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Abstract

This paper considers the transmission of confidential messages over noisy
wireless ad hoc networks, where both background noise and interference from
concurrent transmitters affect the received signals. For the random networks
where the legitimate nodes and the eavesdroppers are distributed as Poisson
point processes, we study the secrecy transmission capacity (STC), as well
as the connection outage probability and secrecy outage probability, based
on the physical layer security. We first consider the basic fixed transmis-
sion distance model, and establish a theoretical model of the STC. We then
extend the above results to a more realistic random distance transmission
model, namely nearest receiver transmission. Finally, extensive simulation
and numerical results are provided to validate the efficiency of our theoretical
results and illustrate how the STC is affected by noise, connection and se-
crecy outage probabilities, transmitter and eavesdropper densities, and other
system parameters. Remarkably, our results reveal that a proper amount of
noise is helpful to the secrecy transmission capacity.

Keywords:

∗Corresponding author. Tel.: 081-0138-34-6226
∗∗Principal corresponding author.
Email addresses: jxzhu1986@gmail.com (Jinxiao Zhu ), ychen1986@gmail.com

(Yin Chen ), ylshen@mail.xidian.edu.cn (Yulong Shen), Osamu@fun.ac.jp
(Osamu Takahashi ), jiang@fun.ac.jp (Xiaohong Jiang ),
norio@shiratori.riec.tohoku.ac.jp (Norio Shiratori)

Preprint submitted to Ad Hoc Networks August 24, 2018

http://arxiv.org/abs/1401.6123v1


Physical layer security, transmission capacity, wireless networks, secrecy
outage probability.

1. Introduction

The inherent openness of wireless medium makes information security
one of the most important and difficult problems in wireless networks. Tra-
ditionally, information security is ensured by applying cryptography which
encrypts a plain message into a ciphertext that is computationally infeasible
for any adversary without the key to break (decrypt). However, due to the
improvement in computing technology and complication in cryptographic
key management, there is an increasing concern that the cryptography no
longer suffices, especially in sensitive applications requiring everlasting se-
crecy. Recently, the physical layer security has been widely demonstrated as
a promising approach to providing everlasting secrecy. Unlike the traditional
cryptography that ignores the difference between transmitting channels, the
recent physical layer security achieves information-theoretic security by prop-
erly designing wiretap channel code according to the channel capacities [1, 2]
such that the original data can be hardly recovered by the eavesdropper
regardless of how strong the eavesdropper’s computing power is.

By now, a lot of research works have been dedicated to understand the
performance of physical layer security. Wyner initially studied the maximum
secret information rate, namely secrecy capacity, for a discrete memoryless
wire-tap channel, where only three nodes are involved (one transmitter, one
legitimate receiver and one eavesdropper), and showed the existence of chan-
nel codes to ensure the message is reliably delivered to the legitimate receiver
while secured at the eavesdropper [1]. Wyner’s work was then extended to
other channel models, such as Gaussian wire-tap channel [2], fading wire-tap
channel with or without channel correlations [3, 4, 5, 6], broadcast channels
with confidential messages [7], etc. Based on these pioneering works on the
basic point-to-point wire-tap channels, many recent research efforts have been
conducted to understand the performances of physical layer security on large-
scale wireless networks, where lots of legitimate nodes and eavesdroppers are
involved, in terms of secrecy throughput capacity [8, 9, 10, 11], secrecy cover-
age [12], connectivity [13, 14, 15, 16] and percolation phenomenon [10, 17, 18]
under secrecy constraints, etc.

This paper focuses on the study of secrecy transmission capacity (STC)
in large-scale wireless networks, which is defined as the achievable rate of
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successful transmission of confidential messages per unit area of a network,
subject to constraints on both connection outage probability and secrecy
outage probability. It is notable that the STC indicates the area spectral ef-
ficiency (ASE) of wireless networks under the given constraints on the levels
of reliability and security, and hence it is of fundamental importance and can
serve as a guideline for the design and development of wireless networks. Be-
sides, compared with the aforementioned studies on the secrecy throughput
capacity of large-scale wireless networks that only provide scaling law results
[8, 9, 10, 11], exact results can be obtained from STC study, which can lead
to a finer optimization on network performance.

