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Abstract

The increase of demand for mobile data services requires a massive network

densification. A cost-effective solution to this problem is to reduce cell size by

deploying a low-cost all-wireless Network of Small Cells (NoS). These hyper-

dense deployments create a wireless mesh backhaul amongst Small Cells (SCs)

to transport control and data plane traffic. The semi-planned nature of SCs can

often lead to dynamic wireless mesh backhaul topologies.

This paper presents a self-organized backpressure routing scheme for dy-

namic SC deployments (BS) that combines queue backlog and geographic in-

formation to route traffic in dynamic NoS deployments. BS aims at relieving

network congestion, whilst having a low routing stretch (i.e., the ratio of the

hop count of the selected paths to that of the shortest path). Evaluation re-

sults show that, under uncongested conditions, BS shows similar performance to

that of an Idealized Shortest PAth routing protocol (ISPA), while outperforming

Greedy Perimeter Stateless Routing (GPSR), a state of the art geographic rout-

ing scheme. Under more severe traffic conditions, BS outperforms both GPSR

and ISPA in terms of average latency by up to a 85% and 70%, respectively.

We conducted ns-3 simulations in a wide range of sparse NoS deployments and

workloads to support these performance claims.

Keywords: dynamic, opportunistic, mobile backhaul, transport,

small cell, backpressure, routing
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Figure 1: Portion of an all-wireless semi-planed and hyper-dense yet irregular NoS deployment

due to obstacles and SCs powered off opportunistically.

1. Introduction

The ever increasing demand for wireless data services has given a starring

role to dense small cell (SC) deployments, as increasing frequency re-use by

reducing cell size has historically been the most effective and simple way to in-

crease capacity [1]. Such densification, particularly substantial in densely popu-5

lated areas, entails several challenges, both at the mobile network layer (MNL),

specified by 3GPP, and at the underlying transport network layer (TNL). As

for the former, the idea of network of small cells (NoS) has been proposed to

confine control plane and data plane traffic in the local environment [2]. As for

the latter, Figure 1 reveals how SCs, equipped with an additional wireless ra-10

dio, can create a wireless mesh backhaul to direct control and data plane traffic

between them or towards the core network (Evolved Packet Core, or EPC, for

LTE networks). The resulting deployment yields improvements in terms of cost,

coverage, ease of deployment, and capacity.

However, such deployments imply several challenges at the TNL level. On15

the one hand, the semi-planned and low-cost nature of the NoS placements will

inevitably lead to irregular (or sparse) topologies, SC failures, or disconnection

due to obstacles (e.g., wireless link amongst SC1 and SC2 in Figure 1), wireless
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link variability (e.g., due to adverse weather conditions), or vandalism. On the

other hand, the wireless backhaul is subject to traffic dynamics. The study20

in [3] shows that a large fraction of mobile subscribers generate traffic only a

few days a week and a few hours during the day. The activation of all SCs when

a low fraction of mobile subscribers are using the network results in unnecessary

resource consumption and interference. In an hyper-dense SC environment, a

possibility is to power off some SCs (e.g., SC4 and SC8 in Figure 1) selectively25

during low load conditions (e.g., at night), whilst still being able to serve all the

traffic. Despite energy efficiency gains, these opportunistic SCs [4] could sub-

stantially alter the wireless backhaul topology, hence contributing to dynamic

and often sparse deployments.

The dynamicity of the above context may render transport protocols such as30

MPLS-TP [5], traditionally used in wired TNLs, unsuitable for an all-wireless

NoS. A challenge for the TNL is to design a dynamic routing protocol that oper-

ates efficiently in large-scale and changing SC topologies, whilst meeting mobile

traffic demands. A strategy to tackle large-scale multi-hop wireless topologies

is geographic routing [6]. A well known problem of geographic routing is how to35

react when packets get trapped in a dead end/local minimum (i.e., when there is

not any neighboring node closer to the packet destination). In such situations,

most geographic routing protocols have their own recovery methods to find a

detour path when they reach a local minimum [7]. However, these strategies

entail a substantial increase in control overhead as well as an increment of the40

per-node routing state, required to build alternative routes, hence compromising

their scalability in sparse deployments. Further, despite eventually circumvent-

ing network voids, geographic routing can lead to network congestion due to a

misuse of network resources, and a high routing stretch (i.e., the ratio of the

hop count of the selected paths to that of the shortest path) due to the lack of45

flexibility of the route recovery method.

