and tried to modify the packet coupled
nature, but unfortunately we ended up in the firmware which does not provide the
required interfaces. The firmware of the NIC provides only a RSSI value based on
valid packet preambles. If the NIC considers the transmission as a valid packet,
the driver first normalizes the RSS measurements and subsequently incorporates the
noise floor to obtain the RSSI. In other words, using RSS as a metric is not reasonable
as it is not always available. Fortunately, we observed that noise is strongly affected
in presence of a jammer as also shown in the Figure 4.10(b) and is not dependent on
packet receptions. Therefore, we adapted Xu’s approach to use noise instead of RSS
for consistency checks leading to the jamming detection strategy shown in Listing
4.4.

1 MaxPDR = max{PDR(N): N in Neighbors };

2 IF (MaxPDR <THRESHOLD1) THEN

3 NN = SampleNoise ();

4 IF (NN>THRESHOLD2) THEN

5 Jammer detected;

Listing 4.4 Our näıve jamming detection strategy for 802.11 systems which uses PDR and
noise as consistency check.

So far, we designed a detection strategy that aims at detecting a jammer, but with
Crawler it is also similarly easy to design reaction strategies. After detecting
a jammer for this particular scenario, we informed the headquarter (in the scope
of a NATO project) via an additional (emulated satellite) link about the presence
of a jammer. Moreover, in the project packets with different security classes were
routed differently. Therefore, we labeled the packets at IP layer accordingly. This
required a cross-layer coordination between the application that was responsible for
informing the headquarter and the network layer to label only the traffic of that
specific application.

In the following we present how we realized the jamming detection and reaction
strategy using Crawler.

4.4.4 Realization with CRAWLER

We aimed at realizing a flexible architecture to add and remove jamming detection
and reaction strategies at runtime. One major goal was the separation of detection
and reaction mechanisms. In other words, we wanted to offer flexibility and control
at runtime to load a user-defined set of detection and reaction strategies. Although
Crawler allows to feed cross-layer coordination algorithms from an application
into the system, the structured and convenient handling of these strategies needs to
be provided by the application.

To provide an easy way to handle the set of detection and reaction strategies, we used
the “strategy” design pattern [GHJV95]. This design pattern satisfies the mentioned
requirements. It facilitates to (un)load jamming detection or reaction strategies
during runtime. In addition, to have a notification of reaction strategies by detection

4.4. Use Case: Dynamic Adaptation of Jamming Detection and Reaction Strategies 79

strategies, we used the “observer” design pattern [GHJV95]. Thus, when detection
strategies decide about the presence of a jammer, preregistered reaction strategies
are informed.

However, after implementation, the detection and reaction strategies can simply be
called from the console. Listing 4.5 shows the general syntax for executing jamming
detection and their corresponding reaction strategies.

1 $>./ mainJammingDetection [+/ -/~]s: StrategieName [parameter]

2 [+/ -/~]o: StrategieName ReactionName [parameter]

Listing 4.5 General syntax for the execution of jamming detection and their corresponding
reaction strategies from the console.

The first line enables the start of the main jamming application with a defined set of
different jamming strategies and their parameterization. The second line enables to
load reaction strategies which are assigned to certain strategy names specified in the
first line. A particular example that we have used later in our evaluation is shown
in Listing 4.6.

1 $>./ mainJammingDetection +s: naiveDetection -i wlan0

2 -c 172.16.0.6 -s 172.16.0.255 -t 100

3 +o: naiveDetection perfSonarSoapClient -s 172.16.0.4:8080

Listing 4.6 Particular call for starting our näıve jamming detection and the reaction strategy
to inform the headquarter.

In the first line we load our näıve jamming detection strategy followed by its parame-
terization (e.e.g, IP addresses configurations and information exchange intervals are
needed for the PDR exchange between nodes). In the third line we load the reac-
tion strategy (followed with its parameterization to inform the headquarter with a
specific IP address) and assign it to our näıve jamming detection strategy.

In the following we give details about the detection and reaction strategy, beginning
with the detection strategy.

Our detection strategy required the metrics noise and PDR. Noise was directly
received from the Atheros wireless network interface card with ath9k driver. For the
PDR we used the definition as given by Xu et. al. [XTZW05], that is, the number of
packets received that pass cyclic redundancy check (CRC) divided by the number of
all packets (or preambles) received. Figure 4.11 shows the graphical representation
of our detection strategy.

From the total number of received packets we subtracted the packets from the point
where we started to measure. Similarly we applied to packets having CRC errors.
Afterwards, we subtracted both values from each other to obtain the number of
packets passing the CRC errors. Finally, this value was divided by the number of
received packets from the point starting to measure in order to obtain the PDR.
The PDR is delivered to our message exchange application that broadcasts this
value to other nodes. From all received PDR values the maximum is taken for
detecting the presence of a jammer. Notice that discussions about drawbacks of this
PDR calculation approach will be discussed later. We show the full configuration in
Crawler’s abstract description language in Listing 4.7.

80 4. Practical Use Cases and Evaluation with CRAWLER

Battery

operating system

Network

Transport

WLAN

GPS

Sensors

Applicat
ion Applicat

ion App

battery
motion

TCP.CWND
TCP.RTT

x,y,z

IP.TTL

Stubs

WLAN.pkts

W
LAN.Noise

APP_MAXPDR

APP_MYPDR

APP_Jammed

SET

GET

GET

GET

IF AND

SUB

BIGGER

Counter

LESS

History

SET

GET

DIV

Once

SUB

Once

SUM

1. 2.

1.

2.

2.

SUB

LESS

65

3

1.

-100

WLAN.CRCErr

AVG

Figure 4.11 Graphical representation of our näıve jamming detection. For clarity reasons we
simplified the graphical view. Arrows represent the information flow.

1 [init]

2 Timer:pollingtimer (25)

3

4 NOISE_AVG:avg(NOISE_HISTORY)

5 NOISE_HISTORY:history(NOISE ,3)

6 NOISE:get(wlan0.cfg80211.survey)

7

8 MAX_PDR:get(app.consistencyDetection.maxPdr)

9 PDR:percentdiv(sub(RX_PKTS_INIT ,RX_DROPPED_INIT),RX_PKTS_INIT)

10 RX_PKTS_INIT:sub(sum(RX_PKTS ,1), DO_ONCE2)

11 DO_ONCE2:once(RX_PKTS)

12 RX_PKTS:get(wlan0.ath9k.rx.pkts_all)

13 RX_DROPPED_INIT:sub(RX_DROPPED , DO_ONCE1)

14 DO_ONCE1:once(RX_DROPPED)

15 RX_DROPPED:get(wlan0.ath9k.rx.crc_err)

16

17 TIMEOUT:less(COUNTER ,1)

18 COUNTER:ringcounter ()

19

20 JAMMED:set(app.consistencyDetection.jammed ,EVALUATE)

21 EVALUATE:if(CONSISTENCY_CHECK ,1,0)

22 CONSISTENCY_CHECK:and(CHECK_PDR ,CHECK_NOISE)

23 CHECK_PDR:less(MAX_PDR ,65)

24 CHECK_NOISE:bigger(NOISE_AVG ,-100)

25 SET_PDR:set(app.consistencyDetection.pdr ,PDR)

26

27 TIMER ->NOISE_HISTORY;

28 TIMER ->JAMMED;

29 TIMER ->SET_PDR;

30 TIMER ->COUNTER;

31 TIMEOUT ->DO_ONCE1;

Listing 4.7 Configuration of the näıve jamming detection strategy.

4.4. Use Case: Dynamic Adaptation of Jamming Detection and Reaction Strategies 81

Logical Component (LC)

Manageability

Cross-Layer Processing
Component (CPC)

Runtime
Flexibility and
Extensibility

Context
Adaptability

FUs

Application
Support

Battery

Operating
System

Network

Transport

WLAN

GPS

Sensors

Detection
Strategy

(1) Noise,
CRCErrors,
 #allpackets

(2) ownPDR,
Noise

Reaction
Strategy

(4) jammed

SOAP
Client GPS

Jamming APP

(4) getPosition (6) sendSOAPmessage

(7) addfilterRules

(8) IP header
manipulation

CRAWLER

PDR
Client

(3) PDRothers

Figure 4.12 Abstract description of the notification message exchange process.

The thresholds available in the configuration were selected based on previous ex-
perimentations and observations. However, they are easily adjustable by changing
the configuration. Moreover, due to Crawler’s runtime flexibility and extensibility
feature we enabled an interactive mode in the console to modify the thresholds at
runtime.

The complete processing of our jamming detection and reaction scheme is shown in
Figure 4.12. In a first step, the parameters noise, number of all received packets, and
number of CRC errors is accessed by Crawler (cf. Step 1 in Figure 4.12). While
noise is directly delivered to our jamming application, particularly to the detection
strategy, the number of received packets and CRC errors are used to calculate the
own PDR, i.e., used to exchange with neighboring nodes (cf. Step 2). In a next step
the PDRs from all other nodes are collected by our PDR client (cf. Step 3). After
detection of the jammer by our jamming detection strategy, the reaction strategy
is notified (cf. Step 4). In a scope of a project, it was important to reliably inform
the headquarter about the detection of a jammer and the current location in order
to initiate further counter measurements. Therefore, it was also necessary to gather
the current location from a GPS device (cf. Step 5). We included the location
information into a specified XML exchange format using SOAP-messages (cf. Step
6). In addition, it was necessary to label the created SOAP-messages at the IP-layer
since these specifically labeled packets are treated differently by the routing protocol.
To achieve this, we injected a cross-layer coordination algorithm using Crawler’s

82 4. Practical Use Cases and Evaluation with CRAWLER

NGO Military Jammer

ca. 140m ca. 460m

Figure 4.13 Mobile test scenario conducted in Greding, Bavaria, Germany. The military
vehicle and the NGO were driving along a road, starting around 600m away from the constant
jammer. After approximately 140m, the vehicles reached area affected by the jammer and
further approached the jammer until they reached the it after another approximately 460m.

API (cf. Step 7) in order to filter packets belonging to our jamming application at
the IP layer. In particular, we used the Linux kernel netfilter hooks to modify the
TOS field of IPv6 (IPv4 is also supported) packets and fed them back to the network
stack (cf. Step 8). All outgoing packets in the protocol stack are redirected to this
hook and processed by our stub before transmission, but only those belonging to
our application were modified. We used a satellite link to inform the headquarter.
During our test, shown in the next section, we observed that these packets arrived
successfully at the headquarter.

In the next section, we present results of our näıve jamming detection approach.

4.4.5 Validation

The evaluation of our detection strategy were conducted on a military testing ground
in Greding, Bavaria, Germany. This testing environment was an open space rural
area permitting wireless communication without major disturbances. The testing
scenario was as follows. A military vehicle was instructed to escort a non gov-
ernmental organization (NGO) vehicle in order to protect the NGO vehicle from
enemies using jammers. Both vehicles were equipped with x86 computers running
Vyatta-Linux, Crawler, and our application for jamming detection. The scenario
is sketched in Figure 4.13.

At the beginning both vehicles were outside of the jamming affected area. The NGO
and military vehicles were 20m away from each other and moved along a road at a
constant speed of about 20km/h in direction to the constant jammer. The jammer
used a directional antenna and an additional amplifier of 1W enabling the jammer
to disrupt a wireless communication entirely, up to a distance of at about 460m.
The jammer was hidden next to the road. Throughout the experiment, the vehicles
exchanged ping messages and PDR exchange messages. The ping messages were
secured by ssh connections and should mimic data traffic. Beside this, no further
traffic was generated, neither by surrounding wireless nodes nor by other radio access
technologies. After both vehicles reached the jamming-affected area, our detection
strategy was able to detect the presence of the jammer as shown in Figure 4.14.

The curves of the PDR, Noise, and RSS graphs are very stable outside of the range
of the jammer. Communication was not effected, i.e., all packets sent between

4.4. Use Case: Dynamic Adaptation of Jamming Detection and Reaction Strategies 83

Jammer
detected

 0

 25

 50

 75

 100

MAX PDR
[dBm]

-120

-105

-90

-75

-60

Noise
[dBm]

-90
-75
-60
-45
-30
-15

 0

 0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425

RSS
[dBm]

Figure 4.14 Results of the military vehicle in the mobile test scenario. Both vehicles were 20m
apart and drove with nearly constant speed of 20kmh in direction to the constant jammer.
The jammer was emitting a jamming signal of -13 dBm amplified by 1W.

the NGO and military vehicle could be received. With decreasing distance to the
constant jammer, both vehicles entered the jamming-affected area. This resulted
in an increase of the noise level (-62 dBm at maximum) and in a reduced RSS7 (of
-82 dBm at minimum). Between 325 and 375 seconds we observed a straight line for
the RSS which is caused by the impact of the jammer which fully disturbed packet
transmissions. In such a case, RSS measurements are not available8 and the driver
provides the latest available value. However, the collisions between packets, sent
from the embedded computers inside the vehicle, and the jamming signal caused the
maximum PDR to drop down to 0%. As a result, the jammer was detected and
further countermeasures could be initiated.

In our next experiment, after reaching the jammer, the vehicles stayed in the range
of the jammer for a longer period of time which we refer to as the pause scenario.
Here we gained some new interesting insights as shown in Figure 4.15. After entering
the jamming range, indicated by the red bar, the noise starts fluctuating although
the vehicles did not move. This exhibits a periodic behavior which has also been
observed in [PnAG12] using a constant jammer and an Atheros wireless network card.
Puñal et al. assume that this is caused by ANI [BES05] which probes different noise
immunity configurations (in discrete steps) due to false signal detections. Despite
ANI, the embedded computers were not able to decode received packets correctly or
did not detect packets indicated by the maximum PDR of 0% and the missing RSS
reports. After a while, the vehicles start moving again, increasing the distance to
the jammer. As a result, all monitored values start recovering.

7Note that the RSS also depends on the noise. Therefore, it is reduced in presence of the jammer.
8In case of corrupted packets, RSS measurements are discarded and after a certain amount of time

the data structures for the associated node are set to zero what we will see in the next experimentation

84 4. Practical Use Cases and Evaluation with CRAWLER

Static Phase

Figure 4.15 Results of the military vehicle in the pause scenario . After reaching the jammer,
both vehicles stayed for a longer period of time close to the constant jammer. The jammer
was emitting a jamming signal of -19 dBm amplified by 1W.

4.4.6 Summary and Discussion

To summarize, using Crawler we were able to successfully detect a jammer and
react to it. Crawler enabled to monitor variables and their sensitivity to jamming.
Based on our observations we correlated and manipulated protocol behavior at dif-
ferent layers. Moreover, we built a flexible and convenient framework for developers
to add and remove detection and reaction strategies. The framework further allows
to combine detection and reaction strategies in a way such that certain reaction
strategies are triggered by predefined detection strategies upon detection of a jam-
mer. Our evaluation demonstrated that we are able to successfully detect a jammer
in a real-world mobile convoy scenario and initiate specific counter measures.

Although we have built a very flexible framework for jamming detection and reaction
strategies, our strategy to detect a jammer is rather simple. In the following use
case we suggest an advanced jamming detection scheme that utilizes further metrics
and successfully detects different jammer types in challenging scenarios. Moreover,
we discuss that manual setting of thresholds is a very complex problem and suggest
a solution to handle that problem space.

4.5 Use Case: Machine Learning-based Jamming De-
tection

In this use case9 we provide an advanced solution for jamming detection. The previ-
ous simple jamming detection strategy was implemented as a cross-layer coordination

9The content of this use case is partially based on the joint work with Oscar Puñal, Caj-Julian
Schnelke, Gloria Abidin, Klaus Wehrle and James Gross published in ”Machine Learning-based Jamming
Detection for IEEE 802.11: Design and Experimental Evaluation”, 15th International IEEE Symposium

4.5. Use Case: Machine Learning-based Jamming Detection 85

algorithm which was injected into the kernel space of the OS using Crawler. In
this use case Crawler only serves as a metric provider. In particular, six metrics
are provided via Crawler to a machine learning application that decides about
the presence of a jammer. Thus, we moved the jamming detection decision from
the kernel space to the user-space while offering the same features of our jamming
framework which also highlights Crawler’s flexibility.

4.5.1 Motivation

Reliable detection of a jammer is a crucial task since based on it critical counter-
measures could be initiated. Even if the detection of a jammer is a simple binary
output, i.e., being jammed or not, an accurate jamming detection approach needs
to differentiate equally good between both being jammed (true positive) and not
jammed (true negative) respectively. In other words, an efficient detection approach
needs to separate jamming attacks from “normal” operation such as network conges-
tion, bad channel conditions, and packet collisions to keep false positives and false
negatives low.

However, implementing such a jamming detection approach typically requires many
efforts from a developer. In a first step, a developer has to monitor potential variables
in a system with and without the presence of a specific jammer. Based on her
observations, variables that significantly react to jamming are identified as relevant
metrics. In a next step, the metric combinations and their thresholds have to be
determined. These two steps suffer under the following problems: First, the time
demanding selection of parameters as metrics, the subsequent metric combinations
and their thresholds are highly coupled with the developers capacity to understand
interrelations. Second, “normal” operation conditions such as network congestion,
bad channel conditions, and competing communication further increases complexity
and accordingly interrelations. Differently put, while the observation of a single
parameter is a relative easy task for a human, the holistic understanding for all
constellations of parameters under varying conditions is a difficult task.

In this section we present a machine learning based jamming detection approach
for 802.11 networks which automatically determines the impact of metrics from
a given set of parameters and relieves the developer from the burden of finding
the right set of thresholds independent from the complexity of a scenario. Our
approach accesses parameters from the system by utilizing Crawler which alleviate
the problem of complicated access. The accessed parameters are gathered from
unmodified firmware of commodity hardware. Afterwards, parameters are provided
to our machine learning approach using Random Forests [Bre01] to decide about
the presence of a jammer. We show the high accuracy of our approach in several
scenarios (static indoor and mobile outdoor), with different topologies (good and
challenging bad link conditions) and two jammer types (constant and reactive).

In the following, we present our test setup and analyze the impact of different jam-
mers on selected metrics and discuss their suitability for jamming detection.

on a World of Wireless, Mobile, and Multimedia Networks, 2014 (WoWMoM’14) [APS+14a] and in the
master theses of Caj-Julian Schnelke [Sch13] and Gloria Abidin [Abi13].

86 4. Practical Use Cases and Evaluation with CRAWLER

6 m!

3 m!

(a) Indoor Scenario

50 m!

5 m!

(b) Outdoor Scenario

Figure 4.16 Sketch of the indoor and outdoor scenarios considered throughout the evaluation.

4.5.2 Setup and Monitoring

Our reference scenario is conducted in a small office room located in the UMIC
research centre at RWTH Aachen University. A sketch of this reference scenario
is shown in Figure 4.16(a). We used three Linux PCs equipped with an 802.11g/n
Atheros WLAN card running the ath9k driver [ath]. We let the three PCs build
an ad-hoc network and continuously exchange messages on channel 11 within the
2.4 GHz band10. The distances among the nodes is provided by the sketch.

We wanted to imitate two diverse link conditions which we refer to as the good link
and bad link case. In the good link case, which we consider as an ideal case, the
PCs are placed close to each other and the transmission is parameterized such that,
on average, a high packet delivery rate is achieved. In the bad link case, which can be
considered as the challenging case, the communication can be characterized by a poor
communication performance. This is mainly achieved by selecting a lower transmit
power and/or by adding attenuation elements at the output of the radio front-end.
For each of the cases, we collect data under normal and jammed conditions. In
addition, to vary the impact of the jammer, we place it at different positions and vary
its output power to impact the performance of the communicating nodes differently.

We implement the jammer on the Wireless Open-Access Research Platform (WARP)
board [KCH+08], which provides an 802.11-like OFDM physical layer featuring a
10 MHz bandwidth and an output power of 18 dBm in the 2.4 GHz band. The
jammer signal consists of a preamble and BPSK modulated random payload of
variable length. We used the following two configurations:

Constant jammer: The amount of time that the boards can continuously transmit
a single signal is upper-bounded for the WARP boards. The transmission consist of
successive on and off phases. We measured the on-phase using a spectrum analyzer
to be about 2.7 ms. Between two consecutive signals or on-phases there is a 10µs gap
or off-phase, which is required by the hardware in order to set up a new transmission.

10We opted for channel 11 since during our test it was not occupied by any other network. Nonetheless,
the sporadic impact of neighbor 802.11 communications is not guaranteed.

4.5. Use Case: Machine Learning-based Jamming Detection 87

Reactive jammer: After sensing energy on the channel above a predefined thresh-
old, the reactive jammer starts a transmission. During our test, we set the threshold
to -65 dBm to achieve a sufficiently high jammer sensitivity, while guaranteeing a low
number of false detections, that is, avoid reacting to signals from neighbor 802.11
networks or other sources of electromagnetic activity. The jammer has a total re-
action delay of 12µs. This is fast enough to partially interfere the preamble of the
802.11 signal, which is known to increase the effectiveness of the attack [GWGS07].

4.5.2.1 Sensitivity of Metrics to Jamming

To differentiate jamming from normal operation, the impact of jamming while be-
ing enabled and disabled was analyzed under different conditions. To monitor the
impact, we observed a set of metrics. Compared to the näıve jamming detection
(see Section 4.4) we discovered further metrics. In particular, we investigate a set of
metrics that significantly react to jamming attacks and helper metrics that do not
show a reaction to jamming, but provide further context for an appropriate weight-
ing of other metrics. Our set of metrics was selected based on two main criteria:
(i) we only focus on metrics that are accessible via a common driver of commodity
802.11 network interface cards, (ii) the metrics should behave independent of the
type of traffic exchanged between nodes. For example, we did not use the number of
frame retransmissions although available on common drivers, since this metric re-
quires the use of acknowledged frames when using uni-cast traffic that would not be
available when sending broadcast messages. In the following we discuss and present
the behavior of our six selected metrics in the presence and absence of jamming.
We grouped our metrics due to their functional behavior into three categories: (i)
channel, (ii) performance, and (iii) signal metrics.

Channel metrics: Channel metrics exclusively sample the state of the wireless
channel and are, hence, measured independently from packet receptions. We identi-
fied noise and channel busy ratio (CBR) as relevant metrics. Noise is defined as the
power measured on the channel (in dBm) during idle times of the transceiver [Noi].
Jamming signals that are transmitted while the legitimate nodes are idle (e.g., con-
stant jammer) are likely to be included in the noise measurements of the cards as
shown in Figure 4.17(a). We see that the constant jammer shows a different behav-
ior compared to the no jammer and reactive jammer case. This behavior is similar
with the CBR metric (see Figure 4.17(b)), which measures the time (normalized to
the observation time) that the wireless channel was sensed as busy. The channel is
considered being busy if the received power is measured to be above the clear chan-
nel assessment threshold. However, in the reactive jammer case only little impact
is visible, since the attack is launched once the nodes have already gained medium
access as shown in Figure 4.17(b).

Performance metrics: This type of metrics can only be obtained if a connection
is established between two or more stations. We identify inactive time (IT) and
packet delivery ratio (PDR) as suitable metrics. The IT corresponds to the time
that elapses between two consecutive successful packet receptions, including probing,
beacons, and payload frames. Specifically, we account for the maximum IT at a node
measured over the links to its neighbors. To the best of our knowledge, we are the
first to propose this metric for jamming detection. Figure 4.17(c) shows the very

88 4. Practical Use Cases and Evaluation with CRAWLER

−95 −90 −85 −80 −75 −70

0

0.2

0.4

0.6

0.8

1

Noise [dBm]

D
is

tr
ib

u
ti
o

n
 F

u
n

c
ti
o

n

no jammer

constant

reactive

(a) Noise

0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

CBR [%]

D
is

tr
ib

u
ti
o

n
 F

u
n

c
ti
o

n

no jammer

constant

reactive

(b) CBR

0 2 4 6

x 10
4

0

0.2

0.4

0.6

0.8

1

Max. Inactive Time [ms]

D
is

tr
ib

u
ti
o

n
 F

u
n

c
ti
o

n

no jammer

constant

reactive

(c) MAX IT

0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

PDR [%]

D
is

tr
ib

u
ti
o

n
 F

u
n

c
ti
o

n

no jammer

constant

reactive

(d) PDR

−100 −90 −80 −70 −60 −50 −40

0

0.2

0.4

0.6

0.8

1

Min. Signal [dBm]

D
is

tr
ib

u
ti
o

n
 F

u
n

c
ti
o

n

no jammer
constant
reactive

(e) MIN SIGNAL

−90 −80 −70 −60 −50 −40 −30

0

0.2

0.4

0.6

0.8

1

Max. Signal [dBm]

D
is

tr
ib

u
ti
o

n
 F

u
n

c
ti
o

n

no jammer
constant
reactive

(f) MAX SIGNAL

Figure 4.17 CDFs illustrating the impact of the constant, reactive jammer and the non-
jammed case on selected metrics. Noise is unaffected by the reactive jammer, in contrast to
the constant jammer. The CBR is strongly affected by the constant jammer, while the reactive
jammer has only a marginal impact on it. PDR and max. IT are significantly affected by the
presence of both jammers.

4.5. Use Case: Machine Learning-based Jamming Detection 89

0 20 40 60 80 100

−95

−80

−60

−40

−20

PDR [%]

M
a

x.
 S

ig
n

a
l [

d
B

m
]

No Jammer Constant

(a) Constant

0 20 40 60 80 100

−95

−80

−60

−40

−20

PDR [%]

M
a

x.
 S

ig
n

a
l [

d
B

m
]

No Jammer Reactive

(b) Reactive

Figure 4.18 Application of the consistency check approach on the PDR vs. max. signal
metrics as proposed by Xu et al. in [XTZW05] on the data gathered in the reference scenario.
Samples for jammed and not jammed overlap, which makes a clear threshold identification and
jamming detection impractical in 802.11 networks.

diverse behavior in the presence of both jammers compared to the no jammer case.
As opposed to the other metrics, the PDR is not directly provided by the card.
For its computation, each node is aware of the number of network members in its
hearing range and of a predefined rate for generating probing packets. With that
knowledge, and based on the number of correctly received probing packets, the PDR
can be computed. Figures 4.17(d) shows that PDR also diverges for both jammer
types in comparison to the no jammer case. The clear difference in behavior for
the PDR and max IT from normal operation indicate that both metrics are good
candidates for detecting the presence of jamming.

Signal metrics: Signal is the power measured upon arrival of a packet, but only
passed to higher layers in case of successful reception. The received power (in dBm)
is measured over the preamble of the packet only. We consider this metric as a helper
metric, since it does not show an evident difference in behavior for any of the tested
jammers, however provides a useful context (i.e., link quality) to the PDR and the
max. IT metrics. For example, a low received signal power correlates with a low
PDR even if the jammer is silent. This knowledge is important to appropriately
weigh the significance of PDR and max. IT accordingly. In our experimentation,
instead of collecting a single signal metric (e.g., the average power of the received
packets), we have observed that the differentiation between minimum and maximum
signal is most valuable.

4.5.2.2 Threshold Identification Problem

After finding metrics that react on jamming, the next step is to manually explore
the right thresholds in order to decide the presence of jamming. For this reason,
the behavior of metrics and their correlations have to be analyzed for a certain
scenario. This is a difficult task, since correlations are not simply derivable which
we illustrate with the following example. We applied Xu’s approach [XTZW05] of
a consistency check method where appropriate metrics are used in conjunction to
exploit their correlation. In a first step, we jointly collected samples of PDR, signal
strength and noise power values. We collected these samples in our reference scenario
under normal operation, i.e., without jamming activity, following the description as
proposed in [XTZW05]. These samples correspond to the blue circles as depicted
in Figure 4.18. Subsequently, from all measurements the minimum and maximum

90 4. Practical Use Cases and Evaluation with CRAWLER

measured values are taken as thresholds. Specifically, the thresholds are set such that
99% of the unjammed samples are covered according to Xu et al. In a next step,
we activated the jammer and evaluated how well the thresholds identified a jammer.
Xu et. al. observed in their experiments that the measured values are clearly
separable from normal operation, i.e., below and above thresholds. This worked
fine for their testing scenario and metrics (signal and PDR) gained from 802.15.4
devices. However, for 802.11 in our test scenario we observed a different behavior.
Figures 4.18(a) and 4.18(b) shows a clear overlap of jammed and unjammed samples
in the presence of a constant and a reactive jammer respectively. These overlaps are
an evident hint for inaccurate detection rates.

To conclude, from these figures we derive two major observations: (1) metrics for
jamming detection proposed by related work in the context of general wireless net-
works do not necessarily work well in 802.11 and (2) finding appropriate thresholds
even for only two metrics is already a difficult task. Moreover, we believe that the
combination of multiple metrics will drastically increase the difficulty and make man-
ual threshold setting impractical. This complexity will likely increase in scenarios
where normal operation is harder to separate from jamming such as for concurrent
traffic and hence demanding an mechanism that releases from threshold finding.
Fortunately, machine learning is a well-suited approach for such multi-dimensional
binary (i.e., being jammed or not) classification problems.

4.5.3 Cross-Layer Coordination Approach

We increased the amount of metrics in comparison to the previous jamming detection
approach. Additionally, we used a reactive jammer which is known for being harder
to detect than other jammer types [GLS+13] such as the pilot jammer which we
used in the näıve jamming detection use case. However, by providing our selected
set of metrics from diverse layers, i.e., from the NIC and application layer, to a
machine learning application, we aim at (1) tackling the problem of manual threshold
identification and (2) improving the jamming detection accuracy in general.

4.5.4 Realization with CRAWLER

Our jamming detection approach consists of two phases: (1) the collection of training
data and (2) the application of machine learning on the collected data. The overview
of this interplay is depicted in Figure 4.19.

In the data collection phase input for the machine learning algorithm have to
provided in form of training data. Therefore, our selected metrics need to be accessed
and forwarded to the machine learning component. Relevant information such as
protocol and system information typically resides in the kernel-space of the operating
system (OS). This OS restricted information nonetheless has to be provided to the
user space in order to make it accessible. For convenient experimentation reasons,
i.e., to flexibly include and evaluate the impact of diverse metrics with less effort,
we used Crawler (cf. (1) in Fig. 4.19). With Crawler we collected the values of
our metrics and created an output at the user space of the OS that is usable for the
machine learning algorithm. Note that Crawler already supports the inclusion and

4.5. Use Case: Machine Learning-based Jamming Detection 91

IP

UDP/TCP

NIC
Driver

Information
Exchange

IP

UDP/TCP

NIC
Driver

Machine Learning
App

Noise, CBR, maxIT,
 minSignal, maxSignal, PDR

CRAWLER

N
oi

se
, C

ha
nn

el
 T

im
e,

B

us
y

Ti
m

e,
 S

ig
na

l,

In
ac

tiv
e

Ti
m

e

re
ce

iv.

pa
ck

et
s

Noise, CBR, maxIT,
 minSignal, maxSignal, PDR

 1

3
Machine Learning

App

Information
Exchange 2

CRAWLER
N

oi
se

, C
ha

nn
el

 T
im

e,

B
us

y
Ti

m
e,

 S
ig

na
l,

In

ac
tiv

e
Ti

m
e

re

ce
iv.

pa

ck
et

s

Figure 4.19 Design overview of our detection approach consisting of following three com-
ponents: (1) Metrics are accessed via Crawler and are provided to the machine learning
component. (2) Similarly, the probing client provides the PDR metric. (3) Based on the
gathered data, the machine learning component decides on the presence of the jammer.

logging of many specific metrics as a wide range of accessors to read and write system
information ranging from TCP-IP to our metrics gathered from the WLAN device
have already be implemented. Remark, since the complete Crawler configuration
requires too many rules for monitoring and computation of the diverse metrics, we
skip it here but provide it for completeness reasons in Appendix C.

However, the jamming detection can be based on passively monitoring ongoing trans-
missions, but it can also be enabled to a cooperative mode for collecting feedback
information from other nodes in the network. To achieve this, we implemented a
information exchange component (see (2) in Fig. 4.19). When the information ex-
change component is configured to use the passive mode, nodes generate probing
traffic to enable the computation of specific metrics (e.g., PDR), while in the co-
operative mode the probing packets are further used to exchange information (i.e.,
the detection probabilities) for cooperative detection. We have implemented the
packet exchange in a client-server manner running in the user space of the OS to
measure the PDR as described in Section 4.5.2.1. Each node runs the server and the
client. The client broadcasts UDP packets every 100 ms. These packets have a total
size of 57 Byte (8 bit message type, 16 bit value for cooperative use, and 54 Byte for
protocol headers and CRC checksums). Hence, the broadcast of probing packets
introduces a per-station overhead of about 570 Byte/s. The overhead costs are not a
must, but as we later show in our evaluation, the use of PDR as a metric and coop-
eration among neighboring nodes (by using the reserved 16 bit field for exchanging
prediction probabilities) increases the jamming detection accuracy.

After all metrics are gathered, they are utilized in the machine leaning phase by
a selected machine learning algorithm, namely Random Forests [Bre01], for learn-
ing and later predicting the existence of jamming activity (see (3) in Fig. 4.19).
Random Forests is a learning based heuristic that exploits statistical dependencies
in multi-dimensional decision problems and is known to be superior to most other
(supervised) machine learning methods [Bre01]. Remarkable features are the fast
convergence of the algorithm, the capability to face situations different than the

92 4. Practical Use Cases and Evaluation with CRAWLER

ones observed during training, and the ability to work with missing input variables.
Since the performance of other machine learning approaches and the details about
selected parameterization of random forest is out of the scope of this thesis, we refer
to [Abi13] for more details.

On the training samples reserved for testing, we apply the machine learning algo-
rithm and obtain a prediction probability of a jamming attack. Note that we have
built our framework in way that we are also able to perform an online prediction
by using available training data. In the following, we show the results that we have
achieved with our machine learning-based jamming detection framework.

4.5.5 Validation

On starting our jamming framework, each node broadcasts beacon frames which are
used to form an ad-hoc network. We used the test setup as described above (see
setup for reference scenario in Section 4.5.2). Every second the nodes collect (and
store for learning) the values of the metrics. For each link condition (i.e., good and
bad link) we conducted multiple measurement runs with a duration of 60 s each. In
order to avoid biased learning, we collected the same number of instances for both
with and without jamming activity. We collected a total of 27000 samples, namely
9000 for each jammer and 9000 without jammer. Note that the number of instances
is also evenly distributed among the different link qualities (i.e., good and bad link
quality). From all gathered data, we randomly selected 60% for learning and 40%
for testing. In particular, we conducted this selection 20 times to collect different
subsets of training data in order to avoid biased learning. On the samples reserved
for testing we attained the prediction accuracy. In this conjunction, we differentiate
between the true positive (TP) rate, i.e., the correct detection of existing jammer
activity, and the true negative (TN) rate, i.e., the correct identification that
there is no jammer11. Please not that unless specified differently, our results show
the average detection accuracy together with the 95% confidence intervals. For more
details about Random Forest configuration and setup, we refer to [Sch13].

4.5.5.1 Indoor Detection Accuracy

From our observations four metrics emerged as suitable indicators for jamming activ-
ity. We first wanted to analyze if a subset of these metrics (or even a single metric)
is able to yield a reasonable detection accuracy before using all of them together.
In Figure 4.20(a) we show the detection accuracy achieved in the reference scenario
when using only a single metric for learning. We can see that every metric has the
potential of detecting jamming activity since all TP rates are larger than 50% with
the single exception of the noise metric in case of the reactive jammer. This fact
underlines our previous observations derived in Section 4.5.2. These results clearly
show that relying on a single metric is not sufficient for reliable jamming detection.

