*Manuscript

On the Feasibility of Collaborative Green Data Center Ecosystems

Anna Agusti-Torra?, Frederic Raspall?, David Remondo?, David Rincén®!, Giovanni Giuliani®

“Dept. of Telematics Engineering, Universitat Politecnica de Catalunya (UPC), Barcelona, Spain
bHp Italy Innovation Center, Milan, Italy

Abstract

The increasing awareness of the impact of the IT sector on the environment, together with economic factors, have fueled many
research efforts to reduce the energy expenditure of data centers. Recent work proposes to achieve additional energy savings by
exploiting, in concert with customers, services’ workloads and to reduce data centers’ carbon footprints by adopting demand-
response mechanisms between data centers and their energy providers. In this paper, we debate about the incentives that customers
and data centers should have to adopt such measures and propose a new service type and pricing scheme that is economically
attractive and technically realizable. Simulation results based on real measurements confirm that our scheme can achieve additional

energy savings while preserving service performance.
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1. Introduction

The advances in virtualization technology of the last years
have shaped the evolution of the IT sector towards a model
where organizations no longer sustain their IT infrastructure but
rent it from third parties. This “cloud” paradigm is attractive for
companies and providers as it allows for a quicker deployment
of new services, relieves companies from their maintenance,
and can significantly cut down companies’ and providers’ costs.
As a result, we are witnessing a rapid deployment of new data
centers (DCs) of increasing size, complexity and heterogene-
ity in service offerings. In parallel, several studies have esti-
mated that the IT sector is responsible for about 1 — 2% of the
greenhouse gas (GHG) emissions worldwide [1]; DCs account-
ing for 1.3% of the overall energy consumed [2]. The impact
of CO, emissions on climate change and the rapid concentra-
tion of IT services in DCs have raised the concern about their
energy sustainability. Moreover, energy consumption accounts
for a significant share of DCs’ operational costs. Thus, rather
than a concern, energy saving has become a necessity for DCs’
economic viability. Many regulations are also being established
worldwide to limit corporate emissions, increasing the pressure
to cap carbon footprint, to promote the procurement of power
with source mixes with a larger portion of renewable energy [3].

Within a DC, energy consumption reduction is tackled at
various levels. At the component level, for example, by em-
ploying more efficient power supplies, multiple spin rate drives,
and memories or CPUs with several energy states or clock gat-
ing. At the system level, by employing Dynamic Frequency
and Voltage Scaling (DFVS) techniques to adapt CPU param-
eters according to load, adjusting performance not to exceed
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some power limit (capping), introducing power profiles, or sup-
porting variable-speed fans. At an architectural level, by care-
fully locating racks, server clusters or network interconnects
to optimize the effectiveness of cooling and ventilation. Last,
at the operations level, by trying to adapt IT component uti-
lization to workloads. These techniques seek to exploit com-
ponents’ power attributes by tuning them according to utiliza-
tion (or even shutting down components). Examples include
consolidation of workloads and virtual servers into fewer, more
energy-efficient physical servers (so that some servers and net-
work elements can be switched off), or migrating/re-locating
these to other DCs with more advantageous conditions due to
the weather or the cost of energy [4].

While DC-holistic approaches can significantly cut down
power consumption, further savings and lower environmental
impact may be achieved by widening the scope of the solution
to span the entire energy consumption chain. In this direction,
[5] proposes a concerted strategy toward both energy and CO,
emission reduction where the three parties in the DC ecosystem
interact; namely, the DC, its customers, and the DC’s energy
provider (EP). The approach relies on two ideas: first, a higher
flexibility in the service agreements between the parties; second,
their dynamic collaboration. Flexibility is supported by the in-
clusion of energy-related (green) clauses in the Service Level
Agreements (SLAs), established between the DC and its cus-
tomers, and the power Supply-Demand Agreements (SDAs),
established between DCs and EPs. Collaboration allows a party
to request the other to adjust its behaviour so that some en-
ergy/power consumption objective is met, and is implemented
by the exchange of messages between a DC and its EP or the
DC and its customers. Thus, for the EP to avoid resorting to fos-
sil energy sources (e.g. diesel engines) due to a peak in the total
energy demanded, the EP can instead request one or more of
its customer DCs to temporarily reduce their power consump-
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tion; if a DC accepts the request, it will adjust the performance
of the hosted IT applications to reduce its energy consumption
(e.g. by consolidating virtual machines (VM) in fewer phys-
ical servers, delaying the execution of tasks, etc.). In case of
energy surplus, the performance of the IT services provided by
the DC can be upgraded (by increasing the physical resources
allocated to them, advancing the execution of scheduled jobs,
or accepting workloads from other DCs).

The idea of reducing power usage in a demand-response
(DR) fashion when supply is scarce is not new. [6] describes
a use case where a company reduces its power demand by auto-
matically adjusting lighting, thermal settings or rack power dis-
tribution units (PDUs) upon an EP’s request. While this form
of collaboration or those in [5] and [7] can effectively lead to
an environment friendly DC ecosystem, all the different parties
must have an incentive to adopt them —aside from environmen-
tal stewardship—, as this may critically impact their businesses.

[51, [6] and [7] suggest the incentives to be financial, based
on rewards or discounts. EPs will make discounts to DCs that
diminish their power demands. As this may require chang-
ing the operating conditions of applications, DCs’ customers
should agree in advance to reductions in performance and be
compensated with lower tariffs accordingly. Otherwise, DCs
would have little interest in collaborating with EPs: the eco-
nomic loss that resulted from compensating customers for SLA
violations could outweigh EP’s rewards and cause customers to
choose other providers. Still, even if DC customers adhered to
flexibilize the committed performance levels, finding a suitable
reward/pricing scheme is hard given the multiraterality of the
DC ecosystem: customers’ discounts might not pay off the per-
formance degradation experienced; on the other hand, while a
DC would see its energy expenditures reduced, it could still see
its profit diminished (due to lower revenues resulting from the
use of lower tariffs during energy saving episodes). We con-
clude that, for any energy saving collaborative framework as
those described to succeed, it must permit reaching some equi-
librium point where customers are satisfied with the service re-
ceived (relative to its price), and where DCs and EPs do not
see their profits depressed. A second condition is that the tech-
nical requirements to implement it must be simple enough for
DCs to adopt it. In this regard, we note that, while [5] estab-
lishes a framework and methods to deploy such a paradigm in
a technically realizable manner, these do not warrant the above
requirement by themselves. This paper seeks to contribute in
this direction by proposing a service model and pricing scheme
that is attractive for users, profitable for DCs and EPs and tech-
nically feasible, while promoting energy savings in a collabora-
tive manner. We discuss benefits that its adoption would bring
to all the parties and assess its advantages and disadvantages
with results obtained with a simulator (contrasted with mea-
surements from real DCs), fed with real and synthetic service
demands and load patterns, real server parameters and typical
energy costs.