To address these problems, we present Backpressure routing for dynamic

Small cell deployments (BS), a self-organized routing scheme for the TNL that

combines queue backlog, geographic information, and information carried in
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the packet to route traffic in dynamic and often sparse NoS deployments. Our50

previous work on backpressure routing ([8, 9]) helped us to evaluate the potential

of combining geographic and backpressure routing when applied to regular (i.e.,

grid-like) multi-hop wireless networks. However, practical deployments are far

from regular due to the reasons explained above. The main contribution of this

paper is to tackle this fundamental aspect by presenting a new scheme that55

retains the beneficial features of our previous schemes. A preliminary extended

abstract of this paper identifying the potential of using backpressure routing

for sparse SC deployments appears in [10]. The novelty in this paper resides in

the presentation of the resulting scheme and an extensive evaluation in a wide

range of scenarios as well. Instead of using a complex and resource consuming60

geographic recovery method to deal with dead ends, we propose a self-organized,

low-overhead, scalable, and decentralized routing approach that makes the most

out of the network resources. Unlike geographic routing schemes, the resulting

approach neither requires routing recovery methods nor incrementing the per-

node state to dynamically adapt to the current wireless backhaul topology.65

Extensive ns-3 [11] simulations results validate the robustness of BS under a

wide variety of wireless mesh deployments and workloads. Under uncongested

traffic demands, BS showed a latency and routing stretch performance close to

an idealized single path routing protocol (ISPA), which is aware of the global

current network topology without consuming air resources. ISPA is taken as70

an abstraction of traditional TNL protocols of core networks and wired mobile

backhauls (e.g., MPLS-TP [5]). In turn, BS improved the latency results ob-

tained by GPSR [12], taken in general as benchmark for comparison against

geographic routing featuring void circumvention mechanisms. In the case of

more severe traffic conditions, BS outperforms both GPSR and ISPA showing75

a reduction in terms of average latency of up to a 85% and 70%, respectively,

due to its inherent load balancing capabilities while serving the offered load and

maintaining a low routing stretch.

The remainder of this paper is organized as follows. The related work in

Section 2 is followed by a list of problems to tackle when using backpressure80
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routing in sparse deployments in section 3. The resulting solution with the

details on the operation of BS are provided in Section 4. Finally, Section 5

discusses the simulation results before concluding the paper with Section 6.

2. Related Work

In the following, we describe the main ideas behind backpressure and geo-85

graphic routing protocols.

2.1. Geographic Routing

Geographic routing [6] represents a stateless and scalable method to route

packets in a mesh backhaul using position information. Usually, packets are

routed using greedy forwarding. In greedy mode, each node forwards a packet90

to an immediate neighbor which is geographically closer to the destination node.

However, local minima are an important issue for geographic routing under

sparse deployments. A packet reaches a local minimum when its distance to

the destination is smaller than that of all its neighbors. Most of the work

done based on the circumvention of local minima ends up in a routing strategy95

that implies investing network resources (e.g., air resources) to circumvent the

network void [7].

A summary of the protocol used as reference in most of the work based on

geographic routing and circumvention of network voids follows. GPSR [12]

belongs to the category of position-based routing, and proposes two modes of100

operation to forward packets: greedy and recovery (or perimeter) mode. The

greedy mode is the default mode of operation until a packet reaches a local

minimum. GPSR recovers from a local minimum entering in recovery mode,

which performs routing operations based on the right-hand rule. As mentioned

in [12], this rule states that when a packet arrives at node x from node y, that105

is, it traverses edge (x,y), the next edge traversed is the next one sequentially

counterclock-wise from link (x,y). Nevertheless, the right hand rule can incur

into routing loops if the graph is not planar, that is, there are cross-edges in the
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graph. The packet resumes forwarding in greedy mode when it reaches a node

whose distance to the destination is smaller than the distance from the local110

minimum to the destination.

2.2. Backpressure Routing

The intellectual roots of dynamic backpressure routing for multi-hop wireless

networks lies in the seminal work by Tassiulas and Ephremides [13]. Despite this

approach promises throughput optimality, two main practical problems were not115

tackled in this work: i) the high complexity of queue structure and ii) the high

end-to-end latencies. Based on [13], several modifications have been proposed

to the backpressure algorithm focused on decreasing the complexity of queue

structures or decreasing the attained latency. The shadow queue concept in [14]

reduces the queue complexity of the original backpressure framework by main-120

taining a counter per destination instead of a queue per flow. Authors from [15]

tackle latency problems associated with the original backpressure algorithm by

increasing its number of queues. Their scheme proposes per-hop queues in each

node. That is, each node maintains a separate queue per packets that have to

be delivered to each destination within a certain number of hops. Even though125

these proposals alleviate to some extent the original backpressure shortcomings,

they still require per-flow or per-destination information.

Closer to our approach, Neely extended the concepts of Tassiulas and de-

fined the Lyapunov-drift-plus-penalty ratio to optimize wireless multihop net-

works [16]. The theoretical strengths derived from this work have recently in-130

creased the interest on practical implementation of the Lyapunov-drift-plus-

penalty ratio over wireless networks. Based on Neely’s theoretical work, some

practical single-queue backpressure routing implementations can be found. In

the context of dense sensor networks, authors from [17] consider many-to-one

traffic communications, and use a single LIFO queue per node to reduce end-135

to-end latency.