Some prior works on STC have been done by Zhou et al. in [19, 20],
where they calculated the secrecy transmission capacity for decentralized
wireless networks with a fixed distance transmission scheme under the signal-
to-interference ratio (SIR) model that neglects the impact of background
noise. It is noticed that the background noise is a ubiquitous natural phe-
nomenon and ignoring it may cause inaccuracy in the performance estima-
tion. Moreover, it is also noticed that the additional noise on one hand is
harmful to the reliability of a transmission since it makes the signal received
at the intended receiver worse, on the other hand is helpful to the secu-
rity performance since it makes the signal received at eavesdroppers worse.
Hence, a natural question what is the overall impact of the noise on the STC.
Accordingly, a new dedicated study is still required to investigate the exact
STC in wireless networks under the impact of background noise.

In this work, we focus on the secrecy transmission capacity in noisy wire-
less ad hoc networks where interference from concurrent transmitters and
background noise from natural and sometimes man-made sources affect the
received signals. The main contributions of this paper are as follows.

• Based on the tools from stochastic geometry, we start the analysis from
a basic fixed transmission distance scenario where each transmitter has
an intended receiver at a fixed distance which is the same for all trans-
mitters. We establish a general theoretical model of the STC, as well as
the connection outage probability and secrecy outage probability, un-
der the signal-to-interference-noise ratio (SINR) model. Furthermore,
for the special scenario when the path-loss exponent α = 4 and noise
power is the same across space and time slot, we derive a closed-form
STC and then propose the condition to achieve a positive STC.

• We then extend the analysis of STC to a more realistic random trans-
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mission scenario, nearest receiver transmission in particular, and present
the corresponding connection outage probability and STC. It is noticed
that the transmit distance has no impact on the secrecy outage prob-
ability.

• Finally, we provide extensive simulation and numerical results to vali-
date the efficiency of our theoretical models and also to illustrate our
theoretical findings. Remarkably, our results indicate that a proper
amount of noise can be helpful to the secrecy transmission capacity.

The remainder of this paper is organized as follows. Section 2 presents
the system model and performance metrics based on the physical layer se-
curity. In Section 3, we obtain analytical results on the secrecy transmission
capacity for fixed transmission distance scenario. Then Section 4 extends the
analysis to nearest receiver transmission scenario. In Section 5, we validate
the theoretical models by simulations and analyze the tradeoff between the
system parameters. Finally, concluding remarks are given in Section 6.

2. System Model and Performance Metrics

In this section, we introduce the basic system model of this paper and
the performance metrics based on the physical layer security. The notation
and symbols used throughout the paper are summarized in Table 1.

2.1. System Model

We consider an ad hoc wireless network consisting of both legitimate
nodes and eavesdroppers over a two-dimensional Euclidean space R

2. For
each time snapshot, locations of legitimate nodes are modeled as a homoge-
neous Poisson point process (PPP) Φ with density λ, denoted by Φ = {Xi},
where Xi ∈ R

2 is the location of the legitimate node i, and locations of eaves-
droppers are modeled as a PPP Φe with density λe, denoted by Φe = {Xe},
whereXe ∈ R

2 is the location of the eavesdropper node e. The PPP model for
node locations is suitable when the nodes are independently and uniformly
distributed over the network area, which is often reasonable for networks
with indiscriminate node placement or substantial mobility [21]. The slot-
ted ALOHA is employed at legitimate nodes as the medium access control
(MAC) protocol. That is, in each time slot, each legitimate node indepen-
dently decides to transmit with probability p or act as a potential receiver
otherwise. Hence, in each time slot, the set of all transmitters forms a PPP
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Table 1: Summary of Notations

Symbol Meaning

Φ Poisson point process (PPP) of legitimate node locations

Φe PPP of eavesdropper locations

ΦT, ΦR Sets of transmitter and receiver locations, resp.

λ, λe Density of Φ and Φe, resp.

λT, λR Density of ΦT and ΦR , resp. (λ = λT + λR)

Pco, Pso Connection and secrecy outage probability, resp.

σ, ǫ Constraints on connection and secrecy outage probability,resp.

βt, βe SIR threshold for legitimate nodes and eavesdroppers, resp.