In a next step we excluded a certain metric group (signal. channel or performance)
from the whole set of metrics to further analyze the impact of certain metrics.
Figure 4.20(b) shows the obtained detection accuracy with all metrics available in

11Alternatively, false positives or negatives can be achieved as 100% minus TN or TP, respectively.

4.5. Use Case: Machine Learning-based Jamming Detection 93

Noise CBR PDR Max. IT

40

50

60

70

80

90

100

D
e

te
c

ti
o

n
 A

c
c

u
ra

c
y
 [

%
]

TP Constant

TP Reactive

TN Constant

TN Reactive

(a) Prediction accuracy achieved with a single
metric.

All Metrics No Channel No Signal No Performance

80

85

90

95

100

D
e

te
c

ti
o

n
 A

c
c

u
ra

c
y
 [

%
]

TP Constant
TP Reactive
TN Constant
TN Reactive

(b) Prediction accuracy obtained with all metrics in
comparison to when a certain group of metrics is
excluded from learning.

Figure 4.20 Reference scenario detection accuracies. Results emphasize using all metrics
together provides best accuracy for jamming detection.

comparison to when certain metrics or a metric group is missing. As shown, using
all metrics together results in higher detection rates. In particular, the no channel
group (i.e., excluding noise and CBR) yields a high accuracy, although the detection
of constant jammer decreases marginally. When excluding the signal metrics, the
detection accuracy of a reactive jammer decreases significantly which highlights the
relevance of these helper metrics. When we exclude the performance metrics (PDR
and max. IT), this leads to significant accuracy drop for all detection rates high-
lighting the importance of this metric group. This is similar to our observations as
presented in Section 4.5.2. To conclude, although a single metric can be utilized to
some extent for jamming detection, a holistic consideration of all metrics provides
the best performance.

4.5.5.2 Impact of Outdoor Mobility

The aim of the following scenario is to evaluate the impact outdoor mobility. We
conduct a test using three cars in a parking lot within RWTH Aachen University
campus. We place two cars at the ends of a parking lot which are static during
all test runs. The third car is mobile and moves back and forth between the static
nodes reaching a maximum speed of 25 km/h. The jammer is placed close to one
of the static nodes, as shown in Figure 4.16(b). With this scenario we mimic a
convoy scenario that passes a jammer. The wireless link between the two static
nodes is characterized (without jammer activity) by a low PDR of about 40% that
may be even further reduced during the test, e.g., due to the wireless effects such as
shadowing caused by the moving vehicle. Based on the position of the moving car,
the quality of the links varies significantly and we attain PDR values that span the
whole range (from 0 to 100%). We conduct multiple runs of 60 s each and collect a
total of 4500 samples (1500 for each jammer and 1500 without jammer).

Figure 4.21(a) shows the detection accuracy of our machine learning-based approach
in the outdoor scenario (cf. Outdoor Train case). For both jammer types we achieved
high prediction accuracies, while the reactive jammer being the lowest (above 82%).
The reason for having lower prediction accuracies in the outdoor mobility are that
the nodes are differently affected by the jammer. We have observed that the result-
ing accuracy varies significantly from one node to the other. The high prediction

94 4. Practical Use Cases and Evaluation with CRAWLER

Outdoor Train Indoor Train Both Train

0

20

40

60

80

100

D
e

te
c

ti
o

n
 A

c
c

u
ra

c
y
 [

%
]

TP Constant

TP Reactive

TN Constant

TN Reactive

(a) Prediction accuracy outdoor compared to
training indoor data but outdoor prediction, and
mixing both training data for outdoor prediction.

Default Cooperation
80

85

90

95

100

D
e

te
c

ti
o

n
 A

c
c

u
ra

c
y
 [

%
]

TP Constant

TP Reactive

TN Constant

TN Reactive

(b) Comparison of prediction accuracy
without cooperation (default) and with
cooperation (coop) among neighboring
nodes.

Figure 4.21 Outdoor scenario detection accuracies.

accuracy that we have achieved in the mobile scenario indicate that mobility is not
a limiting factor for our approach.

Obtaining training data in outdoor environments requires much effort. Moreover,
it is also very time-consuming (test scenario needs to be continuously monitored)
and costly (hardware needs to be acquired dependent on the scenario complexity).
Therefore, we investigate the reusability of indoor training for predicting the presence
of a jammer in the outdoor scenario as also shown in Figure 4.21(a) as the “Indoor
Train” case. As shown, performing learning without considering wireless outdoor
conditions such as different wireless propagation effects and mobility leads to a
significant drop in accuracy. The TN rates for both jammers suffer a dramatic loss
(fall below 50%). From this observations we derive that it is important to collect
training data samples under different conditions that are likely to emerge during
the scenario being tested. However, in Figure 4.21(a) we show that by combining
training data samples from both scenarios (i.e., from indoor and outdoor), high
TN and TP rates are obtained, which are comparable with the accuracy achieved
with specific in-situ learning. Thus, when collecting and combining training samples
under different conditions high prediction accuracies are achieved with our machine
learning-based jamming detection approach.

4.5.5.3 Cooperation Between Nodes

So far, we have only shown results for the passive mode of our design, i.e., a node
only monitors and decides for its own about the presence of a jammer without
exchanging information with other nodes. We also support an active mode, where
we cooperatively exchange information with other nodes in the network. In this
section we show our evaluation results for cooperative jamming detection, i.e., where
neighboring nodes exchange information about their individually computed detection
rates. This information can easily be delivered within the probing packets without
adding complexity or overhead12. The utilization of the information from neighbors
is very simple in our approach. Every node decides on the presence of a jammer

12Note that detection probabilities of the neighbors are available once they are computed. Hence,
since we detect on a one second basis, there is a mandatory delay of one second that we consider in
our evaluation.

4.5. Use Case: Machine Learning-based Jamming Detection 95

based on the average detection probability across all nodes. Based on the scenario,
the importance of this information might vary. For example, the accuracy of a node
that is being affected by a jammer can decrease when the information of nodes
that are not affected by the jammer (and, hence, forward a low probability for the
presence of jamming) is used. An improvement could be the use of GPS information
to appropriately weigh the probability of the neighbors. Note that such investigation
is out of the scope of this thesis.

Figure 4.21(b) shows the prediction improvements that we achieved in the outdoor
scenario when using the active mode of our framework, i,e., using a cooperative
jamming detection. The prediction rates for both jammers increase significantly,
especially for the reactive jammer where we achieved an improvement of around
14% and 9% for the TP and TN rates, respectively.

In the following, we discuss related work for our jamming detection approaches.

4.5.6 Related Work

Several jamming detection approaches have been proposed in the past few years
for wireless networks [XTZW05, GLS+13, TMS11, TW08, HBOM09]. However,
the majority of these works only evaluate the proposed approaches using simula-
tions [TMS11, TW08] or theoretically [HBOM09]. In contrast, the approach pro-
posed by Xu et al. [XTZW05] and Giustiniano et al. [GLS+13] have been imple-
mented for 802.15.4 and 802.11 respectively. Both of these approaches are focused
on a certain jamming detection strategy for a specific scenario. Non of them offer
for developers a dynamically flexible framework which allows to add and remove
jamming detection and reaction strategies.

Regarding the jamming detection strategy, Xu et al. use a consistency check method
requiring energy measurements together with the packet delivery ratio for jamming
detection. The authors showed that different jammer types (constant, reactive and
deceptive) can be identified. However, their approach is not directly applicable to
802.11 systems since it suffers under following weaknesses when directly transferred.
Energy measurements are not feasible due to the packet coupled nature of 802.11
systems. Furthermore, their PDR calculation scheme which will be influenced by
the rate adaptation of 802.11 networks making both of the metrics less useful for
802.11 systems.

Giustiniano et al. [GLS+13] suggested an approach for detecting only a reactive
jammer and only in direct sequence spread spectrum (DSSS) wireless systems (e.g.,
802.11b/g). The authors characterize the relationship between the chip error rate
measured over the preamble and the actual frame error rate under normal opera-
tion. In cases where the transmission events diverge from the previously charac-
terized behavior, the author assume the presence of a jammer. They implemented
and evaluated their approach on a USRP platform featuring only a DSSS physical
layer. Hence, compared to our approach it does not support all current and future
802.11(a,n,ac) systems which uses a OFDM PHY. Furthermore, the proposed metric
is not attainable by commodity 802.11 devices.

96 4. Practical Use Cases and Evaluation with CRAWLER

4.5.7 Summary and Discussion

We have presented a machine learning-based jamming detection approach for 802.11
systems which reliefs developers from the effort and complexity of finding the right
thresholds for their metrics. In total we investigated the use of 6 metrics including
two novel metrics which we gather from commodity off-the-shelf hardware. We con-
ducted static indoor and mobile outdoor real-world experiments where we achieved
notably high detection accuracy both for true positives and negatives under different
propagation conditions, and for constant and reactive jammer types. Although our
approach is mainly designed in a way that it does not rely on other applications or
information from other nodes in the network, we have enabled a simple cooperative
approach that can be enabled on demand to exchange information with neighboring
nodes. Our experiments show that cooperation significantly improves the detec-
tion accuracy without rising higher transmission overhead. We have implemented
our machine learning-based jamming detection to an extent where we are able to
perform online detection by using available training data from previous test runs.

In contrast to previous use cases, Crawler only served as a metric provider. Thus,
Crawler simplified the access to parameters, prepared them as useful metrics for
jamming detection and forwarded them to another application for jamming detec-
tion.

4.6 Conclusion

In this chapter we have presented different use cases from different fields of net-
working. The use cases demonstrate the use of Crawler as a monitoring and
experimentation tool. In this context, we particularly highlighted the convenience
of Crawler to monitor the system, obtain specific cross-layer coordination ideas
and to rapidly realize these ideas. In particular, the use cases highlight the following
features of Crawler.

The first use case, mainly focused on how to use Crawler for simple access, i.e.,
to read and manipulate parameters residing at different layers and components in
the system. Based on observed RSSI values at the MAC layer, we manipulated the
behavior of the transport layer protocol TCP (i.e., send congestion window) and the
application Skype.

The second use case, aimed to highlight Crawler’s runtime flexibility and extensi-
bility feature. We switched between two different TCP congestion control algorithms
based on wireless link conditions. Moreover, we highlighted the application support
and context adaptability feature, by feeding the cross-layer coordination algorithms
on demand into the system.

With the third use case we focused on improving application behavior or rather user
perceived quality. We proposed an automatic codec switching scheme that based on
the observed network parameters selected the most adequate audio codec. Crawler
was used to provide the necessary network parameters. In this conjunction, it was
necessary to use two different applications and to establish a cooperation between
them which we achieved by using Crawler’s application support feature.

4.6. Conclusion 97

In the fourth use case, using Crawler’s application support and runtime flexibil-
ity and extensibility features, we proposed a very flexible framework for jamming
detection and reaction strategies. This framework allows to conveniently add and
remove jamming detection strategies at runtime. Moreover, upon jamming detection
predefined set of jamming detection strategies could be initiated. In the scope of a
project, we have implemented a jamming detection and reaction strategy. Both the
jamming detection and reaction strategies are realized as cross-layer coordination
algorithms.

In the fifth use case, we proposed an advanced solution for jamming detection. In
this use case we shift the jamming detection from the kernel space to the user space
of the OS which highlights also Crawlers flexibility to realize and move the logic of
cross-layer coordination algorithms to different places of the system. In this use case,
Crawler mainly served as a metric provider for an application that uses machine
learning to decide about the presence of jamming.

98 4. Practical Use Cases and Evaluation with CRAWLER

5
Coping with Multiple Cross-Layer
Coordination Algorithms

In previous chapters, we introduced the cross-layer design paradigm, proposed the
cross-layer architecture Crawler, and by using Crawler presented several cross-
layer coordination algorithms and their benefits. Especially, we have emphasized how
cumbersome the process of designing and realizing of even a single specific cross-layer
coordination is. This is mainly because the protocol stack and drivers controlling
system components are deeply integrated into the operating system which provides
only a few limited interfaces. Moreover development support is missing for adding,
modifying and removing a single specific cross-layer coordination at runtime when
a certain context is available.

However, while the previous chapters primarily focused on designing single specific
cross-layer coordination algorithms, this chapter focuses on the even more difficult
step of designing and experimenting with multiple cross-layer coordination algo-
rithms. In particular, we present a further major contribution of this thesis, namely
by answering our third research question, i.e., how to handle problems caused by
multiple cross-layer coordination algorithms?

The remainder of this chapter is structured as follows. Section 5.1 motivates the
problems that a developer faces when running multiple cross-layer coordination al-
gorithms. In Section 5.2 we elaborate these problems and present two distinct ap-
proaches to tackle them. First, in Section 5.3 we classify the problem of contradicting
cross-layer coordination algorithms and dependent on the problem present different
approaches to support the developer. Second, in Section 5.4 we present the extension
of Crawler to automatically detect redundancies of multiple cross-layer coordina-
tion algorithms without developer interaction. Finally, Section 5.5 concludes this
chapter.

100 5. Coping with Multiple Cross-Layer Coordination Algorithms

5.1 Motivation

Designing a single specific cross-layer coordination is already tedious as emphasized
in previous chapters. We demonstrated how Crawler helps to simplify this pro-
cess. But the process of designing gets significantly worse for multiple cross-layer
coordination algorithms. In particular, while a single specific cross-layer coordina-
tion is developed with the goal to improve the system performance, running several
cross-layer coordination algorithms can lead to unintended problems. Let us consider
two exemplary coordination algorithms. The first cross-layer coordination provides
fine-grained localization information to an application by employing both Wi-Fi and
GPS related information. In contrast, the second cross-layer coordination provides
coarse-grained localization information by turning off GPS related hardware to save
energy. While both coordination algorithms are designed to improve the system
behavior when running exclusively, they may have redundant processing (e.g., parts
of the localization might be similar) or contradicting effects (e.g., accurateness vs.
energy) when running in parallel. Moreover, in this example, the latter case even
negates some processes performed by the former. Accordingly, developers would
highly benefit by having a framework that helps to detect, analyze and resolve such
circumstances.

5.2 Problem Analysis

From the motivation presented in the previous section we derive two major problems
that occur when running multiple cross-layer coordination algorithms in parallel.

Lack of developer support to cope with contradicting cross-layer coordination
algorithms
The ability to add and modify cross-layer coordination algorithms without the
knowledge about existing cross-layer coordination algorithms could also lead to
conflicts, i.e., unintended interdependencies between cross-layer coordination
algorithms leading to peculiar system behavior [KKTC05]. In some cases, even
if the developer knows the set of running cross-layer coordination algorithms,
the unintended interdependencies between multiple coordination algorithms
could become very complex and the source of the conflict hard to detect.
In some cases the only indicator is the performance drop or oscillation of a
certain metric such as throughput. But this could also occur due to other
reasons such as poor wireless conditions and thus increasing the difficulty to
draw conclusions about the real root cause of the performance drop. Therefore,
a tool to experiment with a set of cross-layer coordination algorithms and the
ability to monitor states of cross-layer coordination algorithms and system
variables to analyze to source of conflicts will be beneficial for developers.

Lack of automatic redundancy removal of multiple cross layer coordination
algorithms
We believe that application developers know best about their applications
and the need of cross-layer coordination algorithms to improve them. But
giving application developers the freedom to add or modify running sets of

5.3. Cross-Layer Conflict Detection 101

cross-layer coordination algorithms in the system without even knowing what
is already running in the system might lead to redundant parts of cross-
layer coordination algorithms. For instance, if several applications implement
the same access to localization or protocol information. If each application
provides its own algorithm, we run multiple instances of the same algorithm
wasting CPU and memory over and over again. Accordingly, a mechanism that
is able to automatically detect and resolve these redundancies is beneficial.

In this chapter we discuss both problems in detail and present solutions how to
tackle the problems beginning with cross-layer conflict detection.

5.3 Cross-Layer Conflict Detection

The overall goal of a cross-layer coordination is to improve a performance metric
such as energy, throughput, delay or user perceived quality of service. While we
observed in previous sections that running a single specific coordination algorithm
leads to respective performance improvements, multiple cross-layer coordination al-
gorithms in parallel could lead to unintended contradicting effects resulting in severe
performance degradation. In the cross-layer design domain this problem is referred
to as cross-layer conflicts.

Although cross-layer conflicts are a well-known problem [KKTC05, SM05, Wil08],
the existing cross-layer architectures fail to assist the developers in detecting such
conflicts and in finding the right set of coordination algorithms. In this section,
we classify conflicts and present an architectural extension to Crawler that sup-
ports developers in experimenting and detecting cross-layer conflicts. This archi-
tectural extension provides feedback to developers on conflict detection. Thus,
Crawler helps developers by informing about a problem, but the resolution of
conflicts nonetheless needs to be manually performed by the developer. Fortunately,
by using Crawler this step is supported as developers can easily modify cross-layer
coordination algorithms and experiment if changing sets of cross-layer coordination
algorithms still lead to conflicts. In the following we first classify different types of
cross-layer conflicts before presenting our approach to cope with them.

5.3.1 Classification of Cross-Layer Conflicts

We classify1 cross-layer conflicts into (1) direct conflicts and (2) indirect con-
flicts.

Direct conflicts occur when multiple cross-layer coordination algorithms try to ma-
nipulate the same variable in a certain protocol as shown in Figure 5.1(a). Here,
multiple coordination algorithms try to manipulate a single variable at a certain
layer via a set-FU. Hence, it is possible that two conflicting coordination algorithms
have contradicting effects on the variable possibly leading to the oscillation of a vari-
able, and accordingly, an overall performance degradation or missing the intended

1The content of this and subsequent sections are partially based on Nikolaus Koemm’s Diploma
Thesis [Koe11].

102 5. Coping with Multiple Cross-Layer Coordination Algorithms

Application Application

Network

Transport

Data Link

Physical

P
ro

to
co

l S
ta

ck

Set
Optimization 1

Optimization 2

Application

Variable x

(a) Direct conflicts: Multiple coordination algo-
rithms manipulating the same variable in a certain
protocol.

Network

Transport

Data Link

Physical

P
ro

to
co

l S
ta

ck

Set Optimization 2

Set Optimization 1

Application Application Application

! dependency

Variable x

Variable y

(b) Indirect conflicts: Coordination algorithms ma-
nipulate different variables but nevertheless affect
each other.

Figure 5.1 Conflict classification: direct and indirect conflicts.

goals. For example, an energy related coordination is interested in saving energy by
decreasing the transmission power. Conversely, a connectivity oriented coordination
is interested in keeping long range connectivity by increasing the transmission power.
Hence, when both of these coordination algorithms run in parallel, they could lead
to the oscillation of transmission power and an overall uncoordinated behavior of
the system.

Indirect conflicts are caused by multiple coordination algorithms that influence each
other even though they do not manipulate the same variable. In this case, although
several variables residing in separate protocols are manipulated, they still cause a
functional dependency. This complicates the understanding of the dependencies
and thus their detection. Therefore, indirect conflicts are significantly harder to
detect than direct conflicts. Figure 5.1(b) shows variables of different protocols
being manipulated by different cross-layer coordination algorithms. For example,
two different coordination algorithms try to improve the ARQ error control at TCP
and MAC layers, respectively. Two error control coordination algorithms enabled at
the same time may lead to throughput degradations if not coordinated properly. This
is because each of the ARQ error control schemes may cause additional overhead and
waste capacity of the wireless conneciton which result in throughput degradation.

In the following sections we present extensions to Crawler to detect both conflict
types, beginning with the simpler case of direct conflicts.

5.3.2 Detecting Direct Conflicts

Since in direct conflicts several coordination algorithms compete for the same vari-
able, detecting such conflicts is rather simple. Thus, our first step is to determine
the number of parallel coordination algorithms that are accessing the same variable.
For this purpose, Crawler automatically counts the number of FUs using a set-
FU. Remember that a set-FU is a special FU running in the CPC (in the kernel) of
Crawler and allows to write into a specified system variable. As motivated above,
the manipulation of a certain system variable by set-FUs acquired by different coor-
dination algorithms is a strong indication for a potential conflict. However, since we
assume that the manipulation of a single variable by several coordination algorithms

5.3. Cross-Layer Conflict Detection 103

Set

Op#miza#on	 1	

Op#miza#on	 2	

FRQ +
+ Variable x

(a) Frequency FU FRQ checks if within a time window
a variable is updated too many times.

!

Too frequent changes
within a time window

time
time window

(b) The FRQ FU detects that more than four
modifications are conducted within a time win-
dow.

Figure 5.2 Multiple coordination algorithms try to change the variable frequently within a
specified time interval. Our frequency checking FU FRQ is able to detect and report this to the
conflict monitoring application.

is not a guarantee for conflicts (e.g., when two coordination algorithms with the goal
of energy efficiency turn of the radio) and a subsequent performance decrease, we
implemented the following three special FUs that helps us to understand and detect
direct cross-layer conflicts.

Frequency FU (FRQ): This FU counts the number of accesses to a variable within
a time window (period). The higher the frequency of access to a variable is, the
greater is the probability that many coordination algorithms tried to mutually adapt
this parameter. This could result, for instance, that one coordination algorithm
adapts a variable although it has already been modified by another one leading to
a suboptimal state of that variable for the whole system. Figure 5.2(a) shows how
two different coordination algorithms try to access and manipulate a variable. Each
time a change occurs, the FRQ takes notice. The frequent changes may occur due
to the reason that the coordination algorithms work contrarily. The FRQ can detect
these frequent changes and can, for instance, provide necessary feedback to a conflict
monitoring application or to other FUs. Figure 5.2(b) shows and example where the
FRQ detects too frequent changes within a time window.

Range FU: This FU checks if the variable exceeds values from a certain predefined
range. If, for example, two coordination algorithms increase or decrease a variable
simultaneously, the value of the variable may result in an irrational or undesirable
state and thus leading to misbehavior. Figure 5.3(a) shows two coordination algo-
rithms that are trying to increase a variable which is also monitored and checked
by the Range FU if the changes exceed the predefined thresholds. Figure 5.3(b)
emphasizes when the Range FU considers misbehavior and notifies other FUs or a
monitoring application.

Oscillation FU (OSC): This FU observes if the values of a certain variable are
fluctuating considerably. It has two functions: First, the FU observes whether two
subsequent assignments of a variable deviate beyond a certain predefined margin,
reporting a possible misbehavior. Second, it also provides the ability to measure
the scale of the deviation. For example, if the sampling frequency of the FU is set
too high, then single peaks within a short timeframe are detected as misbehavior
as illustrated in Figure 5.4. In contrast, if the sampling frequency is set to a low
value, then short peaks are not considered but alterations over a longer period can
be detected as misbehavior.

104 5. Coping with Multiple Cross-Layer Coordination Algorithms

Set

Op#miza#on	 1	

Op#miza#on	 2	

Range

+
+

Get
Variable x

(a) Range FU checks if lower and upper thresholds
are violated.

upper threshold

lower threshold
!

!

metric behavior

time

(b) Metric exceeds upper and lower thresholds
which is detected by the Range FU.

Figure 5.3 Multiple coordination algorithms lead to an excessive increase or decrease of a
certain metric. Our range FU checks if the value is unintentionally changed too much resulting
in out of bound increase.

Set

Op#miza#on	 1	

Op#miza#on	 2	

OSC

+
-

Get
Variable x

(a) Oscillation FU checks if a certain metric fluc-
tuates excessively in a certain period of time.

!

metric behavior

time

(b) Metric fluctuates too much in a short period
which is detected by the Oscillation FU.

Figure 5.4 Multiple coordination algorithms causes a certain metric to fluctuate in a short
period of time. Our Oscillation FU checks (i) if the change exceeds certain thresholds too
many times and (ii) checks in which time frame this occurs.

These three FUs assist a developer in detecting possible conflicts when running multi-
ple coordination algorithms and extends Crawler’s set of FUs. To use these special
FUs, similar to the remaining FUs (as introduced in Section 3 and listed in Appendix
B.2), requires to specify a Crawler configuration. Thus, besides using Crawler’s
configuration language for describing rules for cross-layer coordination algorithms,
we also augment the configuration with rules for conflict detection. This process is
similar to writing programming code (i.e, cross-layer coordination algorithms) and
adding debug-information such as assertions (i.e., rules for conflict detection).

In the following we discuss Crawler’s support to detect the more complex case of
indirect conflicts.

5.3.3 Detecting Indirect Conflicts

Indirect conflicts can introduce complex interdependencies among variables of differ-
ent protocol layers resulting in performance degradation in terms of metrics such as
energy, throughput, jitter or delay. To detect indirect conflicts Crawler monitors
metrics (specified by a developer) based on the recently observed network traffic
conditions and application requirements.

Besides observing current network conditions, Crawler also needs first-hand knowl-
edge about the application requirements to determine whether multiple concurrent
coordination algorithms are in conflict with each other. For example, a throughput

5.3. Cross-Layer Conflict Detection 105

decrease during a VoIP call initialization might be irrelevant for a VoIP application
but delay is not. Therefore, the performance requirement of an application is an
essential information to decide if the performance degradation is relevant for de-
tecting a conflict. If performance deteriorates with respect to any of the collected
metrics (i.e., network conditions and application requirements), Crawler notifies
all the registered applications regarding the possible occurrence of a conflict among
concurrent coordination algorithms.

Hence, to find out the relevant metrics, we classify applications. Our classification
is based on the comprehensive QoS based classification in [AR99]. We used this
classification scheme as it provides the details for threshold settings and comprehen-
sibly groups applications. Alternatively it is also possible to use other application
classification schemes.

However, after agreeing on a certain classification scheme, we assume that the class
of the application that it belongs to is given by the application developer as they
know best about requirements. Thus, in our current implementation, the QoS class
of an application is statically determined when the application is registered with
Crawler. We use a specific conflict monitoring application that keeps track of
the registered applications and their classes. It also instructs Wbest [wbe] to probe
and monitor for current network conditions such as bandwidth and delay. After
registration of an application, the conflict monitoring application monitors the rel-
evant conditions for the respective application classes. Even if many applications
are loaded simultaneously, the corresponding rules for monitoring are established
automatically.

5.3.4 Related Work

The problem of cross-layer conflicts have been first described in [KKTC05]. In
particular, the authors describe two coordination algorithms where each lead to
performance improvement when running exclusively. Interestingly, although each of
the two coordination algorithms have been designed to improve the performance,
running both in parallel decrease performance. Many papers [SM05, CMTG04,
Wil08] reference this work by only describing the existence and complexity of the
problem. But to the best of our knowledge, none of them classify the problem space
to the degree that we do and non of them provide solutions to tackle the problem.
Accordingly, we are the first who provide a tool to support developers to experiment
with multiple cross-layer coordination algorithms and to address the problem of
cross-layer conflicts.

5.3.5 Summary and Discussion

We first classified the cross-layer conflicts into two classes, that is, direct and indi-
rect conflicts. Afterwards, we showed how we extended Crawler with debugging
capabilities to support the detection of these two classes of conflicts. To address the
problem of direct conflicts, Crawler automatically counts the number of coordi-
nation algorithms accessing a certain variable. This already provides hints about
potential conflicts. For more advanced and manual debugging, we added further

106 5. Coping with Multiple Cross-Layer Coordination Algorithms

FUs to provide developers sophisticated debugging support. Regarding indirect
conflicts, we extended Crawler with Wbest to monitor network traffic conditions.
Afterwards, based on the observed network conditions and application demands,
Crawler informs all applications about a conflict.

However, for more sophisticated debugging, for instance, in case of indirect conflicts,
again the whole set of FUs and stubs of Crawler can be used to build rules
for conflict detection. Moreover, while experimenting Crawler allows to monitor
several system variables (see Appendix B) which help developers to analyze the
system behavior and to adjust the set of running cross-layer coordination algorithms
to environmental conditions.

5.4 Cross-Layer Redundancy Removal

We believe that since application developers know best about what their applications
need and how to make them fully adaptive, they should have the feasibility to provide
cross-layer coordination algorithms. Moreover, as applications start and terminate
unpredictably (i.e., based on user requirements), adding and removing cross-layer
coordination algorithms at runtime is a further requirement. In such a case the
major problem is, in addition to cross-layer conflicts, that multiple independently
added cross-layer coordination algorithms2 could have common processing states
wasting unnecessary CPU time and memory. For instance, many applications use
localization information which is processed and aggregated over and over again for
each application. Having one instance of that algorithm which many applications
can reuse is reasonable.

In the following we focus on the problem of redundant processing of multiple cross-
layer coordination algorithms and provide first a general graph-based approach that
automatically detects redundant parts of cross-layer coordination algorithms and
removes them from the system. Afterwards, we present the specific implementation
for Crawler which allows to add, remove and change cross-layer coordination algo-
rithms at runtime, and enables third-party application developers to independently
insert their own set of cross-layer coordination algorithms. As a result, Crawler
is notably vulnerable to redundantly running cross-layer coordination algorithms,
which can be detrimental for system performance. Since we believe that cross-layer
architectures should support applications with bundled cross-layer coordination al-
gorithms (as discussed in Section 3.4.2), this necessitate the need for mechanisms
that can detect and resolve redundancies in multiple cross-layer coordination algo-
rithms.

Since Crawler employs module-based3 software development (i.e., modules are
composed together) to realize cross-layer coordination algorithms, redundant parts
of cross-layer coordination algorithms can be found by exploring equal module com-
positions4. To achieve this, our approach iteratively compares each pair of modules

2Note that we explicitly use the term cross-layer coordination instead of cross-layer optimization to
avoid misunderstanding with the term optimization.

3We consider a module as function that contains all the source code and variables necessary to
realize a certain self-contained functionality.

4The content of this and subsequent sections are partially based on the joint work with Martin Henze,
Muhammed Hamad Alizai, Kevin Möllering, and Klaus Wehrle published in ”Graph-based Redundancy

5.4. Cross-Layer Redundancy Removal 107

in a composition. To determine whether or not two modules are equal, it analyzes
each module and its connections. Afterwards, it rewires the connections of equal
modules and removes the redundant module. As this approach is based on a generic
graph-based algorithm, it is not peculiar to a specific development platform and
can be utilized across a wide range of modular software development systems or
networking scenarios.

5.4.1 Generic Design

Solving the problem of redundancy in cross-layer coordination algorithms requires
the analyzation of program semantic to discover redundant functionality. Without
the availability of semantic knowledge that has been provided with huge effort by
developers, this is an undecidable problem according to Rice’s theorem [Hro03].
Fortunately, there exist techniques or relaxations to tackle such problems and to
achieve practically useful solutions. By composing modules to realize cross-layer
coordination algorithms, the cross-layer architecture Crawler provides a good basis
to tackle a relaxed problem. Before describing a concrete solution, we generalize
the problem of redundancy of cross-layer coordination algorithms as redundancy in
module compositions which makes our solution also applicable to other fields.

For our relaxed solution we particularly opt for an automatic solution without requir-
ing developer interaction and the need for delving into program semantics because (i)
it would require complex formal description of each module and its connections, and
(ii) it overburdens the developers with a significant effort required to support and
create such descriptions. When we talk about developers, we distinguish between
module developers who create the reusable modules once and module composition
developers (also known as system or software integrators) who utilize these modules
to implement a certain algorithm. With our approach the former need to put effort
once, while the latter are unburdened.

5.4.1.1 Constraints

The basic idea of our approach is to merge redundant module compositions together.
But before discussing the technical details of our solution, we first discuss our pri-
mary constraints and assumptions that form the basis of our approach. For example,
our constraint with regard to merging of redundant modules is that the modified
system has to offer the same behavior as the unmodified system. Therefore, the
basic requirement for handling modules is the ability to determine if these modules
are equal.

Consider that we have two equal modules within a system, that for each input
generate the same output. Any coordination that merges these modules has to
fulfill two major constraints:

Removal Approach for Multiple Cross-Layer Interactions”, 6th International Conference on Communi-
cation Systems and Networks (COMSNETS ’14), January 2014 [AHA+14]. Furthermore, the content
is also partially based on Kevin Möllering’s Bachelor Thesis [Möl11].

108 5. Coping with Multiple Cross-Layer Coordination Algorithms

FA

Module A
FB

Module B

...

...
...

...

fB
in

fB
out

fA
in fA

out

Figure 5.5 Example representation of two modules A and B with their functionals, input and
output functions.

(1) Output correctness − If the merging process results in a modified composition of
modules in a system, the output of the new system must be the same as the output
of the unmodified system.

(2) Modification transparency − If a module composition developer modifies a com-
position of modules, the system must not require her to be aware of the merged
compositions. In other words, a module composition developer should be able to
parameterize modules and their compositions without having knowledge about the
underlying optimized compositions.

5.4.1.2 Equality of Module Compositions

With respect to our constraints, to decide if a system (behavior) remains the same
after merging modules, the modified and unmodified system must have the same
behavior, i.e., produce the same output on a given input. In any system, the output
of the system is a subset of the output of the contained modules. Thus, providing
equality between the outputs of all modules in the original and the modified system
is sufficient to prove the overall equality of the outputs of both systems. To achieve
this, two properties must hold for every module: (i) the behavior of the module must
remain the same and (ii) the inputs of the module have to be the same.

Before describing how to verify if both of these properties hold, we give a formal
description of the problem which helps to describe the idea of the algorithm and
simplifies the adaptation to other networking problems which we discuss later in
Section 5.4.7. The description is based on the interpretation of a program module
as a functional. As shown in Figure 5.5, a module M has an input function fM

in and
an output function fM

out. The mapping of the input function to the output function
is done by the module functional FM . For example, let us consider a Sum-Module
M with the following input function fM

in = (4, 1). Since the module calculates the
the sum of its inputs, the output function is fM

out = (5).

Thus, the functional FM maps an input function fM
in to the corresponding output

function fM
out. If one can verify that two modules A and B provide the same func-

tional, i.e., FA = FB, they both produce the same output, given the same input.

Definition (Equality):
A module A is equal to a module B (and thus mergeable) if and only if the following
two prerequisites hold:
(1) input equality − the input functions of both modules are equal, i.e., fA

in = fB
in, and

(2) behavior equality − A and B have the same module functional, i.e., FA = FB.

Based on these two conditions we obtain output equality, i.e., fA
out = fB

out. In the
following, we present an algorithm that checks particularly for these two conditions.

5.4. Cross-Layer Redundancy Removal 109

5.4.2 Graph-based Iterative Merge Algorithm

An intuitive algorithm for merging subsets of equal module compositions can be
directly extracted from the requirements described in the previous section. Thus,
two modules can be classified as mergeable if they satisfy the input and behavioral
equality property. To achieve this, our algorithm consists of three main steps: (i)
Check if two selected modules satisfy the equality property, i.e., can be merged, (ii)
if yes, merge them together, and (iii) repeat the previous two steps until no merges
are possible anymore. Listing 5.1 shows our algorithm.

We now discuss the major requirements for satisfying input equality (cf. mark (1) at
Listing 5.1), behavior equality (cf. mark (2) at Listing 5.1) and the merging process
(cf. mark (3) at Listing 5.1) in more detail. Afterwards, runtime and memory
consumption estimates are provided for our algorithm.

1 input: m_graph

2 output: m_graph

3 operation iterative merge begin

4 changed <- true

5 while (changed) do

6 changed <- false

7 for all (A in m_graph[modules]) do

8 for all (B in m_graph[modules]) do

9 if(A!=B AND

10 (1) inputs_equal(A,B,m_graph) AND

11 (2) behavior_equal(A,B)) then

12 (3) m_graph <- merge_modules(A, B, m_graph)

13 changed <- true

Listing 5.1 Graph-based iterative merge algorithm

5.4.2.1 Input Equality

In a real system, the equality of inputs of two modules can be assured if all of the
following three prerequisites hold: (i) The specific connection has to originate from
the same source, i.e., from exactly the same node in the module composition graph.
(ii) The position of a specific input connection within the input vector has to be the
same, e.g., if we consider the position of variables a and b, then isLess(a, b) is not
the same as isLess(b, a).