This paper is organized as follows. Section 2 briefly de-
scribes the components of the DC ecosystem. Section 3 sum-
marizes related work, including ideas in [5] that contextualize
and motivate this work. In Section 4 we discuss potential barri-

ers that may preclude the adoption of collaborative measures as
the ones discussed. Section 5 presents the motivation, assump-
tions and idea behind our proposal, expected advantages. Sec-
tion 6 identifies the major variables that need to be considered
to measure such advantages and presents how we study their
evaluation. Sections 7 and 8§ discuss our experimental work:
the tool employed, how it works, how we parameterized it and
the results obtained. Section 9 presents general conclusions of
this research, recommendations concerning the feasibility of the
proposal and future directions.

2. Background and terminology

2.1. Data Centers (DCs)

A data center is an infrastructure built to provide IT services
such as massive data storage, CDN, web, e-mail, server hosting,
enterprise-class applications, or on-demand computing. Such
services often consist of several components like databases,
front-ends, application servers or middleware, increasingly be-
ing deployed as virtual machines. The business model varies,
but typically a DC is either a service within a large corporation,
or a business by itself that resells some of its infrastructure to
third parties or ”tenants”.

While varying in size, purpose and structure, DCs typically
consist of large farms of servers executing services for end
users. Connectivity is provided by high-speed network equip-
ment. Servers execute application software related to the of-
fered services (e.g. web, e-mail, social network or video)
as well as management software (e.g. backup or antivirus).
Servers may host several VMs, controlled by a hypervisor soft-
ware and managed either by the DC or, in a in cloud computing
scenarios, indirectly by the users themselves. Apart from IT
systems, DCs have facilities such as components used to deliver
power (PDUs) and cooling to IT equipment. Most DCs use un-
interruptible power supply (UPS) systems to protect the equip-
ment and guarantee the supply in case of outages. In case of
emergency, servers hosting secondary services can be switched
off, and migration can be used to consolidate services. Hence,
UPS systems must maintain power supply to keep the critical
machines running while providing enough time to relocate crit-
ical services and orderly switch off the hosted machines. DCs
use cooling systems and air flow strategies to keep hardware
temperature below a critical value beyond which it may mal-
function or damage. Lastly, some large DCs also have on-site
renewable power sources.

Energy costs are becoming the major expense in DCs and
this trend is increasing as hardware and software drop in price.
Several studies show that most of the power consumed by a
conventional DC is due to its servers (up to 50%), while, ap-
proximately, the other half of the power is due to cooling [8].

Many benchmark studies (e.g. [9]) have empirically found
that the power consumed by servers increases quasi-linearly
with the utilization of their cores, as depicted in Figure 1. Thus,
the power consumed by a server can be accurately modeled as
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Figure 1: Typical power-utilization curve of a physical server. W,,;, refers to the
active-idle power consumption, where server is in non-dormant state but with
zero CPU utilization; while W;g, is the power usage in some dormant state.

where u refers to the % utilization of all its cores, Wy, is the
peak power, W, that at 0% utilization and (W, — Wyiy) 18
the dynamic power range. The fact that servers consume even
if idle —i.e. their lack of proportionality— is what precisely mo-
tivates the consolidation of workloads in other servers to turn
some off, and has driven vendors to manufacture more efficient
processors. In this regard, note that W’(u) £ W(u)/Wyrar =
b+ (1 - b)u, with b = xf—a, where b can be understood as a
measure of proportionality (the lower the better). In the litera-
ture, other indices similar to b are used to quantify energy pro-
portionality, such as b(1 - 5) or WL(M) Similarly, several metrics
are used to quantify the energy efficiency of DCs. A common
one is the PUE (Power Usage Effectiveness), defined as the ra-
tio between the total energy consumed over that spent solely
by IT equipment. A lower PUE means higher efficiency. The
PUE, which typically ranges in (1, 3) [10], does not account for
carbon emissions. Another metric is the Carbon Usage Effec-
tiveness (CUE) defined as the product of PUE and CEF; where
the CEF or carbon emission factor is the amount of CO, grams
released per kWh. CEF can be non-zero for renewable sources
if the emissions due to manufacturing, transport, installation or

recycling of their equipment are considered.

2.2. IT Customers, users and IT Services

We call IT Customer (ITC) the entity that contracts the pro-
vision, execution and maintenance of some application —I7 ser-
vice (ITS)-in a DC, as opposed to users, which are those em-
ploying the service. DCs provide a wide array of services, from
consumer-oriented to enterprise-class offerings. Thus, ITCs can
be single users, but also companies offering services to other
individual users, businesses, or departments within themselves.
An IT service is understood as a collection of servers (physical
or virtual, hereafter called virtual machines, VMs) and software
entities that jointly execute a task. IT services have a wide range
of complexity: from single VMs started and controlled at the
customers will, to complex cloud computing applications in-
volving several physical servers, many VMs, and auxiliary sub-
services such as antivirus or backup procedures. This model
where customers pay to build a virtual infrastructure on top of a
DC’s physical one is called Infrastructure-as-a-Service (1aaS).

SLAs specify the conditions under which a certain type of IT
service is to be provided, the tariff to be paid, and the penalties
(usually discounts) in case the DC fails to deliver the service
under the agreed conditions. The key performance indicators
(KPIs) most often found in SLASs relate to availability (service
uptime) and performance. Cloud computing services consist-
ing of VMs can also include as KPI detailed parameters such
as start-up delay, computing power', memory, OS image, 1/0
performance or disk size (refer to [11] for examples). One way
of quantifying the resources available to a virtual server (and
thus its performance) is by a consolidation ratio Cg, defined as
the number of virfual CPUs (vCPUs) of VM instances running
per server or CPU core.

DC automation frameworks take care of provisioning the
necessary resources (and monitoring them) for each IT Service,
by mapping the high-level clauses and KPIs found in SLAs into
low-level operational parameters. For instance, a web-hosting
service may include a “high-performance” SLA clause that
translates into 12 load balanced VMs (running in 3 servers) able
to handle 1000 requests/sec; while a "medium performance”
may refer to the same service running 6 VMs on 2 servers of
lower capacity able to process 300 requests/s. In cloud/IaaS en-
vironments, service instances typically belong to a certain class
(e.g. small, medium or large) with some predefined attributes
(e.g. 1,2 or 4 vCPUs, and 2, 4 or 8GB of RAM).