Rt, Rs Codewords rate and secrecy rate, resp.

Re Rate loss for securing the message against eavesdropping

W , w Random and fixed noise, resp.

α > 2 Path loss exponent

Hij Power gain of the channel from node i to node j

Xi Location of node i

|Xi| Distance from node i to the origin

|Xij| Distance from node i to node j

P(·) Probability operator

E(·) Expectation operator

ΦT with density λT = pλ and the set of all receivers forms a PPP ΦR with
density λR = (1− p)λ. Notice that Φ = ΦT ∪ ΦR.

In this paper, we assume that all transmitters use the same transmission
power ρ, and that the intended receiver (and thus the transmit distance) for
each transmitter will be determined independently in Section 3 and Section 4
for fixed and random transmit distances, respectively. The signal propagation
over the wireless medium is assumed to be affected by the large-scale path
loss, the small-scale fading and an additional noise. The large-scale path loss
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is assumed to be r−α over distance r, where α > 2 is the path loss exponent1.
For the small-scale fading, we assume the channel follows the Rayleigh fading
with unit mean and the fading coefficient is independent from path to path.
Hence, the signal power received at a receiver j from a transmitter i is given
by ρHij |Xij|−α, where Hij and |Xij| are the channel fading gain and the
distance between the nodes i and j, respectively. The additional noise power2

at a given location for a given time slot is denoted by the random variable
W , which is independent of Φ. The detection performance is characterized
by the signal-to-interference-noise ratio (SINR), i.e., the ratio of signal power
over interference plus noise power.

2.2. Physical Layer Security and Performance Metrics

In the considered network, a transmitter wants to send confidential mes-
sages to its receiver in the hope that the messages are reliably received by
the the receiver while secured against eavesdroppers. For the secure encod-
ing schemes, we consider the physical layer security that implemented by
the well-known Wyner code [1]. Specifically, the Wyner’s encoding scheme
requires a transmitter to choose two rates, namely, the codeword rate Rt

and secrecy rate Rs. It is noticed that Rs ≤ Rt, and the rate difference
between the two rates, denoted by Re = Rt −Rs, indicates the rate cost of
securing message transmissions against eavesdropping. For any transmitted
message, the receiver is able to decode it with an arbitrarily small error prob-
ability if Rt is less than the capacity of the channel from the transmitter to
this receiver, while an eavesdropper is not expected to recover it correctly if
Re is larger than the capacity of the channel from the transmitter to this
eavesdropper. In this work, we focus on the scenario that all transmitters
choose the same pair of Rt and Rs (and thus Re), which is reasonable since
the network is homogeneous. For more details about the Wyner’s encoding
scheme, please refer to [6, 23].

Based on the above physical layer security method, the following three
performance metrics are studied in this paper:

• Connection outage probability (COP): We call connection out-
age happens when the SINR at the intended receiver is below a given

1Usually, the path loss exponent is in the range of 3− 5 [22].
2The noise is a summation of unwanted or disturbing energy from natural and some-

times man-made sources, like industrial and aircraft noises.
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threshold βt. The connection outage probability, denoted by Pco(βt),
is then defined as the probability that connection outage happens. It
is noticed that Rt is related with βt by βt = 2Rt − 1.

• Secrecy outage probability (SOP): We call secrecy outage happens
when the SINR at one or more eavesdroppers is above a given threshold
βe. The secrecy outage probability, denoted by Pso(βe), is then defined
as the probability that secrecy outage happens. It is noticed that Re

is related with βe by βe = 2Re − 1.

• Secrecy transmission capacity (STC): It is defined as the achiev-
able rate of successful transmission of confidential messages per unit
area, for a given connection outage probability Pco(βt) = σ and a given
secrecy outage probability Pso(βe) = ǫ:

τ = (1− σ)λTRs. (1)

Notice that the secrecy rate Rs = [Rt −Re]
+ is a function of both σ

and ǫ.

It is notable that the connection outage probability gives a measure of the
reliability level while the secrecy outage probability gives a measure of the
security level. The secrecy transmission capacity, which was first defined
in [19], is a measure of spatial intensity of successful transmission rate of
confidential messages under a reliability constraint and a secrecy constraint.