1 input: A, B, m_graph

2 output: equal

3 operation inputs_equal begin

4 size1 = size_of(inputs_module(m_graph[inputs],A))

5 size2 = size_of(inputs_module(m_graph[inputs],B))

6 equal <- size1 = size2

7 if(equal) then

8 for all (in1 in inputs_module(m_graph[inputs],A))

9 found <- false

10 for all (in2 in inputs_module(m_graph[inputs],B))

11 if(source_of(in1) = source_of(in2) AND

12 position_of(in1) = position_of(in2) AND

13 type_of(in1) = type_of(in2)) then

14 found <- true

15 equal <- equal AND found

Listing 5.2 Checking if two modules A and B have the same input.

110 5. Coping with Multiple Cross-Layer Coordination Algorithms

(iii) In a system with more than one connection type (e.g., information flow or
detectable events), the type of a specific input connection has to be equal. Pre-
requisites (ii) and (iii) basically enforce that the type signatures of the modules are
identical, while prerequisite (i) enforces that they are always called with the same in-
put. Combining these three prerequisites leads us to the input equality computation
algorithm, as shown in Listing 5.2.

5.4.2.2 Behavior Equality

Behavior equality in general addresses the question whether one program behaves
in the same way as another program does. This non-trivial property is undecidable
according to Rice’s theorem [Hro03]. Since a module is just a representation of
an arbitrary program, there is no assumption that holds in every module-based
software system to solve this problem. As we want to provide an automatic solution
without investing the manual effort of semantic descriptions, the only possibility
to check for behavior equality is an exhaustive state search. This exploration for
each possible state within the complete state space may lead to the state-explosion
problem [GK02]. Thus, this only works for applications with a finite and specified
runtime. Moreover, if the exhaustive state search has to be performed for any
possible input, it becomes infeasible and useless in most cases. To overcome this
issue, we identify a possibility to relax this problem. We assume that there are only
deterministic modules in the system. Thus, for deterministic modules one specific
instruction set which is running on one specific state produces exactly the same
output on every run. This allows us to base the decision for behavior equality on
the following two conditions.

Definition (Behavior Equality):
Two modules A and B have an equal behavior if the following two conditions hold:
(1) module type equality − the implementations for both modules are exactly the
same, and
(2) module state equality − the current variable allocation and execution position,
i.e., states of the modules, are identical.

Due to the determinism assumption, equal state and type implies the exact same
behavior on any equal input. Note that the reverse direction for this implication does
not hold. Since we cannot provide an equivalent property to behavior equality, there
may be cases where FA = FB holds, which cannot be found with our algorithm.
However, it will not lead to false optimizations, but only miss merging possibilities
related to modules offending our assumptions. Furthermore, we assume that it is
very unlikely to have two different implementations of exactly the same functionality.
By introducing this relaxation, we identify a sufficient condition for behavior equality
of two modules A and B, which can be practically implemented.

Although implementations of both conditions are application-specific, module type
equality can often easily be checked by introducing a numeric type identifier or
comparing the memory. We suggest that the comparison of module states should
reside inside the module since module developers know best about their modules
and relevant states. Accordingly, module developers can build in a module state

5.4. Cross-Layer Redundancy Removal 111

comparison function to verify if the module’s state is equal to the state of another
module. This only has to be done once. Afterwards, module composition developers
can utilize modules and combine them without considering possible optimizations
as our approach will automatically optimize the entire module compositions in the
whole system.

5.4.2.3 Merging Modules

Once the algorithm finds two modules that satisfy the behavior equality and the
input equality prerequisites, they can safely be merged. Merging two modules A and
B is straightforward (cf. Listing 5.3):

1 input: A, B, m_graph

2 output: m_graph

3 operation merge_modules begin

4 for all (inc in in_connections(m_graph[inputs],A))

5 delete_input(inc)

6 for all (outc in out_connections(m_graph[inputs],A))

7 replace_source_of_connection(outc ,B)

8 remove_module(A)

Listing 5.3 Merging two modules A and B and removing A afterwards.

Module A is removed together with all its incoming connections (as these are already
provided by module B). The outgoing connections of module A are then rewired to
be outputs of module B.

5.4.2.4 Runtime and Memory Consumption

The runtime of our algorithm is determined by its three nested loops (cf. Listing
5.1) and the three marks. The two for loops iterate pairwise over all modules in the
graph, i.e., O(|V |2) with V being the set of modules. Within these two for loops each
time the three marks are checked. At mark (1), the input_equal function (cf. Listing
5.2) also iterates over two nested for loops. It first iterates over the connections in
A and afterwards over all connections in B where it compares three parameters and
accordingly has a runtime of O(|E|2) with E being the set of connections. Mark
(2) has a runtime of O(1) where the type and states are compared. The merging at
mark (3) has a runtime of O(|E|) where connections are removed or rewired. If an
equal module is found, all these operations are conducted again for the remaining
modules. Therefore, the outer while loop requires a runtime of O(|V |), accordingly
leading to a total runtime of O(|V |3 · |E|2) for our algorithm.

With regard to the space complexity, our algorithm has no recursive calls that would
increase the stack size of the program. Traversing lists requires the amount of space
that is asymptotically equal to its length, i.e., |V | for lists of modules and |E| for
lists of connections, i.e., in total O(|V |+ |E|).

In a runtime-adaptable system, where modules and their compositions are unloaded,
it is sometimes necessary to split modules again. This can happen, e.g., when the
input or behavior of a merged module is changed at runtime. The module has then
to be split (similar to the copy-on-write paradigm) again. How our approach handles
this splitting is described in the next section.

112 5. Coping with Multiple Cross-Layer Coordination Algorithms

A

C I

G

D

F

J

sy
st

e
m

 i
n
p

u
t

H

sy
st

e
m

 o
u
tp

u
t

sy
st

e
m

 i
n
p

u
t

E
B

(a) Not merged.

A/B

C I

G

D

F

J

sy
st

e
m

 i
n

p
u

t

H

sy
st

e
m

 o
u

tp
u

t

sy
st

e
m

 i
n

p
u

t

E

(b) Merged A and B.

A/B

C I

G

D

F

J

sy
st

e
m

 i
n

p
u

t

H/E

sy
st

e
m

 o
u

tp
u

t

sy
st

e
m

 i
n

p
u

t

(c) Merged H and E.

A/B

C
I/J

G

D

F

sy
st

e
m

 i
n

p
u

t

H/E

sy
st

e
m

 o
u

tp
u

t

sy
st

e
m

 i
n

p
u

t

(d) Merged I and J.

Figure 5.6 A run of our algorithm on an example module composition. The type of shapes
defines the type of the modules, while the colors define its state.

5.4.3 Runtime Adaptation

After discussing the challenges of the behavior and input equality constraints, and
formulating an appropriate solution for it, we now turn our focus towards the mod-
ification transparency constraint: It requires that the optimizations induced by the
merging process to remain transparent to the module composition developers who in-
tend to manually modify module compositions. Although this desired transparency
constraint is inherently achieved in static systems by providing output correctness,
runtime-adaptable systems pose further challenges: E.g., to ensure modification
transparency, the set of commands required to achieve a desired reconfiguration
of the system has to be the same before and after the merging process.

However, in a runtime-adaptable system this is difficult to guarantee because of two
types of reconfigurations. First, the reconfigurations that occur due to a change in
the functionality of modules. These kind of reconfigurations could occur, for exam-
ple, when removing modules, modifying the state of a module, or modifying the func-
tion of a module. Second, the reconfigurations that occur due to a change in module
compositions. Such reconfigurations could occur, for example, when modifying in-
coming data connections of a module (e.g., adding new connections or modifying
connection properties).

Such configurations are usually done in an adaptation engine encapsulating the con-
struction logic which sends commands to the adaptable software realizing the actual
implementation [ST09]. Commands are instructions on how to modify or rather
configure the adaptation software such as creating an object and connecting it with
other objects. Our redundancy removal system can be placed in between these two
parts to track commands. After receiving a command C, our redundancy removal
system can either modify the command to fit it to the optimized version of the sys-
tem obtained after the merging process, or revert specific merging optimizations to
allow C to be processed normally.

5.4.3.1 Challenges when Adding/Removing Modules and Connections

The challenging nature of the commands that induce modifications on modules that
have been merged is visualized in an example depicted in Figure 5.6. The shape of
the modules represents the type while the color represents its state. For the sake
of simplicity, we assume all data connections to be equal with respect to their type,
ordering and any other feature. We can see that the modules A and B can be merged

5.4. Cross-Layer Redundancy Removal 113

A

B

Csystem
input

D

(a) Original state.

system
input

A/B C/D

(b) Merged state.

A

B

Csystem
input

D
++

(c) Possible splitting
mistake.

A

B

Csystem
input

D
+

(d) Another splitting
mistake.

Figure 5.7 Possible problems when not providing a reasonable history of the connections and
splitting multiple modules.

after validating state, type, and input equality. Similarly, the next iterations of our
algorithm will also merge modules H and E and afterwards I and J .

Modification transparency requires that any developer who changes the module com-
positions does not need to know about the underlying merging optimizations. Thus,
the developer assumes working on the first composition of modules (cf. Figure
5.6(a)) even though the system has been optimized by the merging process resulting
in modules compositions shown in Figure 5.6(d). In this example, the module G can
be modified by a developer without violating output correctness or introducing any
further ambiguities. However, any modifications either to the input of module A or
its functionality, would change the output of A. Clearly, this modification should
not have any effect on module B.

In order to avoid modifying node B, there is a need for the ability to split both
modules again. However, the merging process has also merged modules H and
E considering that A and B are mergeable (cf. Figure 5.6(b) and 5.6(c)). Since
this prerequisite will no longer be valid after the modifications introduced by the
developer to module A, we have to split H and E as well. As modules I and J have
been merged independently of H and E, it is not required to split I and J .

5.4.3.2 Splitting Affected Modules

Splitting modules requires to maintain the knowledge about both the outgoing con-
nections and the respective modules before the merging process. We propose a
simple two step procedure which has to be performed before merging modules. In
the first step, we identify all those modules that were merged with a certain module
A due to their equality. In the second step, we split module A and all the merged
modules that were identified in the previous step by restoring the original configura-
tion of the system, i.e., reverting back to the original connections. For this purpose,
we also need a mechanism to be able to access the previously defined connections.
Otherwise, the splitting process could end up in misconfigurations.

To clarify this requirement, let us consider the example in Figure 5.7. If there
are two or more levels of connected modules that can be merged as shown in the
Figures 5.7(a) and 5.7(b), the original source of data connections can vanish. In
Figures 5.7(c) and 5.7(d), two different compositions are shown that could result
due to the lack of information about the connections within the original system.
Both wrong compositions result from splitting the merged state in Figure 5.7(b).
Maintaining information about all the original connections is dependent upon the
actual implementation of the system, and hence, beyond the scope of discussion in
this thesis. Nonetheless, for the sake of completeness and practical applicability, in

114 5. Coping with Multiple Cross-Layer Coordination Algorithms

the following section we do provide a domain-specific solution to demonstrate a full
fledged implementation of our mechanism for a cross-layer coordination architecture.

5.4.4 Specific Design for CRAWLER

After providing the theoretical basis for our approach, we now demonstrate its ap-
plicability in the domain of cross-layer design using Crawler. The mapping of the
general approach to the needs of Crawler requires to map the three functions: (i)
input equality, (ii) type equality and (iii) state equality.

But before discussing the three features remember that in Crawler we refer mod-
ules as functional units (FUs). FUs (see Section 3.4.3) are a specific realization of
modules and offer properties such as a unified interface allowing flexible composition
and being stateful, i.e., FUs can maintain a record of data and provide results based
on the maintained record, for instance, a History-FU.

Coming back to the three features and beginning with input equality, Crawler
provides two different types of input (or connections) between FUs: (a) a notify
connection that is an event-based signaling and (b) a query connection that is a
polling mechanisms. Redirecting connections are implemented as simple pointer
redirections in C. While notify connections can be directly mapped onto outgoing
data connections of the type notify, query connections have to be reversed. A query
connection from one FU A to another FU B is realized by making A ask B for a
piece of information. Thus, in reality information flows from B to A. Therefore,
we interpret an outgoing query connection as an incoming data connection of type
query. Furthermore, since the order of query connections matters, we have to take
that ordering into account.

Implementing type equality checking in Crawler is straightforward, since each
FU carries an identifier. For example, an object of the AND FU contains the numerical
identifier 13 indicating the type. Accordingly only this numerical value has to be
compared for type equality.

In contrast, state equality is a bit more complex. Since a comparison based on
the internal state has to be provided by the FU, each functional unit developer
has to decide how to implement the function that determines equality. Crawler’s
standard FU structure predefines such a state equality interface which is called by
our merge algorithm. For example, the History-FU stores an amount of values.
When the equality interface is called, the History-FU compares the values given in
its signature with the stored values. Note that the FU developers know best about
their FUs and accordingly need to implement once about what they consider as state
equality. Afterwards, developers of cross-layer coordination algorithms can utilize
them without needing to care about our merge algorithm.

So far, we know how to determine equality of FUs in Crawler, but we still need to
deal with runtime adaptation. In the following we show how we extended Crawler
to handle runtime adaptation of FU compositions.

5.4.4.1 Handling Runtime Adaptation

As discussed in Section 5.4.3, if module compositions change at runtime, we need
to be able to keep track of the original module composition. We use Crawler’s

5.4. Cross-Layer Redundancy Removal 115

3

4

5

2

1

A C

E

B D

(a) Each original module
(orange) corresponds to
exactly one merged mod-
ule (blue).

5

3

4

1

A C

E

B

D

(b) The modules A and B
are realized by the module
with merged ID 1.

5

4

1

A C

E

B D

(c) Additional iteration of
our algorithm also merges
original modules C and D
to the merged ID 4.

Y

X

Merged module with ID Y

Merged information flow

Original module with ID X

Original information flow

Protocol information accessor

Figure 5.8 By reading off all original modules and connections the original composition can
be extracted. By only considering the modules that reside in the CPC, one can get the merged
composition which consists of only 3 modules. This example is restricted to query connections.

repository residing in the LC to keep track of such adaptations. Remember, if
a developer changes a configuration, these changes are translated into commands
that are delivered both to the repository and CPC. Here, the repository has two
advantages: (i) It behaves similarly to a revision control system: Each time the
configuration changes, the commands are automatically committed as a new revision.
(ii) Unnecessary context switches between user and kernel space are avoided. As a
result, the repository provides a good overview of running compositions and allows
the developer to roll back to a previous set of cross-layer coordination algorithms if
necessary.

We extend the representation of FUs and connections in the architecture to keep
track of FUs both in the original and merged compositions. For this purpose, we store
two different FU identifiers for two different views: (i) The original view consists
of original FUs and their original connections which in fact represents the initial
and unmodified composition graph. (ii) The merged view is used for handling the
merged version of FU compositions, i.e., the optimized graph. For clarity reasons,
the concept of the original and merged views is combined in one graph as shown
in Figure 5.8. Additionally, for the sake of simplicity, we only consider one type of
connections in this example representing the information flow in the graph.

Each node in Figure 5.8 represents one merged FU which encapsulates one or several
original FUs. Similarly, a connection represents a merged connection encapsulating
several original connections. The original FU and connections are necessary to recre-
ate the original FU compositions. Figure 5.8(a) shows the FU compositions in the
initial unmodified state. In Figure 5.8(b), the FUs with identifier 1 and 2 are merged
and their original identifiers A and B are stored in the FU along with one of the
merged FU identifiers, in this case identifier 1. Similarly, in Figure 5.8(c), FUs with
identifiers 3 and 4 are merged along with their connections, in this case the merged
FU with the identifier 4 is used for merging the original FUs C and D.

In the following we show a real-world example of how our algorithm merges and
splits FU compositions automatically after a runtime adaptation occurs.

116 5. Coping with Multiple Cross-Layer Coordination Algorithms

app1rssi app1history

3

app1avg

app1less

app1poller 250

80

app1setter

(a) FU composition for cross-layer coordination 1.

app2rssi app2history

3

app2avg

app2less

app2poller

80

app2cwnd app2if

0 1

250

(b) FU composition for cross-layer coordination 2.

Figure 5.9 FU composition of two installed cross-layer coordination algorithms. The red
dashed-line indicates equal composition detected and merged by our algorithm.

5.4.5 Evaluation and Validation

To verify the correctness of our proposed algorithm, we performed a complete system
test. We loaded the Crawler architecture with an empty initial configuration, i.e.,
no cross-layer coordination algorithms were running in the beginning. Then we
started two applications that use Crawler’s API to feed a cross-layer coordination
into the system. Although the naming of FUs and the overall compositions differ for
both applications, some parts are equal and thus we expect that our algorithm will
merge them. However, later on we will modify one application’s FU composition
at runtime and accordingly expect that our algorithm splits affected compositions
and conducts the necessary modifications. In the following we show the cross-layer
coordination for the two applications.

Cross-layer coordination of application 1: The first application is interested
in knowing whether the current received signal strength indicator (RSSI) of the
wireless connection is good or bad. The RSSI is measured every 250 msec. To
reduce the amount of oscillation in this signal, the base for the decision is calculated
by averaging over the last three values. If the result does not exceed a threshold of
80, the signal is defined as being bad. The resulting FU composition is shown in
Figure 5.9(a).

Cross-layer coordination of application 2: The configuration used by the sec-
ond application implements a simplified version of a cross-layer coordination for the
TCP congestion control algorithm [ASA+12]: It monitors the RSSI of the wireless
device and freezes the congestion window size (CWND) in TCP if the system op-
erates under bad WiFi conditions. This prevents the congestion control algorithm
to reduce its congestion window and thus entering the slow start phase. As shown
in [GMPG00], the slow start of TCP is unsuited for short-term disturbances on the
physical layer. To stop the CWND from trying to adapt to the conditions, a 0 is
written to the stub accessing the corresponding TCP variable. The composition for
this example is visualized in Figure 5.9(b).

Runtime modification: By using Crawler’s API, application 1 feeds its cross-
layer coordination algorithms into the system. Shortly after, Application 2 also feeds
its cross-layer coordination algorithm into the system. Our algorithm automatically
detects equal compositions. Due to the given input, state and type equality, the
algorithm merges the chains starting at app1less and app2less respectively. Figure
5.10(a) depicts the result after the merging process.

5.4. Cross-Layer Redundancy Removal 117

19

18 21

1
app1rssi

2

app1history

3 int4

4

app1avg

5
app1less

6 int3

7

8
app1poller

9
int5

app1setter

app2rssi app2history app2avg

app2less

app2poller

app2cwnd app2if

int10

int7

int8 int9

20 int11

(a) Resulting composition after the merging with our algorithm. The
red dashed-line shows merged FU compositions.

5

25

25

19

18 21

1
app1rssi

2

3

4

app1avg

app1less

6 int3

7

app2poller
9

int8

app1setter

app2rssi
app2history app2avg app2less

app1poller

app2cwnd app2if

int10

int7

int5

int9

20 int11

app1newhistory

23 int13

22

8

(b) The History-FU is exchanged at runtime by another new History-

FU (red dashed-line) . This causes our algorithm to split effected FUs.

Figure 5.10 Merging equal FU compositions and splitting them if necessary, i.e., if changes
are conducted at runtime to FUs and to their compositions.

118 5. Coping with Multiple Cross-Layer Coordination Algorithms

After Application 2 has inserted its cross-layer coordination algorithm, Application 1
adapts its coordination. One possible reason could be that the resulting information
about the link still jitters too often. To smoothen the output, Application 1 replaces
the History-FU, which stores three values, by another FU that stores ten values. In
Crawler this runtime adaptation can easily be expressed with the following two
lines:

1 app1newhistory:history(app1rssi ,10)

2 replace(app1history ,app1newhistory)

The first line creates a new History-FU with 10 elements and the second line in-
structs to exchange the old History-FU with the new one. When Application 1
tries to exchange app1history by app1newhistory, the connections (incoming notify
connections and the outgoing query connections) of app1avg are modified. Thus, we
expect that our algorithm will split app1history from the FU it has been merged
with. Furthermore, we expect that the affected FUs app1avg and app1less are also
splitted since they do no longer share input equality with app2avg and app2less. Fig-
ure 5.10(b) shows that the modification request conducted by Application 1 has been
successfully and transparently realized by our algorithm. To conclude our evalua-
tion, our algorithm is able to merge, i.e., optimize, and split FU compositions at
runtime. The reason why we don’t give detailed memory and CPU usage numbers
for that particular example is twofold. First, the FU compositions are realized in the
kernel part of Crawler as loadable kernel modules and retrieving such numbers for
kernel modules are tedious. Second, providing numbers for that particular example
is not representative and meaningful: It is easy to construct composition examples
with more or less savings.

5.4.6 Related Work

Modular software development process (or modularization) [SPKW07, KMC+00,
Weh01, HP91] is widely used in the scope of networking in order to deal with this ris-
ing complexity in designing, implementing and maintaining protocols for distributed
systems. Modularization has also proved to be very practical in the cross-layer coor-
dination domain [ASA+12]. But in spite of, that problems occurring with multiple
cross-layer coordination algorithms is a very unexplored field. Only the problem
of conflicts, i.e., possible performance degradations [KKTC05] caused by multiple,
contradicting coordination algorithms, have been mentioned. To the best of our
knowledge, the problem of redundancy in multiple cross-layer coordination algo-
rithms have not been addressed so far.

By transforming the problem of redundancy in cross-layer coordination algorithms
to redundancy in module compositions, we can theoretically consider it as using
directed and labeled graphs. Here, a module is mapped to a node, while a data flow
is mapped to a directed edge from the generator (source) to the receiver (sink). This
allows us to research a suitable algorithm in the field of graph theory. While there
are many interesting findings in the field of subgraph isomorphism, research on the
isomorphic subgraph problem seems rather scarce. While the isomorphic subgraph
problem cannot easily be reduced to other better-known graph isomorphism prob-
lems, in [BB02] it is proven to be NP-hard by reduction to the 3-partition problem.
If we consider circle free graphs, our algorithm is able to provide an optimal solution

5.4. Cross-Layer Redundancy Removal 119

in polynomial runtime. If circularities occur, we may miss optimization possibilities,
however, we provide a suboptimal solution in polynomial time. All in all, the need
for a polynomial time algorithm depends on the use case: (i) If modules and their
compositions are regularly (un)loaded or changed (ii) how big the size of the mod-
ules and their compositions are, and (iii) how fast the system needs an optimization.
Thus, it may be appropriate to use a variation of the isomorphic subgraph problem.
However, since we provide a polynomial time algorithm, our solution will fit to all
of these three uses.

Practically, in the field of runtime (self)adaptive software, there exist approaches
which allow the exchange and modification of modules at runtime [ST09, PPS+09].
However, these approaches mostly use coarse granular modules such as in Eclipse,
.net and the OSGi framework making it difficult to use our approach since the
redundancies in such system will appear less often. Another solution that focuses
more on ontology-based systems is [GWCA11]. This approach requires the developer
to put effort to describe the semantic of their modules. In our approach the effort is
much less since only a specific functionality (i.e., state equality) has to be compared.
In particular, only the module developer has to implement once what she considers as
state equality, but from then on due to the reusable nature of the modules, module
composition developer (i.e., the software integrators) can freely compose without
putting additional effort.

To summarize, we focus on an automated system that is able to resolve redundancy
of multiple cross-layer coordination algorithms at runtime and does not burden the
module composition developer about finding the overall optimal module composition.

5.4.7 Summary and Discussion

We proposed a graph-based redundancy removal algorithm to automatically de-
tect and resolve redundancies in multiple cross-layer coordination algorithms. In
particular, we transformed the problem of redundancies in cross-layer coordination
algorithms to redundancies in module compositions. For this problem, we provided
a general theoretical graph-based description, making it applicable for a wide range
of modular systems or networking scenarios. Based on that, we suggested a gen-
eral algorithm to automatically find redundant module compositions (i.e., parts of
cross-layer coordination algorithms) and to merge them together. With regard to
runtime-adaptable module compositions, we showed that more adaption then only
a näıve removal of redundancies is necessary, since runtime adaptation can lead to
invalid module compositions and accordingly suggest how to resolve this issue by
bookkeeping. We validated the practical applicability of our approach by imple-
menting it for our cross-layer architecture Crawler. Our evaluation demonstrated
a real use case where we successfully resolved redundancies in cross-layer coordina-
tion algorithms at runtime and recreated the original state if necessary.

Although we have applied this generic approach for the cross-layer design domain,
the problem can also be mapped to other scenarios such as to a graph of nodes in
the network (wired and wireless networks) to detect redundant node compositions,
services, and interactions. Detecting such redundancies can help in turning off ser-
vices and even nodes, e.g., to save energy in battery driven devices and improve
network life time. With our generic solution the adaptation to other fields should
be simplified.

120 5. Coping with Multiple Cross-Layer Coordination Algorithms

5.5 Conclusion

In this chapter we have introduced two different problems that appear when running
multiple cross-layer coordination algorithms, namely conflicts and redundancy. For
each problem, we have presented extension to Crawler to cope with the problems.

Regarding conflicts, we classified the problem into subproblems of direct and indirect
conflicts and based on the subproblem suggested different approaches to improve
Crawler monitoring capabilities to support developers to detect conflicts. In this
context we have implemented and added further FUs to the set of reusable FUs which
contribute to the versatility of Crawler in experimentation and monitoring of
cross-layer coordination algorithms. However, on detection of a conflict applications
including a special conflict monitoring application are informed.

Regarding the problem of redundancy in multiple cross-layer coordination algo-
rithms, we proposed an algorithm to automatically detect redundant states of cross-
layer coordination algorithms and resolve them. We first presented a general ap-
proach also applicable to other networking fields. Afterwards, we mapped the gen-
eral solution to Crawler’s needs and validated the approach. Compared to former
approaches of conflict detection, the redundancy removal approach does not require
developer feedback.

6
Evaluation Support for Cross-Layer
Coordination

In the previous chapters, we presented Crawler, a versatile and runtime flexible
cross-layer architecture to rapidly and conveniently design cross-layer coordination
algorithms. We demonstrated its usability and flexibility on five use-cases from di-
verse fields of networking such as VoIP codec switching, TCP manipulations and
jamming detection. Moreover, we also addressed and proposed solutions to prob-
lems that are involved when several cross-layer coordination algorithms are added
into the system such as conflicting coordination goals and redundancy of cross-layer
coordination algorithms. While these chapters primarily focused on the process of
designing cross-layer coordination algorithms, this chapter focuses on the next step
of evaluating the cross-layer coordination algorithms. In particular, we present a
further major contribution of this thesis by answering our third research question,
i.e., how to improve the evaluation of cross-layer coordination algorithms?

The remainder of this chapter is structured as follows. Section 6.1 analyzes the
problems a developer faces when evaluating cross-layer coordination algorithms. In
Section 6.2 we further elaborate these problems and give an overview about two
approaches to tackle these problems. First, in Section 6.3 we present the extension
of Crawler to support the experimenter during the evaluation process by enabling
remote automation, configuration, and monitoring of cross-layer coordination algo-
rithms. Second, in Section 6.4 we present Fantasy, a network emulation architec-
ture that allows the fully automated setup and execution of experiments, enables
convenient access to system information within the emulation and the collection of
test results. Finally, Section 6.5 concludes this chapter.

6.1 Motivation

An essential step after implementing a cross-layer coordination algorithm is its eval-
uation. A very important concern in this regard is the monitoring of the system

122 6. Evaluation Support for Cross-Layer Coordination

behavior (relevant parameters) in order (i) to validate if the cross-layer coordination
is working as intended and (ii) to measure performance improvements. This fact is
comparable to debugging of software in general. In this context, a developer uti-
lizes tools to build his code, but also has support in terms of debuggers to analyze
the code. By enabling the ability to monitor states of variables and to control the
program execution, debuggers support developers to understand their code and fix
programming faults.

Such support is missing for the evaluation of cross-layer coordination algorithms. Al-
though cross-layer architectures support the developer in implementing the intended
cross-layer coordination, there is still a need for a feature to analyze the effects of a
cross-layer coordination on the system. For instance, many factors such as wireless
conditions or programming faults influence the behavior of the cross-layer coordi-
nation and accordingly the system. The ability to control or isolate these factors
to fully understand and validate the behavior of a cross-layer coordination is miss-
ing. Moreover, with the absence of an ability to control these influencing factors
in general and wireless effects in particular, many test runs have to be conducted
till a certain credibility about the results is achieved. But in case that many test-
ing devices are involved in the experimentation which also run diverse programs
including cross-layer coordination algorithms, the execution of the experimentation
might become very cumbersome, not even to mention the execution of several rep-
etitions. In a nutshell, a tool to support the evaluation of cross-layer coordination
algorithms would greatly benefit developers to validate and finalize their cross-layer
coordination algorithms.

6.2 Problem Analysis

From the motivation presented in the previous section we derive two major prob-
lems that significantly increase the effort required to validate and finalize cross-layer
coordination algorithms.

Lack of support for central and remote execution, configuration, and monitor-
ing of cross-layer coordination scenarios
Testing cross-layer coordination algorithms can become very cumbersome when
many nodes are involved. Each node might require to install diverse programs
including the installation of the cross-layer coordination algorithms themselves.
This step usually requires manual interaction. Although scripting is a common
methodology, nonetheless the scripts have to be started and coordinated man-
ually among all involved nodes. Moreover, after running the experimentation,
developers are not able to remotely fine tune their cross-layer coordination
algorithms. Any modification to the coordination algorithm would require
the manual intervention of the developer on the respective device. Finally,
at the end of the experiment test results have to be manually gathered from
all devices. However, when there is a need to repeat the experimentations
again, for instance, to gain more credibility about results, everything has to
be conducted once again. Evidently, central and remote automation and con-
figuration support among all involved nodes in the experimentation and the
collection of test results can significantly support developers in the evaluation
phase of their cross-layer coordination algorithms.

6.3. Remote Cross-Layer Evaluation 123

Lack of a method to isolate and control influencing factors
Typically a cross-layer coordination is designed for a certain use case such
as protocol behavior improvement in a wireless environment, making its val-
idation very difficult due to following reasons: (i) the volatile nature of the
wireless medium, (ii) surrounding nodes accessing the medium, (iii) the cross-
layer solution itself might have design flaws, (iv) programming errors, (v) no
repeatability or reproducibility of results (vi) OS side effects and (vii) debug-
ging limitations. With so many possible factors for misbehavior, understanding
and validating the real benefits of the cross-layer solution is very difficult. We
identify that isolation or control of these factors can help to understand the
sources of problems while developing cross-layer coordination algorithms. In
addition, the feasibility of automation and logging of the whole test scenario
can further help to conveniently analyze and pinpoint the irritation factors.

This thesis present the two following approaches that tackle the above mentioned
issues:

Remote Cross-Layer Evaluation
This approach primarily focuses on the lack of convenient evaluation support
and is an enhancement of Crawler to improve the evaluation of cross-layer
coordination algorithms in a real-world usage. In particular, we have extended
Crawler’s application support interface to remotely and centrally provide
three complementary key features: (i) to automate and execute whole test
setups with different settings remotely via a central device, (ii) to remotely
add, remove, and modify cross-layer coordination algorithms, and (iii) the
ability to monitor and log a specified set of variables and states of cross-layer
coordination algorithms.

Network Emulation Tool – Fantasy
This approach complements the former by addressing the lack of a method
to isolate and control influencing factors. We use network emulation as an
approach to gain more control about the wireless environment which is run-
ning in a simulation environment. In particular, we couple Crawler with a
network simulator resulting in a network emulation architecture that allows
the fully automated setup and execution of an experiment in a controllable
simulation environment to improve the monitoring and analysis of cross-layer
coordination algorithms and their behavior. By using Crawler, the network
emulation tool Fantasy enables convenient access to system information and
collection of test results.

6.3 Remote Cross-Layer Evaluation

Testing of distributed systems is an exhausting process which is even more cumber-
some when cross-layer coordination algorithms are involved. One major reason is the
effort for preparation of the experiment as all involved nodes have to be booted and
many specific programs including the cross-layer coordination algorithms have to be
compiled and manually started. The running programs can be usually subdivided
into two groups. First, the cross-layer coordination that is being evaluated such as
an coordination to improve routing by using lower layer information as surveyed by

124 6. Evaluation Support for Cross-Layer Coordination

[QK04]. Second, helper software to support the evaluation of the former such as
iperf or netem. Afterwards, the specific test nodes are ready for evaluation which
typically consists of following additional effort.

First, on starting the software it usually requires different parameterization such
as to adjust throughput, assign different IP addresses or to change thresholds for
the link qualities considered in the cross-layer coordination. In this conjunction,
an order of execution of the software might be relevant. For example, it might be
reasonable to first start the routing protocol including the cross-layer coordination
before starting the traffic generation. However, all of these aforementioned steps
have to be performed manually on each node, requiring physical interaction by a
developer. Ideally, remote automation of tests should be possible for a developer,
i.e., for all nodes involved parameterization and timing of the software should be
remotely and conveniently feasible.

Second, during test execution a developer might wish to change the parameteriza-
tion of the cross-layer coordination such as changing the thresholds for the link qual-
ity used by the routing algorithm or switching TCP’s congestion control algorithm
[ASA+12]. Moreover, a developer might also be interested in controlling when to
(de)activate a certain cross-layer coordination in order to analyze the performance
of the distributed system with and without the running coordination on specific
nodes. Both of these examples highlight the need for a remote (re-)configuration
and control of cross-layer coordination algorithms at runtime which is not available
to the best of our knowledge.

Third, the analysis of the effects while running and after finishing the test. The lat-
ter can be done by logging certain parameters which might require expert knowledge
and much effort when accessing system parameters residing in the kernel space of
the operating system. For remote analysis of nodes in the distributed system it also
requires access to test nodes, which might be also very cumbersome. However, the
analysis while running the experimentation is rather complex as it requires the abil-
ity to specify and access the parameter of interest and its level of logging granularity
at runtime. For example, monitoring the received signal strength indicator (RSSI)
of WiFi per second or per minute. Ideally, a developer should have the freedom to
specify the set of specific parameters for logging, the granularity of reports and the
node that should be included in the analysis.

We present an extension1 to Crawler that tackles all these issues presented above
by providing the following three key features:

• Remote test automation allows a developer to remotely describe whole
experimentation setups, that is, start and termination of applications with
their respective parameterization and cross-layer coordination algorithms, on
a specified set of nodes without human interaction.

• Remote configuration allows to distribute cross-layer coordination algo-
rithms to remote nodes, to control them (i.e., to add, remove, and modify

1The content of this and subsequent sections are partially based on the joint work with Oscar Punal,
Florian Schmidt, Tobias Drüner and Klaus Wehrle published in ”A Framework for Remote Automation,
Configuration, and Monitoring of Real-World Experiments”, 9th ACM International Workshop on Wire-
less Network Testbeds, Experimental Evaluation & Characterization (WINTECH’14), September 2014
[APS+14b]. Furthermore, the content is also partially based on Tobias Drüner’s Master Thesis [Drü13].

6.3. Remote Cross-Layer Evaluation 125

coordination algorithms), and enables to conveniently access protocol and sys-
tem information at runtime.