2.3. Energy Providers (EPs)

An EP is a company that produces and sells energy. Supply-
demand agreements (SDAs) state the conditions under which
power is delivered to customers. These include the price per
kWh, a peak power demand and availability. Energy costs vary
by region. According to [12], the average industrial rate per
kWh is $0.0677 in the US and €0.0836 in Europe.

Typically, EPs manage several power generator facilities like
coal generation plants or gas turbines to satisfy the demands. It
is very important to EPs that the power they produce matches
the power that is being demanded and not feed the grid with
more or less energy than needed (otherwise the grid could col-
lapse). Therefore, it is crucial for EPs to correctly plan energy
production ahead, and to rapidly react to unforeseen changes in
demand. Prediction of power generation capabilities and power
demands is critical for the EP to be able to plan economically
(and also ecologically) which power sources it schedules. The
reaction time of power sources varies significantly: for instance,
coal power plants need several hours to shut down, while diesel
generators can be turned on/off rapidly. And the availability of
renewable energy can highly vary depending on wind speeds or
solar irradiance.

EPs make use of customer load profiles and categorize them.
For major customers (e.g. DCs), power consumption is mea-
sured directly to precisely tune prediction methods. To plan
power generation, EPs take into account weather forecasts to
predict the amount of renewable energy that will be available.

IMeasured in abstract units such as Amazons Compute Unit, equivalent to
a 1.0-1.2 GHz 2007 Opteron/Xeon processor (see [11]).



To quantify the extent to which production conforms to de-
mand, EPs consider the ratio R between generated and de-
manded power. Energy shortage occurs when R deviates to val-
ues < 1; while surplus when R > 1. Both types of episodes
are critical for an EP if it is not able to timely compensate them
with its own power sources. This is the reason to tighten the
collaboration of DCs and EPs on a demand-response fashion.

The energy consumed by a DC typically accounts for a rela-
tively small percentage of the energy produced by its EP. Nev-
ertheless, the ability to quickly reduce the power demand even
if in a small percentage can help an EP to avoid resorting to
expensive and highly contaminating power sources. Thus, for
an EP, a DR scheme constitutes an effective, practical means to
dynamically influence the power demanded by customers. On
the other hand, an EP may supply energy to multiple DCs, their
joint demand constituting a larger fraction. Thus, the larger the
number of DCs served and their share of the demand, the easier
it can be for an EP to influence the demand (and mitigate peaks
quicker) as this offers higher degrees of freedom.

3. Related work

There are diverse solutions to reduce DCs’ energy con-
sumption, such as techniques where servers’ processor states
are aligned with job demands (e.g. DVFS), system-wide ap-
proaches that reduce servers’ idle powers [13], per-core power
gating [14], consolidation of servers during low workload peri-
ods (e.g. [15]), virtualization techniques to obtain energy sav-
ings [16], [17] or the use of low-latency power state changes in
servers to improve the impact of virtualization [18]. To com-
plement these, there are many contributions that focus on the
characterization of workloads in DCs, such as [19].

[20] considers the adaption of DC’s power demand to fluctu-
ations in electricity pricing considering the DC as a whole, dis-
regarding the discrete elements inside, while [21] contemplates
the use of on-site energy storage to avoid peak power costs. [3]
studies the reduction of DCs’ carbon footprints by using on-site
renewable energy production. By managing resources across
multiple DCs, [22] achieves power savings. Similarly, [23] con-
templates the dynamic exchange of workloads among different
sites, where services are moved to DCs with higher efficiency
—both in terms of performance versus power consumption ra-
tio and also depending on the carbon footprints of the energy
generation at their EPs—.

As mentioned, the co-operation paradigm recently proposed
in [5] is based on leveraging flexibility and dynamic collab-
oration among all the DC ecosystem players: the EP, the IT
customers and the DC itself. Flexibility is enhanced by adding
energy-aware extensions to SLAs —stating the conditions (QoS
parameters, guarantee terms and associated tariffs) under which
IT services are provided— which then become GreenSLAs.
These extensions establish the degree of change in running con-
ditions (e.g. performance or availability) that the DC and its
customer agree to accept as a function of the energy context
of the ecosystem, together with specific tariffs and guarantee
terms. Energy context refers to the state of the ecosystem re-
garding energy, and it can be either calendar related or depen-

dent on the actual situation of the EP. Calendar-based clauses
relate running conditions with the time-of-the-day. An exam-
ple of a calendar related clause could be that a service enjoys a
99.95% availability for weekdays during working hours and a
95% — 99% availability for the rest of the time.

On the other hand, the collaboration paradigm, illustrated in
Figure 2, contemplates interactions between EPs and DCs re-
lated to the current balance between the energy demand and
production of the EP, according to extensions in the SDAs
(called GreenSDAs), such that an EP can issue requests to a DC
to reduce or increase the consumed power for a certain time pe-
riod. If the DC accepts to serve the request, there will be clauses
in the GreenSLA that allow the DC to modify its power con-
sumption by changing running conditions of some IT services.
An example of such a clause could be that, if a request from an
EP to reduce power consumption for a time period 7" has been
accepted by the DC, then a Web hosting service that is running
in a high performance condition (say, 12 load-balanced VMs
able to handle 1000 requests/s) can be set to run in medium per-
formance (6 load-balanced VMs) during 7.

The collaboration between the three DC ecosystem parties
will also follow the rules established in the GreenSLAs (be-
tween the DC and the IT customers), and the GreenSDAs (be-
tween the DC and the EP), together with the associated eco-
nomic impact for every change in running conditions of the IT
services or the consumed power of the DC, respectively. An
example of such rules could be that the EP may request the DC
to reduce its power consumption for periods no longer than one
hour, during which a certain discount in the electricity price will
be applied.

EP DC ITC
Reduce power? Perf. High->Low
_ = _—
= -
¢ o
Max: 3 h/week

ACK - by 15% W
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GreenSLA &

Reduce Perf > Discount

Figure 2: Interaction among the three DC ecosystem parties.