In our previous work in the context of mesh backhauls ([8, 9]), we con-

sider any-to-any traffic communications. Instead of keeping per-flow or per-
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destination information, we combine backpressure and geographic information

to reduce latency on regular topology deployments with a single FIFO queue per140

node. Nevertheless, the problem of a void handling procedure for a practically

deployable scheme remained unanswered up to our preliminary work in [10].

Next, we present in this paper a detailed description of the resulting algorithm

and demonstrate by means of extensive simulations that BS retains the good

features of the geographic and backpressure philosophies.145

3. Backpressure Routing Challenges under Sparse Deployments

Our scheme uses the theoretical ideas of the Lyapunov drift-plus-penalty

method [16], refined by the addition of new techniques needed for tackling prac-

tical small cell (SC) deployments. We first define the basic routing algorithm

and then we identify the challenges for sparse SC deployments.150

3.1. Basic Backpressure Routing Algorithm

The theoretical foundations of our scheme are based on the Lyapunov op-

timization framework detailed in [16]. Note that this framework can omit the

statistics of the random events happening in the network, such as variability of

wireless link rates or packet arrival. This eases the design of routing algorithms155

for dynamic wireless networks. A descriptions of the resulting self-organized

backpressure routing policy follows.

Let i and j denote two neighboring SCs/nodes. Our basic scheme, presented

for regular (i.e., grid-like) deployments in [8], is based on the calculation of

weights for every link (i, j). The weights, denoted as wij , are defined as follows:

wij(t) , ∆Qij(t)− Vi(t)c
d
i,j(t) (1)

When taking forwarding decisions, each packet is forwarded to node j∗

(amongst all nodes j neighbors of i) with the maximum link weight wij . That

is, the selected neighboring node j∗ is such that:

j∗ , argmax
j∈J

wij(t), (2)
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where J is the set of neighbors of i. In this sense, it is referred to as the

Max-weight policy. Equation 1 presents three key components:

Backpressure Routing: The minimization of the Lyapunov drift (∆Qij(t))

between neighboring SCs is essential for evenly balancing the traffic load among

the wireless links and nodes in the mesh backhaul. Besides, we show in the fol-

lowing section that it allows the eventual circumvention of connectivity voids.

Geographic Routing: The cost function cdi,j(t), proposed in [8], uses ge-

ographic information to penalize forwarding decisions that move the packet

away from the destination d (cdi,j = 1), and rewards routing decisions otherwise

(cdi,j = −1).

The V parameter: As defined in [9], Vi(t) is a non-negative function in charge

of finding the appropriate tradeoff between geographic routing (getting as close

as possible to the destination) and backpressure routing (evenly distributing

the load among all neighbors), adapting automatically its value to the network

state. The value of Vi(t), upper bounded and initially set to the queue size limit

(i.e., QMAX), is calculated as follows:

Vi(t) , QMAX −max(Qj(t)); j ∈ J ∪ {i}. (3)

Thus, low values of Vi(t) come as a consequence of detecting a node that starts to

be congested, and so, a higher weight will be given to move to a lower congestion

state by reducing the drift. Contrarily, in uncongested networks, the path with160

the shortest distance will be traversed by the packet.

3.2. Limitations of Basic Backpressure in Sparse Deployments

Despite the potential of the above framework, a few problems remain to

be solved. Here, using network simulation with ns-3 [11], we analyze how our

scheme reacts under sparse deployments. Figure 2 depicts a 5x5 grid mesh165

backhaul, and assume that a percentage of the SCs (shaded nodes) have been

powered off at a certain instant. Each SC maintains a single FIFO queue with

QMAX equal to 200 packets. We assume that for each SC, horizontal and vertical

neighbors are 1-hop neighbors whereas diagonal neighbors are considered 2-hop

8



Figure 2: Sparse wireless backhaul scenario

neighbors. Within this scenario setup, SC6 sends a 2Mbps UDP CBR flow to170

SC8. Thus, given that the SC7 is unavailable, the shortest path under this mesh

backhaul configuration has 4-hops through SCs (11, 12, 13, and 8) and (1, 2, 3,

and 8).

Figure 3 plots the time evolution of the queue backlog in SC6, the one facing

a dead end due to SC7 being switched off at time t = 5s. The routing scheme175

is configured with different fixed V values and using the variable-V algorithm

described above. Interestingly, Figure 3 reveals that packets remain trapped

up to a certain extent. The first aspect to point out is that such a scheme

requires to fill the queue of the SC being the local minimum up (i.e. SC7) to a

limit in which routing decisions emphasize more the reduction of queue backlog180

differentials rather than geographic proximity to the destination. Nonetheless,

packets remain trapped in SC6 once the queue backlog is below this limit (i.e.,

at instant t = 35s when the flow terminates).