• Remote monitoring allows to conveniently specify and log a set of prede-
fined parameters and states of cross-layer coordination algorithms from any
node involved in the test and, if desired, to store them centrally. Moreover,
live monitoring of parameters and the ability to adjust the level of report
granularity are enabled at runtime.

The remainder of this Section is organized as follows: Section 6.3.1 presents an
overview about the components in our architecture and their interplay. In Section
6.3.2, we describe our architecture in more detail and explain how we achieve the
remote evaluation of cross-layer coordination algorithms. Implementation details
are provided in Section 6.3.3. We evaluate our architecture in Section 6.3.4 and
discuss related work in Section 6.3.5. Finally, we describe future improvements in
Section 6.3.6, before concluding the remote evaluation enhancements of Crawler
in Section 6.3.7.

6.3.1 Design Overview

The main goal of our extension to Crawler is to simplify the testing process of
cross-layer coordination algorithms in distributed wireless networks. Through our
extensions to the interfaces of Crawler, developers shall be able to conveniently
perform real-world experiments including cross-layer coordination algorithms and
monitoring their behavior without physically interact with nodes that are part of the
experimentation. This section provides an overview of the design of our extensions
to Crawler and the used components.

In order to enable developers to centrally and remotely automate, control and mon-
itor their experiments, we opted for a client-sever architecture as depicted in Figure
6.1. The client is the central node that controls several servers running on different
devices that are being part of the experiment.

The initial step to conduct a real-world experiment of a distributed system scenario
including cross-layer coordination algorithms is done by writing a configuration file as
indicated by 1© in Figure 6.1. The configuration includes the required parameters for
the entire experimentation. In particular, it includes information about the devices
that are being part of the experimentation, the programs that should run on the
devices including cross-layer coordination algorithms, the schedule of the programs
and information about parameters that should be logged. Subsequently, the client
parses the configuration and extracts the necessary tasks. Each task consists of its
execution time, target device and instruction (e.g., to run a specific program).

At the scheduled execution time, the client sends the specific instruction to the
listed devices via the network, see 2©. Simply put, the client gives instructions
about what should be done, when and on which device. The server is the counter
part that receives these instructions and realizes them. Only the servers need to run
Crawler.

To provide cross-layer coordination algorithms to a system, Crawler so far offered
only a system-wide interface. By enhancing this interface, we enabled Crawler to

126 6. Evaluation Support for Cross-Layer Coordination

Network	

CRAWLER

Battery

O
pe

ra
tin

g
S

ys
te

m
 &

 H
ar

dw
ar

e

S
ys

te
m

co

m
po

ne
nt

s

Network

Transport

Data Link

Physical

P
ro

to
co

ls

GPS

Accelerometer

Battery

O
pe

ra
tin

g
S

ys
te

m
 &

 H
ar

dw
ar

e

S
ys

te
m

co

m
po

ne
nt

s

Network

Transport

Data Link

Physical

P
ro

to
co

ls

GPS

Accelerometer

Client	 Server	

Config	 for	
Automa6on	

1

state

motion

TCP.CWND
TCP.RTT

coordinate

IP.TTL

DLL.FER

PHY.WLAN.RSSI

2
Node 1

Node 2 Node n …

Instructing Nodes Logical Connection

Physical Connection

3
Remote Runtime  
Configuration

Remote Runtime  
Monitoring

5
Logging Files 4

Figure 6.1 Conceptual view for remote automation, configuration and control.

distribute cross-layer coordination algorithms defined by our central client to other
nodes in a network. Feeding cross-layer coordination algorithms into the system
is not only easily possible at the preparation phase but also while running the ex-
perimentation which opens new possibilities to control the servers remotely while
running, indicated by 3© in Figure 6.1.

The configuration file also contains information about which system parameters to
log on the servers and their type of sorting. At the end of the experiment, the data
is automatically aggregated at the client for easy evaluation, see 4©.

Another advantage of Crawler is its live monitoring feature which conveniently
allows to monitor a set of variables in running applications, protocols and system
components at runtime. We extended this feature to allow remote access, see 5©.
This enables live monitoring of variables during the experiment, without having to
wait for the aggregation of log files at the conclusion of the experiment.

To further support the experimentation, we created a graphical front-end, which
(when enabled in the configuration) allows us to interactively control our three key
features during experimentation.

6.3.2 Architectural Details

This section provides more details about how we realized the three key features of
remote automation, configuration and monitoring and describe how we incorporated
them into our interactive front-end.

6.3. Remote Cross-Layer Evaluation 127

6.3.2.1 Remote Automation

When many nodes are involved in testing, a prerequisite is the preparation of the
involved nodes with the appropriate software and configuration. For instance, some
of the nodes might have different IP addresses, traffic patterns, applications and
cross-layer coordination algorithms. After running the tests, log files have to be
analyzed on each node to understand the interplay of the programs. Moreover,
due to the volatile nature of the wireless medium, it is necessary to repeat the test
several times till solid and credible results are collected. Ideally, the adjustment, the
repetition of the whole test and the collection of log files should be very convenient.

We propose a configuration which allows to centrally and conveniently execute whole
test setups with different settings. The configuration includes the necessary instruc-
tions to automate the execution of desired settings including applications, cross-layer
coordination algorithms and further helper programs. Note that convenient repeata-
bility of the test is given by re-executing the configuration which can also be adjusted
on each run. An example configuration is shown in Listing 6.1 which we later also
use in the evaluation. The ready-to-use configuration is subdivided into sections by
using the keywords [general], [crosslayerremote], [schedule] and [log].

1 [general]

2 interactive_mode:True

3

4 [crosslayerremote]

5 crosslayer_server_count: 3

6 crawler_default_path: /home/crawler/

7 crawler_default_port: 12345

8 [crosslayerremoteserver1]

9 alias: node09

10 ip_address: 137.226.59.183

11 [crosslayerremoteserver2]

12 alias: node05

13 ip_address: 137.226.59.21

14 [crosslayerremoteserver3]

15 alias: node04

16 ip_address: 137.226.59.50

17

18 [schedule]

19 logclear: [([1,2,3], 1, "rm logfile.txt")]

20 daemonclear: [([1,2,3], 1, "rm daemon.txt")]

21 crawler: [([1,2,3], 3, "load_crawler cfg80211Layer ethernetLayer ")]

22 iwconfig_node09: [(’node09 ’, 3, "sudo iwconfig wlan1 txpower 8;")]

23 iwconfig_node05: [(’node05 ’, 3, "sudo iwconfig wlan0 txpower 8;")]

24 iwconfig_node04: [(’node04 ’, 3, "sudo iwconfig wlan1 txpower 4;")]

25

26 startjammingdet9 :[(’node09 ’, 4, "crawlerapp mainJammingDetection

27 +s: complexDetection -i wlan1 -c 172.16.0.6 -s 172.16.0.255

28 -t 100 -o 1 -m 5")]

29 startjammingdet5 :[(’node05 ’, 4, "crawlerapp mainJammingDetection

30 +s: complexDetection -c 172.16.0.5 -s 172.16.0.255

31 -t 100 -o 1 -m 5")]

32 startjammingdet4 :[(’node04 ’, 4, "crawlerapp mainJammingDetection

33 +s: complexDetection -i wlan1 -c 172.16.0.4 -s 172.16.0.255

34 -t 100 -o 1 -m 5")]

35 rssi :[(1,5," monitorVariableApp wlan0.qual.rssi.max > rssi.txt ")]

36 stopjammingdet :[([1,2,3], 124," killall mainJammingDetection ")]

128 6. Evaluation Support for Cross-Layer Coordination

37 crawler_finish :[([1 ,2 ,3] ,130 ," load_crawler cfg80211Layer

38 ethernetLayer ")]

39

40 [log]

41 log_crosslayer_remote_server: True

42 log_daemon: True

43 jammingdetLog: [([1,2,3], "logfile.txt")]

44 rssilog :[(1, rssi.txt)]

Listing 6.1 Setup of the configuration for our jamming detection scenario.

As the name hints at, the section [general] contains general information which
do not directly belong to a specific test but are rather a tool configuration. For
instance, the boolean variable interactive_mode indicates the (de)activation of
the interactive mode as shown in line 2. More details about the interactive mode
will be explained later in Section 6.3.2.4. Another example (which is not shown) is
the variable time_limit which can be adjusted to define the amount of time that the
specified servers are allowed to run after starting all their running instructions such
as applications or cross-layer coordination algorithms. When that time expires, all
processes are killed on the specified servers. However, the information in the general
section are optional and can be omitted in contrast to the following sections which
are mandatory.

The [crosslayerremote] section includes information about the involved remote
servers in the test. For example, in line five crosslayer_server_count defines
the number of remote servers used in the test. In line six the optional parameter
crawler_default_path allows to set a path to a directory which should be used
by the servers to start Crawler. Line seven gives the port number which is used
by Crawler running on the servers for incoming requests for a remote connection.
In the subsequent lines the details about the three servers are configured. To dif-
ferentiate between several servers, we again used the bracket notation followed by
the number of the specific server. For instance, in line eight we configure server one
which we assign an alias, here node09, followed by the IP-address assigned in line
ten. The number of the server in the bracket notation, here 1, is important for later
specification such as scheduling tasks at specific servers or for collecting log files.
The IP-address is mandatory for remote control of the servers. The alias is another
option for more human readable naming of servers in the configuration. The two
remaining servers are similarly configured (cf. line 11–16 in Listing 6.1).

The main part of the configuration is the [schedule] section which determines when
to execute which instruction on which server. To exactly reflect this, we have used a
three tuple notation (<server>, <time>, <command>); the first index indicates the
the server, the second index the relative time in seconds after the test has started,
and the third index indicates the instruction that should be executed. Typically,
the command is executed in a shell on the specified server except commands that
consist of keywords such as load_crawler and crawlerapp which trigger special
functionalities. Note that the experimentation starting time between all servers is
synchronized2, i.e., when starting the test on a specific server its time is set once to
a common time zero. To give an example about our tuple notation, let us consider
line 22 in Listing 6.1, where we use in the first index the alias of the node (here

2Note that this is not a continuous synchronization, only an initial signal is sent which might lead
to time drift among the servers. Nonetheless this allows a causal order of the commands.

6.3. Remote Cross-Layer Evaluation 129

node09) to specify the server; the second index indicates the time of execution of
a specific command (here 3 seconds right after starting the experimentation); and
the third index indicates the command by itself that should be executed (here the
manipulation of transmission power txpower which is modified using the wireless
tools iwconfig). The subsequent lines (23–24) do similar modifications to the other
remaining servers. To avoid having to execute the same instructions for different
servers over and over again, we provide a bracket notation (inspired by Python ar-
rays) to address all servers at once such as shown in line 21. In particular, the three
servers are instructed to load Crawler (using the special keyword load_crawler)
with some of its kernel modules after three seconds. In lines 19–20 we also used this
notation to first clean all log files before starting to collect data with Crawler.
However, the main instruction in this configuration is the start of a jamming detec-
tion application on each server. For instance, in line 26 on server one (i.e., with alias
node09) at time four the Crawler application for jamming is started with further
parameters such a jamming detection strategy (complexDetection) which is essen-
tially a cross-layer coordination. Similarly, the remaining two nodes are configured
but with different parameterization. It is also possible to specifically instruct the
monitoring of variables for logging and later evaluation as indicated in line 35 where
we monitor at node one the maximum radio signal strength indicator measured for
all connected stations. However, in lines 36–37 the instructions to stop the whole
test are given.

To deliver parameters that should be logged on the servers and delivered to a central
place, i.e., to the client, the [Log] section is used. For example, line 43 indicates
that all log files from all three servers should be collected. The specific logging of the
signal strength is delivered to the client with the instruction as indicated in line 44.
Results for this particular configuration will be presented later in our evaluation.

So far, we have only seen a single experiment without changing parameters. In the
following we discuss how to support several test runs consisting of small variations.

Main and Custom Configuration

The configuration presented so far only considered one single test run. However,
we can support the user in conducting test runs with different parameter changes.
Thus, to relieve the user of our architecture from writing an additional configura-
tion file when only minor changes are required, we distinguish again between main
and custom configuration files. The main configuration file describes the major test
setup while the custom configuration only includes the differences. The custom con-
figuration describes the relative changes and overwrites the respective values of the
main configuration. For example, if we want to have an earlier scheduling time (two
instead of three) for loading Crawler as shown line 21, we only have to add a
single modified line in the custom configuration in the respective section ([sched-
ule]) such as crawler: [([1,2,3], 2, "load_crawler cfg80211Layer ether-

netLayer")]. Our parser finds the respective variable and overwrites the main
configuration.

130 6. Evaluation Support for Cross-Layer Coordination

6.3.2.2 Remote Configuration

Crawler already allows to add, remove and modify cross-layer coordination al-
gorithms at runtime by using the keywords load(rule), unload(rule) or re-

place(oldrule, newrule) in its configuration language. For more details about
the runtime reconfigurability, we refer the reader to Section 3.4.4. However, applica-
tions that want to use these functionalities have to register beforehand at Crawler
(running as a daemon) using a shared library. From then on, the shared library facil-
itates the system-wide signaling of states, i.e., the exchange of information between
applications, protocols and system components. This only requires an application to
include the library’s header file crawler.h (which provides also the callback func-
tions to read or write to the application variables) and link against the library. The
interaction between Crawler and applications is performed by the shared library
itself. So far, this functionality was only possible system-wide and remote access
from another system was not feasible. Therefore, we have enhanced the shared li-
brary to allow a remote use. To understand how an application can (remotely) use
the shared library, we give an example implementation in Listing 6.2.

1 #include "crawler.h"

2 ...

3 int main() {

4 char *APPNAME = "MyApplication";

5 int libId =createLibrary("UnixLibrary", "UnixProtocolC"); //1.

6 int netLibId=createLibrary("NetworkLibrary","UnixProtocolC"); //2.

7 int sslLibId=createLibrary("OpenSSLLibrary","UnixProtocolC"); //3.

8

9 // callbacks for variable updates

10 callback_ops co = {&setValue ,&getValue ,&error};

11

12 // network library specific settings

13 network_library_extraData netExtra;

14 netExtra.serv_addr = "137.226.12.27"; // server running crawler

15 netExtra.port = 12345;

16

17 // open ssl library specific settings

18 openssl_library_extraData sslExtra;

19 sslExtra.serv_addr = "137.226.12.28"; // server running crawler

20 sslExtra.port = 65432;

21 sslExtra.cert_file = "cert/client.pem"; // client certificate

22 sslExtra.ca_file = "cert/rootcert.pem";

23 sslExtra.ca_dir = NULL;

24

25 initLibrary(libId ,co,APPNAME ,strlen(APPNAME),NULL); //1.

26 initLibrary(netLibId ,co,APPNAME ,strlen(APPNAME),&netExtra);//2.

27 initLibrary(sslLibId ,co,APPNAME ,strlen(APPNAME),&sslExtra);//3.

28

29 addChains(libId ,config1 ,strlen(config1)); // 1.local

30 addChains(netLibId ,config2 ,strlen(config2)); // 2. network

31 addChains(sslLibId ,config3 ,strlen(config3)); // 3. openssl

32 }

Listing 6.2 To allow the access to system parameters and feed cross-layer coordination
algorithms into the system, an application can utilize a UnixLibrary for local use (as indicated
by 1), a NetworkLibrary for remote use (indicated by 2) and an OpenSSLLibrary for secure
remote use (indicated by 3).

6.3. Remote Cross-Layer Evaluation 131

First, the header file for the shared library is included in line 1. In the main method
of the application, first the specific library is created. For show-case reasons, in
the listing we create three different libraries. In line 4 we declare a shared library
for system-wide access, in line 5 a library for remote access and finally a library
for secure remote access that uses OpenSSL for secure communication. For details
about the secure communication we refer the reader to [Drü13].

Afterwards, in line 10 we declare two callback functions, where one allows the shared
library to read a variable from the application and the other one to allow to write into
the application variable. The callback functions have to be specifically implemented
but we omitted it here for space reasons. An example implementation of callback
functions is given in Listing 3.4.

Subsequently, we have additional settings for the specific libraries in lines 12-15 (for
the network library) and 17-23 (for the openssl library). For example, the application
running on the client needs the connection endpoint (IP address and port) if a remote
access to the server is desired which is indicated in lines 14 and 15. Afterwards the
specific libraries are registered using the callback functions. For instance, line 25
registers the system-wide (local) library, line 26 the library for network-wide access
and line 27 the secure network-wide access.

Using the shared library, an application is able to access the system, even remotely
when using the network or the OpenSSL library. So far, the cross-layer coordination
algorithms that realize the access in the system are missing. To feed the cross-layer
coordination algorithms into the system, the shared library offers the addChains

method. For instance, for locally adding cross-layer coordination algorithms into
the system, in line 25 we used the addChains method with the corresponding li-
brary (libId) and the configuration (contains the cross-layer coordination) being
the attributes. Similarly, line 26 and 27 show how to remotely and securely add dif-
ferent cross-layer coordination algorithms into devices. From now on the cross-layer
coordination is injected into the system and Crawler is able to (remotely) access
the variables shared by that particular (remotely running) application in specified
intervals or triggered by the cross-layer coordination.

In the following we present an application that demonstrates the simplicity and
power of the shared library.

Helper Application for Remote Configuration

In order to further simplify the process of adding cross-layer coordination algorithms
into remote devices, we implemented a helper application which we refer to as ad-

dChainsApp. This helper application allows to easily add cross-layer coordination
algorithms into a system. The cross-layer coordination has to be provided as a con-
figuration file using Crawler’s declarative language which allows to describe the
desired coordination at a high level of abstraction. For example, Listing 6.3 presents
a cross-layer coordination to switch TCP’s congestion control algorithm at runtime
while keeping the internal values such as the congestion window without resetting
them. To achieve a focus on the features of the helper application, we simplified this
example which is an excerpt of the full configuration as presented in Section 4.2.
In the first line of the configuration the average over 10 values of the radio signal

132 6. Evaluation Support for Cross-Layer Coordination

strength indicator (RSSI) is calculated. In line three this average value is compared
to a specific threshold. If the threshold is exceeded as expressed in line three, the
congestion control algorithm is switched in line four.

1 rssiAvg:avg(history(currentRssi:get("wlan0.qual.rssi ") ,10))

2 rssiIsLow:less(rssiAvg ,60)

3 cwndAlg:if(rssiIsLow ," westwood","vegas ")

4 setCwndAlg:set("tcp.cwnd", cwndAlg)

5 load(setCwndAlg)

Listing 6.3 A simplified version of a cross-layer coordination to switch TCP’s congestion
control algorithm.

The keyword load in line five instructs Crawler to automatically load the specific
rule into the system. In cases of nested rules, the dependencies are automatically
resolved and all necessary rules are all loaded into the system. A removal of rules
or their replacement work similarly. In particular, by using the keywords unload or
replace a rule is removed or exchanged with another, respectively. This only re-
quires that these rules which are identified by their names, for instance setCwndAlg,
are available in the system. After finalizing the configuration, we can now utilize
the addChainsApp application to remotely (re)configure cross-layer coordination al-
gorithms in a remote system. For example, the following command in the console
allows to provide the Crawler rules described in the file myconfig.cfg (e.g., our
TCP congestion control coordination) to the server reachable via the IP-address
192.168.0.5 and port 12345.

1 $>./ addChainsApp --host 192.168.0.5 --port 12345

2 --chain myconfig.cfg

On calling this command in the console, the addChainsApp application first remotely
registers at the server running on the specified remote node which is indicated by
1© in Figure 6.2. Subsequently, the addChainsApp application sends the cross-layer

coordination given in the configuration to the remote system, cf. 2© in Figure 6.2.
Afterwards, Crawler takes care to feed and realize the cross-layer coordination in
the system. In particular, based on the configuration, functional units (FUs) are
composed to realize the desired cross-layer coordination, cf. 3© in Figure 6.2. For
details about how the FUs are composed based on a given configuration, we refer the
reader to Section 3.4.1. Instead of only allowing a file that includes Crawler rules,
we also support to directly inject rules in their string representation as an argument
on calling the application. But for clarity and convenience reasons we suggest the
usage of pre-edited configurations to avoid programming flaws.

To summarize, by using the shared library it is easily possible to feed cross-layer
coordination algorithms into a remote system. Our helper application addChains

further simplifies this process. In the following we present the necessary details
about how to remotely monitor system parameters in general as well as the added
cross-layer coordination algorithms.

6.3.2.3 Remote Monitoring

Access to system information, i.e., to protocols and system components such as sen-
sors, is relatively difficult due to OS limitations. However, the access to system

6.3. Remote Cross-Layer Evaluation 133

Server	
1

addChainsApp	

Battery

O
pe

ra
tin

g
S

ys
te

m
 &

 H
ar

dw
ar

e

S
ys

te
m

co

m
po

ne
nt

s

Network

Transport

Data Link

Physical

P
ro

to
co

ls

GPS

Accelerometer

3

state

motion

TCP.CWND

2

sharedLibrary CRAWLER

History Get

Avg Less

wlan0.qual.rssi

Set
If

coordinate

register
send config

Realize cross-layer
optimization

Figure 6.2 The addChainsApp application helps a developer to remotely configure running
cross-layer coordination algorithms. After registration (indicated by 1©), a configuration that
contains the instruction to add, remove and replace a set of specified cross-layer coordina-
tion algorithms is sent to the remote system (indicated by 2©). On reception, Crawler
automatically realizes the given instructions (as indicted by 3©).

information significantly helps to understand and debug the experiment and the
interplay between algorithms and other effects such as the unpredictable wireless
channel. Moreover, it will also help to measure and analyze the benefits of the en-
visioned algorithms. While Crawler provides the necessary interfaces to locally
access these information, a remote access was initially not enabled. With the im-
provements to the shared library as presented above, we also lay out the foundation
for remote monitoring. In the following we present the details about how to monitor
system information and cross-layer coordination algorithms.

Monitoring System Variables

The extensions to the shared library allow us to remotely feed cross-layer coordi-
nation algorithms into the system. The same feature also allows us to access the
desired system information. In particular, we generate a configuration that speci-
fies a cross-layer coordination to read a certain variable in the system. Remember
that variables are accessed by so-called stubs which provide read and write access
to protocol and system information. They act as a glue element between the cross-
layer coordination algorithms and the OS. Stubs offer a common interface and a
very find-grained access to system information. Thus, to access the desired protocol
or system variable, stubs need fully qualified, i.e., unique and hierarchical, names.
We have implemented the helper application monitorVariableApp that allows to
conveniently monitor stubs by specifying its fully qualified name and node of inter-
est. For example, by calling the following command in the console it is possible to
monitor the RSSI (specified by using its fully qualified name wlan0.qual.rssi.avg)
every 100 milliseconds (update intervals) on the remote server with the IP address
192.168.0.5.

134 6. Evaluation Support for Cross-Layer Coordination

Server	
1

monitorVariableApp	

sharedLibrary

Battery

O
pe

ra
tin

g
S

ys
te

m
 &

 H
ar

dw
ar

e

S
ys

te
m

co

m
po

ne
nt

s

Network

Transport

Data Link

Physical

P
ro

to
co

ls

GPS

Accelerometer

CRAWLER

3
4 5

state

motion

2

wlan0.qual.rssi

register
send config

realize
access read

variable

deliver

coordinate

Figure 6.3 The monitorVariableApp application helps a developer to remotely monitor
system variables. After registration (cf. step 1©), a configuration that contains the instructions
to monitor a set of variables is send to the server (cf. step 2©). On reception, Crawler
automatically realizes the respective accessors to the variables (cf. step 3©). Subsequently, the
specified variables are continuously monitored and delivered to the server (cf. step 4©) which
then delivers them to the client (cf. step 5©).

1 $>./ monitorVariableApp --host 192.168.0.5 --port 12345

2 --variablename "wlan0.qual.rssi.avg" --interval 100

On calling this command in the console, the monitorVariableApp application first
remotely registers at the server running on the specified remote node as indicated
by step 1© in Figure 6.3. In a next step, based on the given name of the variable, a
Crawler configuration is created that specifies the access to the desired stub. This
configuration is then sent to the remote system (cf. step 2©). Based on the given
configuration, Crawler realizes the cross-layer coordination to read the specified
variable (cf. step 3©). Finally, the variable is continuously monitored and, based on
the specified update intervals, provided to the server (cf. step 4©) which then further
delivers the monitored values to the monitorVariableApp application (cf. step 5©).

As stubs are identified by using their fully qualified names, the monitorVariableApp
only allows to monitor variables or rather stubs that are supported by Crawler.
A list of stubs is given in Appendix B. However, adding further variables to monitor
is supported by Crawler as presented in Section 3.4.3.2.

In the following, we present how we used the shared library to also monitor cross-
layer coordination algorithms.

Monitoring Cross-Layer Coordination Algorithms

To realize a cross-layer coordination, information such as from protocols and system
components might need to be aggregated, processed and exchanged. Understanding
all the details of an interaction necessitates the ability to debug or rather monitor

6.3. Remote Cross-Layer Evaluation 135

Server	 monitorRuleApp	

Battery

O
pe

ra
tin

g
S

ys
te

m
 &

 H
ar

dw
ar

e

S
ys

te
m

co

m
po

ne
nt

s

Network

Transport

Data Link

Physical

P
ro

to
co

ls

GPS

Accelerometer

3 4

sharedLibrary CRAWLER

History Get

Avg Less

wlan0.qual.rssi

1

5
2

register
send config
deliver

realize
access

read
value

Figure 6.4 The monitorRuleApp application helps a developer to remotely monitor cross-
layer coordination algorithms. After registration (cf. step 1©), a configuration that contains the
instructions to monitor a set of functional units (composed to realize a cross-layer coordination)
is send (cf. step 2©). On reception, Crawler automatically realizes the respective accessors
to monitor the specified functional units (cf. step 3©). Subsequently, the functional unit states
are continuously monitored and delivered to the server (cf. step 4©) which then delivers them
to the client (cf. step 5©).

information while being processed, aggregated and exchanged. With the presented
monitorVariableApp application, we are only able to access parameters of the sys-
tem such as the wlan0.qual.rssi. In addition to monitoring system variables, it
would be also interesting to monitor intermediate states of the cross-layer coordina-
tion, for example, to monitor the average values of the RSSI in our coordination to
modify TCP’s congestion control algorithm (which we added in the previous section
with our addChainsApp application). As Crawler realizes such cross-layer coor-
dination algorithms by composing functional units (FUs), monitoring FUs already
provides the essential monitoring ability to understand the behavior of the coordi-
nation algorithms. For this purpose, we have implemented a dedicated application
which we refer to as monitorRuleApp which works similar to the monitorVari-

ableApp application but allows to monitor a specified FU.

For example, by calling the following command in the console it is possible to monitor
the average RSSI value every 500 milliseconds (update interval) on the remote server
with the IP address 192.168.0.5.

1 $>./ monitorRuleApp --host 192.168.0.5 --port 12345

2 --rulename "rssiAvg" --interval 500

Similar to the monitorVariableApp, on calling this command the monitorRuleApp

first remotely registers at the server running on the specified remote node, cf. 1© in
Figure 6.4. But in contrast to monitorVariableApp, the monitorRuleApp accepts
an identifier of a rule in Crawler instead of a fully qualified name of a stub. Based
on the given identifier, a Crawler configuration is created that specifies the access
to the desired FU. This configuration is then sent to the remote system (cf. step 2©).

136 6. Evaluation Support for Cross-Layer Coordination

Upon receiving the configuration, Crawler realizes the access to the specified FU,
for instance, the access to the FU that provides the average RSSI values (cf. step
3©). From then on, the specific FU is continuously monitored and based on the

specified update intervals provided to the server (cf. step 4©). Finally, these values
are further delivered to the monitorRuleApp (cf. step 5©).

To summarize, by using the addChainsApp, we enabled to conveniently add cross-
layer coordination algorithms into remote systems. While the application monitor-

VariableApp allows to remotely monitor a set of variables in a specified system,
the application monitorRuleApp allows to remotely monitor internal states of cross-
layer coordination algorithms. These helper applications can be conveniently used
within any other software, while the applications monitorVariableApp and moni-

torRuleApp only requires that the software using them is able to process and pipe the
standard input and output. In the following, we demonstrate the benefits of our three
helper applications (addChainsApp, monitorVariableApp and monitorRuleApp) in
a graphical and interactive front-end that further supports the convenience during
experimentation.

6.3.2.4 Graphical and Interactive Front-End

So far, we have presented applications that allowed us (i) to control cross-layer
coordination algorithms (by using addChainsApp), (ii) to monitor variables in the
system (by using monitorVariableApp), and (iii) to monitor intermediate variables
within the cross-layer coordination algorithms (by using monitorRuleApp). We refer
to these applications as helper applications. Our three helper applications simplify
the process of experimentation with cross-layer coordination algorithms.

To further support the developer while experimenting, we integrated these helper
applications into a graphical front-end. Figure 6.5 shows the sequence diagram to
provide a better understanding about the overall interplay within our architecture.
In an initial step, our toolchain is started by using the following command in the
console.

1 $>python ia_remote_eval_client.py --configs auto_config.cfg

Subsequently, the configfile auto_config.cfg is parsed, which contains all necessary
automation information for central execution of the whole experiment. Based on the
specifications within the configuration (e.g., as given in Listing 6.1), the connections
to servers that are being part of the experiment are established. This only requires
that on booting, the server is started on the remote devices which can, for instance,
be configured in the autostart of the device. The configuration also includes infor-
mation when to execute which command on the servers. These tasks are extracted
and a schedule is determined.

The configuration also contains the parameter to enable the interactive mode. In
case of a disabled interactive mode, only the experimentation is started and the tasks
as determined in the schedule are executed till the end time of the experimentation
which is also given in the configuration. In case of an enabled interactive mode, in
addition to the experimentation also the interactive front-end is started.

By utilizing the helper applications, the features of the interactive mode are three-
fold. First, the addchains command makes use of the helper application addChain-

sApp and allows to add, remove and modify cross-layer coordination algorithms at

6.3. Remote Cross-Layer Evaluation 137

Parse	 Configura-on	 Start

Interac-ve	
mode	

enabled?	

Establish	
Connec-on	 to	 Server	 Schedule	 Tasks	

Experimenta-on	
Finished	

More	
Custom	
Configs?	

Running	
Experimenta-on	

no

yes

End

yes

no

addChains	

run	

monitor	

Interactive Mode

Figure 6.5 Sequence diagram of the interactive front-end. After starting our tool, from a
configuration the necessary automation information is extracted and executed. If the interactive
mode is enabled (in configuration), the front-end appears and allows the use of three commands
during the experiment: monitor to monitor system variables and cross-layer coordination
algorithms, addChains to control the set of running cross-layer coordination algorithms, and
run which allows to control third party software. After finishing the experiment, if more custom
configurations are available the procedure is started again, otherwise results are delivered to
the client.

runtime. Second, by using the command monitor the helper applications moni-

torVariableApp and monitorRuleApp are used in the back-end. Remember that
while the former allows to specify a set of variables for monitoring from applica-
tions, protocol and system components, the latter allows to monitor the cross-layer
coordination algorithms and intermediate values. Third, the run command allows
to control any program remotely or rather allows to intervene into a test such as
starting or stopping programs, for instance, when misbehavior is observed. Another
example could be to start further helper programs such as tcpdump or netem for
better analyzes. This feature allows the same power as opening a shell and executing
remote programs.

After the experiment is finished, our tool chain checks for further custom configu-
rations. If more configurations are available, the whole procedure is started again,
otherwise all the results from the servers are zipped and delivered to the client. The
central logging at a central place improves the convenience of experimentation. In a
nutshell, our three key features together combined in a single graphical environment
enable an easy-to-use and a holistic solution for the experimenter.

Figure 6.6 shows a generic layout of the interactive front-end. The layout consist
mainly of three areas: (i) an area that allows to provides the commands, (ii) an
area for given additional information regarding the commands or providing feedback
information from our toolchain, and (iii) the data that is being monitored. In the
latter case, the area is subdivided into fields reflecting each parameter type such as
radio signal strength. The field is labeled at the top with the node name and the
name of the monitored variable, for instance, node09 wlan1.cfg80211.signal.avg.

138 6. Evaluation Support for Cross-Layer Coordination

> Command line interface

Additional context information, e.g., a manual for
commands, error messages, etc.

Label 1

Value 1
Value 2
Value 3
…

Label 2

Value 1
Value 2
Value 3
…

Label 3

Value 1
Value 2
Value 3
…

Label 4

Value 1
Value 2
Value 3
…

Interactive
 Interface

Context
Information

Measured
Data

Display

Figure 6.6 A sketch of the interface layout

Based on the screen size a certain amount of history values gathered from the specific
node are listed below the label. At runtime it is possible with the interactive front-
end to monitor further parameters. In this case, fields for the specified variable are
added or removed at runtime.

6.3.3 Implementation

The implementation mainly consists of two separate parts:

The first part is the extensions of Crawler where we enhanced the application
support interface in order to make it accessible over the network, i.e., without direct
human interaction. For this it was necessary to add further functionality (remote
configuration and monitoring) into the shared library within the application support
subcomponent of Crawler. These enhancements are implemented in C++. We
have also enabled a secure remote configuration using OpenSSL.

Second, the remote automation and the interactive remote front-end are imple-
mented in Python. We opted for Python as it allows scripting in a high level, which
makes it very suitable as a test automation language. The graphical front-end for
the helper applications uses the library curses [ncu13]. However, the communication
between the remote client and the remote server are realized with PYthon Remote
Objects (PYRO). Connections are established to a remote host by using the IP ad-
dress for each remote server. A client connects to remote servers using the PYRO
interface and can directly use objects of the corresponding remote server implemen-
tation.

For more details about the implementation, we refer the reader to [Drü13].

6.3.4 Evaluation

With our evaluation we target at demonstrating our three key features (i) remote
automation, (ii) remote configuration, and (iii) remote monitoring. To demonstrate

6.3. Remote Cross-Layer Evaluation 139

Node 1 Node 2 Node 3

Jammer

Network	

Remote Client

Ethernet
IEEE 802.11g

Figure 6.7 Reference scenario used to evaluate our three key features consists of a three
nodes and a remote client. The remote client controls the nodes involved in the experiment
and monitors the impact of several metrics in the presence of jamming.

these features we performed an experimentation in the field of jamming detection.
By using Crawler we built a flexible jamming detection and reaction framework to
dynamically load and unload jamming detection and reaction strategies. By using
command line instructions we are able to select the strategies which are then inserted
as cross-layer coordination algorithms into the system via Crawler. This required
configuration and manual effort for each device before starting the experimentation.
While running the experimentation we were able to monitor the reaction of metrics
and the decision of our jamming detection strategy in the presence of jamming. This
again was only possible locally on a specific device requiring physical interaction
and effort. The evaluation results for this scenario without our remote evaluation
feature are presented in Section 4.5. We repeated this experimentation with our
extension to Crawler to centrally and remotely automate, configure and monitor
the experimentation.

We conducted the experimentation in a small office room located in the ComSys
institute at the RWTH Aachen University. We used three Linux PCs equipped
with an 802.11g/n Atheros WLAN card running the ath9k driver [ath]. We let
the three PCs build an ad-hoc network and continuously exchange messages on
channel 11 within the 2.4 GHz band. Details about the original test setup are given
in Section 4.5.2. As our scenario is a wireless experimentation and any wireless
communication with the testing nodes may influence the experimentation results, we
used Ethernet for our remote features to interact with the nodes. The only device
that was not remotely controllable during the experimentation was the jammer, as it
is implemented on the Wireless Open-Access Research Platform (WARP) [KCH+08],
while Crawler is specifically designed for x86-based systems. A sketch of our
reference scenario is shown in Figure 6.7.