3. First Model: Fixed Transmission Distance

In this section, we present the COP, SOP and STC under the basic fixed
transmission distance assumption, i.e., each transmitter is assumed to have
a prearranged intended receiver at a fixed distance L away. This assumption
has been widely adopted in the literary of transmission capacity [21, 24, 25].
The extension to random distance will be given in Section 4.

To evaluate the COP, we will condition on a typical transmitter at the
origin o. The distribution of the point process ΦT is unaffected by the addi-
tion of a transmitter node at the origin by Slivnyak’s Theorem [26]. Given
this typical transmitter, we shift the origin o to its intended receiver at L
away, which is called the typical receiver, and analyze the SINR at the re-
ceiver. This conditional distribution is sometimes referred to as the Palm
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distribution, and since the network is homogeneous, the interference (and
thus SINR) measured at the origin is a representative of the interference
(and thus SINR) seen by all other receiver nodes in the network.

The SINR at the typical receiver located at o is given by

SINR0 =
ρH0L

−α

W + I0
, (2)

where I0 = Σk∈ΦT
ρHk0|Xk|−α is the interference at the origin, H0 is the

channel fading gain between the typical transmitter and receiver, Hk0 and
|Xk| are the channel fading gain and the distance between the interferer at
Xk and the typical receiver at the origin, respectively.

Based on the definition in Section 2.2, the COP can be derived by

Pco(βt) = P(SINR0 < βt) = 1− P(SINR0 ≥ βt). (3)

For the exponential H0 and random noiseW , the success probability of trans-
mission in an infinite planar network without eavesdroppers has been derived
in [27]. Following the similar method as that of deriving the success proba-
bility, the COP can be given by

Pco(βt) = 1− exp

[

−θ

(

βt

ρ

)
2

α

L2

]

LW

(

βt

ρ
Lα

)

, (4)

where θ = πλTΓ(1− 2/α)Γ(1+2/α), Γ(·) is the Gamma function and LW (·)
is the Laplace transform of W .

We now shift the origin back to the typical transmitter node and con-
sider the SOP. Consider a transmission from the typical transmitter to an
eavesdropper e, the received SINR at e is given by

SINRe =
ρHe|Xe|−α

Σk∈ΦT
ρHke|Xke|−α +W

, (5)

where He and |Xe| are the channel fading gain and the distance between the
typical transmitter and the eavesdropper e, respectively, Hke and |Xke| are
the channel fading gain and the distance between the interferer k and the
eavesdropper e, respectively.

According to the definition in Section 2.2, secrecy outage happens if any
one of eavesdroppers is able to recover the transmitted message. Let E =
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{e ∈ Φe : SINRe > βe} be the set of eavesdroppers that can cause secrecy
outage. Define an indicator function 1E(e), which equals to 1 if e ∈ E and
equals to 0 otherwise. Then

∏

e∈Φe
(1−1E(e)) is equal to 1 if the transmission

from the typical transmitter is secured against any eavesdropper. Hence, the
SOP can be obtained by

Pso(βe) = 1− EΦl

{

EΦe

{

EH

{

∏

e∈Φe

(1− 1E(e))

}}}

(a)
= 1−EΦl

{

EΦe

{

∏

e∈Φe

(1− P (SINRe≥βe|Φe,Φl))

}}

,

(6)

where (a) is due to the assumption that the fading coefficient is independent
from path to path. Thus, the SOP can be derived in the following lemma.

Lemma 1. For the concerned wireless network with network parameters λT,
λe, W and α, and transmission parameter ρ defined above, its secrecy outage
probability for a given eavesdroppers’ SINR threshold βe is upper bounded by

Pu
so
(βe) = 1− exp

[

−2πλe

∫ ∞

0

e−(
βe
ρ )

2
α θr2LW

(

βe

ρ
rα
)

rdr

]

, (7)

and lower bounded by

Pl
so
(βe) = 2πλe

∫ ∞

0

e
−
(

θ(βe
ρ )

2
α+πλe

)

r2LW

(

βe

ρ
rα
)

rdr, (8)

where θ = πλTΓ(1− 2/α)Γ(1 + 2/α) is the same as defined above.