We observed how different configurations of the V parameter yield different

queue backlogs to enable the use of queue backlog differentials, hence allowing185

packet to escape from the network void. With the decrease of the V parameter,

the queue threshold required to start taking routing decisions based on queue

backlog differentials also decreases, hence causing a decrease of queueing laten-

cies. The second point to remark is that the configuration of the V parameter is

of primal importance to determine the extent of queue backlogs to escape from190

network voids, and so, has a significant influence in the attained latency.
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Figure 3: Impact of the value of the V parameter in the queue backlog to circumvent network

voids. The void is circumvented once the queue backlog of the local minimum is stabilized,

but some packets may get trapped.

Table 1: Impact of the value of the V parameter in latency.

Value of V parameter Average Latency (ms)

V=0 143.81 ms

V=1 19.67 ms

V=10 126.79 ms

V=50 603.00 ms

V=100 1198.21 ms

Variable-V 1198.21 ms
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Table 1 exhibits the consequent decrease on end-to-end latency with the

decrease of the V parameter. Note that the case of the Variable-V, initialized

to QMAX , requires to decrease its value up to half the value of QMAX to enable

routing decisions based on the minimization of queue backlog differentials. The195

trend towards lower latencies has a turning point at V=0. Indeed, we observe

a latency increase with respect to V=1 because the forwarding decisions are

exclusively based on the minimization of queue backlogs, without taking into

account the proximity to the destination. This results in long paths to reach

the destination.200

The third main aspect to highlight is that an excessive use of the minimization

of queue backlogs to take routing decisions could result in excessive path lengths

to escape from network voids. Figure 4 shows the hop distribution of all the

packets carried in the backhaul with V=0. Note that the minimum path length

in the considered case is four hops. Instead of merely using four hop paths, data205

packets traverse a number of hops that increases up to more than 60 hops. In

particular, there is only a 20% of data packets following paths of a minimum

number of hops. In this case, a fixed V value parameter set to 1 may solve

the aforementioned problems for one single traffic flow. Nevertheless, as argued

in [8] and [9], this is not a feasible solution, since it does not appropriately210

handle the traffic (presence of simultaneous flows) and network dynamicity that

are the norm in wireless networks, hence resulting in routing loops and increased

latencies.

Nonetheless, given its potential, the solution presented in this paper still re-

lies on the Lyapunov drift-plus-penalty approach with a single queue per node215

to handle any-to-any traffic communication patterns. In this way, we benefit

from its advantages, namely scalability, self-organization, statelessness, decen-

tralization, and low control overhead.

11



 0

 0.2

 0.4

 0.6

 0.8

 1

4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62

P
er

ce
nt

ag
e 

of
 P

ac
ke

ts

Number of hops

V=0
V=1

V=Var-V
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4. Backpressure for Dynamic Small Cell Deployments

To address the above problems, this section describes the resulting scheme220

to manage both regular and sparse deployments. We propose to introduce a

new mechanism in the routing penalty function that can handle network voids

without incurring into additional routing recovery procedures, whose objectives

are 1) to achieve reduced queue backlogs (and associated latencies), 2) to avoid

excessive path lengths causing potential routing loops, and 3) to avoid packets225

to get trapped at data queues while maintaining the advantages of our original

scheme [9].

Both the minimization of the Lyapunov drift and the Variable-V algorithm

are key components to make the most out of the network resources. Further-

more, an appropriate cost function is fundamental to avoid the inefficiencies230

observed in section 3.2 for sparse deployments and achieve the aforementioned

objectives. As revealed by the results in section 3.2, this is particularly no-

ticeable when a substantial decrease of latency is observed when reducing the

importance of the geographic-based cost function when taking routing decisions

(low values of V). Subsections 4.1, 4.2, and 4.3 explain the main intuition, as235

well as the details of the operation and implementation of the cost function.
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4.1. The Intuition behind the Cost Function

The cost function cdi,j(t) conceived for sparse (and uniform) deployments

follows the same trend of rewarding the selection of SCs closer to (and penalizing

SCs farther from) the destination when there is uniform connectivity. However,240

the proposed cost function differs from the previous one designed for uniform

SC deployments in two key points in order to avoid high queuing latencies in

the presence of dead ends.

First, the cost function includes the possibility of rewarding routing decisions

that select SCs located farther from the destination in the presence of dead-ends,245

rather than allowing packets to get trapped in data queues. Second, the cost

function penalizes decisions generating 1-hop loops, which occur when a packet

is routed back to the node from which the packet was just received. In this way,

a 1-hop loop would occur when there is only one neighbor available and the

Lyapunov drift minimization gains in importance regarding the cost function.250

The results presented in section 5 show that the considered sparse deploy-

ments can serve the offered load appropriately when adding these two features

in the routing cost function together with the geographic and backpressure com-

ponents.