In the following we show how we benefit from using the three key features during
our experimentation beginning with the automation key feature.

140 6. Evaluation Support for Cross-Layer Coordination

6.3.4.1 Evaluating Remote Automation

The preparation of the experiment first requires to open various terminals on each
communicating node. In one terminal the kernel modules of Crawler are loaded
and it later displays kernel logs. A second terminal is used for adjusting the trans-
mission power of the nodes (via iwconfig), starting Crawler, and printing log
information of the Crawler daemon. In a third terminal the jamming detection
framework is launched. Once the experiment is finished, the daemon running in
second terminal and application running in the third terminal are closed and the
respective log files (Crawler and kernel) are manually collected from each node.
The tasks associated with the preparation and collection of results require several
minutes of manual work. Clearly, such an approach does not scale well due to two
main reasons. First, the required time increases linearly with the number of devices.
Second, multiple experiment runs are generally required for a complete parameter
study and to obtain statistical confidence in the results. However, once the short
and intuitive configuration is specified as illustrated in Listing 6.1 (which only re-
quires 44 lines of code for the whole experimentation), the above-mentioned steps
with our framework spanned only few seconds. When running this configuration,
we observed that the experimentation is conducted as specified and the log files are
centrally stored at the client.

In the following, we present our two other key features and highlight their benefits
during experimentation.

6.3.4.2 Evaluating Remote Configuration and Monitoring

A combined validation of remote configuration and monitoring is very suited as
one functionality influences the system during experimentation and the other func-
tionality helps to trace the influencing factors. Hence, in order to validate remote
configuration, we show the proper working of the commands addChains and run.
For validating the remote monitoring feature we need to show that we are able
to monitor both (i) system variables and (ii) states of cross-layer coordination al-
gorithms. To validate these features, we selected a set of instructions that were
executed while simultaneously running a jamming detection experiment which are
shown (in its order of execution) in Listing 6.4.

1 monitor node05 wlan1.cfg80211.signal.avg // monitoring a variable

2 addChains node05 rssi.cfg // adding a crawler configuration

3 monitor node05 maxrssi // monitoring a crawler rule

4 monitor node05 minrssi // monitoring another crawler rule

5 run node04 iwconfig wlan1 txpower 20 // executing 3rd party programs

6 monitor stop node05 wlan1.cfg80211.signal.avg

7 monitor stop node05 minrssi

Listing 6.4 List of instructions that are conducted successively (i.e., each with having a
gap of few seconds in-between) in the interactive mode.

With the first line we monitor on node02 the average signal strength of messages
originated at all neighboring nodes. The respective output of our front-end is de-
picted in Figure 6.8 which shows reported values (stable between −77 dBm and
−78 dBm) for the specified variable. Note that the newly monitored values are at
the top.

6.3. Remote Cross-Layer Evaluation 141

Figure 6.8 Monitoring a variable in the system is easily possible in our interactive mode. In this
example, by using the keyword monitor, we monitor on node05 the average signal strength of
all connected nodes by using the stub wlan1.cfg80211.signal.avg. Afterwards, based on
the screen size, the interactive mode displays for the specified variable and node, an amount
of history values.

In Line two we add the Crawler configuration as shown in Listing 6.5, which
includes two rules or cross-layer coordination algorithms. In particular, the instruc-
tions in Line 1 and 2 of this configuration compute, over a series of 20 collected values,
the maximum and minimum of our monitored variable wlan1.cfg80211.signal.avg,
respectively. In Line 3 and 4 we deliver the corresponding values, that is maxrssi

and minrssi, to the application layer. The subsequent lines are notifications that
determine the update intervals.

1 maxrssi:max(maxhistory:history(get("wlan1.cfg80211.signal.avg"),20))

2 minrssi:min(minhistory:history(get("wlan1.cfg80211.signal.avg"),20))

3 app_var1:set("application.mainJammingDetection.var1", maxrssi)

4 app_var2:set("application.mainJammingDetection.var2", minrssi)

5 timer:pollingtimer (250)

6 timer ->maxhistory;

7 timer ->minhistory;

Listing 6.5 Crawler config that we inserted into the system during experimentation.

Using the addChains command, we inserted these rules into the system. The valida-
tion of this step is easily possible with the instructions shown in line four and five of
Listing 6.4 where we used the monitor command to monitor both rules. The output
of the graphical front-end is depicted in Figure 6.9 where the middle column shows
the maxrssi values (area is marked as 3© corresponding to the line in Listing 6.4)
and the right column the minrssi values (area is marked as 4©).

So far, we showed that using the monitor command we are able to monitor both
variables in the system and cross-layer coordination algorithms. Next, we show
that we are also able to run third party programs during experimentation. To
validate that, we significantly increased the transmission power of the neighboring
node node03 by using the keyword run and the program iwconfig as shown in line

142 6. Evaluation Support for Cross-Layer Coordination

1

3

4

monitor node05 wlan1 
 cfg80211.signal.avg

monitor node05 maxrssi

monitor node05 minrssi

Figure 6.9 The interactive mode also allows to monitor cross-layer coordination algorithms
in the system. After inserting coordination algorithms (in a previous step), monitoring them
is possible by using again the keyword monitor. Particularly, we monitored on node05 the
maxrssi and minrssi rules as shown in the middle and right column respectively.

5 of Listing 6.4. This change improved the received signal strength at node05 as
shown in Figure 6.10. In particular, the wlan1.cfg80211.signal.avg significantly
increased from −76 dBm to −68 dBm and similarly the maxrssi as it calculates the
maximum of the last 20 entires of the same variable. In contrast, the minrssi rule
shows −77 dBm as its history still contains the values before the adjustment of the
transmission power.

If there is no need anymore for monitoring a specific variable or cross-layer coor-
dination, the graphical front-end allows its removal from the display by using the
keyword monitor stop as shown in line six and seven of Listing 6.4.

To conclude, in our evaluation we have demonstrated that we are able to automate
an experiment with several nodes and programs including cross-layer coordination
algorithms. Moreover, we showed how to remotely add cross-layer coordination
algorithms into the system and run third party programs during the experimentation.
By using our remote monitoring feature we monitored the effects on the system.
Particularly, we remotely monitored system variables and cross-layer coordination
algorithms.

6.3.5 Related Work

The key features of our Crawler enhancements are remote automation, configura-
tion and monitoring. Regarding these features there are different projects that offer
only one or two of these functionalities.

6.3. Remote Cross-Layer Evaluation 143

Figure 6.10 The interactive mode allows to run third party programs by using the keyword
run. For instance, we increased the transmission power on node04 (the command is shown on
the top) which improved the received signal strength on node05. Particularly, we monitored
on node05 that the variable wlan1.cfg80211.signal.avg and cross-layer rule maxrssi in-
creased significantly. On the contrary, as the history of the minrssi rule still contains the
values before the transmission power adjustment, the low value of - 77 dBm is monitored.

An example with respect to remote configuration is OpenFLow [MAB+08] which
is a communication protocol that allows remote access to the flow tables of switches
and routers. For this, OpenFlow suggests a uniform interface for vendors to allow the
configuration of flow tables without revealing internal details of the implementation.
The remote devices (routers and switches) are controlled via a secure (SSL) channels
using a dedicated controller running on the remote device which denies access for
not legitimate peers. However, OpenFlow is primarily focused on high performance
flow control and as a result is limited to only configuring flow tables on the remote
devices. Accordingly, it neither allows the configuration of other functionalities in
the operating system such as sensors nor allows to remotely control applications and
all remaining protocol layers besides the network layer.

A candidate in the field of remote monitoring is Ganglia [MCC04] which is a sys-
tem monitoring tool particularly built for high-performance systems such as clusters
and grids. The information distribution of the monitored values follows a hierarchi-
cal pattern. In particular, servers access the information (called gmond), which is
then incorporated into XML files. These files from the server can then be accessed
via a polling scheme. Intermediate nodes (called gmetad) poll servers or other inter-
mediate nodes and cache these data. Finally, the intermediate nodes are accessed
by a client (referred to as ganglia-web) for visualization of data. However, the ma-
jor focus of Ganglia is its focus on performance on the clusters. Accordingly, the

144 6. Evaluation Support for Cross-Layer Coordination

supported set of metrics only focus on metrics that give indications about the per-
formance such as CPU and memory utilization. Therefore, monitoring of protocols
is not supported, not to mention cross-layer coordination algorithms.

A similar approach is the IETF’s standard remote monitoring (RMON) [Wal06]
which targets at remote ”flow” monitoring in LANs. In its initial version it focuses
only on monitoring of OSI layers 1 and 2 in Ethernet and Token Ring. Later versions
also include the network and application layer. Although RMON has a more gen-
eral scope in terms of layer support than Ganglia, nonetheless its concept does not
consider other sources of information in the system such as sensors, further wire-
less access technologies, novel protocols and cross-layer information. In contrast,
Crawler’s design provides the necessary extensibility for monitoring any informa-
tion in the system.

Preeminent work regarding remote automation is Emulab [Emu] which targets
at combining network simulation, network emulation and real networks to create a
complex testbed. Initially, the testbed has ben created at the University of Utah
with several hundred PCs and additional hardware connecting them. As a result of
its success, several additional Emulab testbeds at different locations have been cre-
ated. Emulab provides an infrastructure for testbeds including both (real) physical
and simulated nodes. It virtualizes nodes and the links between them. Nonetheless,
it allows to configure and automate test runs but this at the expense of high cost,
restrictions and complexity to setup tests due to additional infrastructure require-
ments. This approach targets rather the general case of wireless communication
testing. Using Emulab for testing of cross-layer coordination algorithms is not pos-
sible. Moreover, the ability of (live) monitoring and logging of variables from system
components and protocols to the degree and convenience that we offer is not sup-
ported.

A more lightweight approach for remote monitoring is our Fantasy framework
[AvLH+12] which uses network emulation as a methodology for experimentation.
While the configuration in Fantasy is easy to use and does not require additional
infrastructure such as Emulab, there is no support for live monitoring of the experi-
mentation. Moreover, test results are only fetched and collected centrally at the end
of each test and cannot be controlled at runtime. In Section 6.4 we present Fantasy
in more detail.

Apporach Remote
Configuration

Remote
Monitoring

Test
Automation

Cross-layer
support

OpenFlow [MAB+08] + + − − − −
Ganglia [MCC04] − − + + − −
RMON [Wal06] − − + − −
Emulab [Emu] + + − + + − −
Fantasy [AvLH+12] + + + + + +
Presented Concept + + + + + + + +

Table 6.1 Comparison of the testbeds: ++ very good, + good, – bad, – – very bad.

To summarize, regarding our three key features, related work only focuses on subsets
of the functionality provided by our Crawler enhancements. For each key feature
they target, they have a different focus which separates their work from ours. A
major distinction from related work is also the flexibility and convenience provided

6.3. Remote Cross-Layer Evaluation 145

by Crawler’s ability to access information within the system from diverse subcom-
ponents and protocols. Moreover, to the best of our knowledge, none of these works
provide all the three key features together as illustrated in Table 6.1. In addition
to our key features we added also cross-layer support as an additional key feature,
since when it it comes to challenging case of cross-layer coordination testing on real
testbeds, there is no framework that provides the degree of support that we provide.

6.3.6 Future Work

The remote configuration feature allows to add, remove and modify cross-layer coor-
dination algorithms at runtime. In the interactive mode we also enabled controlling
of other helper programs. Unfortunately, the control of helper programs is limited to
starting the programs with their arguments or stopping them. It would be beneficial
for developers if they could provide optional arguments or influence the input and
output of programs with regular expressions similar to command line instructions.
However, we can log the system output on the console, but more control and filtering
mechanisms about what to log and how would be useful.

So far it is only possible to control applications that are compiled or rather installed
on the test devices. It would be beneficial to have the ability to also push precompiled
(cross-compiled) code the test devices. This will simplify the process of bringing all
test devices to certain updated versions.

With respect to automation, the configuration of the tests nodes and their address-
ing is conducted statically (i.e., using IP addresses) in the configuration file. This
requires knowledge about all involved test nodes and their manual configuration.
Automatic address configuration, for example, with the Dynamic Host Configura-
tion Protocol (DHCP), is not supported yet. Service discovery could be incorporated
for an automatic configuration of the remote servers.

6.3.7 Summary

With the presented extension to Crawler, we demonstrated that we are able to
conveniently evaluate network scenarios where cross-layer coordination algorithms
are involved. In particular, we have enhanced Crawler’s application support in-
terface that facilities three key features.

First, we proposed remote automation which conveniently allows to centrally auto-
mate and execute whole test setups with different settings. For this it is only neces-
sary to provide a configuration that includes the necessary instructions to automate
the execution of desired settings including applications, cross-layer coordination al-
gorithms and further helper programs like iperf.

Second, we facilitated remote configuration by enhancing the shared library of
Crawler to remotely feed cross-layer coordination algorithms into a system. With
this feature it is possible to remotely add, remove and modify cross-layer coordina-
tion algorithms on a remote device at runtime.

Third, to understand the behavior of algorithms and cross-layer coordination algo-
rithms during and after experimentation, we enabled a remote monitoring feature

146 6. Evaluation Support for Cross-Layer Coordination

which allows to log and monitor internal states of cross-layer coordination algorithms
as well as variables in protocols and system components.

To further support the developer while experimenting, we integrated all three key
features in a graphical front-end, enabling us to centrally control and monitor dis-
tributed experiments conveniently.

6.4 Network Emulation Tool – Fantasy

Developers of software for real-world wireless networks have to cope with a num-
ber of difficulties. The wireless medium and the distributed nature of the systems
complicate the testing of such software. One typical problem is that test setups
come with high requirements in terms of hardware and space. Another limitation
is that the repeated execution of a test under the same conditions is not possible.
While implementations have to be able to cope with the rapidly and unpredictably
changing behavior of the wireless channels, during testing, it is beneficial to pre-
cisely control the environment to evaluate the influence of different parameters on
the system behavior. Including mobility in tests is cumbersome and comes at the
cost of human interaction [GKN+04] or highly sophisticated test setups [DRSC05].
Another problem in this context is that it can be difficult to access relevant system
information that is required to evaluate a system. Due to the fact that a number of
different systems are involved in such a test, the setup followed by an execution of
a test and the collection of results rapidly get quite complex.

Network simulation tools are especially built to solve the aforementioned problems,
but have their own disadvantages: Regular simulation tools only allow a very limited
use of existing software code. This leads to the problem that the system under test
has to be implemented twice – once for the use in a network simulator and a second
time for use in real systems. This means that only the system concept can be
tested, not the actual implementation. Furthermore, simulation models are often
too abstract and do not take into account important effects that are caused by an
operating system, such as scheduling and buffering.

Network emulation [Fal99] combines simulation and real world testing to benefit
from both worlds. However, this is only partially possible in such a combined setup.
For example, the real systems that form part of the network emulation setup are not
as transparently accessible as the simulated parts. Furthermore, network emulation
still requires complex setup for the testbed machines.

In the following we present Fantasy3, a new network emulation architecture that
facilitates the evaluation of wireless network software. Our main contribution is
a centrally controlled system that allows the fully automated setup and execution
of experiments, enables convenient access to system information, and automates
the collection of test results. The target audience of Fantasy are developers of
wireless network software that want to perform tests with the convenience of a

3This and subsequent sections are based on the joint work with Hendrik vom Lehn, Cristoph Ha-
bets, Florian Schmidt, and Klaus Wehrle published in ”FANTASY: Fully Automatic Network Emulation
Architecture with Cross-Layer Support”, 5th International Conference on Simulation Tools and Tech-
niques (SIMUTools ’12), March 2012 [AvLH+12]. Furthermore, the content is also partially based on
Christoph Habets’ Diploma Thesis [Hab11].

6.4. Network Emulation Tool – Fantasy 147

network simulation, but nevertheless require the use of real implementations and full
operating systems for the system under test. We alleviate the problem of complicated
access to relevant system information by integrating the Crawler into Fantasy,
which provides a unified interface for system information access. Furthermore, since
Crawler’s original focus is on facilitating cross-layer coordination, Fantasy is
especially suited as a rapid prototyping and testing tool for the design of cross-layer
coordination algorithms.

The remainder of this Section is organized as follows: Section 6.4.1 presents a system
overview and introduces the components that Fantasy is composed of. In Section
6.4.2, we describe our architecture in more detail and explain how we achieve the
fully automatic setup and execution of experiments. Implementation details are
provided in Section 6.4.3. We evaluate Fantasy in Section 6.4.4 and discuss related
work in Section 6.4.5. Finally, we describe future improvements in Section 6.4.6,
before concluding the section about Fantasy in Section 6.4.7.

6.4.1 Design Overview

The main goal of Fantasy is to simplify the process of testing wireless network
software. Through a combination of suited emulation components and the support of
fully automatic experiment setup and execution, developers shall be able to perform
experiments with real software prototypes as easily as with a network simulation.
This section provides an overview over the overall design of Fantasy and the used
components.

In order to enable developers to test arbitrary networking software in its native envi-
ronment (an operating system), but nevertheless minimize hardware requirements,
we opted for the use of virtual machines that execute the systems under test. Because
of its widespread use and easy configuration, we have chosen VirtualBox [Wat08] as
virtualization software.

With Fantasy, those parts of an emulated setup that do not run in virtual machines
are simulated using the ns-3 simulation software [ns3]. ns-3 is well suited for this
task since it contains detailed models of the MAC layer [BRN+10, Wif] and already
comes with support for network emulation. Part of this is a real-time scheduler that
runs the simulation in real time, which is required in order to allow the exchange of
network packets. Note that network emulation fails if the simulation is not real-time
capable, e.g., due to large scenarios or complex models [WvLW11]. In such a case,
Fantasy stops processing. In Section 6.4.4.2 we perform a scalability analysis to
show how complex such a scenario can become till overload occurs on a single specific
PC.

However, to connect the simulation with virtual machines, Fantasy utilizes two
components that have been developed as part of the SliceTime project [WvLW11].
For the emulation of Ethernet devices, a tap device which connects to ns-3 using
UDP datagrams is created in the system that runs inside the virtual machine. A
wireless emulation driver is used for the emulation of wireless network connections.
This device driver creates a virtual network device which provides the same interfaces
as a real 802.11 wireless network card, including the wireless extensions [Wir]. Both
devices have in common that they provide interfaces to the guest operating system,

148 6. Evaluation Support for Cross-Layer Coordination

Host Machine

Host Operating System

Host Configuration
Unit (HCU)

Virtual Machine 1

Guest OS

App

…

Simulation

Emulated System 1

GCU

Virtual Machine n

Guest OS

App

Emulated System n

GCU

Host
System Data

Control

Figure 6.11 Conceptual view of Fantasy.

but forward all sent and received frames to corresponding models inside the ns-3
network simulation.

An advantage of network simulation that is usually lost in case of network emulation
[Fal99], is the convenient access to relevant information in the network stack such
as packet loss rate at the application layer or signal strength at the PHY layer.
Through the incorporation of Crawler, Fantasy supports easy access to such
information of the systems that run inside the virtual machines. Furthermore, this
combination allows to conveniently evaluate the effects of cross-layer coordination
algorithms using real-world systems. The only restriction regarding the software
that runs inside the virtual machines is that they are constrained to Linux systems,
as the wireless emulation driver and Crawler have been developed for Linux.

By using the aforementioned components, Fantasy allows the emulation of diverse
scenarios on a single computer. Nonetheless in cases of low computational power,
Fantasy also allows to use additional computers to run the virtual machines. How-
ever, the overall setup and execution of an experiment is still quite complex when
compared to the simplicity of a pure network simulation. To further simplify these
processes, we developed two components that allow to control the whole setup from
a central place. The host configuration unit (HCU) is running on the host computer
that accommodates the network simulation and the desired amount of virtual ma-
chines. It instantiates the virtual machines even on different physical devices, starts
the network simulation and is in charge of the overall setup. As part of the systems
that are running inside the virtual machines, the guest configuration unit (GCU)
waits for commands from the HCU. It loads the wireless emulation driver, configures
Crawler, starts processes that are part of the experiment and allows the collection
of test results at a central place.

Figure 6.11 gives an overview of the overall setup that is used by Fantasy. The
functionality of HCU and GCU are described in more detail in the following section.

6.4. Network Emulation Tool – Fantasy 149

Host Control Unit (HCU)

HCU

Virtual Machine
(Virtual Box)

HCU-Config Logger

VM-Com
(Virtual-Box)

Sim-Com
(NS-3)

HCU-Main

Figure 6.12 Overview over the Host Configuration Unit (HCU), its interfaces, and its sub-
components.

6.4.2 Architectural Details
This section provides more detailed information on how HCU and GCU are used
to control whole experiments in an automated fashion. Note that the architectural
design of Fantasy in general and the components HCU and GCU in particular
are comparable to the client and sever components that enable Crawler’s remote
features, but for an emulation approach additional aspects need to be considered.

6.4.2.1 Host Configuration Unit (HCU)

The Host Configuration Unit (HCU) is executed on the host system and controls
the entire experiment. It consists of five subcomponents as shown in Figure 6.12.
While designing the HCU we kept it modular to group functionality for usability and
maintainability reasons. Moreover, the modularity provides us with exchangeable
modules such as the VM-Com subcomponent that is tailored for Virtual Box but
can simply be exchanged for another virtual machine software. This holds also for
the Sim-Com subcomponent that is tailored for ns-3 but can also be exchanged
for another simulator. The HCU-Main subcomponent is interconnected with all
subcomponents and controls them.

The initial step to conduct a test setup is done by writing a configuration file.
The configuration includes the required parameters for the simulation as well as
instructions that are performed on the virtual machines. The configuration file is
read and executed by the HCU-Config subcomponent. After the experiment, the
logged values for all parameters specified in the configuration are collected from all
virtual machines and are given back to the Logger subcomponent. In the following
we describe how such values can be configured in order to monitor them and how to
setup up a complete experiment.

Configuration

Typically when testing is involved, the experimenter has to adjust parameters to
evaluate the effects such as number of involved nodes, different traffic patterns, or
used protocols. This also requires to repeat the test several times to have stable
and credible experimentation results. It is desirable that both of these steps are
very simple to achieve. Therefore, the aim of our configuration is to support a very
automated, customizable and easy-to-use testing environment.

150 6. Evaluation Support for Cross-Layer Coordination

In our approach a whole test setup with different settings is described in a config-
uration file. The configuration contains everything necessary to automate diverse
test settings of the simulation as well as application and cross-layer settings in the
VM. Repeatability of the test setup is given by re-executing the configuration file
which can also be adjusted in the configuration. Among the different configurations
we have including Crawler‘s remote automation feature, we wanted to keep the
syntax as similar as possible to decrease the learning effort. Thus, the general syn-
tax of the configuration of Fantasy is similar to Crawler’s automation feature:
For comparison, we refer the reader to Section 6.3.2.1. A ready-to-use configuration
example is shown in Listing 6.6. Here, the configuration is subdivided into sections
by using the keywords [ns3], [vm], [schedule] and [logger].

1 [ns3]

2 # Path to the ns -3 folder

3 ns3_path: /home/crosslayer/ns -3.7- slicetime

4

5 # Path to the ns -3 configuration file;

6 # leave empty to use default configuration

7 ns3_config: /ns_3/usecase2.cc

8

9 # Offset in seconds to start the HCU after simulation

10 hcu_start_offset: 0.5

11

12 # Simulation duration in seconds

13 ns3_duration: 50

14

15 # (Parameter ,value)-pairs to adjust ns -3 config

16 ns3_param_value: [(" sim_node_count ",1) ,("protocol","TCP") ,("wlan

","a")]

17

18 [vm]

19 # Number of VMs to be started

20 vm_machines: 2

21

22 # Template file for the VMs

23 vm_templ: ./ virtual_machines/templates/default.vdi

24

25 [schedule]

26 wifi :[([1,2], 0.7, "load_wifi_emu ")]

27 crawler :[(1, 1, "load_crawler tcpLayer CLKernelModule/src/test/

enabletcp.ko")]

28 iperf :[(2, 4, "iperf -s -p 5001") , (1, 5, "iperf -c 192.168.1.2 -t

30 -y c -p 5001 -x CMSV -i 1 &> iperf.log")]

29 tcp_cwnd :[(1, 5, "crawlerapp monitorapp transport.tcp.tcp_out_5001

.cwnd &> /home/crosslayer/gcu/tcp_cwnd.log")]

30 fer:[(1, 1.5, "crawlerapp monitorapp wemu0.wireless_stats.qual.fer

&> /home/crosslayer/gcu/fer.log")]

31

32 [logger]

33 # what should be logged

34 log:[(1 ," iperf.log") ,(1," tcp_cwnd.log") ,(1,"fer.log") ,(1,"gcu.log

")]

35 # Path to where the log files should be kept

36 log_path: ./logs

Listing 6.6 A simple configuration file in Fantasy.

6.4. Network Emulation Tool – Fantasy 151

In section [ns3] simulation related settings are listed. Line 3 indicates which ns-3
version is used: For example, we used the ns-3 version 3.7 but modified for Slice-
time [WSvL+11]. In line 7 the ns-3 configuration, already preconfigured, is loaded.
As describing how to provide ns-3 configurations is out of the scope go this thesis,
we omit here the description. However, the parameters of the ns-3 configuration can
be re-adjusted within the configuration by assigning values to parameters with the
use of tuples as shown in line 16.

Virtual machine related settings are listed in section [vm]. For example, the number
of emulated nodes is set on line 20 and their VM image is loaded from a path given
on line 23.

The main part of the configuration is the [schedule] section (similar to Crawler’s
automation configuration) which determines when to execute which instruction. For
example, in line 28 indicated with iperf, we used two tuples. We introduced a three
tuple notation (<vm>, <time>, <command>); the first index indicates the VM, the
second index the relative time in seconds. Note that the experimentation starting
time between all VMs is synchronized, i.e., all VMs are set once to a common time
zero. After the simulation has started, the HCU receives a signal and itself sends
a signal to all VMs setting them to the common time zero. The third index gives
instruction about what should be done on that particular VM. If we come back to
the example at line 28, an iperf server is started on VM 2 at time 4 and an iperf
client on VM 2 at time 5. Similarly, at line 29 a monitoring application is started on
VM 1 at time 5 that uses the Crawler shared library to monitor the congestion
window (CWND) of TCP. The outcome of the monitored parameter is stored in a
log file. The same holds for line 30 where the frame error rate (FER) is observed.
Remark, in line 26 we use a special notation by using brackets for the VMs to address
multiple VMs at once. Here, the first index has two arguments in brackets. With this
notation both values within this brackets are combined with the other two indexes
and this will be interpreted as two three tuples. This is very helpful when the time
and commands that should be executed is the same for multiple VMs.

To deliver the logged values from the GCU within the VMs to a central place,
the [logger] section is used. For example, line 34 indicates which values should be
delivered and line 36 indicates where these values should be stored. Results for this
particular configuration will be presented in Section 6.4.4.

So far, we have only seen a fixed test setup, a single experiment without changing
parameters. What happens if we want to have a slightly different test setup? To
relieve the user from having to write an additional configuration file for only minor
changes we distinguish between main and custom configuration files. The main
configuration file describes the major test setup while the custom configuration only
includes the differences. The custom configuration overwrites the respective values
of the main configuration. For example, if we want to use a different simulation
configuration as given in the main configuration shown in line 7 of Listing 6.6, we
have to add only a single modified line in the custom configuration to the respective
section ([ns3]), e.g., ns3_config:./ns_3/usecaseXX.cc, that overwrites the main
configuration. The main and custom configurations can be simply started with
executing the following instruction in the console:

$>python hcu.py -mf <main_config > -cf <custom_configs >

152 6. Evaluation Support for Cross-Layer Coordination

The -mf option expects only one main configuration while the -cf option allows to
add several custom configurations or a directory including several custom configu-
rations.

However, when many similar tests with only minor changes are supposed to be
conducted, the process of creating custom configuration can be very cumbersome.
To alleviate this process, we have implemented a configuration generator which is
explained next.

Configuration Generator

The configuration generator is an interactive tool that helps to create several custom
configurations. It is started in the console as follows:

$>python hcu.py -gf <config >

The option -gf accepts a configuration file of any sort as an argument which is parsed
and the parameter assignments such as ns3_param_value in line 16 of Listing 3.1
are detected and used as default values. For each of the parameters needed by a
main configuration, the configuration generator asks for assignments. If a default
value is present for a parameter it can be kept by just pressing enter and moving on
to the next parameter.

We have introduced a list notation in brackets that allows to assign several val-
ues to a variable. The following example assigns several values to the variable
ns3_param_value:

ns3_param_value=

(" sim_node_count", [0,1,2,3,4,5,6,7,8,9,10,11,12]), (" protocol ",["

UDP","TCP"]) ,("wlan",["a","b"])

For each of the parameters within these tuples one value is assigned from the list. In
this particular example, the permutation of all these assignments allows to conduct
52 tests, all of which can be started by issuing one command that, for ease of use,
is given to the user when the configuration generator finished successfully. This
is a shortened example that we also use later in the evaluation in Section 6.4.4.2.
The only difference is that we configured more simulated nodes (ranging till 20
nodes), more runs (10) and one additional assignment to another variable (TCP
and UDP traffic between emulated nodes) which leads to 1680 different test runs for
generating the experimentation results as presented in Section 6.4.4.2. As a result,
with the help of the configuration generator, custom configurations are automatically
generated and then used to run automated tests without any further interaction from
the experimenter.

6.4.2.2 Guest Configuration Unit (GCU)

The HCU gives instructions on what should be done when a certain time arrives
such as starting the simulation or starting a real application on a VM. Remember
that VMs could not only run on the host computer but also on additional computers
if necessary. However, these instructions given by the HCU have to be received and

6.4. Network Emulation Tool – Fantasy 153

GCU

App App App

Virtual Machine

Guest OS
(Kernel Space)

CRAWLER
Logical

Component

CRAWLER
Cross-Layer
Processing
Component

WiFi
Emulation

Driver

Logging

Figure 6.13 Overview over the tasks and responsibilities controlled by the guest configuration
unit (GCU).

performed on the VMs by a counterpart. This responsibility is taken over by the
Guest Configuration Unit (GCU). Through the GCU, the HCU has the power to
fully control the VMs. Within each VM, the GCU is executed when the system is
started. This entails that the experimenter must install the GCU software on the
VM template which the HCU clones (copies) before starting the experiment.

Figure 6.13 shows the main responsibilities of the GCU. These responsibilities in-
clude loading applications that have been determined in the configuration (like iperf
in Listing 6.6). The GCU also loads Crawler [AOSW10] which allows passive mon-
itoring and active manipulation of protocol and system variables within the VM, as
well as the WiFi emulation driver [WvLW11] which couples the VM with the ns-3
simulation.

In a simulation, accessing protocol variables is relatively easy. Most network simula-
tors are designed with ease of access and observation of protocol or system variables
in mind. However, in a real system, the access to many of such variables is restricted.
This is mainly due to the protocol stack being integrated into the operating system
which only provides few limited interfaces mainly because of security concerns. To
facilitate access to protocol and system variables in a real machine, we use Crawler.
Fantasy integrates support in a way that it hides the details of the Crawler im-
plementations and relieves the developer from directly configuring the framework.
We do this by providing a wrapper called monitorapp that translates Fantasy log-
ging instructions into Crawler monitoring instructions (cf. Listing 6.6, lines 29
and 30). For details about how the monitorapp works, we refer the reader to Section
3.4.2.

Since Crawler originated as a cross-layer coordination framework, it is of course
also possible to use it for this purpose. Developers who want to test cross-layer coor-
dination algorithms in a VM can do so without any further changes to the standard
Fantasy setup. The configuration to define cross-layer coordination algorithms is
syntactically very similar to Fantasy’s configurations and therefore poses little ad-
ditional learning effort. Details about Crawler’s configuration language to design
cross-layer coordination algorithms is explained in Section 3.4.1.1.

154 6. Evaluation Support for Cross-Layer Coordination

6.4.3 Implementation

Fantasy is a combination of many different tools and libraries. Of those, two of
the vital pieces, Crawler and the WiFi emulation driver tightly integrate into
the Linux kernel (2.6.32). This means that, while the developer is free to choose
a distribution, they are restricted to use Linux as an operating system. For our
tests, we used Ubuntu distributions. All components of the HCU and GCU are
implemented in Python [pyt].

The communication channel between the HCU and the GCU is realized through
a separate virtual network in which the HCU provides IP addresses to the GCUs
via DHCP. As a communication protocol between the HCU and GCU we used the
Python Remote Objects (Pyro) [dJ] package for Python, which runs a daemon inside
each VM allowing the HCU to connect to it. Thus, the HCU is able to call functions
of an instance of the GCU as if they were local objects even running on different
(physical) machines.

6.4.4 Evaluation

With our evaluation we show different test cases where we emphasize different fea-
tures of Fantasy. In each test, we show a subset of these features. The highlighted
features are: (i) comparability of results between real world tests and Fantasy (ii)
cross-layer support for emulated nodes that allows us to passively monitor proto-
col and system information as well as accessing them actively; (iii) repeatability of
experiments; (iv) support of mobile wireless scenarios; (v) automation and rapid
testing capabilities. Furthermore, we will also give insight into the scalability (i.e.,
till the real time demand is violated) of Fantasy when using only a single computer
for the whole experimentation.

6.4.4.1 Demonstrating Areas of Application

In this section we give two examples to demonstrate the areas of application for
Fantasy. In the first example we have conducted real world tests and we compare
them with the emulation results achieved with Fantasy. This also highlights the
integrated cross-layer support. In the second example, we showcase simulated mo-
bility as well as monitoring of parameters of several protocols in the emulated node’s
Linux kernel. In both test cases, the physical layer and channel are simulated with
ns-3’s channel model. We used the two-ray ground propagation loss model that is
part of ns-3 WiFi model [Wif] for our simulated wireless channel.

Test Case 1: Comparability, Cross-Layer Coordination Support

Inspired by our use-cases presented in Chapter 4 where we already collected real-
world experiments, we decided to reevaluate the TCP congestion control use-case
from Section 4.2 with Fantasy. In this use-case, the idea is to change TCP’s conges-
tion control algorithm depending upon the underlying network conditions. The brief
motivation behind the change is as follows: TCP CUBIC [HRX08] is the standard

6.4. Network Emulation Tool – Fantasy 155

Emulated Node
Iperf Server

Emulated Node
Iperf Client
(stationary)

Ethernet WiFi

5m
distance

Simulated
Access Point

(a) Test case 1: comparison of real world tests and
emulated results with Fantasy

Emulated Node
Iperf Server

Emulated Node
Iperf Client

(mobile)

Ethernet WiFi

Increasing distance
from 0m to 460m and
decreasing again to 0m

Simulated
Access Point

(b) Test case 2: monitoring several parameters across several protocol
layers of a mobile emulated node

Emulated Node
Iperf Server

Emulated Node
Iperf Client
(stationary)

Ethernet WiFi

5m
distance

Simulated
Access Point

(SN) (SN) (SN) (SN)

(SN) (SN) (SN) Simulated Node (SN)

(c) Test case 3: testing the scalability by adding simulated
nodes until the simulation’s real-time capability is lost.

Figure 6.14 Topology of the three test case scenarios that were used for evaluation.

congestion control algorithm in the Linux kernel since version 2.6.19 due to its supe-
rior performance and fairness properties under most network conditions. However,
TCP Westwood [MCG+01], specifically developed for wireless communications (such
as in WiFi), provides better throughput in changing network conditions with high
packet loss rates. The cross-layer coordination idea is to switch between different
congestion control algorithms at runtime without reinitializing the TCP connection,
based on the observed network conditions. For more details about the coordination
idea we refer the reader to Section 4.2.