Proof: Based on the secrecy outage formula in (6), we have

Pso(βe)
(b)
= 1− EΦl

{

exp

[

−λe

∫

R2

P (SINRe ≥ βe|Φl) dXe

]}

(c)

≤ 1− exp

[

−λe

∫

R2

P (SINRe ≥ βe) dXe

]

(d)
= 1− exp

[

−2πλe

∫ ∞

0

exp

[

−θ

(

βe

ρ

) 2

α

r2

]

LW

(

βe

ρ
rα
)

rdr

]

,

(9)
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where (b) follows by the probability generating functional of Φe
3, (c) is based

on Jensen’s inequality, and (d) follows by converting Cartesian to Polar Co-
ordinate and the tail distribution of He.

The lower bound of SOP is obtained by considering the success proba-
bility at the eavesdropper nearest to the transmitter. Denote the location of
the nearest eavesdropper to the typical transmitter as Xe1 and denote their
distance as re, i.e., re = |Xe1|. The probability density function of re is given
by

fRe
(re) = 2πλere exp(−πλer

2
e), (10)

which is the probability that no eavesdropper existing within the disk B(o, re)
centered at o with radius re. The lower bound of SOP can be given by

Pso(βe) ≥ P (SINR(Xe1) ≥ βe)

=

∫ ∞

0

P (SINR(Xe1) ≥ βe | |Xe1| = re) f(re)dre

=

∫ ∞

0

exp

[

−θ

(

βe

ρ

)
2

α

r2e

]

LW

(

βe

ρ
rαe

)

f(re)dre

(11)

The lower bound in (8) follows by simplifying (11).
From the definitions of COP and SOP, the following remark can be con-

cluded.

Remark 1. The connection outage probability Pco(βt) increases with βt,
while the secrecy outage probability Pso(βe) decreases with βe.

Given the connection outage constraint σ, the codeword rate can be given
by

Rt = log
(

1 + P−1
co (σ)

)

, (12)

where P−1
co is the inverse function of Pco in (4).

Given the secrecy outage constraint ǫ, the data rate cost against eaves-
droppers can be given by

Re = log
(

1 + P−1
so (ǫ)

)

, (13)

3For a point process φ, the probability generating functional is defined as Gφ(f) =

E

[

∏

x∈φ f(x)
]

for 0 < f(x) ≤ 1. If φ is a PPP with intensity function λ(x), then Gφ(f) =

exp
[

−
∫

(1− f(x))λ(x))dx
]

.
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where P−1
so is the inverse function of Pso in (6).

The above inverse functions P−1
co and P−1

so exist because of the strict mono-
tonicity of both connection and secrecy outage probabilities. For a given dis-
tribution of W , P−1

co can be numerically calculated based on (4), and bounds
of P−1

so can be numerically calculated based on the bounds in Lem. 1.
Based on the definition in Section 2.2, the STC can be derived in the

following theorem.

Theorem 1. The secrecy transmission capacity of the concerned wireless net-
work with a connection outage constraint of σ and a secrecy outage constraint
of ǫ is given by

τ = (1− σ)λT [Rt −Re]
+ , (14)

where Rt and Re are given in (12) and (13). In particular, a lower bound of
secrecy transmission capacity τ l is derived when we use Pu

so
in (7) to calculate

Re, while an upper bound of secrecy transmission capacity τu is derived when
we use Pl

so
in (8) to calculate Re.

Proof: The STC can be directly derived by following the definition in
Section 2.2. The potential problem is the existence of the inverse functions
of Pu

so and Pl
so. We now show that Pu

so has the unique inverse function;
the existence of inverse function of Pl

so can be proved in the similar way by
showing that it is strictly monotonic. The derivative of Pu

so is given by

dPu
so(βe)

dβe

= −2πλe exp

(

−2πλe

∫ ∞

0

e−(
βe
ρ )

2
α θr2LW

(

βe

ρ
rα
)

rdr

)

×
∫ ∞

0

[

2θ

α

βe

2

α
−1

ρ
2

α

r2LW

(

βe

ρ
rα
)

+
rα

ρ

∫ ∞

0

we−
βe
ρ
rαwfW (w)dw

]

e−(
βe
ρ )

2
α θr2rdr,

where fW (w) is the probability density function of the random noise W . The
Laplace transform of W is given by

LW

(

βe

ρ
rα
)

=

∫ ∞

0

e−
βe
ρ
rαwfW (w)dw. (15)
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It is obvious that dPu
so(βe)
dβe

< 0, which proves that Pu
so has the unique inverse

function.
Notice that Pu

so(βe) derived in (7) will be shown to be very tight by
simulation (see Figs. 3 and 4), and that other results derived based on the
same bounding techniques have also been illustrated to be tight in [19, 28].
Moreover, the lower bound of secrecy transmission capacity τ l derived based
on Pu

so(βe) gives a very tight approximation of the exact value of τ .