4.2. The Cost Function255

Before delving into the details of the cost function, let us first define some

auxiliary functions. Let the loop function Li,j,d(t) be equal to 1 when the current

node i forwarding packet p received this packet from node j (that is, there is a

1-hop loop), and 0 otherwise. Additionally, let NCi,d(t) denote the set of 1-hop

neighbors of node i closer to the destination d and dist(n1, n2) be the function260

that calculates the Euclidean distance between nodes n1 and n2. Finally, let

OCi,d(t) be a binary function that, when forwarding a packet from i headed

to d, is equal to 1 if there is a single neighbor closer to d, and 0 otherwise.
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According to this notation, the new proposed cost function is defined as:

c
d
i,j(t) =


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Li,j,d(t)− 1

dist(j, d) < dist(i, d)

or (dist(j, d) > dist(i, d)

and |NCi,d(t)| = 0)

1− 2Li,k,d(t)OCi,d(t)

dist(j, d) > dist(i, d) and

dist(k, d) < dist(i, d) and

|NCi,d(t)| ≥ 1

(4)

For easing the description of the cost function, we use the sparse network ilus-265

trated in Figure 5. The first case in equation (4) represents how the cost function

treats neighbors i) closer to the destination, or ii) farther from the destination

when there are not neighbors closer to the destination. For nodes closer to the

destination, the loop function determines whether the cost is -1 (rewarding the

closer neighbor if the loop function is 0), or is equivalent to 0 (base the deci-270

sion on the queue drift to reward such neighbor if the loop is 1). In this sense,

forwarding decisions approaching packets to the destination d are rewarded, un-

less it supposes a 1-hop loop. When packets reach dead-ends such as SC11 in

Figure 5 (i.e., |NCi,d(t)| = 0) our approach circumvents the void by rewarding

forwarding decisions towards a node j, which is farther from d than the local275

node i. However, to avoid never-ending 1-hop loops, we check if the packet

arrived from that same node j. This is controlled by the loop function, as when

it is equal to 1, it makes the cost function towards node j equal to 0, and so,

other nodes farther from d different from j are preferred. In terms of weights,

these farther nodes are preferred over closer node j because i obtains a more280

negative cost function when forwarding this packet, and so, a higher weight is

obtained. Since the packet is eventually forwarded to the neighbor with the

highest weight at the time node i takes the forwarding decision, these nodes

are selected first. On the other hand, if there is no other node except j for

circumventing the void (i.e., going backwards through the same path), Li,k,d(t)285

is equal to 1, hence resulting in node i taking the forwarding decision exclusively

based on the queue drift (e.g., backward path from SC24 to SC23 in Figure 5).
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Figure 5: Topology surrounded by network void.

Since queue backlogs in dead-ends tend to be high, taking such decisions allows

packets to go backwards to circumvent the void.

The second case of equation (4) is devoted to handle the cost calculation290

for nodes that are farther from the destination d when node i (the local node

forwarding the packet) has neighbors closer to d. In the normal case, this will

result in the cost being equal to 1. When combined with a positive value of

V in equation 1, it results in lower weights than for those nodes close to d.

Therefore, closer nodes are preferred. However, to avoid packets being trapped295

in the queues of dead-end nodes (or nodes close to dead-ends) another case must

be handled.

For instance, the depicted network in Figure 5 forms a multi-hop line sub-

topology surrounded by a network void. If a packet arrives to the dead-end

node (e.g., SC11 in Figure 5), it will be handled by the first case, as explained300

above. However, once this packet reached the node just before the dead-end

(e.g., SC16 or SC6 in Figure 5), instead of sending it again towards the dead-

end, it must send it backwards (see red arrow in Figure 5) until all the hops in

the line sub-topology are traversed to be able to circumvent the whole. This is

handled in the second case of the equation with the term 2Li,k,d(t)OCi,d(t). In305

fact, this term is different from 0 only when node i (the local node) receives a

packet from node k (the only one closer to d) from which the packet arrived to

i. In this case, both Li,k,d(t) and OCi,d(t) are equal to 1, which makes the cost
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become negative, which in turn, results in a high positive weight and the packet

is sent to node j (farther from d) instead of k (closer to d). Thus, the packet310

traverses the line sub-topology in the backward direction. In this way, packet

do not get trapped in the queues of such kind of sub-topologies.

4.3. Implementation details of the Cost Function

To implement the binary function Li,j,d(t), knowledge of an identifier of

previous hop that forwarded the data packet is required. In the IP header of a315

data packet, there is neither information identifying the previous node/SC that

transmitted a data packet nor the coordinates (or the IP address) of that node.

Rather than adding new headers with the source IP address of the previous hop,

in our implementation we use MAC addresses for that purpose.

In terms of state information, each SC maintains a table with information320

related to its available 1-hop neighbors. Furthermore, each entry of the table

contains the queue backlog, the geographic coordinates, the IP address, and the

MAC address of the neighbor.