In the real world testbed, our test setup consists of two PCs and one 802.11g access
point. One PC runs the cross-layer coordination configured in Crawler, and is
connected to the access point via WiFi. On this PC we use iperf [TQD+04] to create
TCP traffic, and netem [Hem05] to create different packet loss rates (PLRs). The
other PC serves as the destination for iperf traffic; it is connected to the access point

156 6. Evaluation Support for Cross-Layer Coordination

 0
 2
 4
 6
 8

 10
 12
 14
 16

 0 20 40 60 80 100 120 140 160 180

Th
ro

ug
hp

ut
 [M

Bi
t/s

]

Time [s]

TCP = CUBIC
PLR = 10%

TCP = Westwood
PLR = 10%

TCP = CUBIC
PLR = 0%

(a) Testbed measurements

 0
 2
 4
 6
 8

 10
 12
 14
 16

 0 20 40 60 80 100 120 140 160 180

Th
ro

ug
hp

ut
 [M

Bi
t/s

]

Time [s]

TCP = CUBIC
PLR = 10%

TCP = Westwood
PLR = 10%

TCP = CUBIC
PLR = 0%

(b) Emulated measurements with Fantasy

Figure 6.15 Comparison of throughput measurements for a cross-layer coordination scenario.
TCP’s congestion control algorithm is changed based on the changing packet loss ratio (PLR)
and the received signal strength indicator (RSSI).

via Ethernet. In Fantasy, the two PCs are emulated virtual machine nodes that
use the emulated network drivers to connect to a simulation setup. This simulation
models an 802.11a access point since 802.11g functionality is not given in the used
ns-3 version; but for our test setup 802.11a should largely show the same behavior
as it only differs in its PHY layer. The test setup is depicted in Figure 6.14(a).

Figure 6.15 shows the results of our experiments; Figure 6.15(a) shows the real-world
results and Figure 6.15(b) shows the results gained with Fantasy. For the first 120
seconds, we have set the PLR to 10% which is a very significant PLR for TCP. For
the first 60 seconds, the coordination is not active, as depicted by the low TCP
throughput achieved during this time. The coordination is activated at 60 seconds
which triggers the switch from CUBIC to Westwood and subsequently improves the
throughput. At 120 seconds, we set the PLR to 0%, so that TCP switches back to
CUBIC and thus achieves a consistently higher throughput. Although the results
obviously are not perfectly similar, they show the same tendency. The differences
can be mainly attributed to channel effects; the emulated setup uses a simple path
loss model and does not account for small-scale fading or interference from other
nearby machines that use a wireless connection, but are not part of the test setup.

This test case demonstrates the following features: We have gained comparable re-
sults between real world tests and our architecture. Furthermore, we showed an
example of executing a cross-layer coordination and continuously monitoring a pro-
tocol parameter.

Test Case 2: Monitoring, Mobility, Repeatability

As Fantasy also supports mobility and monitoring of diverse parameters across
protocol layers and system components, we want to give an additional example
where we demonstrate these features. For our second test case (cf. Figure 6.14(b)),
we use an emulated setup similar to the previous one. However, we use a standard
TCP setup without any cross-layer coordination algorithms. Instead, we introduce
mobility by simulating a constant speed movement. The node that is connected to
the AP via WiFi starts at a distance of 0m to the access point and moves to a
distance of 460m at a speed of 1m/s. Upon reaching that point, it moves back to

6.4. Network Emulation Tool – Fantasy 157

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 200 400 600 800 1000

FE
R

Time [s]

 0
 200
 400
 600

C
W

N
D

 0

 5

 10

 15

 20

 25

Th
ro

ug
hp

ut
 [M

bi
t/s

]

Figure 6.16 Monitoring of three metrics (TCP throughput, TCP congestion window, and
frame error rate) at an emulated node over time. The node starts at a distance of 0m to the
access point, moves away at a constant speed up to a distance of 460m, and turns back until
it reaches 0m again.

0m at the same speed. To showcase the monitoring capabilities of Fantasy, we
logged several key metrics throughout the experiment. The setup is the result of the
configuration shown in Listing 6.6 and discussed in Section 3.4.1.1.

The monitored parameters are shown in Figure 6.16. From the application layer we
logged the throughput measurements gained by iperf, from the transport layer the
congestion window (CWND), and from the WiFi emulation device driver the frame
error rate (FER). We chose these parameters for two reasons. First, they are good
candidates to demonstrate the effects of mobility and packet loss. Second, we show
that we are able to monitor different protocol layers or system components within
an emulated node.

As can be seen in Figure 6.16, the throughput is reduced with increasing distance.
The step pattern of the throughput curve shows the effect of rate adaptation. At
around 400 s, the distance becomes too large for any meaningful communication:
virtually all frames are dropped due to errors, and no TCP packets are received any
more. After the node reaches its maximum distance and slowly returns back to the
AP, the communication recommences at around 550 s, and throughput gradually
increases afterwards.

To investigate whether we can produce repeatable test setups with Fantasy, we
ran this scenario several times with identical simulation settings. As can be seen
in Figure 6.17, the throughput is almost exactly the same over all runs. Other
measured parameters were also highly similar to each other.

With this test case, we demonstrate Fantasy’s capabilities to model mobile wireless
scenarios. We also give an example of monitoring and logging of system and protocol
parameters inside a virtual machine, and we use this to show how Fantasy produces
very similar results over several runs with identical simulator setups.

158 6. Evaluation Support for Cross-Layer Coordination

 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000
Th

ro
ug

hp
ut

 [M
Bi

t/s
]

Time [s]

Figure 6.17 Monitored TCP throughput from three simulation runs with the same parameters.
Repeated runs produce highly similar results.

6.4.4.2 Demonstrating Scalability, Automation and Rapid Testing

If the simulation consists of complex scenarios (e.g., too many nodes or computa-
tional intensive models) and accordingly needs to process too many events, it is not
able to follow the real time demands needed by the real part of the emulation. In
such a case, simulation overload introduces artifacts that strongly distort the re-
sults. Fantasy stops the experimentation in such a case. We therefore want to
determine how complex the simulation can get before simulation overload occurs.
This of course strongly depends on the performance of the computer running the
simulator and the virtual machines. Evidently, a stronger machine allows more com-
plex simulations and more emulated nodes. For our tests, we used a Dell OptiPlex
960 with 4GB Ram and Intel Core2 Quad CPU Q9400, each processor running at
2.66GHz. Ubuntu 10.04 was installed on an external USB 2TB hard disc.

The test setup is very similar to the previous ones but without simulating mobility.
The emulated WiFi node is kept at a fixed distance of 5m and sends netperf [JCS]
traffic to the emulated Ethernet node. With each run, we add an additional sim-
ulated node to the simulation setup. We continued this until the simulation ex-
perienced overload and canceled the evaluation. Figure 6.14(c) shows the set for
this third test case. We placed the simulated nodes equidistantly around the access
point. The cross-traffic created by the simulated nodes always adds up to 8 Mbit/s,
so that, for example, with four nodes, each simulated node sends with 2 Mbit/s. This
way, the channel is always kept roughly equally busy from traffic by the simulated
nodes, with netperf using up the remaining capacity.

Apart from the number of simulated nodes ranging from 0 to 20, we varied three
settings for this evaluation setup: (a) we used either TCP or UDP for the netperf
traffic between the emulated nodes, (b) we used either TCP or UDP for the traffic
between the simulated nodes, and (c) we used either 802.11a or 802.11b as the WLAN
standard. We also conducted each test 10 times, resulting in 1680 experimental
runs. How these diverse tests were generated has been shown in Section 6.4.2.1.
The reasons for these different tests were all related to simulator performance. UDP
produces less overhead than TCP due to the less complex protocol. 802.11b produces
less load on the simulator than 802.11a because of the lower maximum speed of the
wireless network (11 Mbit/s and 54 Mbit/s, respectively).

6.4. Network Emulation Tool – Fantasy 159

 0

 5

 10

 15

 20

TCP UDP

Ad
di

tio
na

l s
im

ul
at

ed
 n

od
es

Emulated node traffic type

WLAN standard and
traffic type of
simulated nodes
802.11a,TCP
802.11b,TCP
802.11a,UDP
802.11b,UDP

Figure 6.18 Number of nodes that could be simulated using Fantasy before simulation
overload occurred.

The results of our tests are summarized in Figure 6.18. In general, the results
confirmed our expectations. Generating UDP traffic between the emulated nodes
allowed us to add more simulated nodes before a simulation overload is achieved
(compare same-colored bars with each other) compared to the case of generating
TCP traffic. Likewise, UDP cross-traffic allowed us to add more nodes than TCP
cross-traffic (compare first pair of bars in each set with second pair). 802.11b allowed
us to add more nodes than 802.11a (compare first bar with second, and third with
fourth in each set). The exception from these rules are 802.11a with TCP cross-
traffic, in which both experiments overloaded after adding a single cross-traffic node.
The setup with just the emulated nodes running netperf completed successfully for
both TCP and UDP traffic.

In this section, we have demonstrated that we are able to set up a mix of emulated
and simulated nodes. The complexity of running the scenario depends on the used
protocols, the used MAC layer models, and the used hardware to run the network
emulation setup. We will discuss concepts to improve the performance and allow
larger emulated networks in Section 6.4.6.

6.4.5 Related Work

Since network simulation and emulation play an important role in protocol evalu-
ation, there are different projects that offer functionality similar to Fantasy. Ta-
ble 6.2 gives an overview about these proposals.

From these proposals arguably the most elaborate is Emulab [Emu], a project that
aims at combining network simulation, network emulation and real networks to cre-
ate a complex testbed. From the first implementation at the University of Utah,
several additional Emulab testbeds at different locations were spawned, demonstrat-
ing the concept’s success. The original Emulab consists of several hundred PCs with
additional hardware connecting them. Later additions to the testbed include sta-
tionary wireless nodes, as well as Mobile Emulab [JSF+06] which uses mobile robots
to carry sensor nodes in a room dedicated to this purpose. Clearly, this setup allows
testing in wireless networks with a lot of realism and support of repeatability, but
access to existing testbeds is limited and costs for the setup of a new testbed are
high. With emulation, Emulab supports another way to perform tests in wireless

160 6. Evaluation Support for Cross-Layer Coordination

Testbed Cost Realism Accessibility Usability Versatility Cross-layer support

Emulab [Emu] – + – – + –
MobEmu [JSF+06] – – ++ – – – ++ – –
NEPI [LFH+10] + ++ + – – ++ –
CLSO [LCG+09] ++ – – ++ ++ – +
ARE [Dör07] + – ++ + – – +
Fantasy + + ++ + + ++

Table 6.2 Comparison of the testbeds: ++ very good, + good, – bad, – – very bad.

networks. However, the emulation features in general are more limited and simple
than the functionality that Fantasy offers through the incorporation of ns-3, espe-
cially monitoring and cross-layer coordination across all layers of the simulated and
real-world part.

An approach similar to Fantasy is given by the Network Experiment Programming
Interface (NEPI) [LFH+10] which tries to offer a single user interface for testing
with many different tools. For example, NEPI can use ns-3, PlanetLab, Emulab and
ORBIT in its tests to create diverse setups and topologies. Since NEPI tries to
offer an uniform interface for this diverse set of tools, the interface of NEPI itself
is already quite complex. If this combination of different tools is not required, it is
therefore easier to learn the use of a single tool such as Fantasy.

Another similar concept is given with Ad-hoc Routing/Emulation [Dör07] where a
cross-layer implementation is tested on virtual machines. These virtual machines
represent robots that have to navigate through a virtual world created by a simu-
lation. However, the virtual machines do not interact with the simulation but only
get status information about the virtual world therefrom. This approach targets
a rather tailor-made cross-layer solution as it was designed specifically to test the
robots’ navigation. This approach can not be applied to other cross-layer design
ideas and thus using this setup for cross-layer testing in general is not possible.

6.4.6 Future Work

As the scalability tightly depends on the computing power of the test machine, the
power needed to be real-time capable rapidly grows with the simulation complexity.
In other words, for any amount of computing power, it is possible to create network
emulation setups that will overload the simulation and therefore be too complex to be
run in real-time. Therefore, we are considering to solve this problem that Fantasy
suffers from like all other network emulation frameworks more fundamentally by
relieving it from that real-time constraint.

One solution to do so is SliceTime [WSvL+11], which continuously synchronizes vir-
tual machines and network simulation with each other to counter the time drift that
originates from simulation overload. We are currently investigating the complexity
of integrating SliceTime with Fantasy. Since SliceTime is tightly integrated with
Xen [BDF+03, Cit] instead of VirtualBox, this will mean a change in the VM soft-
ware used. Due to the modular design of Fantasy, this will be mainly a question
of creating a new VM-Com module (see Section 6.4.2.1) for the HCU.

6.5. Conclusion 161

6.4.7 Summary

We presented Fantasy, a new network emulation architecture that allows the fully
automated setup and execution of an experiment, enables the convenient access to
system information and the collection of test results. With the integration of the
cross-layer architecture Crawler, we demonstrated that we are able to monitor
parameters in a mobile emulated node across protocol layers and to evaluate network
emulation scenarios where cross-layer coordination is involved.

Our fully automated emulation architecture is already an essential part for testing
of cross-layer coordination algorithms within the Crawler project [AOSW10]. As
we believe that our fully automatic network emulation architecture will be useful to
other researchers and developers in the area of wireless networks, we have made the
source code4 available to the public.

6.5 Conclusion

We proposed two different approaches to support developers while experimenting
with cross-layer coordination algorithms.

Our first approach is an enhancement to our Crawler’s application support inter-
face and allows the experimenter the remote automation, configuration and moni-
toring of experiments where cross-layer coordination algorithms are involved. The
focus of our remote evaluation enhancements is the real-world testing. In particular,
our enhancements extend Crawler by enabling the following three key features: (i)
The central automation and execution of whole test setups with different settings,
(ii) the remote injection, removal, and modification of cross-layer coordination pro-
cesses, and (iii) the central and remote monitoring and logging of specified set of
system variables and states of cross-layer coordination algorithms.

Our second approach, called Fantasy, is a network emulation architecture that
complements our first approach by enabling a method to isolate and control in-
fluencing factors. Fantasy uses network emulation as an approach to gain more
control about the wireless environment which is running in a simulation environment.
The part (layer one and two) that is being simulated in Fantasy allows to provide
more control to a developer about factors such as wireless and mobile effects. The
ability to control or isolate these factors support developers in understanding and
validating the behavior of their coordination algorithms. Moreover, the integration
of Crawler allows the same convenience and power to monitor variables inside the
”real part” of the experiment as possible as in simulation.

Concept-wise both approaches are comparable, as both consist of two components
that are functionally similar. While in Fantasy the controlling entity is the HCU
and instructs the GCUs residing in VMs, the controlling entity for our remote eval-
uation enhancements of Crawler is the client and the server is the entity that
receives and realizes the instructions on a real computer.

4All source files are available at:
http://www.comsys.rwth-aachen.de/research/projects/crawler

http://www.comsys.rwth-aachen.de/research/projects/crawler

162 6. Evaluation Support for Cross-Layer Coordination

7
Summary and Conclusions

Although the cross-layer design paradigm has demonstrated its high potential to
improve adaptability and performance, it has not been able to leverage its utility
beyond few promising yet concentrated research efforts. Among other reasons, this
can partly be attributed to the näıve utilization of the design paradigm resulting
in solution-oriented implementations. A direct consequence of its näıve use is the
missing support of software engineering principles such as maintainability and reuse,
which are necessary for successful proliferation of software.

As a result of this observation, a few static cross-layer architectures have been pro-
posed that support a developer in the design process of cross-layer coordination
algorithms. In particular, static architectures facilitate integration of several coordi-
nation algorithms while satisfying software engineering principles. We have identified
three major challenges that limit real utilization of static architectures.

First, static cross-layer architectures neither support dynamic adaptation, i.e., ad-
dition, removal, and modification of cross-layer coordination algorithms nor context
adaptation, i.e., automatically loading the adequate set of coordination algorithms
at runtime based on the detection of underlying environmental changes.

Second, while designing a single cross-layer coordination is already a complicated
task, the process gets significantly more complex for multiple cross-layer coordination
algorithms. Problems such as contradicting coordination goals and redundancy of
coordination algorithms appear. Static architectures do not support developers to
deal with these problems.

Third, testing cross-layer coordination algorithms in general is a tedious task. On
the one hand, setting up an experiment requires huge effort to install the relevant
software involving cross-layer coordination algorithms and their coordination among
different devices. On the other hand, to obtain credible results an experiment usually
requires many test runs since the volatile nature of the wireless medium complicates
the interpretation of evaluation results. In either of these cases, static architectures
do not support a developer.

164 7. Summary and Conclusions

As a result of missing flexibility in particular and support for developers while ex-
perimenting with different sets of cross-layer coordination algorithms in general, we
have identified and tackled three main research questions:

Question 1 (Q1) - How to enable a generic and runtime flexible cross-layer
architecture that facilitates convenient system monitoring, cross-layer de-
sign and experimentation?
We designed Crawler, a generic and runtime flexible cross-layer architecture
that answers Q1 in Chapter 3. In addition, we demonstrated the practical use
of Crawler on several use-cases in Chapter 4.

Question 2 (Q2) - How to handle problems caused by multiple cross-layer
coordination algorithms?
We have investigated the problems of running multiple cross-layer coordination
algorithms in Chapter 5. We have identified and tackled the two distinct
problems of cross-layer conflicts and redundancy of coordination algorithms,
respectively.

Question 3 (Q3) - How to improve the evaluation of cross-layer coordination
algorithms?
We support developers by providing two different frameworks (emulation ap-
proach vs. real-world testbed) that answers this question in Chapter 6. These
frameworks are extensions to Crawler and allow central automation of ex-
periments (including cross-layer coordination algorithms), their central moni-
toring and logging.

In the following, we summarize the major contributions of this thesis in detail.

7.1 Contributions

This thesis makes four contributions that address the aforementioned questions. Fig-
ure 7.1 visualizes the relationship among the research questions and our contribu-
tions. While trying to provide answers to the research questions, we have identified
further challenges and our key features tackle these challenges. In the following, we
briefly summarize our four contributions and their key features.

Contribution C1 – CRAWLER: A Generic and Flexible Cross-Layer Architecture

Our contribution (C1) answers our first research questions (Q1) by providing the
following key features:

Feature F1 - Manageability
With Crawler cross-layer coordination algorithms are easily maintainable
and usable for application and system developers as it does not require to
deal with system details and architectural requirements. This is achieved with

7.1. Contributions 165

How to enable a generic and runtime
flexible cross-layer architecture that
facilitates convenient system
monitoring, cross-layer design and
experimentation?

How to handle problems
caused by multiple cross-
layer coordination
algorithms?

How to improve the
evaluation of cross-layer
coordination algorithms?

F1 - Manageability

F2 – Application Support

F3 – Runtime Flexibility &
Extensibility

F4 – Context Adaptability

F6– Conflict Detection

Q1: Q2: Q3:

F7 – Redundancy
Removal

F8 – Remote Cross-Layer
Evaluation

F9 - Network Emulation
Tool - Fantasy

Chapter 3 Chapter 5 Chapter 6 Chapter 4

C1 – CRAWLER:
A Generic and Flexible
Cross-Layer Architecture

C2 – Novel
Cross-Layer
Use-cases

C3– Handling Support for
Multiple Cross-Layer Coordination
Algorithms

C4 – Evaluation Support for
Cross-Layer Coordination

F5
 –

 R
eu

sa
bl

e
Im

pl
em

en
ta

tio
ns

 o
f

P
ra

ct
ic

al
 U

se
 C

as
es

Figure 7.1 Overview presenting the relationship between research questions, contributions and
Crawler’s key features.

the declarative approach, which allows specifying cross-layer coordination al-
gorithms at a high level of abstraction. None of the existing architectures sim-
plify the specification of cross-layer coordination algorithms to a degree where
even developers who are not experts in system or cross-layer development can
describe cross-layer coordination algorithms.

Feature F2 - Application Support
Unlike existing approaches, Crawler provides a unified interface for applica-
tion developers to (i) specify and add their own monitoring needs and cross-
layer coordination algorithms into the system, and (ii) bundle these coordina-
tion algorithms with their applications, without needing to deal with OS level
details. Moreover, it simplifies the process of accessing protocol and system
information, typically placed in the OS, which today is limited to only a few
interfaces and thus requires manual inspection and adaptation of the very large
OS code base.

Feature F3 - Runtime Flexibility and Extensibility
Crawler offers flexibility which is essential for adjusting and experimenting
with different sets of cross-layer coordination algorithms, and further, exten-
sibility for involving a wide range of possible protocols and system compo-
nents. In particular, when designing a cross-layer coordination, the exchange
of information among any number of layers and system components, and the
composition of any number of specific cross-layer coordination algorithms are
adaptable at runtime.

Feature F4 - Context Adaptability
Crawler offers the ability (i) to detect underlying environmental changes,
and (ii) to react to these changes by automatically loading the prespecified

166 7. Summary and Conclusions

set of cross-layer coordination algorithms at runtime. For example, exchang-
ing a energy saving coordination algorithm with a high performing coordina-
tion algorithm if the device is plugged-in to a power supply. When specified,
Crawler allows the detection of the defined conditions (e.g., plugged-in to
power), unloading the set of unnecessary coordination algorithms (e.g., energy-
aware) and loading the adequate set of coordination algorithms (e.g., better
performing but energy-consuming).

Contribution C2 – Novel Cross-Layer Use-Cases

Our contribution of novel cross-layer use-cases (C1) demonstrates the applicability
of Crawler in diverse fields of networking and also provides answers to our first
research question Q1 by providing the following key feature:

Feature F5 - Reusable Implementations of Practical Use Cases
By using Crawler we showed its utility as framework for the networking
research community. We implemented five use-cases from different research
fields. The code-basis of the use-cases can be partially used to develop com-
pletely new use-cases or to improve the existing use-cases. In particular, we
conducted experiments and proposed cross-layer coordination algorithms to
(i) manipulate TCP’s sliding window and application behavior in wireless en-
vironments, (ii) switch TCP congestion control algorithm based on wireless
conditions, (iii) adapt the used VoIP codec to given network conditions, (iv)
enable a framework for jamming detection and reaction and (v) enable an
advanced machine learning-based jamming detection approach. In each of
the use-cases, we first highlighted Crawler’s monitoring capability to ana-
lyze and understand protocol and application behavior under given network
conditions. Based on the observations, we showed how to conveniently for-
mulate a cross-layer coordination algorithm on a very abstract level by using
Crawler’s configuration language. Moreover, dependent on the use-case, we
presented how to experiment with cross-layer coordination algorithms and uti-
lize Crawler’s monitoring power to demonstrate the achieved flexibility or
the relative performance improvement.

Contribution C3 – Handling Support for Multiple Cross-layer Coordination Al-
gorithms

Our contribution C3 enhances Crawler to support developers to tackle problems
involved with multiple running cross-layer coordination algorithms and accordingly
answers our second research question Q2 by providing the following key features:

Feature F6 - Cross-Layer Conflict Detection
Although each single cross-layer coordination improves the system perfor-
mance, running multiple cross-layer coordination algorithms in parallel could
lead to contradicting goals resulting in severe performance degradations. We
have classified cross-layer conflicts and proposed a solution to give develop-
ers feedback about conflicting cross-layer coordination algorithms early in the

7.1. Contributions 167

experimentation phase. In this context, Crawler’s monitoring capability fur-
ther supports developers to analyze and understand cross-layer coordination
algorithms and their effects on the system.

Feature F7 – Cross-Layer Redundancy Removal
Giving application developers the freedom to add their own cross-layer coor-
dination algorithms into the system without knowledge about existing ones
might lead to redundancy of cross-layer coordination algorithms. However,
when many developers implement such cross-layer coordination algorithms in-
dependently, the overall resulting cross-layer coordination algorithms can be-
come suboptimal as some of the added algorithms are already in the system and
have redundant instructions utilizing more CPU and memory than necessary.
Crawler facilitates to automatically detect and resolve such redundancies
without developer interaction.

Contribution C4 – Cross-layer Evaluation Support

The research question Q3 is answered by our contribution C4, which extends Crawler
to support developers in the experimentation phase of their cross-layer coordination
algorithms by providing the following key features:

Feature F8 - Remote Cross-Layer Evaluation
Testing and validating cross-layer coordination algorithms typically require
excessive effort due to the following reasons. First, installing the considered
cross-layer coordination algorithms and further helper programs (e.g., iperf
and tcpdump) is tedious. Second, the timely coordination of cross-layer co-
ordination algorithms, applications, and helper programs on different devices
requires manual developer intervention. Third, implementing mechanisms to
monitor and log different parameters in the system (preferably while running)
is difficult due to operation system restrictions. To support a developer in this
process, we have extended Crawler to remotely (i) allow the automation of
test runs on different devices, (ii) add, remove and modify cross-layer coordi-
nation algorithms at runtime and (iii) monitor and log different parameters in
the running system.

Feature F9 - Network Emulation Tool
Testing cross-layer coordination algorithms in wireless environments usually
requires many test runs. One reason, amongst others, is that the gain of the
specific cross-layer coordination is difficult to identify as the performance dif-
ference might be influenced, for example, by the novel developed cross-layer
coordination algorithm and / or due to changing channel conditions. There-
fore, we coupled Crawler with a simulation framework (ns-3) resulting in a
network emulation tool that allows the automated setup and execution of an
experiment in a controllable simulation environment to improve the monitoring
and analysis of cross-layer coordination algorithms and their behavior.

In the following we discuss possible future directions to enhance Crawler.

168 7. Summary and Conclusions

7.2 Future Work

Based on the achieved state of Crawler, we discuss limitations and suggest poten-
tial extensions of the contributions made in this work.

7.2.1 Increasing the Toolbox of Reusable Functional Units and
Stubs

Crawler’s abstraction language allows to describe cross-layer coordination algo-
rithms on a high level of abstraction. The power of Crawler’s abstract language is
determined by the amount of functional units (FUs) and stubs. Stubs provide read
and write access to protocol and system information. They act as a glue element be-
tween the cross-layer coordination algorithms and the operating system. Crawler
currently offers about 20 FUs and 100 stubs, with the numbers growing with every
new sample scenario. In Appendix B we give an overview about available stubs and
FUs. Due to the reusable nature of FUs and stubs and the fact that it enriches
Crawler’s abstraction language, developers will highly benefit from increasing the
number and variations of FUs.

7.2.2 Conflict Resolution

Crawler supports developers during their experimentation with cross-layer co-
ordination algorithms. We especially enabled a feature for developers to detect
cross-layer conflicts in the system. We classified the problem in direct and indirect
conflicts. The former case is rather simple and we provide already few techniques
to tackle the problem, but the latter is complex and requires further investigation
to support developers to explore the right set of cross-layer coordination algorithms.
In our approach, after detection of an indirect conflict, we inform the applications
about the presence of a misbehavior. Although such a notification is helpful, ideally
conflicts should be resolved automatically. We believe that without additional se-
mantic knowledge this problem becomes more challenging. It is similar to expecting
from a debugger to find programming faults without interaction and to fix them
accordingly. Similar to program analysis, resolution of conflicts requires a deep un-
derstanding of the semantic of all running cross-layer coordination algorithms in the
system. On the other hand, providing semantic knowledge is tedious and will slow
down the development process. As we opt for a practical solution, we believe that
providing hints about misbehavior, similar to what debuggers do, is the right way
towards proper developer support.

7.2.3 Timing Constraints

The monitoring of variables in a (remote) system and the exchange of information
between applications and Crawler require several steps of processing which influ-
ence the processing time. The crucial factors that influence the processing time are
highlighted in Figure 7.2 where we monitor variables on a remote system.

7.2. Future Work 169

App

CRAWLER

Battery

O
pe

ra
tin

g
S

ys
te

m
 &

 H
ar

dw
ar

e

S
ys

te
m

co

m
po

ne
nt

s

Network

Transport

Data Link

Physical

P
ro

to
co

ls

GPS

Accelerometer

1

Logical
Component (LC)

Cross-Layer
Processing
Component (CPC)

2
Local
Library

3

Asynchronous using
generic netlink sockets

Asynchronous Polling

Figure 7.2 Three potential sources for delay when interacting with Crawler: (i) the asyn-
chronous communication (caused by the generic netlink sockets) between the LC (user space)
and the CPC (kernel space) as indicated by 1©, (ii) the communication between the shared
library and Crawler’s LC as indicted by 2©, and (iii) the interaction between the shared
library and the application as indicated by 3©.

The requested variables (e.g., TCP’s congestion window) for monitoring or exchange
have to be accessed in the kernel space of the system. In Crawler the requested
information is accessed by stubs which provide the information to the cross-layer
processing component (CPC) running in the kernel space. Subsequently, this in-
formation is provided to the user space daemon of Crawler which we refer to as
logical component (LC). In Crawler’s implementation, information between the
CPC and the LC is exchanged using generic netlink sockets (cf. 1© in Figure 7.2).
Generic netlink sockets exchange information asynchronously resulting in a poten-
tial delay. The delay depends on the workload and the computational power of the
device. We opted for generic net link sockets due to their potential to exchange any
type of information and its adaptability to our needs. Other few alternatives were
not able to offer the same degree of adaptability [NAGL10]. However, we suggest
to avoid synchronous communication between the CPC (running in kernel space)
and the LC (running in user space) as it can lead to blocking of components and
thus avoids their processing causing performance degradation. Another source for
delay occurs for the asynchronous communication between the daemon and the (lo-
cal) shared library (cf. 2© in Figure 7.2). Establishing synchronous communication
could be an option. In a next step, the event timer in the shared library polls for
application variables (cf. 3© in Figure 7.2). The polling intervals are set individually
for each application and its variables are parameterized on application registration.
If not set properly this could lead to either too much computational overhead or
high delays. Accordingly, providing an event-based mechanism for the interaction
between the shared library and the application will be beneficial. However, in a

170 7. Summary and Conclusions

local Ethernet network (for the use-case as described in Section 6.3.4), we used our
remote monitoring feature to remotely monitor the RSSI and observed a delay of
around one to two seconds including the network delay.

7.2.4 Potential Use-Cases

We have realized different use-cases from diverse fields of networking and with each
use-case we have further extended Crawler, its FU toolbox and the number of
stubs.

For example, we have started to realize an energy saving use-case. The idea is to
control the on and off state of a wireless device depending on the availability of
application traffic. We distinguish between two types of application traffic where
one type is delay-tolerant and the other type is delay-sensitive. Applications can
inform Crawler about the type of traffic they are currently generating. If all run-
ning applications are in the delay-tolerant mode, Crawler powers off the wireless
device to save energy until enough data has accumulated in the network stack for
transmission. Once enough delay-tolerant data has accumulated, Crawler signals
the applications to hand over their data to the network stack. Similarly, if any of
the applications is in delay-sensitive mode, the wireless device is not powered off
to ensure that data is transmitted immediately. Consequently, the delay-tolerant
data from other applications also benefits from the powered device and is sent out
immediately. This example shows that applications and the system can make joint
adaptation decisions by exchanging information. Using this coordination algorithm,
it is possible to save energy over longer periods of time.

Another area of research using the cross-layer paradigm is mobility. Device mobility
could affect multiple layers, for instance, layer two and three where not only the
location or association to an access point is changed (affects layer 2) but also the
domain which necessitates a new IP address assignment (affects layer 3). In such a
case, layer two and three protocols have to be coordinated. Many research effort has
been put to tackle the mobility related problems. It would be interesting to analyze
these proposals and to enhance the coordination process with Crawler.

We have investigated the research field of jamming detection and reaction in IEEE
802.11 networks. However, the design of our machine-learning-based jamming de-
tection approach is not coupled a particular wireless technology. Thus, it should
be easily applicable to other wireless technologies such as LTE networks. It would
be interesting to explore and integrate novel metrics gained from LTE drivers into
Crawler and to experiment with their reaction to jamming.

To conclude, monitoring and experimentation with Crawler in already known
networking fields and also in completely new areas by using established and new
wireless technologies would be intresting.

7.2.5 Realization on Further Platforms

With the emergence of new operating system for smart phones such as iOS and
Android, many new applications have appeared. Due to the demand of these ap-
plications, operating systems have extended their APIs to access system component

7.2. Future Work 171

information such as to sensor information (e.g., acceleration and orientation) and
to localization information (e.g., GPS coordinates). Since smartphones are increas-
ingly used in the networking research community, it would be beneficial to implement
Crawler for an operating system such as Android. In particular, it would be in-
teresting to analyze how Crawler could complement the existing APIs by also
providing access to protocol information.

172 7. Summary and Conclusions

Glossary

ANI Ambient Noise Immunity

API Application Programming Inter-
face

CBR Channel Busy Ratio

CCA Clear Channel Assessment

CDF Cumulative Distribution Func-
tion

CPC Cross-Layer Processing Compo-
nent

CPU Central Processing Unit

CRC Cyclic Redundancy Checksum

CWND Congestion Window

FU Functional Unit

GCU Guest Configuration Unit

GPS Global Positioning System

HCU Host Configuration Unit

IEEE Institute of Electrical and Elec-
tronics Engineers

IP Internet Protocol

IPC Inter-process Communication

IT Inactive Time

LC Logical Component

MAC Medium Access Control

MTU Maximum Transmission Unit

NIC Network Interface Card

OFDM Orthogonal Frequency-Division
Multiplexing

OS Operating System

PCM Pulse Code Modulation

PDR Packet Delivery Ratio

PHY Physical Layer

PLCP Physical Layer Convergence Pro-
tocol

PLR Packet Loss Rate

QoE Quality of Experience

QoS Quality of Service

RFC Request for Comments

RSS Received Signal Strength

RSSI Received Signal Strength Indi-
cator

RTP Real-Time Transport Protocol

RTT Round Trip Time

SIP Session Initiation Protocol

TCP Transmission Control Protocol

TN True Negative

TP True Positive

TTL Time To Live

UDP User Datagram Protocol

VM Virtual Machine

VoIP Voice over IP

WLAN Wireless Local Area Network

174 7. Summary and Conclusions

Bibliography

[AAS+14] Ismet Aktas, Muhammad Hamad Alizai, Florian Schmidt, Hanno Wirtz,
and Klaus Wehrle, Harnessing cross-layer-design, Ad Hoc Networks
(2014), pp. 444–461.

[Abi13] Gloria Abidin, Machine Learning-Based Jamming Detection in WLAN,
Master Thesis, Communication and Distributed Systems, RWTH
Aachen University, November 2013.

[ACLL06] Hervé Aı̈ache, Vania Conan, Jérémie Leguay, and Mikaël Levy, Xian:
Cross-layer interface for wireless ad hoc networks, Mediterranean Ad-
hoc Networking Workshop (Med-Hoc-Net), 2006, pp. 1–8.

[AHA+14] Ismet Aktas, Martin Henze, Muhammed Hamad Alizai, Kevin Möller-
ing, and Klaus Wehrle, Graph-based Redundancy Removal Approach for
Multiple Cross-Layer Interactions, Proceedings of the 6th International
Conference on Communication Systems and Networks (COMSNETS),
January 2014, pp. 1–8.

[AOSW10] Ismet Aktas, Jens Otten, Florian Schmidt, and Klaus Wehrle, Towards a
Flexible and Versatile Cross-Layer-Coordination Architecture, Proceed-
ings of the 29th International Conference on Computer Communications
(INFOCOM), March 2010, pp. 1–5.