3.1. W = w & α = 4

We now consider the special scenario when the path-loss exponent α = 4
and noise power W is a fixed value w across space and time slot, i.e., W = w,
and derive the closed-form expressions.

When the noise is a constant w, we can derive the COP and SOP by

replacing LW

(

βt

ρ
Lα

)

by exp
[

−βt

ρ
wLα

]

into (4) and Lem. 1.

When the noise power is a constant w for each time slot and α = 4, the
COP is given by

Pco(βt) = 1− exp

[

−w
βt

ρ
L4 − θ

(

βt

ρ

) 1

2

L2

]

. (16)

Therefore, for a connection outage constraint Pco(βt) = σ, we have

βt = P−1
co (σ) = ρ





−θ +
√

θ2 + 4w ln 1
1−σ

2wL2





2

. (17)

Corollary 1. For the constant noise w and α = 4, the tight upper bound
and lower bound of the secrecy outage probability are given by

Pu
so
(βe) = 1− exp

[

−π
3

2λe

2

√

ρ

βew
exp

(

θ2

4w

)

Erfc

(

θ

2
√
w

)

]

(18)

and

Pl
so
(βe) =

π
3

2λe

2

√

ρ

βew
exp







(

θ
√

βe

ρ
+ πλe

)2

4w βe

ρ







Erfc





θ
√

βe

ρ
+ πλe

2
√

w βe

ρ



 , (19)

12



where Erfc(z) = 2√
π

∫∞
z

e−t2dt is the complementary error function.

Proof: Replacing LW

(

βt

ρ
Lα

)

by exp
[

−βt

ρ
wLα

]

and α = 4 into (7)

and (8), we can derive the above results based on the following identity

∫ ∞

0

e−at4−bt2tdt =

√
π

4
√
a
exp

(

b2

4a

)

Erfc

(

b

2
√
a

)

. (20)

For a secrecy outage constraint Pu
so(βe) = ǫ, we have

βe =
ρ

w





π
3

2λe exp
(

θ2

4w

)

Erfc
(

θ
2
√
w

)

2 ln 1
1−ǫ





2

, (21)

which is an upper bound of the eavesdropper’s decoding threshold under the
secrecy constraint of ǫ.

Theorem 2. For the constant noise w and α = 4, the tight lower bound
of secrecy transmission capacity τu with a connection outage constraint of σ
and a secrecy outage constraint of ǫ is given by

τu = (1− σ)λT [log (1 + βt)− log (1 + βe)]
+ , (22)

where βt and βe are given in (17) and (21).

Corollary 2. For the constant noise w and α = 4, the condition for a
positive secrecy transmission capacity is given by

(

−θ +
√

θ2 + 4w ln 1
1−σ

)

ln 1
1−ǫ

π
3

2 r2λe

√
w exp

(

θ2

4w

)

Erfc
(

θ
2
√
w

) > 1. (23)

4. Second Model: Random Transmission Distance

In this section, we consider a more realistic transmission scenario of ran-
dom transmission distance. In particular, we consider the nearest-receiver
transmission (NRT) scheme.

Recall ΦT is the PPP of intensity λT of transmitters, and ΦR is the
PPP of intensity λR of potential receivers. We now consider the case that
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each transmitter adopts NRT, i.e., each transmitter transmits to its nearest
receiver. For simplicity, we ignore the failures caused by the fact that multiple
transmitters may select the same receiver [29, 30].

Denoting the distance from the typical transmitter to its nearest receiver
in ΦR by R, the probability density function of R is given by

fR(r) = 2πλRr exp(−πλRr
2). (24)

It is noticed that the transmit distance impacts the TOP, while it has no
impact on the SOP.