Additionally, we store the MAC address of the node who forwarded each

incoming packet stored in the data queue. For each data packet being forwarded,325

the SC checks whether the MAC address of the target next hop matches the

MAC address stored with the packet. If there is a match, Li,j,d(t) becomes 1

for packet p, and in this way 1-hop routing loops are detected.

5. Evaluation

Section 5.1 describes the methodology followed, whereas section 5.2 and330

section discuss the results obtained.

5.1. Methodology

We conduct all the simulations with the ns-3 [11] network simulator, with

a duration per simulation run of 50 seconds. The simulated network is a 5x5

square grid backhaul of SCs, where the distance between neighboring nodes is335

of 100 meters. The set of neighbors of a given SC are the nodes within a range
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of 100 meters. To carry backhaul traffic, every SCs has a single IEEE 802.11a

WiFi interface configured to the same channel, and at a link rate of 54Mbps. In

particular, we use a simple WiFi channel model with a 2-hop interference pat-

tern that does not generate losses due to hidden nodes or propagation errors.340

The goal of all the experiments is to show the robustness of Backpressure rout-

ing for dynamic Small Cell deployments (BS) when some SCs of the modeled

wireless mesh backhaul are unavailable. The set of unavailable SCs is selected as

follows: an SC may be unavailable with a certain probability p > 0 when there

is not any other SC already unavailable within wireless transmission range, else345

p = 0 (i.e., SC continues active). This methodology ensures that a path can be

constructed between any possible combination of source-destination SCs. We

fixed the set of powered off SCs to the 20% of the total number of SCs. Figure 2

illustrates an example of the strategy followed to switch off nodes in the 5x5

grid.350

To evaluate BS robustness, simulation results compare the performance of BS

with that of GPSR, and an idealized version of the shortest path routing algo-

rithm (ISPA) under different traffic demands and different backhaul topologies.

We use GPSR as a benchmark because it is the reference protocol in the litera-

ture [6] for comparison with geographic routing protocols, given its robustness355

and low control routing overhead. In turn, we use ISPA because it follows, in

terms of data plane, the philosophy of current protocols deployed in the mobile

backhaul such as MPLS-TP [5]. ISPA is ’ideal’ in the sense of having a complete

knowledge of the global network topology without exchanging any control in-

formation message. Therefore, ISPA always knows a priori the shortest path in360

terms of number of hops between any pair of nodes, hence building routes that

do not use nodes that are switched off. That is, network voids are not a prob-

lem in ISPA. On the other hand, GPSR must change its operation from greedy

forwarding mode to perimeter routing, using the right hand rule to guarantee

that it will find a path to the destination. BS, on the contrary, merely uses the365

distributed computation of weights to circumvent network voids, as described

in the previous section.
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In addition to this, note that in all the ns-3 simulations, BS sends HELLO

broadcast messages of 110 bytes every 100ms, whereas ISPA routing does not

transmit any control messages. In turn, GPSR [12] sends HELLO messages of370

135 bytes every 100ms, and includes an additional header in the data traffic,

adding 50 bytes to the packet size (1488 bytes). Every SC maintains a single

first-in first-out (FIFO) data queue of a maximum of 400 packets.

We characterized the performance of each protocol by measuring the through-

put, latency, number of hops, and routing stretch (i.e., ratio of the hop count of375

the select paths to that of the shortest path) in every simulation in steady state

(i.e., transient periods in each simulation run are discarded). These results are

obtained using our implementation of BS, the GPSR implementation provided

by the authors of [18], and the ISPA implementation found in [19]. Note that

most of the results regarding throughput are omitted, since, unless explicitly380

mentioned in the paper, the offered load is fully served by the three routing

protocols. For each of these network performance metrics, we generally used

average values and boxplots to represent their statistical distribution. In par-

ticular, the box stretches from the 25th to the 75th percentiles, and the whiskers

represent the 5th and 95th percentiles.385

5.2. Impact of the Traffic Demand

This subsection provides the comparison of the performance of BS, GPSR,

and ISPA while keeping a fixed set of SCs unavailable (see Figure 2) and consid-

ering different traffic workloads. In all the simulations, the same set of source-

destination pairs are considered for all the routing protocols under comparison.390

The number of traffic flows injected to the network varies from 1 to 6, out of the

set {1,2,4,6}. The generation of the set of traffic flows followed an incremental

approach. That is, when moving from 2 to 4 flows, two new flows are added to

the previous ones (i.e., 2 out of the 4 flows are the same ones as in the 2-flow

case). Each of the four different traffic workload configurations were simulated395

forty times with different seeds. The use of different seeds provided the required

random source/destination SC pairs. Each selected source SC injected 2Mbps
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Figure 6: Average latency experienced by each injected workload of experiment in Section 5.2.

of UDP CBR traffic directed towards a destination SC, for a total offered load

in the backhaul of 2Mbps ·Number of F lows. Thus, we execute 160 different

simulations for each protocol, hence resulting in 480 simulations in total. Fig-400

ure 6 compares the average latency of BS, GPSR, and ISPA as the number of

traffic flows varies from one to six flows.