4. Current DC service models and barriers potentially hin-
dering collaboration in the DC ecosystem

As discussed in §1, at least two conditions should be met
for energy saving collaborative models to be adopted. First,
the measures to save energy should not conflict or impair IT
customers interests (e.g. businesses), who should still per-
ceive adequate service levels relative to their cost. Second,
energy-saving measures and their consequences (e.g. on pric-
ing) should not affect DCs’ economic viability (i.e., they should
not cause DCs’ profits to be reduced). To understand the moti-
vation behind our proposal and its advantages, next we briefly
discuss existing service models, pricing schemes, and the effect
of energy costs in DC’s economies through a simple model.



4.1. Current service and pricing schemes

The service models and pricing schemes offered by public
DCs (e.g. [11][24][25][26][27][28]) are diverse and rapidly
evolve nowadays (particularly in cloud providers) as a result
of the technology quickly advancing and competition. Generi-
cally, however, providers employ a billing scheme that depends
on three dimensions: performance (committed resources), up-
time and resource utilization. Customers can contract one or
more instances of a certain class (specifying OS, amount of
RAM, disk capacity, CPU power or network bandwidth) and
pay accordingly; a monthly fee in traditional services (e.g.
managed hosting), or only during the time that the service is ac-
tive (in cloud/IaaS, typically on a hourly basis). Some providers
also charge when the service is off, but at a lower tariff (e.g.
50% less) to cover the cost of storing customers’ data. In others,
pricing depends on the number of I/O operations performed, the
amount of RAM available to VMs, or the network bandwidth
used. To cope with increasing service’s demands, some DCs
have elastic offerings where the resources allocated to IT ser-
vices can be scaled (and billed accordingly) depending on their
loads, either automatically or by the customers themselves via
a Web dashboard or some APIL.

4.2. Data center economics and the effects of energy costs

To determine adequate tariffs (e.g. prices per unit time in
pay-as-you-go schemes as the above), DCs need to find an equi-
librium between two competing factors: their profit and their
competitiveness. In a simple model, the profit P can be de-
fined as the difference between the DC’s revenues R (what cus-
tomers pay) and running costs C, over some period of time (e.g.
monthly). Costs include recurring costs (personnel salaries, li-
cences, taxes, insurances, maintenance, leasing of buildings,
etc.) and the amortization of facility or IT equipment and build-
ing costs. Part of these running costs are strictly due to energy
consumption and the rest are independent of this factor. The
costs due to energy consumption, C,, are due to the energy con-
sumed by servers and interconnects, lighting and cooling, and
can be written as Er, with E the amount of energy consumed in
a time period and r the price per kWh. We refer to the running
costs that are independent of energy consumption as fixed costs.

Thus, in a simple economic model, we can express DC costs
as C = Cy+C, —with Cy the fixed costs and C, = Er the energy
related expenditure— and its profitas P = R—C = R—(C;+C,),
where, to be economically viable in the long term, R > C.

While well established cloud providers have reported signifi-
cant profits in the past, new players continue to appear, offering
services at tariffs often 40% lower [29]. In an increasingly com-
petitive market as this, revenues R are expected to progressively
approach costs C from above, as new providers emerge and
DC:s strive to capture/retain market share. Indeed, big providers
have announced price reductions over time. Thus, in our model,
we can assume that P < R (or £ > 1).

Since energy consumption represents a significant fraction
of the total costs and it varies depending on IT workloads,
finding the right tariff scheme is hard for a DC. A conserva-
tive approach (e.g. billing under the assumption that servers

or network devices consume peak powers Wy, even if they
do not) would maximize profit; however, profit maximizing
schemes are not always the optimal strategy as could be, for
instance, capturing market share. Conversely, setting tariffs be-
low the worst-case cost of energy can attract users, but also
lead to lower profit or even economic loss. The point is that,
if energy costs account for a large fraction of the OPEX, their
variation can have a high impact on DCs total costs and prof-
its. To illustrate this, let us see how a certain variation AE
in the energy spent by a DC may affect its overall costs. As
C = Cy + C,, if we assume that C, = aC for some a < 1,
and the fixed costs Cy to be independent of the E, we have
% = % = %r = %% = %a, which says that a 20% varia-
tion in the energy consumption translates into a 20a% variation
in the total costs. Similarly, by definition, profitis P = R — C.
Assuming that revenues R do not depend on E (as occurs in
XaaS-services where customers pay fixed fees),

AP -AC _ ACC _

AER-P AE(R 1)
P P cp " E P " E\P
which, under the assumption that R > P, is 4 ~ @45 % and

says that a DC’s profit can significantly vary depending on its
energy consumption. For instance, for @ = 0.5 and % =6,a
10% increase in the energy bill will cut profit by 25%.

If finding a suitable pricing scheme is hard with conventional
service offerings, the use of “green” SLAs will complicate the
matter further, which may discourage their adoption. Suppose
that a DC (employing a conservative billing approach) were to
offer, according to some “greened” SLAs, two service perfor-
mance levels abiding some calendar: a high one (for business
hours), and a low, energy-saving one for the rest of time. During
non-busy hours, the DC would save energy and see its energetic
costs reduced. However, depending on how the price per unit
time were set for those periods, it could see its interests im-
paired: too low of a price could cause the DC to see its revenue
(and thus profit) reduced, while higher prices may not be ac-
cepted by customers if the price reduction did not pay off the
performance one; causing the DC to loose market share (and
again profit), compared to the case where no performance and
price adjustments were made to save energy. Hence, given the
expected increase in pricing sensitivity (due to higher competi-
tion), providers may be reluctant to adopt such measures.

5. Proposed service and pricing scheme

5.1. Motivating observations and assumptions

As per the previous discussion, performance-centric pricing
schemes can make it difficult for DCs to predict profits and es-
tablish competitive tariffs, given that fees do not necessarily
match the costs incurred to run services, like those related to
power consumption. Moreover, customers have no stimulus to
promote or claim for energy efficiency, but performance.

Studies on DC’s workloads have shown that servers are sel-
dom idle but rarely operate at maximum CPU utilization [30].
Moreover, the load of many IT services may fluctuate and be,
in several periods, far below the peak, for which resources are



provisioned (and customers billed irrespective of their usage).
Under these circumstances, many customers could prefer a ser-
vice whose tariff depended on the real utilization of their ser-
vices, more than on the resources the DC provisions to them.
Further, some could accept some performance degradation for
the purposes of energy saving if this translated into a lower bill;
particularly if they were given the assurance that, at peak or
busy hours —when their services are mostly demanded— some
prescribed performance metrics or resources are guaranteed.