Lemma 2. For the concerned wireless network with network parameters λT,
λR, W and α, and transmission power ρ defined above, its connection outage
probability under NRT for a given receiver’s SINR threshold βt is determined
by

Pco,n(βt) = 1− 2πλR

∫ ∞

0

e
−
[

θ(βt
ρ )

2
α+πλR

]

r2LW

(

βt

ρ
rα
)

rdr, (25)

where θ = πλTΓ(1− 2/α)Γ(1 + 2/α) is given in Lem. 1.

Proof: Pco,n(βt) can be derived based on the following formula,

Pco,n(βt) =

∫ ∞

0

Pco(βt)fR(r)dr, (26)

where Pco(βt) is the COP for a fixed transmit distance derived in Section 3.

The STC for nearest receiver transmission can be given as follows.

Theorem 3. The secrecy transmission capacity under the nearest receiver
transmission (NRT) with a connection outage constraint of σ and a secrecy
outage constraint of ǫ is given by

τn = (1− σ)λT [Rt −Re]
+ , (27)

where Rt = log
(

1 + P−1
co,n(σ)

)

and Re is given in (13). In particular, a lower
bound of secrecy transmission capacity τ l

n
is derived when we use Pu

so
in (7)

to calculate Re, while an upper bound of secrecy transmission capacity τu
n
is

derived when we use Pl
so

in (8) to calculate Re.
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Proof: The STC can be directly derived by following the definition in
Section 2.2. The potential problem is the existence of the inverse function
P−1
co,n. The derivative of Pco,n is given by

dPco,n(βt)

dβt

= 2πλR

∫ ∞

0

e
−
[

θ(βt
ρ )

2
α+πλR

]

r2
[

2θ

α

βt

2

α
−1

ρ
2

α

r2LW

(

βt

ρ
rα
)

+
rα

ρ

∫ ∞

0

we−
βt
ρ
rαwfW (w)dw

]

rdr, (28)

where fW (w) is the probability density function of the random noise W . It

is obvious that dPco,n(βt)

dβt
> 0, which proves that Pco,n has the unique inverse

function P−1
co,n.

5. Numeric Analysis and Discussion

In this section, we first verify the efficiency of the theoretical models of
connection outage probability and secrecy outage probability through sim-
ulation, and then explore the inherent tradeoffs among different system pa-
rameters.

5.1. Model Validation

We developed a simulator, which is now available at [31], to simulate
the message transmission process under the system model defined in Section
2.1 and the transmission schemes defined at the beginnings of Section 3 and
Section 4 for fixed and random transmission distances, respectively. To model
the large-scale network, the network size was set to 100× 100 for λT ≥ 10−3,
and 300× 300 for 10−4 ≤ λT < 10−3 [32]. The performance of the network is
considered on an additional transmitter located at the center of the network.
Specifically, we considered the COP and SOP of the typical transmitter. It
is noticed that the efficiency of the STC relies on the efficiencies of the COP
and SOP.

To validate the COP, we considered networks with α = 4, ρ = 1, βt = 0.5
and several different settings of transmitter density (i.e., λT = {0.1, 0.01, 0.001})
in Figs. 1 and 2. In particular, Fig. 1 validates the COP for the fixed trans-
mission distance of L = 1, and Fig. 2 validates the COP for the nearest
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Figure 1: Connection outage probability Pco vs. noise power W when r = 1.

neighbor transmission. It can be observed from Figs. 1 and 2 the simulation
results match the theoretical ones very well, which validates the efficiencies
of our theoretical models of COP for both fixed and random transmission
distances.