With one, two and four traffic flows, the performance of BS is on average

close to that of ISPA, as both protocols route data packets following paths of a

minimum number of hops. Whilst ISPA builds offline end-to-end shortest path405

routing tables in every SC and requires topology information of the whole net-

work to do that, BS only requires neighbor information. However, despite this

remarkable qualitative difference, BS neither traverses paths with an excessive

number of hops nor increases average queue backlogs. In turn, BS outperforms

the latency values of GPSR given that the defined cost function in section 4410

allows overcoming local minima in a more efficient way than GPSR. Actually,

GPSR starts suffering from highly variable latencies when the number of flows

is equal or bigger than two. The backhaul topology showed in Figure 2 and the

randomly chosen source-destination SC pairs provoked GPSR to use perimeter

mode for some combinations of source-destination pairs. When GPSR enters415

in recovery mode, the use of the right-hand rule to overcome a dead-end can

often lead to suboptimal paths in terms of number of hops, increasing the end-

to-end latency, even under light traffic conditions. Additionally, switching from
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greedy forwarding to recovery mode already increases the latency. Data pack-

ets experiencing recovery mode at the source node are queued and periodically420

served on bursts once the requested route, calculated using the right hand rule,

is known [18]. In this way, when such packets are being served, the FIFO service

policy is altered, which derives into additional latency perturbations to the rest

of the traffic flows traversing the node.

When the number of traffic flows is equal to 6, the backhaul starts suffering425

from congestion and the latency increases with GPSR and ISPA because these

protocols do not take into account all the available resources to take routing

decisions. Thus, while certain SCs get congested, other SCs are not used at

all. With six traffic flows, BS shows lower average latencies than GPSR and

ISPA due to its inherent traffic distribution capabilities. By exploiting the430

minimization of the Lyapunov drift, BS attains an even resource consumption in

the mesh backhaul. The resulting distribution of traffic is such that the resulting

deviation from shortest path aims to relieve congestion, hence resulting in lower

latencies despite traversing longer paths.

5.3. Impact of the Backhaul Topology435

The goal of this subsection is to evaluate the robustness of BS compared

to that of GPSR and ISPA when varying both the backhaul topology and the

traffic demands. To this aim, this subsection extends the previous one to include

in the evaluation twenty different mesh backhaul topologies. We generated each

of the twenty topologies by varying the set of five SCs switched off from the440

5x5 grid illustrated in Figure 2. The set of powered off SCs have been selected

randomly following the strategy explained in subsection 5.1. Figure 7 plots

the average latency distribution exhibited by BS, GPSR, and ISPA accounting

the twenty sparse mesh setups as the workload increases (from one flow to six

concurrent flows). In turn, the latency values have been calculated over forty445

independent repetitions. Each of these forty simulations runs used a random set

of source-destination pairs. As a result, we run 3200 different simulations for

each protocol, making a total of 9600 different simulations for the three routing
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Figure 7: Average latency experienced for the different backhaul topologies and and injected

workload of experiment in Section 5.3

The most remarkable observation is that simulation results confirm the ro-450

bustness of BS in different sparse mesh backhaul topologies. BS outperforms

both GPSR and ISPA showing a reduction in terms of average latency of up

to a 85% and 70% respectively, while maintaining its inherent load balancing

capabilities and overcoming voids with a low routing stretch. Despite varying

twenty times the backhaul topology, the latency trend showed by the three pro-455

tocols in Figure 7 is similar to that showed in the previous subsection with a

fixed backhaul topology (see Figure 6). The workload is almost always served,

yet there are some throughput inefficiencies under heavy traffic conditions, i.e.

with six traffic flows.
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Figure 8: Aggregated throughput for six traffic flows.
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Figure 8 shows the cumulative distributed function of the attained through-460

put for six traffic flows. Results show that GPSR and ISPA fail more frequently

than BS, but for a minority (less than 1%) of the chosen source-destination

pairs. In these cases, where the workload is above the rates that the network

can handle, BS exhibits a remarkable degradation of throughput. This is due to

the fact that the distributed variable-V algorithm of BS excessively decreases465

the V values in most of the SCs to zero. Thus, routing decisions are merely fo-

cused on minimizing the Lyapunov drift rather than maximizing the rate of data

arrivals at the destinations. The other protocols stick to a given route, handling

such saturation conditions by losing packets due to buffer overflows at nodes.

This behavior results in less packets being transmitted over the network, and so,470

the remaining packets can be more appropriately served. However, the reader

should recall that these are saturation conditions that the operator will avoid

by other means. One potential solution is the design of a distributed flow rate

controller that shapes the injected traffic to prevent the network from reaching

saturation as in [20]. Nevertheless, this is out of the scope of this paper.475

Figure 9 depicts the average path length distribution of the three routing

variants for the twenty sparse mesh setups and a workload of four traffic flows.