5.2. Proposed pricing model

The pricing scheme that we propose is conceptually fairly
simple. Instead of setting prices according only to performance,
utilization or allocated resources, let service fees include a fixed
part plus a variable one that equals the monetary cost of the
energy consumed by an IT service. To exemplify how this
scheme could work, consider a service consisting of a single
VM charged only when the instance is running on a time slot
basis, such as 10 minutes. The fee at the k¥ slot could be
pr = f+exry, with ¢, the energy spent by the instance and ry, the
price per kWh. The value of f would depend on the instance
properties (e.g. OS image) and be derived to apportion for DC’s
fixed costs Cy, including some quantity to achieve a certain tar-
get profit. If the IT service consisted of / components or in-
stances, the fee for each would be p;; = f;+e; i and the overall
service fee in a slot equal Py = Zf Dik = Zf fi+ Zf eixri. Thus,
the bill after running the service over S slots would amount to

S 1 S I/
B:ZPkZ(SZﬁ)+Zrk €k
k=1 i k=1 i=1

where the second term corresponds to the energy spent by the
service throughout, weighted, at each slot, by the kWh rate.
Note that if the f; are identical (some f) and the rate of energy
constant r, the above is simply SI(f + Er), with E the average
energy consumed per instance over S slots.

Note that the above model is kept purposely open. For in-
stance, the energy figures (e;) can include or not (part of) the
costs of cooling or those of the network interconnects, which
could, otherwise, be apportioned to the fixed terms f. The im-
portant fact is that a direct inclusion of energetic costs into fees
can solve the issue with respect to the incentives that a DC has
to offer variable-performance schemes to save energy; be these
on a calendar basis or in response to explicit requests from EPs:
if users pay proportionally to their energy consumption, DCs’
profits can remain the same even when resorting to lower tariffs
during energy-saving episodes, because this is as if customers
paid themselves the watts they consume directly to the EP. In
other words, during energy-saving periods, the DC’s turnover
can be reduced exactly by the same amount that its energy costs,
hence keeping its profit roughly the same. Moreover, DC profits
can be much less sensitive to energy expenditures.

Explicitly including energy expenditures in fees can in-
crease customers’ awareness of the environmental impact of
their businesses, be fairer —not only environmentally, but also
economically—, and makes particular sense given that energy

proportionality is becoming a primary design goal. Still, would

such a pricing scheme be positively perceived by customers?
Next we propose a service model which, subject to the above

pricing scheme, can be attractive for customers and DCs.

5.3. Elastic Energy-Aware Calendar-driven Services (EEACD)

As DCs may host IT services that are mission-critical for the
tenants’ businesses, these may demand stringent performance
requirements. As argued, however, many would adhere to re-
laxing their performance indicators during low utilization peri-
ods —as long as certain levels (and the availability and uptime
of their services) were guaranteed— in exchange for a cost re-
duction. One type of service allowing for this while promoting
energy savings and letting DCs adjust power demand upon en-
ergy providers’ requests can be as follows.

1. IT customers specify (in a green SLA) the minimum per-
formance level (min) that the DC should grant on a calen-
dar basis (e.g. at each time slot in a week), as well as a
maximum one (max), for each parameter and component
of its service. Thus min ,max may be thought of as vectors,
whose dimensions refer to measurable metrics as comput-
ing power, RAM, or network bandwidth, etc.

2. The customer is billed as described, depending on an esti-
mate of the energy spent and the energy rate 7.

3. The DC commits to offer elasticity: if service loads sur-
pass their capacity, additional resources (e.g. CPU power)
are allocated, within the min/max bounds.

4. For a DC to (further) cut its energy demand when re-
quested by its EP, a second calendar specifies another set
of min/max values for each IT service. We refer to the first
calendar as the regular calendar (RC), and call the sec-
ond, the energy-saving calendar (ESC). The DC commits
to apply the ESC no more than a certain fraction of the
time, e.g. 3.3% (1 day in a month, or 8h a week). During
the time the ESC is obeyed, a lower energy rate r" applies.
Thus, EP’s rewards can come in the form of a rate reduc-
tion from which both a DC and its customers can benefit.

5.4. Can such a service suit customers, DCs and EPs?

The attentive reader may wonder about the purpose of a cal-
endar if a DC can dynamically adapt services’ resources to their
demands. The role of the calendar is severalfold. First, while
DCs employ monitoring tools to efficiently provision resources,
migrating or consolidating VMs takes time and resources. The
use of a calendar can ease the task of planning ahead and later
rearrange computational resources. Second, it can be the ba-
sis against which SLA conformance is verified. Most impor-
tantly, the min values guarantee customers some minimum per-
formance for their services on one side. On the other hand,
these indicate energy-saving opportunities which, if exploited
by a DC (e.g. if service loads follow the calendar), can reduce
not only the overall power consumption, but also customers’
bills. The role of the max values is that of bounding from
above the cost per slot, by preventing the DC from allocating
resources in excess. Lastly, busy hours can vary from service to



service, each of which can have distinct performance require-
ments. Specifying a calendar on a per service basis can help to
optimize overall service performance and energy consumption.

Arguably, one possible downside of this kind of service could
be that customers do not know the service fee in advance, as
the price per unit time depends on the usage of the service, the
DC decisions regarding consolidation and the activation of en-
ergy saving measures in response to requests from its EP. While
slot prices are unknown, these are bounded from above (due to
the max values) by a known quantity (probably close to the fee
had the service been provisioned inflexibly for peak utilization).
Thus, customers pay no more (and often less) than in case they
were charged by allocation, while being granted a relatively
high performance due to elasticity. Moreover, slot fees can be
reported by the DC in nearly real time in services’ dashboards.
Thus, depending on the service, customers can modulate their
computational loads. Lastly, in case of commercial customers,
the more utilized a service is, the higher its bill, but also the
higher their tenants’ revenues, and vice-versa. Companies may
positively perceive this service as a safe way to mitigate finan-
cial bleeding in case of business failure. How about DCs?

By including energy costs into service prices, data centers
can keep their profits independent of the fluctuations in services
activity and not be economically affected by energy-saving
measures. It can also reduce their financial risk and ensure
a predictable and measurable ROI. In addition, for reasons of
environmental awareness, a growing number of conscious cus-
tomers may choose green data centers in front of other options,
even if at higher tariffs, altruistically. Thus, a DC adopting the
above services may even see its customer base enlarged. On
the other hand, if customers defrayed their energy costs, what
would be the incentives of DCs to save energy?