To validate the SOP, we considered networks with α = 4, ρ = 1, βe = 0.1
and eavesdropper density λe = 0.001 in Figs. 3 and 4. In particular, Fig.
3 validates the SOP for a transmitter density of λT = 0.01 and different
settings of noise power, and Fig. 4 validates the SOP for a noise power of
W = 0.001 and different settings of transmitter density. The results in Figs.
3 and 4 indicate that the upper and lower bounds of SOP derived in this
paper are tight, and that the upper bound is very close to the simulated
SOP. In Figs. 3 and 4, the solid lines show the previous upper bound of SOP
for interference-limited network in [19]. It is obvious that the previous upper
bound is very loose for network scenarios where noise cannot be neglected.
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5.2. Outage Performances vs. Noise and Interference

We now explore the impacts of noise and interference on the COP. We can
see from Figs. 1 and 2 that the connection outage probability Pco increases
with the noise power W , which indicates that noise deteriorates the reliability
performance in the sense that the legitimate receiver can recover messages
successfully. For a given W , we can also observe from Figs. 1 and 2 that Pco

becomes greater for a larger transmitter density λT. This indicates that also
interference deteriorates the reliability performance.

To illustrate the impacts of noise and interference on the SOP, we sum-
marize in Fig. 3 how the secrecy outage probability Pso varies with W , and
summarize in Fig. 4 how Pso varies with λT. We can see from Figs. 3 and 4
that Pso decreases with either W or λT, which indicates that both noise and
interference help the security performance in the sense that eavesdroppers
cannot recover messages successfully.
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Figure 3: Connection outage probability Pco vs. noise power W when r = 1.
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5.3. Secrecy Transmission Capacity vs. Noise and Interference

To further explore the impacts of noise and interference on the STC, we
show in Fig. 5 how the (lower bound of) secrecy transmission capacity τ l

varies with W , and summarize in Fig. 6 how τ l varies with λT. Notice that,
although the lower bound of secrecy transmission capacity τ l is adopted here,
we can get the same conclusions about the impacts of noise and interference
on the exact secrecy transmission capacity, since τ l is very close to τ . It can
be observed from Fig. 5 that τ l first increases with W and then decreases
with W . It is noticed that the overall impact of noise on τ l composes both
impacts of noise on Pco and Pso. The above phenomenon is due to that the
helpful impact of noise on Pso dominates the overall impact of noise on τ l at
first, and the harmful impact of noise on Pco dominates the overall impact
of noise on τ l after the optimum W . Therefore, it is suggested to add some
artificial noise to achieve a larger STC for some occasions. From Fig. 6, we
also find that τ l first increases with λT and then decreases with λT. The
reason for such a phenomenon is similar as the one for the impact of noise.
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Figure 5: Connection outage probability Pco vs. noise power W when r = 1.
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5.4. Impacts of Secrecy on Secrecy Transmission Capacity

To understand the impact of secrecy on STC, we show in Fig. 7 how
τ l varies with the secrecy outage constraint Pso(βe) = ǫ for the scenarios of
λT = 0.01, λe = 0.001, α = 4, ρ = 1, βe = 0.1 and different transmission
schemes (i.e., fixed distance of L = 1, 2 or NRT of λR = 0.1). Fig. 7 shows
that τ l increases with ǫ sharply when ǫ is small while increases with ǫ slowly
when ǫ is large. For example, there is an over 85% increment in τ l by relaxing
the secrecy constraint from ǫ = 0.02 to ǫ = 0.1 for NRT with λR = 0.1, but
only less than 15% increment from ǫ = 0.1 to ǫ = 1. This indicates that the
performance of STC can be improved a lot by allowing small probability of
secrecy outage. Furthermore, it is noticed that the impact of secrecy on STC
is the same for fixed or random distance transmissions.

6. Conclusion

This paper studied the secrecy transmission capacity in noisy wireless ad
hoc networks, where both background noise and interference from concur-
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rent transmitters affect the received signals, which cover the previous result
of secrecy transmission capacity in interference-limited networks as a special
case [19]. Based on the tools from stochastic geometry, we first focused on a
basic scenario where the transmission distances are assumed to be the same
for all the transmitters, and derived the exact connection outage probability,
and bounds of secrecy outage probability and secrecy transmission capacity.
We then extend our analysis to a more realistic transmission scenario where
each transmitter transmits to its nearest receiver. The simulation has also
been conducted to verify the efficiency of our theoretical ones. It is notable
that the upper bound of secrecy outage probability or lower bound of secrecy
transmission capacity has been shown very tight. Another interesting finding
is that a proper amount of noise is helpful to the secrecy transmission capac-
ity while too much noise is harmful. Therefore, to achieve a larger secrecy
transmission capacity, it is sometimes good to add some artificial noise.
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