Note that ISPA represents the lower bound in terms of path length distribu-

tion, and can be considered the optimal routing solution in terms of maximizing

throughput and minimizing latency under light traffic loads. Interestingly, Fig-480

ure 9 confirms that BS exhibits a path length distribution close to that attained

by ISPA for the twenty sparse mesh setups and different combinations of four

traffic flows injected in the network.

Figure 10 illustrates the specific distribution of latency of the three routing

variants for each of the twenty backhaul mesh topologies and a workload of485

four traffic flows. We can highlight two main observations. First, BS clearly

outperforms GPSR for the twenty mesh backhaul topologies given the potential

inefficiency of the routing recovery mode of GPSR. Second, BS presented similar

latencies in most of the mesh backhaul topologies under evaluation compared

to ISPA. We only found one backhaul topology, labeled as T20, of noticeable490
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higher mean average latency in BS compared to ISPA. For these specific setup,

BS experiences a higher latency in the 5% of the forty repetitions.
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load of 4 flows

Figure 11 presents the attained latency distribution attained by BS, GPSR,

and ISPA for the considered twenty backhaul topologies and a workload of six

traffic flows. BS clearly outperforms GPSR both on the average values and495

on their variance. Additionally, latency values of BS present a better trend on

average than those attained by ISPA, as showed in Figure 7. The single shortest

path selected by ISPA is not sufficient to serve efficiently the traffic, causing

congestion. Load balancing is required to avoid packets stay longer periods at

SC queues. Indeed, the problem with GPSR as well as ISPA is that they are500

insensitive to congestion, being not able to adapt dynamically their routes to

relieve traffic congestion. The improvement in terms of latency experimented

by BS is explained in part by its ability to distribute traffic, exploiting in a more

efficient way the backhaul resources.

Despite the increase of the offered load to six traffic flows, BS still shows a505

path length distribution similar to that of ISPA. This indicates that BS leverages

multiple non congested paths of a low number of hops, whereas ISPA merely

uses one single shortest path. This explains why the difference in number of

hops is so small between ISPA and BS. It is also important to note that the

path length distribution of BS proves that routing loops are rare for most of the510
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Figure 11: Latency distribution in each one of the 20 mesh backhaul topologies with a workload

of 6 flows

twenty topologies under consideration. When balancing traffic, the aim of BS

is to prioritize short rather than long paths. Figure 12 presents the CDF of the

routing stretch metric for the BS and GPSR protocols with respect to ISPA (the

routing protocol providing the optimal route in terms of hops) when injecting a

workload of 6 flows. As we can observe, GPSR experiences path lengths up to515

4.5 times bigger than ISPA, whereas BS path lengths do not exceed 1.7 times this

value. BS incurs in more hops in order to exploit the resources of the network

when overcoming a communication void, while GPSR uses the right-hand rule,

which is not always effective. Simulation results indicate that the right-hand

rule chooses on average a non optimal route in 50% of the cases, which derives520

in a high routing stretch value.
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6. Conclusions

This paper presents BS, a self-organized routing protocol that combining

backpressure, geolocation, and information carried in the packet avoids exces-

sive network latencies while serving offered traffic demands under dynamic SC525

deployments. Amongst others, BS features self-organization, scalability, decen-

tralization, (quasi-) statelessness, and low control overhead.

Simulation results with ns-3 show that BS provides robustness across a wide

variety of wireless backhaul topologies and traffic demands, obtaining a similar

(or even better) performance compared to ideal shortest path routing algorithm530

(ISPA), a protocol abstracting the properties of legacy transport network level

protocols (e.g., MPLS-TP). BS experiences similar latencies to ISPA for light

loads, and exhibits a latency reduction on average of up to a 70% under more

heavy traffic demands due to its inherent load balancing capabilities. Besides,

BS outperforms GPSR, the reference protocol for geographic routing, showing535

a reduction of up to 85% in average latency, while serving all the offered load.

The key reasons for such latency improvement are the use of multiple paths

when network congestion requires it, without incurring into a high value of the

routing stretch metric (i.e., 1.7 times the shortest path). Overall, we believe

that the results presented in this paper are crucial to consider maintaining the540

benefits of backpressure routing showed in uniform deployments for dynamic

small cells deployments.

7. Acknowledgments

This work was supported by the TEC2011-29700-C02-01 grant of Spanish

Ministry of Economy and Competitiveness and by the 2009-SGR-940 grant of545

the Catalan Government.

References

[1] W. Webb, Wireless Communications: The Future, Wiley, 2007.

25



[2] J. Ferragut, J. Mangues-Bafalluy, J. Núñez Mart́ınez, F. Zdarsky, Traffic
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