First, in the proposed scheme, not all energy costs of a DC
need to be charged to customers (e.g. lighting and part of cool-
ing). Most importantly, customer bills will depend on the cost
of the energy spent by their services, which depend on their
load, but also on how energy-efficient a DC is and the cost of en-
ergy. Thus, DCs adopting the proposed service may still strive
to be as energy-efficient as possible to offer competitive prices.

Hence, the scheme is such that all the participants of the DC
ecosystem are induced to save energy. IT customers, to lower
their costs (and widen their profit); DCs to stay as competitive
as possible by purchasing efficient equipment, keeping up with
eco-friendly technological advances and collaborating with EPs
to get discounts and offer more economic tariffs to customers;
and EPs by avoiding peak demands and thus maintaining the
stability of the electricity distribution grid.

In the sequel, we aim at understanding the extent to which
this scheme can be attractive for DCs and their customers and
the energy be reduced. Next, we discuss additional benefits and
the requirements from a technical perspective.

5.5. Additional benefits

There is an increasing environmental awareness of business
activities, and the IT sector is not an exception. Corporate
social responsibility, codes of conduct, and other forms of

self-regulation currently include energy consumption and CO,
emissions. The ISO 14000 standards define the methodology
for accounting the environmental impact of companies and help
businesses comply with regulations or self-imposed goals. ISO
14604 [31], in particular, provides tools for quantifying GHG
emissions, and is used by public or independent entities (e.g.
the Carbon Trust in the UK [32]) to certify carbon footprints.
EMAS (Eco-Management and Audit Scheme) [33], developed
by the EU, is another example of greenness certification, and in-
cludes the ISO 14001 recommendations. Finally, international
treaties such as the Kyoto Protocol have established limits on
CO, emission volumes, whose rights can be traded; which
establishes market-based incentives to reduce GHG. The pro-
posed paradigm permits and incentivizes energy savings and
cleanness. As all the participants could be required to meet
such regulations, they all may benefit from it.

The main benefit for EPs may be the possibility of reducing
peak demands at times when the energy production structure
is under stress, due to a shortage or because the energy mix is
biased towards fossil-based sources. This can result in a more
reliable, stable and safer energy grid, and less penalties for an
EP, which will then reach its environmental goals more easily.

5.6. Technical requirements

Deploying the service type proposed requires: a) measuring
the amount of resources utilized by services 2) scaling physical
resources to load (e.g. by migrating/consolidating VMs), and
3) measuring/estimating the energy consumed by services.

The first two requirements are readily covered in today’s
DCs. Many tools exist to monitor CPU loads, memory usage or
network traffic. The time scales at which the monitoring should
be performed in the above services (several seconds or minutes)
are compatible with the performance of such tools, whose over-
head is within acceptable levels at those timescales [34]. On
the other hand, to consolidate and perform live VM migrations,
cloud providers already employ open source and commercial
products?, most of which come with monitoring functions built
in. Typically, migration and consolidation times are on the or-
der of a minute or less [35] [36], which may be acceptable for
the above services. Also, VM migration: 1) may cause an in-
terruption in the service or lengthen the execution time of jobs,
and 2) causes extra load (and thus energy consumption) at the
origin and destination servers. However, modern techniques
minimize service interruption, and the increase of CPU load
and power consumption of the destination server may be in the
order of 20% according to [35][36]°.

Measuring the power and energy consumed by servers (and
network equipment) can be performed directly with dedicated
hardware, or indirectly from analytical models. Racks usually
include PDUs able to report (via SNMP) the power consumed
of each server at a second resolution [37]. Indirect methods use

2E.g. IBM’s System Planing tool, VMware’s Distributed Resource Sched-
uler (DRS), Rackwise’s DCiM, or the OpenStack suite

3The figures refer to servers with Intel Xeon E5620 4-core CPUs at
2.40GHz, but the relative increase can be extrapolated to other models/vendors.



properly parameterized and trained models to estimate the con-
sumption of servers from a measured figure of CPU utilization
[38]. Thus, the power and energy spent by services can be es-
timated from such figures and models in conjunction with the
measures of the resources they spent. For instance, in case of
servers, if a certain VM has utilized #% of a CPU core on the
average during a time slot of 7' seconds, the energy consumed

can be estimated by & = T((Wmax = Woin) 72— +§(Wmin)), where

the first term corresponds to the fraction of the server’s dynamic
power range apportionable to the VM (as per (1)) and &(W,,;,)
the share of the server’s active-idle power attributed to the VM,
which may be derived in several ways. The logic we employed
in our simulations was to split W,,;, among all the VMs hosted
in a server proportionally to their minimum share of CPU re-
served, which is the inverse of the consolidation ratio.

The above only accounts for server energy. Regarding other
important energy sinks (network components and specially
cooling), similar estimates can be derived. For instance, router
and switches figures can be weighted by traffic volumes, readily
measured. For simplicity, in our simulations we consider these
to be proportional to that of servers.

6. Studying the feasibility and advantages of the approach

To assess the benefits and downsides of the proposed scheme,
we need to understand the extent to which energy expenditure
at the DC may be reduced due to calendaring and a DR collab-
oration with EPs, the impact on service performance and if the
resulting prices may be worthwhile and competitive. To that
end, we consider three factors (energy, power and performance
indicators) to compute prices according to our scheme. Then,
we compare the outcome against those obtained in case SLAs
were inflexible, prices independent of energy expenses and the
power demand not adapted. Of the above, experienced perfor-
mance is the hardest to quantify, given the distinct nature and
purpose of services, their variety, and the number of factors po-
tentially influencing. Moreover, aspects like user satisfaction
and perception come into play, which entail the use of utility
functions to be assessed.

For modeling purposes, services can be categorized depend-
ing on whether they are up on a continuous basis or sporadi-
cally. Thus, a DC may host always-on services or time-scoped
ones. Examples of the first kind abound and are those offered by
traditional computing, such as e-mail, web or database, which,
deployed in bare-metal or as VMs (i.e. as laaS), are typically
offered to a large set of users, have a direct or indirect revenue
and require 24x7x365 uptimes. Services of the second kind
may last for a limited period and could include from the execu-
tion of high-demanding simulations, batch processes, manage-
ment tools (backup or antivirus), user-oriented remote desktops,
to VMs instantiated to dynamically scale services, as comput-
ing platforms like MapReduce/Hadoop permit for data mining
purposes, or Cassandra and alike for distributed databases.

Services can also be classified, depending on how load is ser-
viced, into workload-conservative and non-conservative. In the

former, demands cannot be lost but delayed, as occurs with sim-
ulations, backups or an antivirus scans. In the latter, unsatisfied
loads are lost. These include streaming, web, real-time collab-
oration systems. As a first approximation, our simulation study
considers always-on and time-scoped services but only of the
workload non-conservative type.