[APS+14a] I. Aktas, I. Punal, F. Schmidt, M.H. Alizai, T. Druner, and K. Wehrle,
Machine learning-based jamming detection for IEEE 802.11: Design
and experimental evaluation, IEEE International Symposium on a
World of Wireless, Mobile and Multimedia Networks (WoWMoM), 2014,
pp. 1–9.

[APS+14b] Ismet Aktas, Oscar Punal, Florian Schmidt, Tobias Drüner, and Klaus
Wehrle, A Framework for Remote Automation, Configuration, and
Monitoring of Real-World Experiments, 9th ACM International Work-
shop on Wireless Network Testbeds, Experimental Evaluation & Char-
acterization (WINTECH), September 2014, pp. 1–8.

[AR99] AV Arunachalam and JH Reed, Quality of service (QoS) classes for
bwa, A contribution to the IEEE 802, 1999, pp. 1–10.

[ASA+12] I. Aktas, F. Schmidt, M.H. Alizai, T. Druner, and K. Wehrle, Crawler:
An experimentation platform for system monitoring and cross-layer-
coordination, IEEE International Symposium on a World of Wireless,
Mobile and Multimedia Networks (WoWMoM), June 2012, pp. 1–9.

176 Bibliography

[ASW+12] I. Aktas, F. Schmidt, E. Weingärtner, C.J. Schnelke, and K. Wehrle, An
adaptive codec switching scheme for sip-based voip, Internet of Things,
Smart Spaces, and Next Generation Networking, August 2012, pp. 347–
358.

[ath] Ath9k - Linux Wireless: Official Website, http://wireless.kernel.
org/en/users/Drivers/ath9k, Last visit 28-7-2013.

[AVA06] Ian F Akyildiz, Mehmet C Vuran, and Ozgur B Akan, A cross-layer
protocol for wireless sensor networks, Information Sciences and Systems,
2006 40th Annual Conference on, IEEE, 2006, pp. 1102–1107.

[AvLH+12] Ismet Aktaş, Hendrik vom Lehn, Christoph Habets, Florian Schmidt,
and Klaus Wehrle, Fantasy: fully automatic network emulation archi-
tecture with cross-layer support, Proceedings of the 5th International
ICST Conference on Simulation Tools and Techniques (SimuTools),
2012, pp. 57–64.

[AXM04] Ian F Akyildiz, Jiang Xie, and Shantidev Mohanty, A survey of mobil-
ity management in next-generation all-ip-based wireless systems, IEEE
Wireless Communications, 2004, no. 4, pp. 16–28.

[BB02] Sabine Bachl and Franz-Josef Brandenburg, Computing and drawing
isomorphic subgraphs, Graph Drawing (Michael Goodrich and Stephen
Kobourov, eds.), Lecture Notes in Computer Science, vol. 2528, Springer
Berlin / Heidelberg, 2002, 10.1007/3-540-36151-0 8, pp. 74–85.

[BDF+03] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris,
Alex Ho, Rolf Neugebauer, Ian Pratt, and Adrew Warfield, Xen and the
art of virtualization, Proc. of SOSP, Bolton Landing, NY, USA, ACM,
October 2003.

[BES05] D. Ben-Eli and I. Sutskover, Transmitter operations for interference
mitigation, July 21 2005, WO Patent App. PCT/US2004/043,039.

[BFH03] R. Braden, T. Faber, and M. Handley, From protocol stack to protocol
heap: role-based architecture, ACM SIGCOMM Computer Communica-
tion Review, 2003, no. 1, 17–22.

[BHS07] F. Buschmann, K. Henney, and D.C. Schmidt, Pattern-oriented software
architecture: On patterns and pattern languages, John Wiley & Sons Inc,
2007.

[BKL+08] E. Bayraktaroglu, C. King, X. Liu, G. Noubir, R. Rajaraman, and
B. Thapa, On the Performance of IEEE 802.11 under Jamming, Proc.
IEEE INFOCOM, 2008.

[BMS+06] Didier Bourse, Markus Muck, Olivier Simon, Nancy Alonistioti, Klaus
Moessner, Eric Nicollet, David Bateman, Enrico Buracchini, Gemini
Chengeleroyen, and Panagiotis Demestichas, End-to-end reconfigurabil-
ity (e2r ii): Management and control of adaptive communication sys-
tems, IST Mobile Summit, 2006.

http://wireless.kernel.org/en/users/Drivers/ath9k
http://wireless.kernel.org/en/users/Drivers/ath9k

Bibliography 177

[BP95] Lawrence S. Brakmo and Larry L. Peterson, Tcp vegas: End to end
congestion avoidance on a global internet, IEEE Journal on Selected
Areas in Communications, 1995, no. 8, pp. 1465–1480.

[BPY09] Wafa Berrayana, Guy Pujolle, and Habib Youssef, Xlengine: a cross-
layer autonomic architecture with network wide knowledge for qos sup-
port in wireless networks, Proceedings of the 2009 International Confer-
ence on Wireless Communications and Mobile Computing: Connecting
the World Wirelessly, ACM, 2009, pp. 170–175.

[Bre01] L. Breiman, Random Forests, Tech. report, University of California at
Berkeley, 2001.

[BRN+10] Nicola Baldo, Manuel Requena, Jose Nunez, Marc Portoles, Jaume Nin,
Paolo Dini, and Josep Mangues, Validation of the ns-3 IEEE 802.11
model using the EXTREME testbed, Proceedings of SIMUTools Confer-
ence, 2010, March 2010.

[BSAK95] Hari Balakrishnan, Srinivasan Seshan, Elan Amir, and Randy H
Katz, Improving tcp/ip performance over wireless networks, MobiCom,
vol. 95, Citeseer, 1995, pp. 2–11.

[BSK95] Hari Balakrishnan, Srinivasan Seshan, and Randy H. Katz, Improving
reliable transport and handoff performance in cellular wireless networks,
Wireless Networks, 1995, pp. 469–481.

[CC08] Ben-Jye Chang and Jun-Fu Chen, Cross-layer-based adaptive vertical
handoff with predictive rss in heterogeneous wireless networks, IEEE
Transactions on Vehicular Technology, 2008, no. 6, 3679–3692.

[CDMM00] C. Casetti, J. C. De Martin, and M. Meo, Framework for the analysis
of adaptive voice over ip, IEEE International Conference on Communi-
cations, June 2000, pp. 821 – 826.

[CGM+02] Claudio Casetti, Mario Gerla, Saverio Mascolo, MY Sanadidi, and Ren
Wang, Tcp westwood: end-to-end congestion control for wired/wireless
networks, Wireless Networks, 2002, no. 5, pp. 467–479.

[Cit] Citrix Systems, Inc., Xen hypervisor, the powerful open source industry
standard for virtualization., http://www.xen.org/, (accessed Nov 14,
2011).

[CMTG04] M. Conti, G. Maselli, G. Turi, and S. Giordano, Cross-layering in mobile
ad hoc network design, Computer, 2004, no. 2, pp. 48–51.

[CRRP04] G. Carneiro, J. Ruela, M. Ricardo, and I. Porto, Cross-layer design
in 4G wireless terminals, IEEE Wireless Communication, 2004, no. 2,
pp. 7–13.

[CSN02] K. Chen, S.H. Shah, and K. Nahrstedt, Cross-layer design for data
accessibility in mobile ad hoc networks, Wireless Personal Communica-
tions, 2002, no. 1, pp. 49–76.

http://www.xen.org/

178 Bibliography

[DCY93] Antonio DeSimone, Mooi Choo Chuah, and On-Ching Yue, Through-
put performance of transport-layer protocols over wireless lans, Global
Telecommunications Conference, 1993, including a Communications
Theory Mini-Conference. Technical Program Conference Record, IEEE
in Houston. GLOBECOM’93., IEEE, IEEE, 1993, pp. 542–549.

[Den09] Dominik Dennisen, Integration of a WiFi Tweaking component into the
X-Layer Architecture, Bachelor Thesis, Communication and Distributed
Systems, RWTH Aachen University, October 2009.

[Den12] Dominik Dennissen, Coping with Jamming Attacks with the Help of
Cross-Layer Design, Master Thesis, Communication and Distributed
Systems, RWTH Aachen University, August 2012.

[dJ] Irmen de Jong, Pyro 3.x - Python remote objects, http://www.xs4all.
nl/~irmen/pyro3/, (accessed Nov 14, 2011).

[Dör07] Kay Dörnemann, Ad-Hoc Routing/Emulation - Philipps-
Universität Marburg - Verteilte Systeme (AG Freisleben), http:

//www.uni-marburg.de/fb12/verteilte_systeme/forschung/

pastproj/adhoc_routing_emul, 2007, (accessed Nov 14, 2011).

[DRSC05] P. De, A. Raniwala, S. Sharma, and T. Chiueh, MiNT: a miniaturized
network testbed for mobile wireless research, Proc. IEEE 24th Annual
Joint Conference of the IEEE Computer and Communications Societies
INFOCOM 2005, vol. 4, 2005, pp. 2731–2742 vol. 4.

[Drü10] Tobias Drüner, Reconfigurability of Application-driven Cross-Layer Op-
timizations, Bachelor Thesis, Communication and Distributed Systems,
RWTH Aachen University, July 2010.

[Drü13] Tobias Drüner, Remote Cross-Layer Evaluation, Master Thesis, Com-
munication and Distributed Systems, RWTH Aachen University, De-
cember 2013.

[DSB+06] Panagiotis Demestichas, Vera Stavroulaki, Dragan Boscovic, Al Lee,
and John Strassner, m@angel: autonomic management platform for
seamless cognitive connectivity to the mobile internet, IEEE Commu-
nications Magazine, 2006, no. 6, pp. 118–127.

[EBPC05] Wolfgang Eberle, Bruno Bougard, Sofie Pollin, and Francky Catthoor,
From myth to methodology: cross-layer design for energy-efficient wire-
less communication, Design Automation Conference, 2005. Proceedings.
42nd, IEEE, 2005, pp. 303–308.

[Emu] Emulab.Net - Emulab - Network Emulation Testbed Home, http://www.
emulab.net/, (accessed Nov 14, 2011).

[Fal99] Kevin R. Fall, Network emulation in the Vint/NS simulator, 4th IEEE
Symposium on Computers and Communication, 1999.

http://www.xs4all.nl/~irmen/pyro3/
http://www.xs4all.nl/~irmen/pyro3/
http://www.uni-marburg.de/fb12/verteilte_systeme/forschung/pastproj/adhoc_routing_emul
http://www.uni-marburg.de/fb12/verteilte_systeme/forschung/pastproj/adhoc_routing_emul
http://www.uni-marburg.de/fb12/verteilte_systeme/forschung/pastproj/adhoc_routing_emul
http://www.emulab.net/
http://www.emulab.net/

Bibliography 179

[FGA08] Fotis Foukalas, Vangelis Gazis, and Nancy Alonistioti, Cross-layer de-
sign proposals for wireless mobile networks: a survey and taxonomy,
Communications Surveys & Tutorials, IEEE, 2008, no. 1, pp. 70–85.

[FL03] Cheng Peng Fu and Soung C Liew, Tcp veno: Tcp enhancement for
transmission over wireless access networks, IEEE Journal on Selected
Areas in Communications, 2003, no. 2, pp. 216–228.

[For02] Behrouz A Forouzan, Tcp/ip protocol suite, McGraw-Hill, Inc., 2002.

[GFTW06] Xiaoyuan Gu, Xiaoming Fu, Hannes Tschofenig, and Lars Wolf, To-
wards self-optimizing protocol stack for autonomic communication: ini-
tial experience, Autonomic Communication, Springer, 2006, pp. 186–
201.

[GHJV95] Erich Gamma, Richard Helm, Ralph E. Johnson, and John Vlis-
sides, Design patterns: Elements of reusable object-oriented software,
Addison-Wesley, 1995.

[GK02] P. Godefroid and S. Khurshid, Exploring very large state spaces us-
ing genetic algorithms, Tools and Algorithms for the Construction and
Analysis of Systems, 2002, pp. 71–82.

[GKN+04] Robert S. Gray, David Kotz, Calvin Newport, Nikita Dubrovsky, Aaron
Fiske, Jason Liu, Christopher Masone, Susan McGrath, and Yougu
Yuan, Outdoor experimental comparison of four ad hoc routing algo-
rithms, Proceedings of the ACM/IEEE International Symposium on
Modeling, Analysis and Simulation of Wireless and Mobile Systems
(MSWiM), 2004.

[GLS+13] D. Giustiniano, V. Lenders, J. Schmitt, M. Spuhler, and M. Wilhelm,
Detection of Reactive Jamming in DSSS-based Wireless Networks, Proc.
ACM WiSec, 2013.

[GMPG00] T. Goff, J. Moronski, D.S. Phatak, and V. Gupta, Freeze-tcp: a true
end-to-end tcp enhancement mechanism for mobile environments, IN-
FOCOM 2000. Nineteenth Annual Joint Conference of the IEEE Com-
puter and Communications Societies. Proceedings. IEEE, vol. 3, mar
2000, pp. 1537 –1545 vol.3.

[GWCA11] S. Götz, C. Wilke, S. Cech, and U. Aßmann, Runtime variability man-
agement for energy-efficient software by contract negotiation, Proceed-
ings of the International Workshop on Models@ run. time, 2011.

[GWGS07] Ramakrishna Gummadi, David Wetherall, Ben Greenstein, and Srini-
vasan Seshan, Understanding and Mitigating the Impact of RF Interfer-
ence on 802.11 Networks, Proc. ACM SIGCOMM, 2007.

[Hab11] Jan Christoph Habets, Fully Automated Network Emulation Setup for
Protocol Evaluation, Diploma Thesis, Communication and Distributed
Systems, RWTH Aachen University, July 2011.

180 Bibliography

[HBOM09] Ali Hamieh, Jalel Ben-Othman, and Lynda Mokdad, Detection of Radio
Interference Attacks in VANET, Proc. of GLOBECOM, 2009.

[Hem05] S. Hemminger, Netem-emulating real networks in the lab, Proc. Linux
Conference Australia, 2005.

[HHT+02] Matti Hamalainen, Veikko Hovinen, Raffaello Tesi, Jari HJ Iinatti, and
Matti Latva-aho, On the uwb system coexistence with gsm900, umt-
s/wcdma, and gps, IEEE Journal on Selected Areas in Communications,
2002, no. 9, pp. 1712–1721.

[HP91] N.C. Hutchinson and L.L. Peterson, The x-kernel: An architecture for
implementing network protocols, IEEE Transactions on Software Engi-
neering, 1991, no. 1, pp. 64–76.

[Hro03] Juraj Hromkovic, Theoretical computer science : Introduction to au-
tomata, computability, complexity, algorithmics, randomization, com-
munication, and cryptography, Springer, November 2003.

[HRX08] Sangtae Ha, Injong Rhee, and Lisong Xu, CUBIC: a new TCP-friendly
high-speed TCP variant, SIGOPS Oper. Syst. Rev., 2008, no. 5, pp. 64–
74.

[IBW97] J. Inouye, J. Binkley, and J. Walpole, Dynamic network reconfiguration
support for mobile computers, Proc. MobiCom, ACM New York, NY,
USA, 1997, pp. 13–22.

[IKSF04] Luigi Iannone, Ramin Khalili, Kave Salamatian, and Serge Fdida,
Cross-layer routing in wireless mesh networks, Wireless Communication
Systems, 2004, 1st International Symposium on, IEEE, 2004, pp. 319–
323.

[ITU01] ITU-T P.862 : Perceptual evaluation of speech quality (pesq): An ob-
jective method for end-to-end speech quality assessment of narrow-band
telephone networks and speech codecs, 2001.

[JCS] R. Jones, K. Choy, and D. Shield, Netperf, http://www.netperf.org,
(accessed Nov 14, 2011).

[JSF+06] David Johnson, Tim Stack, Russ Fish, Daniel Montrallo Flickinger,
Leigh Stoller, Robert Ricci, and Jay Lepreau, Mobile Emulab: A Robotic
Wireless and Sensor Network Testbed, Proceedings of the 25th Con-
ference on Computer Communications (IEEE INFOCOM 2006), April
2006.

[KCH+08] Ahmed Khattab, Joseph Camp, Chris Hunter, Patrick Murphy,
Ashutosh Sabharwal, and Edward W Knightly, WARP: A Flexible Plat-
form for Clean-Slate Wireless Medium Access Protocol Design, ACM
SIGMOBILE Mobile Computing and Communications Review, 2008,
no. 1, pp. 56–58.

http://www.netperf.org

Bibliography 181

[KHZ+03] Wuttipong Kumwilaisak, Yiwei Thomas Hou, Qian Zhang, Wenwu Zhu,
C-CJ Kuo, and Ya-Qin Zhang, A cross-layer quality-of-service mapping
architecture for video delivery in wireless networks, Selected Areas in
Communications, IEEE Journal on, 2003, no. 10, pp. 1685–1698.

[KKT04] Ulas C Kozat, Iordanis Koutsopoulos, and Leandros Tassiulas, A frame-
work for cross-layer design of energy-efficient communication with qos
provisioning in multi-hop wireless networks, INFOCOM 2004. Twenty-
third AnnualJoint Conference of the IEEE Computer and Communica-
tions Societies, vol. 2, IEEE, 2004, pp. 1446–1456.

[KKTC05] V. Kawadia, PR Kumar, BBN Technol, and MA Cambridge, A caution-
ary perspective on cross-layer design, IEEE Wireless Communications,
2005, no. 1, pp. 3–11.

[KMC+00] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M.F. Kaashoek, The
click modular router, ACM Transactions on Computer Systems (TOCS),
2000, no. 3, pp. 263–297.

[KNB+04] Raymond Knopp, Navid Nikaein, Christian Bonnet, Hervé Aiache,
Vania Conan, Sandrine Masson, Gregoire Guibe, and CL Martret,
Overview of the widens architecture, a wireless ad hoc network for pub-
lic safety, 1st IEEE International Conference on Sensor and Ad Hoc
Communications and Networks (SECON), Santa Clara, USA, 2004.

[Koe11] Nikolaus Koemm, Cross-Layer Conflict Detection, Diploma Thesis,
Communication and Distributed Systems, RWTH Aachen University,
December 2011.

[KP09] Stylianos Karapantazis and Fotini-Niovi Pavlidou, Voip: A compre-
hensive survey on a promising technology, Computer Networks, 2009,
no. 12, pp. 2050–2090.

[KPS+06] S. Khan, Y. Peng, E. Steinbach, M. Sgroi, and W. Kellerer, Application-
driven cross-layer optimization for video streaming over wireless net-
works, IEEE Communications Magazine, 2006, no. 1, pp. 122–130.

[KSHH04] Teemu Karhima, Aki Silvennoinen, Michael Hall, and S-G Haggman,
Ieee 802.11 b/g wlan tolerance to jamming, Military Communications
Conference, 2004. MILCOM 2004. 2004 IEEE, vol. 3, IEEE, 2004,
pp. 1364–1370.

[KV13] B Yeshwanth Kumar and T Vishal, Internet protocol version 6 internet
protocol version 6 (ipv6), International Journal of Research in Engineer-
ing and Advanced Technology (IJREAT), 2013, pp. 1–2.

[LCG+09] Chi Harold Liu, Sara Grilli Colombo, Athanasios Gkelias, Erwu Liu,
and Kin K. Leung, An Efficient Cross-Layer Simulation Architecture
for Wireless Mesh Networks, Proceedings of IEEE UKSim 2009, March
2009, pp. 491–496.

182 Bibliography

[LFH+10] Mathieu Lacage, Martin Ferrari, Mads Hansen, Thierry Turletti, and
Walid Dabbous, NEPI: Using Independent Simulators, Emulators, and
Testbeds for Easy Experimentation, ACM SIGOPS Operating Systems
Review, January 2010, pp. 60–65.

[lin] Linphone, [Online; accessed 11-April-2010].

[LKP07] Mingyan Li, I. Koutsopoulos, and R. Poovendran, Optimal jamming
attacks and network defense policies in wireless sensor networks, INFO-
COM 2007. 26th IEEE International Conference on Computer Commu-
nications. IEEE, may 2007, pp. 1307 –1315.

[LSS06] X. Lin, NB Shroff, and R. Srikant, A tutorial on cross-layer optimization
in wireless networks, IEEE Journal on Selected Areas in Communica-
tions, 2006, no. 8, pp. 1452–1463.

[LSVW11] Jó Agila Bitsch Link, Paul Smith, Nicolai Viol, and Klaus Wehrle, Foot-
path: Accurate map-based indoor navigation using smartphones, Indoor
Positioning and Indoor Navigation (IPIN), 2011 International Confer-
ence on, IEEE, 2011, pp. 1–8.

[Ltd08] S. Ltd, Skype Public API, 2008.

[MA06] Shantidev Mohanty and Ian F Akyildiz, A cross-layer (layer 2+ 3)
handoff management protocol for next-generation wireless systems, Mo-
bile Computing, IEEE Transactions on, 2006, no. 10, pp. 1347–1360.

[MAB+08] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar,
Larry Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner,
OpenFlow: Enabling Innovation in Campus Networks, ACM SIG-
COMM Computer Communication Review, 2008, no. 2, pp. 69–74.

[MCC04] Matthew L Massie, Brent N Chun, and David E Culler, The Ganglia
Distributed Monitoring System: Design, Implementation, and Experi-
ence, Parallel Computing, 2004, no. 7, pp. 817–840.

[MCG+01] Saverio Mascolo, Claudio Casetti, Mario Gerla, M. Y. Sanadidi, and Ren
Wang, TCP westwood: Bandwidth estimation for enhanced transport
over wireless links, Proc. MobiCom’01 (New York, NY, USA), ACM,
2001, pp. 287–297.

[MHLS09] Guowang Miao, Nageen Himayat, Ye Geoffrey Li, and Ananthram
Swami, Cross-layer optimization for energy-efficient wireless commu-
nications: a survey, Wireless Communications and Mobile Computing,
2009, no. 4, pp. 529–542.

[Mit00] Joseph Mitola, Cognitive radio—an integrated agent architecture for
software defined radio, Ph.D. thesis, Royal Institute of Technology
(KTH), 2000.

[MK07] W. Mazurczyk and Z. Kotulski, Adaptive voip with audio watermarking
for improved call quality and security, Journal of Information Assurance
and Security, 2007, no. 3, pp. 226–234.

Bibliography 183

[MLAW99] Jeonghoon Mo, Richard J La, Venkat Anantharam, and Jean Walrand,
Analysis and comparison of tcp reno and vegas, INFOCOM’99. Eigh-
teenth Annual Joint Conference of the IEEE Computer and Communi-
cations Societies. Proceedings. IEEE, vol. 3, IEEE, 1999, pp. 1556–1563.

[MLM+05] Pedro José Marrón, Andreas Lachenmann, Daniel Minder, Jorg Hahner,
Robert Sauter, and Kurt Rothermel, Tinycubus: a flexible and adaptive
framework sensor networks, Wireless Sensor Networks, 2005. Proceeed-
ings of the Second European Workshop on, IEEE, 2005, pp. 278–289.

[MMJ99] Joseph Mitola and Gerald Q Maguire Jr, Cognitive radio: making
software radios more personal, Personal Communications, IEEE, 1999,
no. 4, pp. 13–18.

[Möl11] Kevin Möllering, Establishing Synergies between Cross-Layer Opti-
mizations, Bachelor Thesis, Communication and Distributed Systems,
RWTH Aachen University, June 2011.

[MPRW06] Petri Mähönen, Marina Petrova, Janne Riihijärvi, and Matthias
Wellens, Cognitive wireless networks: your network just became a
teenager, Proceedings of IEEE INFOCOM, vol. 2006, Citeseer, 2006.

[MS03] Ivo Maathuis and Wim A Smit, The battle between standards: Tcp/ip
vs osi victory through path dependency or by quality?, Standardization
and Innovation in Information Technology, 2003. The 3rd Conference
on, IEEE, 2003, pp. 161–176.

[MVP06] Tommaso Melodia, Mehmet C Vuran, and Dario Pompili, The state of
the art in cross-layer design for wireless sensor networks, Wireless Sys-
tems and Network Architectures in Next Generation Internet, Springer,
2006, pp. 78–92.

[MWH01] Martin Mauve, Jorg Widmer, and Hannes Hartenstein, A survey on
position-based routing in mobile ad hoc networks, IEEE Network, 2001,
no. 6, pp. 30–39.

[NAGL10] Pablo Neira-Ayuso, Rafael M Gasca, and Laurent Lefevre, Communi-
cating between the kernel and user-space in linux using netlink sockets,
Software: Practice and Experience, 2010, no. 9, pp. 797–810.

[ncu13] NCurses (new curses) library, http://www.gnu.org/software/

ncurses/ncurses.html, 11 2013.

[net] Netem (network emulation), http://www.linuxfoundation.org/

collaborate/workgroups/networking/netem.

[NHS05] See Leng Ng, S. Hoh, and D. Singh, Effectiveness of adaptive codec
switching voip application over heterogeneous networks, Mobile Tech-
nology, Applications and Systems, 2005 2nd International Conference
on, November 2005, pp. 7.

http://www.gnu.org/software/ncurses/ncurses.html
http://www.gnu.org/software/ncurses/ncurses.html
http://www.linuxfoundation.org/collaborate/workgroups/networking/netem
http://www.linuxfoundation.org/collaborate/workgroups/networking/netem

184 Bibliography

[Noi] Method and System for Noise Floor Calibration and Receive Signal
Strength Detection (Atheros Patent), http://www.patentstorm.us/

patents/7245893/description.html, Last visit 19-12-2013.

[ns3] ns-3 Website, http://www.nsnam.org/, (accessed Nov 14, 2011).

[Ott09] Jens Otten, Design and Evaluation of a Dynamically Reconfigurable and
Extendable Cross-Layer Signaling Architecture, Diploma Thesis, Com-
munication and Distributed Systems, RWTH Aachen University, May
2009.

[Pen00] Kostas Pentikousis, Tcp in wired-cum-wireless environments, Commu-
nications Surveys & Tutorials, IEEE, 2000, no. 4, pp. 2–14.

[pes] Pesq, http://www.pesq.org/.

[PIK11] K. Pelechrinis, M. Iliofotou, and S.V. Krishnamurthy, Denial of service
attacks in wireless networks: The case of jammers, IEEE Communica-
tions Surveys Tutorials, 2011, no. 2, pp. 245–257.

[PnAG12] Oscar Puñal, Ana Aguiar, and James Gross, In vanets we trust?: char-
acterizing rf jamming in vehicular networks, Proceedings of the ninth
ACM international workshop on Vehicular inter-networking, systems,
and applications (New York, NY, USA), VANET ’12, ACM, 2012,
pp. 83–92.

[PPS+09] H. Pham, J.M. Paluska, U. Saif, C. Stawarz, C. Terman, and S. Ward, A
dynamic platform for run-time adaptation, Pervasive and Mobile Com-
puting, 2009, no. 6, pp. 676–696.

[pyt] Python Programming Language, Official Website, http://www.python.
org/, (accessed Nov 14, 2011).

[QK04] Liang Qin and Thomas Kunz, Survey on mobile ad hoc network rout-
ing protocols and cross-layer design, Tech. report, Carleton University
Systems and Computer Engineering, 2004.

[Rai06] Vijay Thakurdas Raisinghani, Cross layer feedback architecture for mo-
bile device protocol stacks, Ph.D. thesis, INDIAN INSTITUTE OF
TECHNOLOGY, BOMBAY, 2006.

[RDN06] Mohammad A Razzaque, Simon Dobson, and Paddy Nixon, A cross-
layer architecture for autonomic communications, Autonomic Network-
ing, Springer, 2006, pp. 25–35.

[RDN07a] Mohammad Abdur Razzaque, Simon Dobson, and Paddy Nixon, Con-
text awareness through cross-layer network architecture, Computer
Communications and Networks, 2007. ICCCN 2007. Proceedings of 16th
International Conference on, IEEE, 2007, pp. 1076–1081.

[RDN07b] Mohammad Abdur Razzaque, Simon Dobson, and Paddy Nixon, Cross-
layer architectures for autonomic communications, Journal of Network
and Systems Management, 2007, no. 1, pp. 13–27.

http://www.patentstorm.us/patents/7245893/description.html
http://www.patentstorm.us/patents/7245893/description.html
http://www.nsnam.org/
http://www.pesq.org/
http://www.python.org/
http://www.python.org/

Bibliography 185

[RI04a] V.T. Raisinghani and S. Iyer, Cross-layer design optimizations in wire-
less protocol stacks, Computer Communications, 2004, no. 8, pp. 720–
724.

[RI04b] V.T. Raisinghani and S. Iyer, ECLAIR: An efficient cross layer architec-
ture for wireless protocol stacks, Proc. World Wireless Congress, 2004.

[RI06] Vijay T Raisinghani and Sridhar Iyer, Cross-layer feedback architec-
ture for mobile device protocol stacks, IEEE Communications Magazine,
2006.

[RNS13] SV Rani, P Narayanasamy, and J John Shiny, A cross layer approach for
improving TCP performance using channel access information, Commu-
nications and Signal Processing (ICCSP), 2013 International Conference
on, IEEE, 2013, pp. 587–591.

[RSC+02] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson,
R. Sparks, M. Handley, and E. Schooler, SIP: Session Initiation Pro-
tocol, RFC 3261 (Proposed Standard), June 2002, Updated by RFCs
3265, 3853, 4320, 4916, 5393, 5621, 5626, 5630, 5922, 5954, 6026, 6141.

[RSI02] Vijay T Raisinghani, Ajay Kr Singh, and Sridhar Iyer, Improving tcp
performance over mobile wireless environments using cross layer feed-
back, Personal Wireless Communications, 2002 IEEE International Con-
ference on, IEEE, 2002, pp. 81–85.

[SB01] P. Sudame and BR Badrinath, On providing support for protocol adap-
tation in mobile wireless networks, MONET, 2001, no. 1, pp. 43–55.

[Sch11] Caj-Julian Schnelke, An Adaptive Codec Switching Scheme for SIP-
based VoIP, Bachelor Thesis, Communication and Distributed Systems,
RWTH Aachen University, May 2011.

[Sch13] Caj-Julian Schnelke, Tackling Jamming Attacks in 802.11 Ad-hoc-
networks, Master Thesis, Communication and Distributed Systems,
RWTH Aachen University, June 2013.

[SDN06] Paul Sutton, Linda E Doyle, and Keith E Nolan, A reconfigurable plat-
form for cognitive networks, Cognitive Radio Oriented Wireless Net-
works and Communications, 2006. 1st International Conference on,
IEEE, 2006, pp. 1–5.

[SDv10] Mario Strasser, Boris Danev, and Srdjan Čapkun, Detection of reactive
jamming in sensor networks, ACM Trans. Sen. Netw., 2010, no. 2, 16:1–
16:29.

[Shy06] DJ Shyy, Military usage scenario and ieee 802.11 s mesh networking
standard, Military Communications Conference, 2006. MILCOM 2006.
IEEE, IEEE, 2006, pp. 1–7.

[SKC05] C.M. Sadler, L. Kant, and W. Chen, Cross-layer self-healing mecha-
nisms in wireless networks, Proc. WWC, vol. 254, 2005.

186 Bibliography

[SM05] V. Srivastava and M. Motani, Cross-layer design: a survey and the road
ahead, IEEE Communications Magazine, 2005, no. 12, pp. 112–119.

[SPKW07] M. Schinnenburg, R. Pabst, K. Klagges, and B. Walke, A software archi-
tecture for modular implementation of adaptive protocol stacks, MMBnet
Workshop 2007, Hamburg, Germany, Sep 2007, pp. 94–103.

[SRK03] S. Shakkottai, TS Rappaport, and PC Karlsson, Cross-layer design for
wireless networks, IEEE Comm. Magazine, 2003, no. 10, pp. 74–80.

[SSC11] Chowdhury Shahriar, Shabnam Sodagari, and T Charles Clancy,
Physical-Layer Security Challenges of DSA-Enabled TD-LTE, Proc.
ACM CogART, 2011.

[ST09] M. Salehie and L. Tahvildari, Self-adaptive software: Landscape and
research challenges, ACM Transactions on Autonomous and Adaptive
Systems (TAAS), 2009, no. 2, 14.

[St̊a00] Mika St̊ahlberg, Radio jamming attacks against two popular mobile net-
works, Helsinki University of Technology Seminar on Network Security,
2000.

[STE97] WR STEVENS, Tcp slow start, congestion avoidance, fast retransmit,
and fast recovery algorithms, Internet Draft RFC 2001 (1997), pp. 1–5.

[SYH+04] Daniel Grobe Sachs, Wanghong Yuan, Christopher J Hughes, Albert
Harris, Sarita V Adve, Douglas L Jones, Robin H Kravets, and Klara
Nahrstedt, GRACE: A Hierarchical Adaptation Framework for Saving
Energy, Tech. report, University of Illinois at Urbana-Champaign, 2004.

[tbf] Token bucket filter, http://linux.die.net/man/8/tc-tbf.

[tes] Audio testfile for ITU-T recs P.862, http://www.itu.int/rec/

T-REC-P.862-200511-I!Amd2/en.

[TFDM06] Ryan W Thomas, Daniel H Friend, Luiz A DaSilva, and Allen B
MacKenzie, Cognitive networks: adaptation and learning to achieve
end-to-end performance objectives, Communications Magazine, IEEE,
2006, no. 12, pp. 51–57.

[TFDM07] Ryan W Thomas, Daniel H Friend, Luiz A DaSilva, and Allen B
MacKenzie, Cognitive networks, Springer, 2007.

[TMS11] G. Thamilarasu, S. Mishra, and R. Sridhar, Improving reliability of jam-
ming attack detection in ad hoc networks, International Journal of Com-
munication Networks and Information Security (IJCNIS), 2011, no. 1,
pp. 57–66.

[TQD+04] A. Tirumala, F. Qin, J. Dugan, J. Ferguson, and K. Gibbs, Iperf: The
TCP/UDP bandwidth measurement tool, http://iperf.sourceforge.
net/, 2004.

http://linux.die.net/man/8/tc-tbf
http://www.itu.int/rec/T-REC-P.862-200511-I!Amd2/en
http://www.itu.int/rec/T-REC-P.862-200511-I!Amd2/en
http://iperf.sourceforge.net/
http://iperf.sourceforge.net/

Bibliography 187

[TS07] Geethapriya Thamilarasu and Ramalingam Sridhar, Exploring cross-
layer techniques for security: Challenges and opportunities in wireless
networks, Military Communications Conference, 2007. MILCOM 2007.
IEEE, IEEE, 2007, pp. 1–6.

[TW08] Alberto Lopez Toledo and Xiaodong Wang, Robust detection of mac
layer denial-of-service attacks in csma/ca wireless networks, IEEE
Transactions on Information Forensics and Security, 2008, no. 3,
pp. 347–358.

[TYCH05] Chien-Chao Tseng, Li-Hsing Yen, Hung-Hsin Chang, and Kai-Cheng
Hsu, Topology-aided cross-layer fast handoff designs for ieee 802.11/mo-
bile ip environments, IEEE Communications Magazine, 2005, no. 12,
pp. 156–163.

[VDS+05] Mihaela Van Der Schaar et al., Cross-layer wireless multimedia trans-
mission: challenges, principles, and new paradigms, Wireless Commu-
nications, IEEE, 2005, no. 4, pp. 50–58.

[Wal06] S. Waldbusser, RFC 4502 - Remote Network Monitoring Management
Information Base Version 2, May 2006.

[WAR03] Q. Wang and M.A. Abu-Rgheff, Cross-layer signalling for next-
generation wireless systems, IEEE WCNC, vol. 2, 2003, pp. 1084–89.