6.1. Measuring service performance

IT services may consist of several components, each con-
ducting a distinct task. Deriving a generic metric that quantifies
the performance exhibited by one such component is hard, and
so is one that reflects that by a service as a whole. Indeed, the
assessment performance in virtualized environments is an ac-
tive area of research [39]. Several functions P may be used as
performance scores. Next, we discuss the rationale behind the
one we chose, which is suitable for workload non-conservative
services and balances generality and simplicity. Recall that the
purpose is not quantifying application performance in absolute
terms but rather comparatively, to see the effect of adjusting
service resources according to calendars or EP requests.

When a DC provisions some component (of some class), it
allocates a certain amount of resources (e.g. disk space, mem-
ory, and a certain share of a CPU/core in VMs) which, apart
from enabling the service, guarantee that some performance in-
dicators fulfill those dictated by SLAs (e.g. the min vectors of
calendars). For simplicity, suppose that a service is composed
of a single VM. The performance experienced by a service P
can be modeled as a function of three variables at each point in
time: 1) the amount of resources (of some kind) allocated to a
service a,, 2) the amount of such resources demanded d,, and
3) the quantity of such resources utilized u,,.

In these terms, and irrespective of the performance score P
employed, it is reasonable to accept that:

L. u, <d,, i.e. utilization cannot exceed demand.

II. If a service exactly utilizes what it requires, u, = d,, then
performance P must be highest (e.g.1 or 100%) and mono-
tonically decrease as u, deviates from d,,.

III. In case the system provides resource allocation guarantees:

1. If the demand does not exceed the allocation (d,, <
a), all the demanded resources are granted (u,
dy,), implying P = 1.

2. If it does, at least the resources allocated are granted;
and more in case spare resources exist and the system
allows them to be borrowed (u,, > a,).

The above considerations mean that, under resource guaran-
tees, in the worst case, u, = min (an,d,,) and Plg,<,, = 1, re-
gardless of how P is defined. A familiy of functions satisfying
the above conditions is P;,(uy, d,) = (Z—:)“, Va > 1, as

Pty = (RG] = min(1.(2))

. . a .
is 1 for d,, < a, and, otherwise, decreases as (fT") , with «
n

governing the rate of decay as demands surpass guaranteed re-
sources (or u, deviate from d,,). In our simulation study we take



a = 1, as then P* represents a measure of relative throughput.

We also compute the average performance of a service running

over S slots as P* = + 3'°_| P:. In this regard, note that we can
: D 1 1

write P = 3( 3 14 3 (@/d)") = 5( T 1) = B where

< dy>ay dy<ay
B is the fraction of time where d,, < a,,. This has an important

implication in our context. Whether services are sensitive or
not to resource exhaustion (value of @), if calendars accurately
reflect service loads (i.e. d,) or the DC can quickly scale re-
sources (a,), service degradation may be small on the average,
while achieving energy savings and lowering prices.

7. Simulation environment

Several DC/cloud simulators exist in the literature, which fo-
cus on distinct aspects of DC scenarios. CloudSim [40] is ori-
ented to the dimensioning and modelling of cloud environments
(and federations) and the evaluation of resource provisioning
algorithms. DCWorms [41] is a recent tool able to compute
the performance and energy consumption of DCs using diverse
consumption models and workloads. It can be used also for
the thermal optimization of the physical location of the equip-
ment in the DC room. GreenCloud [42] is an extension to the
ns-2 simulator and models accurately the DC’s network traffic
patterns. Although all of the aforementioned tools are able to
calculate the power consumption of a DC, none of them fitted
our needs (or were difficult to extend) regarding the key aspects
of our approach: the calendars, the treatment of EP requests,
elasticity in the resource allocation, and the economic costs in-
volved. Thus, to evaluate the feasibility of our proposal, we
developed our own simulator of the DC-EP ecosystem.

7.1. Our simulator: inputs, outputs and internal behaviour

Our simulator represents a DC by a collection of physical
servers and simulates the execution of IT services placing some
workload on them. Workload varies in two dimensions. First,
the number of VM instances changes over time: there is a sub-
strate of some number of always-on VMs (which may repre-
sent TaaS-type services or entire physical servers), plus a vari-
able number of time-scoped ones, of distinct durations arriving
spread in time. Second, the CPU demand placed by each at ev-
ery time slot (i.e. our d, in §6.1) varies according to some pat-
tern. Slot durations are configurable. To emulate GreenSLAs
and calendars, a file specifies, for each IT service, the min/max
performance levels required at every slot, in regular regime (RC
calendar) or energy-saving (ESC calendar), to apply for some
time when a DC accepts to cut its consumption on an EP re-
quest. When that occurs, the tool can also simulate the effect of
delaying tasks (e.g. the execution of backups or antiviruses) or
the start of VMs, as additional measures.

Calendars’ min/max values correspond to consolidation ra-
tios Cg. Thus, a minCg = 4 (of a certain server type) means
that a VM should get 4% of a core; i.e. it should be granted
a, = 25% of its capacity. The simulator employs these val-
ues to assign services to servers (as discussed next) and thus
determine: the overall number of servers required, a perfor-
mance score for each service at each slot (considering d,, and

the utilization u, actually observed after the allocation), the
overall CPU load of each server, its energy expenditure, and
the energy apportioned to each service. To that end, the sim-
ulator models servers’ power-utilization curves as per (1), and
computes servers’ power/energy expenditures per slot, W, from
their overall utilizations (equal to the sum of the u, of the ser-
vices hosted). Similarly, the energy spent by a service is derived
from the u,, as discussed in §5.6.

To be as realistic as possible, server’s parameters (W,
Whitax and W4, and number of cores) were chosen from data in
[9] for several platforms. In particular, the three types of servers
used in the simulations were IBM x3250 M3, HP ProLiant
DL360, and Dell PowerEdge R720. To account for other energy
expenditures (e.g. cooling, network) we assumed that these
spent power proportionally to servers, according to PUE=2.
Note that this has no effect for comparison purposes.

The simulator underwent an extensive validation and tuning
phase where its output was contrasted against the power/energy
consumption measured in two DC testbeds with real servers and
realistic load patterns. This revealed that the simulator can ac-
curately reproduce the results found in real equipment.