[Wat08] Jon Watson, Virtualbox: bits and bytes masquerading as machines,
Linux Journal, 2008, no. 166, 1.

[wbe] Wbest: a bandwidth estimation tool for ieee 802.11 wireless networks,
http://web.cs.wpi.edu/~claypool/papers/wbest/.

[WBLO99] G. Wu, Y. Bai, J. Lai, and A. Ogielski, Interactions between TCP and
RLP in Wireless Internet, Proc. GLOBECOM, 1999, pp. 661–666.

[Weh01] K. Wehrle, An open architecture for evaluating arbitrary quality of ser-
vice mechanisms in software routers, Networking—ICN 2001 (2001),
pp. 117–126.

[Wif] ns-3 Wifi Models, http://www.nsnam.org/docs/release/3.7/

doxygen/group___wifi.html, (accessed July 09, 2014).

[Wil08] A. Willig, Recent and emerging topics in wireless industrial communica-
tions: A selection, IEEE Transactions on Industrial Informatics, 2008,
no. 2, pp. 102–124.

[Wir] Wireless Tools for Linux, http://www.hpl.hp.com/personal/Jean_

Tourrilhes/Linux/Tools.html#wext, (accessed Nov 14, 2011).

[Wód11] Micha l Wódczak, Aspects of cross-layer design in autonomic coopera-
tive networking, Cross Layer Design (IWCLD), 2011 Third International
Workshop on, IEEE, 2011, pp. 1–5.

http://web.cs.wpi.edu/~claypool/papers/wbest/
http://www.nsnam.org/docs/release/3.7/doxygen/group___wifi.html
http://www.nsnam.org/docs/release/3.7/doxygen/group___wifi.html
http://www.hpl.hp.com/personal/Jean_Tourrilhes/Linux/Tools.html#wext
http://www.hpl.hp.com/personal/Jean_Tourrilhes/Linux/Tools.html#wext

188 Bibliography

[WSNB06] Rolf Winter, Jochen H Schiller, Navid Nikaein, and Christian Bonnet,
Crosstalk: Cross-layer decision support based on global knowledge, IEEE
Communications Magazine, 2006, no. 1, pp. 93–99.

[WSvL+11] Elias Weingärtner, Florian Schmidt, Hendrik vom Lehn, Tobias Heer,
and Klaus Wehrle, SliceTime: A platform for scalable and accurate net-
work emulation, Proceedings of the 8th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI ’11), March 2011.

[WvLW11] Elias Weingaertner, Hendrik vom Lehn, and Klaus Wehrle, Device-
driver enabled wireless network emulation, Proceedings of the 4th Inter-
national ICST Conference on Simulation Tools and Techniques (SIMU-
Tools 2011), ICST, 3 2011.

[XTZW05] Wenyuan Xu, Wade Trappe, Yanyong Zhang, and Timothy Wood, The
feasibility of launching and detecting jamming attacks in wireless net-
works, Proceedings of the 6th ACM international symposium on Mobile
ad hoc networking and computing (New York, NY, USA), MobiHoc ’05,
ACM, 2005, pp. 46–57.

[XWY06] Mingbo Xiao, Xudong Wang, and Guangsong Yang, Cross-layer design
for the security of wireless sensor networks, Intelligent Control and Au-
tomation, 2006. WCICA 2006. The Sixth World Congress on, vol. 1,
IEEE, 2006, pp. 104–108.

[YCLT08] Y. C. Yee, K. N. Choong, Andy L. Y. Low, and S. W. Tan, Sip-based
proactive and adaptive mobility management framework for heteroge-
neous networks, J. Netw. Comput. Appl., 2008, pp. 771–792.

[YLA02] Wing Ho Yuen, Heung-no Lee, and Timothy D Andersen, A simple
and effective cross layer networking system for mobile ad hoc networks,
Personal, Indoor and Mobile Radio Communications, 2002. the 13th
IEEE International Symposium on, vol. 4, IEEE, 2002, pp. 1952–1956.

[Yu04] Xin Yu, Improving tcp performance over mobile ad hoc networks by
exploiting cross-layer information awareness, Proceedings of the 10th
annual international conference on Mobile computing and networking,
ACM, 2004, pp. 231–244.

[ZZ08] Qian Zhang and Ya-Qin Zhang, Cross-layer design for qos support
in multihop wireless networks, Proceedings of the IEEE, 2008, no. 1,
pp. 64–76.

A
Syntax of CRAWLER’s Configuration
Language

In order to provide an abstract configuration to declaratively describe cross-layer
coordination algorithms, we have created an own rule-based configuration. The con-
figuration language is inspired by the graphical representation of functional unit
compositions. Table A.1 gives the grammar of our configuration language in Ex-
tended Backus-Naur Form (EBNF).

Init → { Section { Identifier Rule | Trigger } }
Section → ”[init]” | ”[manual]” | ”[contextEnter]” | ”[contextExit]”

Identifier → IDName ”:”
IDName → Name { ”.” Name }

Name → Alpha { AlphaNum }
Rule → Name ”(” [ParameterList] ”)”

ParameterList → Parameter { ”,” Parameter }
Parameter → [Identifier] Value | [Identifier] Rule | IDName

Value → Boolean | Integer | Character
Boolean → Bool | [”b”] ”[” [Bool { ”,” Bool }] ”]”

Bool → ”true” | ”false”
Integer → Int | [”i”] ”[” [Int { ”,” Int }] ”]”

Int → typical integer representation
Character → Char | ”"”{ Char } ”"”

Trigger → IDName ”->” IDName { ”,” IDName } ”;”

Table A.1 Syntax of our configuration language in EBNF notation. Alpha represents uppercase
and lowercase letters including “ ”; AlphaNum represents Alpha characters and numbers.

190 A. Syntax of CRAWLER’s Configuration Language

The meaning of the terminal and non-terminal symbols are as follows:

Section is divided into three parts and each part contains a list of rules or triggers.

[init] contains all rules that should be loaded on Crawler’s start.

[manual] contains rules that are predefined but not yet loaded into Crawler.
These rules can later be managed in the section contextEnter and con-
textExit.

[contextEnter] this section loads a set of predefined rules as soon as a condi-
tion is satisfied. This allows Crawler to react when certain context is
available, e.g. if the link is below a threshold then predefined rules (i.e.,
that are hold in manual section) are automatically loaded.

[contextExit] this section unloads a set of predefined rules as soon as a condi-
tion is satisfied. Similar to contextEnter it allows to react when a certain
context is not available anymore, e.g., if the link is again above a threshold
a rule is unloaded .

Rule is a function with a function name and a list of parameters. The function
name is mapped to the corresponding functional unit with the same name.
ParameterList represents the query list for the corresponding function unit in-
stance. Every list entry is either a constant value, another rule or an identifier.
We enforce the root of every rule to have always a unique name, so that other
rules can refer to it.

Trigger represents a notification from one rule to multiple other rules. The first
identifier is the identifier of the rule that sends the notification. The following
list of identifiers maps to interested rules.

Parameter can be one of the following types:

Value is a constant value with a special type, e.g. integer or boolean. It can
be a single value or an array of values.

Rule is a new function for creating a nested composition of functions.

Identifier refers to an already composed rule with the given identifier name.
With the help of identifiers much shorter descriptions of desired configu-
rations are possible. It allows utilizing already defined (parts of) rules.

B
Available Stubs and FUs in
CRAWLER

B.1 Stubs

TCP

Readable TCP Stubs

Stubs for incoming packets, i.e., packet being received from lower layer and delivering
it to higher layer:

transport.tcp.tcp_in_5001.cwnd.get The sending congestion window on port 5001.
transport.tcp.tcp_in_5001.nxt.get The next sequence we send on port 5001.
transport.tcp.tcp_in_5001.srtt.get The smoothed round trip time (<<3) on port 5001.
transport.tcp.tcp_in_5001.ssthresh.get The slow start size threshold on port 5001.
transport.tcp.tcp_in_5001.una.get The first Byte we want an ack for on port 5001.
transport.tcp.tcp_in_5001.wnd.get The window we expect to receive on port 5001.

Stubs for outgoing packets, i.e., packet received from higher layer and delivering it
to lower layer:

transport.tcp.tcp_out_5001.cwnd.get The sending congestion window on port 5001.
transport.tcp.tcp_out_5001.nxt.get The next sequence we send on port 5001.
transport.tcp.tcp_out_5001.srtt.get The smoothed round trip time (<<3) on port 5001.
transport.tcp.tcp_out_5001.ssthresh.get The slow start size threshold on port 5001.
transport.tcp.tcp_out_5001.una.get The first Byte we want an ack for on port 5001.
transport.tcp.tcp_out_5001.wnd.get The window we expect to receive on port 5001.

Writable Stubs

Stubs for incoming packets, i.e., packet being received from lower layer and delivering
it to higher layer:

transport.tcp.activate.incomingPacketsPort.set Activate a tuning layer for incoming packets at the
given port (add port as variable).

transport.tcp.deactivate.incomingPacketsPort.set Deactivate a tuning layer for incoming packets at the
given port (add port as variable).

192 B. Available Stubs and FUs in CRAWLER

Stubs for outgoing packets, i.e., packet received from higher layer and delivering it
to lower layer:

transport.tcp.activate.outgoingPacketsPort.set Activate a tuning layer for outgoing packets at the
given port (add port as variable).

transport.tcp.deactivate.outgoingPacketsPort.set Deactivate a tuning layer for outgoing packets at the
given port (add port as variable).

transport.tcp.tcp_out_5001.cwnd.set Setter for the sending congestion window on port 5001.
transport.tcp.tcp_out_5001.nxt.set Setter for the next sequence we send on port 5001.
transport.tcp.tcp_out_5001.srtt.set Setter for the smoothed round trip time (<< 3)

on port 5001.
transport.tcp.tcp_out_5001.ssthresh.set Setter for the slow start size threshold on port 5001.
transport.tcp.tcp_out_5001.una.set Setter for the first Byte we want an ack for on port 5001.
transport.tcp.tcp_out_5001.wnd.set Setter for the window we expect to receive on port 5001.

Usage Hints for the TCP stubs

• Make sure the flag tcpLayer := yes in CLKernelModule/Makefile.kernel is set
when you compile.

• Load the tcp layer: insmod CLKernelModule/layer/tcpLayer2.ko

• Write a port number, that should be monitored or modified via an applica-
tion to the variables: transport.tcp.activate.incomingPacketsPort.set

or transport.tcp.activate.outgoingPacketsPort.set

• Respectively deactivation of packets port for deactivation

• For port 5001, there exist a kernel module for easy and fast handling: CLKer-
nelModule/src/test/enabletcp.ko, which has to be loaded after tcpLayer2.ko

IP

Stubs for incoming packets, i.e., packet being received from lower layer and delivering
it to higher layer:

ip.incoming.netdevice.name Associated device (network layer) of the current incoming ip packet.
ip.incoming.version Version of the current incoming ip packet.
ip.incoming.header_length Header length of the current incoming ip packet (multiple of 32 bit).
ip.incoming.id Identification of the current incoming ip packet.
ip.incoming.tos The type of service (class) of the current incoming ip packet.
ip.incoming.tos.precedence The type of service (precedence) of the current incoming ip packet.
ip.incoming.total_length The length of the current incoming ip packet.
ip.incoming.can_fragment Can the current incoming ip packet be fragmented?
ip.incoming.is_last_fragment Is the current incoming packet the last or a following fragment?
ip.incoming.fragment_offset The fragment offset of the current incoming packet.
ip.incoming.ttl The remaining time-to-live (TTL) of the current incoming packet.
ip.incoming.protocol The protocol type which follows after the ip packet.
ip.incoming.checksum Checksum of the current incoming ip packet.
ip.incoming.address.source Source address of the current incoming ip packet.
ip.incoming.address.source.readable Source address of the current incoming packet (readable format).
ip.incoming.address.destination Destination address of the current incoming ip packet.
ip.incoming.address.destiation.readable Destination address of the current incoming packet (readable format).

Stubs for outgoing packets, i.e., packet received from higher layer and delivering it
to lower layer:

B.1. Stubs 193

ip.outgoing.netdevice.name Associated device (network layer) of the current outgoing packet.
ip.outgoing.version Version of the current outgoing ip packet.
ip.outgoing.header_length Header length of the current outgoing ip packet.
ip.outgoing.id Identification of the current outgoing ip packet.
ip.outgoing.tos The type of service (corresponding class) of the current outgoing ip packet.
ip.outgoing.tos.precedence The type of service (corresponding precedence) of the current outgoing ip packet.
ip.outgoing.total_length The total length of the current outgoing ip packet.
ip.outgoing.can_fragment Can the current outgoing ip packet be fragmented?
ip.outgoing.ttl The remaining time-to-live (TTL) of the current outgoing packet.
ip.outgoing.protocol The protocol type that follows after the current outgoing ip packet.
ip.outgoing.address.source Source address of the current outgoing ip packet.
ip.outgoing.address.source.readable Source address of the current outgoing ip packet in a readable format.
ip.outgoing.address.next_hop IP address of the next hop.
ip.outgoing.address.next_hop.readable IP address of the next hop in a readable format.

WiFi - Wireless Extensions

Readable Stubs:

wlan0.wireless_stats.status.get Gives a certain status information - device dependent for now.
wlan0.wireless_stats.qual.rssi.get Quality information of the link (rssi value).
wlan0.wireless_stats.qual.level.get Signal level of the link (dBm).
wlan0.wireless_stats.qual.noise.get Noise level of the link (dBm).
wlan0.wireless_stats.qual.updated.get Flag to know if quality information updated.
wlan0.wireless_stats.discard.rx_nwid.get Packet discarded in the wireless device due to wrong nwid/essid.
wlan0.wireless_stats. Packet discarded in the wireless device because it is unable

discard.rx invalid cryption.get to code/decode (WEP).
wlan0.wireless_stats. Packet discarded in the wireless device because cannot perform

discard.rx invalid fragmentation.get a MAC reassembly.
wlan0.wireless_stats. Packet discarded in the wireless device because

discard.tx max retries.get max. MAC retry count reached.
wlan0.wireless_stats.discard.misc.get Packet discarded in the wireless device due to other cases.
wlan0.wireless_stats.miss.beacon.get Packet/Time period missed in the wireless adapter due to

missed beacons.

WiFi - Cfg802.11

Readable Stubs:

wlan0.cfg80211.signal.max Maximum of all received signal strengths (in dBm) from all connected stations.
wlan0.cfg80211.signal.min Minimum of all received signal strengths (in dBm) from all connected stations.
wlan0.cfg80211.signal.avg Average of all received signal strengths (in dBm) from all connected stations.
wlan0.cfg80211.survey Measured noise on the channel (in dBm).
wlan0.cfg80211.inactive_max Maximum of all current inactive times (in ms) from all connected stations.
wlan0.cfg80211.inactive_min Minimum of all current inactive times (in ms) from all connected stations.
wlan0.cfg80211.inactive_avg Average of all current inactive times (in ms) from all connected stations.
wlan0.cfg80211.txrate_max Maximum of all used transmission rates.
wlan0.cfg80211.txrate_min Minimum of all used transmission rates.
wlan0.cfg80211.rx_busy Amount of time the channel was sensed as ”busy” (in ms).
wlan0.cfg80211.channel_time Amount of time spent on the current network channel (in ms).
wlan0.cfg80211.tx_retries Amount of packet re-transmissions.
wlan0.cfg80211.tx_failed Amount of packets that failed to be transmitted (hence, amount of all frames that hit the re-transmission limit).
wlan0.cfg80211.tx_packets Amount of transmitted packets.
wlan0.cfg80211.rx_packets Amount of received packets.
wlan0.cfg80211.tx_bytes Amount of transmitted bytes.
wlan0.cfg80211.rx_bytes Amount of received bytes.
wlan0.cfg80211.channel_time_tx Amount of time spent transmitting (in ms).
wlan0.cfg80211.channel_time_rx Amount of time spent receiving (in ms).
wlan0.cfg80211.rx_dropped_misc todo.

Writable Stubs:

wlan0.cfg80211.channel Sets the currently used WLAN Channel.

194 B. Available Stubs and FUs in CRAWLER

Ethernet

Readable Stubs:

ethX.rx_packets The total number of packets received.
ethX.tx_packets The total number of packets transmitted.
ethX.rx_bytes The total number of bytes received.
ethX.tx_bytes The total number of bytes transmitted.

Systeminformation

Readable Stubs:

sys.uptime Uptime of the system since bootup (requires kernel 2.6.33).
sys.totalram Total RAM of the system in kilobytes.
sys.freeram Free RAM of the system in kilobytes.
sys.loadaverage.1min Current [http://de.wikipedia.org/wiki/Load Load] average (last 1 minute).
sys.loadaverage.5min : Current [http://de.wikipedia.org/wiki/Load Load] average (last 5 minutes).
sys.loadaverage.15min Current [http://de.wikipedia.org/wiki/Load Load] average (last 15 minutes).
sys.systemname : Current name of the system.
sys.systemversion Current version of the system (Kernel version number).
sys.systemrelease Current release of the system (Date of the setup).
sys.idletime Idle time of the system in seconds.
sys.cpu.utilization CPU utilization in percentage since system start.

B.2 FUs

and A boolean and-operator comparison of boolean types.
or A boolean or-operator comparison of boolean types.
avg(composite) Returns the average of a composite. Only works for integers.
bigger(value1,value2) Returns true if value1 is bigger then value2.

Otherwise it returns false. Works only for integers.
history(query,x) Stores the last x values of e.g. a get-query
if(condition, left_branch, right_branch) Uses if left branch if condition is met.

Otherwise it uses the right branch.
less(value1,value2) Returns true if value1 is smaller then value2.

Otherwise it returns false. Works only for integers.
max(composite?) Returns the maximum value of a composite(?).

Only works for integers.
min(composite?) Returns the minimum value of a composite(?).

Only works for integers.
once(query) Stores the result of up to 4 queries till calling FU returns true.

At this point all stored values can be overwritten by the current

results of the queries. Only use it for values that you want to
change at the SAME point of time. Only works for integers.

onceother(query) Same as once but for up to 10 values.
oncelong(query) Same as once only for longs.
percentdiv(value1,value2) Returns (value1∗100)/value2. Works for longs and integers.
pollingtimer(x) Polls every x jiffies.
print(query1,...) Prints the output into the kernel ring buffer.
printdep Prints the output into the kernel ring buffer but only

if querying FU returned true.
ringcounter Basic ringcounter.
sub(value1, value2) Subtracts value2 from value1. Works for longs and integers.
sum(value1, value2) Adds value2 to value1. Works for longs and integers.

C
Configuration of Machine
Learning-based Jamming Detection

In Section 4.5 we presented a machine learning-based jamming detection approach.
By using Crawler we monitored several metrics and forwarded the values to the
machine learning algorithm running in the user space. As the complete Crawler
configuration required too many rules for monitoring and computation of the divers
metrics, we moved it to this appendix.

1 chainStreamGet << "\n\

2 [init]\n\

3 signal_max_"<<this <<":get(\""<< wlanDevName <<". cfg80211.signal.max \")\n\

4 signal_min_"<<this <<":get(\""<< wlanDevName <<". cfg80211.signal.min \")\n\

5 noise_value_"<<this <<":get(\""<< wlanDevName <<". cfg80211.survey \")\n\

6 rx_packets_"<<this <<":get(\"app."<<strategyName <<"."<< receivedPacketsVarName < <"\")\n\

7 estimate_"<<this <<":get(\"app."<<strategyName <<"."<< estimateVarName < <"\")\n\

8 inactive_time_max_"<<this <<":get(\""<< wlanDevName <<". cfg80211.inactive_max \")\n\

9 rx_busy_"<<this <<":get(\""<< wlanDevName <<". cfg80211.rx_busy \")\n\

10 channel_time_"<<this <<":get(\""<< wlanDevName <<". cfg80211.channel_time \")\n\

11 \n\";

12

13 chainStreamSet << "\n\

14 [init]\n\

15 set_pdr_"<<this <<":set(\"app."<<strategyName <<"."<<pdrVarName <<"\", pdr_value_"

16 <<this <<")\n\

17 set_tx_dum_"<<this <<":set(\"app."<<strategyName <<"."<<pdrVarName <<"\", tx_retry_value_"

18 <<this <<")\n\

19 set_tx_dum1_"<<this <<":set(\"app."<<strategyName <<"."<<pdrVarName <<"\", tx_failed_value_"

20 <<this <<")\n\

21 jammed_"<<this <<":set(\"app."<<strategyName <<"."<<jammedVarName <<"\",0)\n\

22 set_dummy_"<<this <<":set(\"app."<<strategyName <<"."<<dummyVarName <<"\", cbr_value_"

23 <<this <<")\n\

24 set_noise_"<<this <<":set(\"app."<<strategyName <<"."<<noiseVarName <<"\", do_noise_"

25 <<this <<")\n\

26 set_cbr_"<<this <<":set(\"app."<<strategyName <<"."<<cbrVarName <<"\", do_cbr_"

27 <<this <<")\n\

28 set_maxit_"<<this <<":set(\"app."<<strategyName <<"."<<maxitVarName <<"\", do_maxit_"

29 <<this <<")\n\

30 set_realpdr_"<<this <<":set(\"app."<<strategyName <<"."<< realpdrVarName <<"\", do_realpdr_"

31 <<this <<")\n\

32 set_minsig_"<<this <<":set(\"app."<<strategyName <<"."<<minsigVarName <<"\", do_minsig_"

33 <<this <<")\n\

34 set_maxsig_"<<this <<":set(\"app."<<strategyName <<"."<<maxsigVarName <<"\", do_maxsig_"

196 C. Configuration of Machine Learning-based Jamming Detection

35 <<this <<")\n\

36 \n\";

37

38 chainStreamVarFunc1 << "\n\

39 [init]\n\

40 noise_avg_"<<this <<":avg(noise_history_"<<this <<")\n\

41 noise_history_"<<this <<": history(noise_value_"<<this <<",10)\n\

42 signal_max_avg_"<<this <<":avg(signal_max_history_"<<this <<")\n\

43 signal_max_history_"<<this <<": history(signal_max_"<<this <<", 10)\n\

44 signal_min_avg_"<<this <<":avg(signal_min_history_"<<this <<")\n\

45 signal_min_history_"<<this <<": history(signal_min_"<<this <<", 10)\n\

46 do_noise_"<<this <<": onceother(noise_avg_"<<this <<")\n\

47 do_minsig_"<<this <<": onceother(signal_min_avg_"<<this <<")\n\

48 do_maxsig_"<<this <<": onceother(signal_max_avg_"<<this <<")\n\

49 \n\";

50

51 chainStreamVarFunc2 << "\n\

52 [init]\n\

53 pdr_value_"<<this <<": percentdiv(rx_packets_init_"<<this <<", estimate_"<<this <<")\n\

54 rx_packets_init_"<<this <<":sub(rx_packets_"<<this <<", do_once2_"<<this <<")\n\

55 do_once2_"<<this <<":once(rx_packets_"<<this <<")\n\

56 do_realpdr_"<<this <<": onceother(pdr_value_"<<this <<")\n\

57 \n\";

58

59 chainStreamVarFunc3 << "\n\

60 [init]\n\

61 inactive_time_max_avg_"<<this <<":avg(inactive_time_max_history_"<<this <<")\n\

62 inactive_time_max_history_"<<this <<": history(inactive_time_max_"<<this <<", 10)\n\

63 do_maxit_"<<this <<": onceother(inactive_time_max_avg_"<<this <<")\n\

64 \n\";

65

66 chainStreamVarFunc4 << "\n\

67 [init]\n\

68 cbr_value_"<<this <<": percentdiv(rx_busy_init_"<<this <<", channel_time_init_"<<this <<")\n\

69 rx_busy_init_"<<this <<":sub(rx_busy_"<<this <<", do_once3_"<<this <<")\n\

70 channel_time_init_"<<this <<":sub(channel_time_"<<this <<", do_once4_"<<this <<")\n\

71 do_once3_"<<this <<": oncelong(rx_busy_"<<this <<")\n\

72 do_once4_"<<this <<": oncelong(channel_time_"<<this <<")\n\

73 status_"<<this <<":sum(0,1)\n\

74 do_cbr_"<<this <<": onceother(cbr_value_"<<this <<")\n\

75 \n\";

76

77 chainStreamFunc << "\n\

78 [init]\n\

79 timer_"<<this <<": pollingtimer (10)\n\

80 counter_"<<this <<": ringcounter ()\n\

81 timeout_"<<this <<":less(counter_"<<this <<", 1)\n\

82 timeout1_"<<this <<": bigger(counter_"<<this <<", 8)\n\

83 timer_"<<this <<"->counter_"<<this <<";\n\

84 timer_"<<this <<"->noise_history_"<<this <<";\n\

85 timer_"<<this <<"-> inactive_time_max_history_"<<this <<";\n\

86 timer_"<<this <<"->signal_max_history_"<<this <<";\n\

87 timer_"<<this <<"->signal_min_history_"<<this <<";\n\

88 timer_"<<this <<"->timeout_"<<this <<";\n\

89 timeout_"<<this <<"->do_once2_"<<this <<";\n\

90 timeout_"<<this <<"->do_once3_"<<this <<";\n\

91 timer_"<<this <<"->set_pdr_"<<this <<";\n\

92 timer_"<<this <<"->set_dummy_"<<this <<";\n\

93 timer_"<<this <<"->timeout1_"<<this <<";\n\

94 timeout1_"<<this <<"->do_noise_"<<this <<";\n\

95 timeout1_"<<this <<"->do_cbr_"<<this <<";\n\

96 timeout1_"<<this <<"->do_minsig_"<<this <<";\n\

97 timeout1_"<<this <<"->do_maxsig_"<<this <<";\n\

98 timeout1_"<<this <<"->do_maxit_"<<this <<";\n\

99 timeout1_"<<this <<"->do_realpdr_"<<this <<";\n\

100 timeout1_"<<this <<"->set_noise_"<<this <<";\n\

101 timeout1_"<<this <<"->set_cbr_"<<this <<";\n\

102 timeout1_"<<this <<"->set_minsig_"<<this <<";\n\

103 timeout1_"<<this <<"->set_maxsig_"<<this <<";\n\

104 timeout1_"<<this <<"->set_maxit_"<<this <<";\n\

105 timeout1_"<<this <<"->set_realpdr_"<<this <<";\n\

106 \n";

Listing C.1 Crawler configuration of Machine Learning-based Jamming Detection.

197

Publications
International Journals

Title: Harnessing Cross-Layer-Design
Authors: Ismet Aktas, Muhammad Hamad Alizai, Florian Schmidt, Hanno Wirtz, and Klaus

Wehrle
Journal: Elsevir Ad-Hoc Networks, 2013

International Conferences

Title: Crawler: An Experimentation Platform for System Monitoring and Cross-Layer-
Coordination

Authors: Ismet Aktas, Florian Schmidt, Muhammad Hamad Alizai, Tobias Drüner, Klaus Wehrle
Venue: 13th Int. IEEE Symposium on a World of Wireless, Mobile, and Multimedia Networks,

2012 (WoWMoM’12)

Title: An Adaptive Codec Switching Scheme for SIP-based VoIP
Authors: Ismet Aktas, Florian Schmidt, Elias Weingärtner, Caj-Julian Schnelke and Klaus Wehrle
Venue: 12th Int. Conf. on Next Generation Wired/Wireless Networking (New2An’12)

Title: Graph-based Redundancy Removal Approach for Multiple Cross-Layer Interactions
Authors: Ismet Aktas, Martin Henze, Muhammad Hamad Alizai, Kevin Möllering and Klaus

Wehrle
Venue: 6th Int. Conf. on COMunication Systems and NETworkS (COMSNETS’14)

Title: FANTASY: Fully Automatic Network Emulation Architecture with Cross-Layer Support
Authors: Ismet Aktas, Hendrik vom Lehn, Christoph Habets, Florian Schmidt and Klaus Wehrle
Venue: 5th ACM Int. Conf. on Simulation Tools and Techniques (SIMUTools’12)

Title: Machine Learning-based Jamming Detection for IEEE 802.11: Design and Experimental
Evaluation

Authors: Ismet Aktas, Oscar Punal, Caj-Julian Schnelke, Gloria Abidin, James Gross, and Klaus
Wehrle

Venue: 15th Int. IEEE Symposium on a World of Wireless, Mobile, and Multimedia Networks,
2014 (WoWMoM’14)

International Workshops

Title: Towards a Flexible and Versatile Cross-Layer-Coordination Architecture
Authors: Ismet Aktas, Jens Otten, Florian Schmidt and Klaus Wehrle
Venue: Work in progress track, 29th Int. Conf. on Computer Communications (INFOCOM’10)

Title: A Framework for Remote Automation, Configuration, and Monitoring of Real-World
Experiments

Authors: Ismet Aktas, Oscar Punal, Florian Schmidt, Tobias Drüner, Klaus Wehrle
Venue: 9th ACM Int. Workshop on Wireless Network Testbeds, Experimental Evaluation &

Characterization (WINTECH’14)

	Contents
	1 Introduction
	1.1 Problem Analysis
	1.1.1 Problem Statement
	1.1.2 Research Questions

	1.2 Contributions
	1.2.1 Relationship between Research Questions and Contributions

	1.3 Outline

	2 Background and Related Work
	2.1 Layered Design
	2.2 Cross-Layered Design
	2.2.1 Cross-Layer Design Definitions
	2.2.2 Information Exchange Alternatives
	2.2.3 Architecture Classifications
	2.2.4 Cross-Layer Information Processing
	2.2.4.1 Synchronous and Asynchronous Processing
	2.2.4.2 User and Kernel Space Separation

	2.3 Related Work
	2.3.1 Specific Cross-Layer Solutions
	2.3.2 Approaches of Varying Scope
	2.3.3 Cross-Layer Architectures
	2.3.3.1 Static Cross-Layer Architectures
	2.3.3.2 Flexible Cross-Layer Architectures

	3 A Generic and Flexible Cross-Layer Architecture
	3.1 Motivation
	3.2 Problem Analysis
	3.3 Design Overview
	3.3.1 Goals
	3.3.2 Relationship of Research Questions and Goals
	3.3.3 Design Scope and Limitations

	3.4 Architectural Details
	3.4.1 Manageability
	3.4.1.1 Configuration
	3.4.1.2 Interpreter
	3.4.1.3 Repository

	3.4.2 Application Support
	3.4.3 Runtime Flexibility & Extensibility
	3.4.3.1 FU Wiring
	3.4.3.2 Stubs – Accessing Signaling Information

	3.4.4 Context Adaptability

	3.5 Implementation and Architectural Overhead
	3.5.1 Implementation
	3.5.2 Architecture Overhead

	3.6 Conclusion

	4 Practical Use Cases and Evaluation with CRAWLER
	4.1 Use Case: Manipulating TCP's Congestion Window and Application Behavior
	4.1.1 Motivation
	4.1.2 Setup and Monitoring
	4.1.3 Cross-Layer Coordination Approach
	4.1.4 Realization with CRAWLER
	4.1.5 Validation
	4.1.6 Summary and Discussion

	4.2 Use Case: Switching TCP's Congestion Control Algorithm
	4.2.1 Motivation
	4.2.2 Setup and Monitoring
	4.2.3 Cross-Layer Coordination Approach
	4.2.4 Realization with CRAWLER
	4.2.5 Validation
	4.2.6 Summary and Discussion

	4.3 Use Case: VoIP Codec Switching
	4.3.1 Motivation
	4.3.2 Setup and Monitoring
	4.3.3 Cross-Layer Coordination Approach
	4.3.4 Realization with CRAWLER
	4.3.5 Validation
	4.3.6 Related Work
	4.3.7 Summary and Discussion

	4.4 Use Case: Dynamic Adaptation of Jamming Detection and Reaction Strategies
	4.4.1 Motivation
	4.4.2 Setup and Monitoring
	4.4.3 Cross-Layer Coordination Approach
	4.4.4 Realization with CRAWLER
	4.4.5 Validation
	4.4.6 Summary and Discussion

	4.5 Use Case: Machine Learning-based Jamming Detection
	4.5.1 Motivation
	4.5.2 Setup and Monitoring
	4.5.2.1 Sensitivity of Metrics to Jamming
	4.5.2.2 Threshold Identification Problem

	4.5.3 Cross-Layer Coordination Approach
	4.5.4 Realization with CRAWLER
	4.5.5 Validation
	4.5.5.1 Indoor Detection Accuracy
	4.5.5.2 Impact of Outdoor Mobility
	4.5.5.3 Cooperation Between Nodes

	4.5.6 Related Work
	4.5.7 Summary and Discussion

	4.6 Conclusion

	5 Coping with Multiple Cross-Layer Coordination Algorithms
	5.1 Motivation
	5.2 Problem Analysis
	5.3 Cross-Layer Conflict Detection
	5.3.1 Classification of Cross-Layer Conflicts
	5.3.2 Detecting Direct Conflicts
	5.3.3 Detecting Indirect Conflicts
	5.3.4 Related Work
	5.3.5 Summary and Discussion

	5.4 Cross-Layer Redundancy Removal
	5.4.1 Generic Design
	5.4.1.1 Constraints
	5.4.1.2 Equality of Module Compositions

	5.4.2 Graph-based Iterative Merge Algorithm
	5.4.2.1 Input Equality
	5.4.2.2 Behavior Equality
	5.4.2.3 Merging Modules
	5.4.2.4 Runtime and Memory Consumption

	5.4.3 Runtime Adaptation
	5.4.3.1 Challenges when Adding/Removing Modules and Connections
	5.4.3.2 Splitting Affected Modules

	5.4.4 Specific Design for CRAWLER
	5.4.4.1 Handling Runtime Adaptation

	5.4.5 Evaluation and Validation
	5.4.6 Related Work
	5.4.7 Summary and Discussion

	5.5 Conclusion

	6 Evaluation Support for Cross-Layer Coordination
	6.1 Motivation
	6.2 Problem Analysis
	6.3 Remote Cross-Layer Evaluation
	6.3.1 Design Overview
	6.3.2 Architectural Details
	6.3.2.1 Remote Automation
	6.3.2.2 Remote Configuration
	6.3.2.3 Remote Monitoring
	6.3.2.4 Graphical and Interactive Front-End

	6.3.3 Implementation
	6.3.4 Evaluation
	6.3.4.1 Evaluating Remote Automation
	6.3.4.2 Evaluating Remote Configuration and Monitoring

	6.3.5 Related Work
	6.3.6 Future Work
	6.3.7 Summary

	6.4 Network Emulation Tool – Fantasy
	6.4.1 Design Overview
	6.4.2 Architectural Details
	6.4.2.1 Host Configuration Unit (HCU)
	6.4.2.2 Guest Configuration Unit (GCU)

	6.4.3 Implementation
	6.4.4 Evaluation
	6.4.4.1 Demonstrating Areas of Application
	6.4.4.2 Demonstrating Scalability, Automation and Rapid Testing

	6.4.5 Related Work
	6.4.6 Future Work
	6.4.7 Summary

	6.5 Conclusion

	7 Summary and Conclusions
	7.1 Contributions
	7.2 Future Work
	7.2.1 Increasing the Toolbox of Reusable Functional Units and Stubs
	7.2.2 Conflict Resolution
	7.2.3 Timing Constraints
	7.2.4 Potential Use-Cases
	7.2.5 Realization on Further Platforms

	Glossary
	Bibliography
	A Syntax of CRAWLER's Configuration Language
	B Available Stubs and FUs in CRAWLER
	B.1 Stubs
	B.2 FUs

	C Configuration of Machine Learning-based Jamming Detection