7.2. Simulating service-to-server assignment

The simulator implements several strategies regarding VM
placement for comparison purposes. As said, calendars’
min/max values refer to consolidation ratios, Cg. From the Cg
values of each VM, the simulator assigns VMs to servers by
ordering C in ascending order and assigning them to the first
server they fit in. This first-fit approximation to the bin-packing
problem is not optimal and may require more servers than those
strictly needed. However, it is easily implemented and known
to require a number of servers below twice the number of the
optimal case [43]. As the same method is used with and without
our proposal, we expect this to hardly influence the comparison.

7.3. Simulating elasticity

To simulate elasticity (i.e. the ability of a DC to adapt re-
sources according to services’ demands), the simulator pro-
ceeds as follows. Note that, while in our discussion in §6.1,
we spoke of demands d,, (e.g. CPU cycles), these may not be
measurable metrics, particularly in workload non-conservative
services. Instead, a DC may be able to monitor only the extent
to which resources are utilized (u,,) at each slot. Thus, our sim-
ulator tries to scale VM’s Cg according to their observed CPU
utilization levels u,. However, since the burstiness of u, sam-
ples may exhibit high variations from slot to slot, we compute
a moving average of each service utilization as i, = %
to filter out high frequency components. The smoothness (and
reactivity) of this average is controlled by W, which defaults to
10 slots. Moreover, in practice, migrating/consolidating VMs
very frequently may impose high penalties and is thus unreal-
istic. To account for this, the simulator is forbidden to adapt a
VM'’s Cg more frequently than every K slots (e.g. 30 minutes).

Given these considerations, elasticity is implemented by
comparing services’ i, as follows. Recall that there is a 1-to-
1 correspondence between consolidation factors Cg and shares



U of CPU cores (U = CLR) allocated to VMs. Thus, we keep
a vector of feasible Cg’s and the corresponding vector of core
shares or levels U = (Uy, U, U;..Uy), where the Cg vary at a
granularity of 0.2 (i.e. 1, 1.2, 1.4, 1.6, etc.) and the U; are in
descending order. Let j be the index of the current level. If
i, 2 0.9U;, we promote the service to level U;_; (higher share;
lower Cg). If 1, < 0.8U,;, we demote it to Uj,; and thus a
larger Cg. If neither occur, the service retains its Cg.

Note that the above defines a hysteresis cycle and that we
enforce such adaptation to respect the constraint that, at each
slot n, minCg(n) < Cgr(n) < maxCg(n), as dictated by the RS
and ESC calendars.

8. Experimental results

Next, we discuss some of the results obtained with our simu-
lator. We start by discussing the setups and strategies simulated
for comparison purposes.

8.1. Profiles, calendars and workloads

We considered two different profiles in our simulations. The
first, P1, was derived from a real trace captured from a subset
of customers of a commercial DC, corresponding to on-demand
VM requests as typically offered by cloud IaaS services. Orig-
inally, the data corresponds to a 48 hour period (including a
working day and a Saturday), during which the request time,
the duration and the size of the VMs (small VM = 1 VCPU,
medium VM = 2 VCPUs) were measured. The peak values
were 112 simultaneous VM instances and 168 VCPUs. We ex-
tended the original data to a week by replicating the patterns
of working days and weekends. We also artificially added a
base of 200 always-on small VMs to simulate IaaS services®.
A second workload profile, P2, was produced by randomly per-
muting the start time and duration of the VMs in P1, to study
the influence of the distribution of the VM arrival time. Each
IT service in these profiles obeys the calendars in table 8.1.

Mo.-Sat. (9:00 AM - 21:00 PM) | otherwise

(busy hours) non-busy

RC 1<Cr<?2 1<Cr<4
ESC 3<Cr<6 3<Cr<6

Table 1: Performance levels defined in the calendars

At each slot, every VM demands a certain computational
power, according to the following workloads. All of them refer
to the CPU capacity of a single core: W1) 50% load plus two si-
nusoids with frequencies of 60 and 10 timeslots (minutes), with
amplitudes of 30% and 20% respectively, and uniformly dis-
tributed phases (to avoid synchronization effects); W2) same as
W1 during busy periods, but equal to 0.6xW1 during non-busy
periods; and W3) uniform random demand in the range 25%-
100% per slot, factored by 0.6 during non-busy periods.

4 Although the total volume is not representative of a real-life DC, the key
point is to capture the dynamics of the VM arrival. The traces can be scaled to
higher volumes.
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The energy rate r was considered constant throughout,
whether the DC employed the RS or the ESC calendar.

8.2. Summary of results and their discussion

Figure 3 shows the evolution of the power consumed by our
simulated DC during 7 days (measured at 1 minute slots) in
several cases, all under profile P1 and workload W1. Case Cy =
1 corresponds to the case where each VM was assigned to 1
core throughout. Consistently, power consumption is greatest
in this case. Case ideal corresponds to a fictitious case where
the DC exactly knew the amount of CPU power demanded by
VM and could perfectly assign VMs to servers, freely at every
slot. The power curve is lower in this case and it is the ideal as
the scheme guarantees that all services’ demands are coursed
and thus a performance score of 100% —as shown by the bottom
plot— at the minimum energy expenditure.

Curve minRC corresponds to assigning VMs to servers such
that their minimum performance, as per the RC calendars, is
guaranteed. In that case, no elasticity is attempted. Thus, the
energy savings are greatest, but performance highly degraded.
Case elastic is the one that would be obtained with elasticity,
employing the hysteresis-based adaptation of §7.3 according to
utilizations i, and the limit of K slots regarding the frequency
of Cg adjustments, but disregarding the calendar bounds. Case
EEACD corresponds to the power consumed under the scheme
that we propose; that is, when the DC adjusts VM’s Cy as in
the previous case, but respecting the calendar bounds in table
8.1. As can be seen, EEACD achieves a reduction in the power
consumption comparable to that of the ideal case and an average
performance score around 90%.

The shaded interval of time represents a 6-hour period (start-
ing on Fri. 2:00 PM) where the DC switched to ESC calendars
upon a request by its EP to reduce energy consumption. With-
out elasticity (min ESC), the DC achieved maximum power
reduction at the expense of a large performance degradation.
Case EEACD corresponds to our scheme where elasticity was
employed but according to the ESC calendar. Note that, at the
end of the shaded region, the power exhibits a peak. This is
because, as an additional measure, we delayed the starting exe-
cution time of VMs arriving during the EP request window.

Figure 4 shows the results for the case when CPU demand is
reduced by a factor 0.6 during non-busy hours (i.e. workload
W2). The result illustrates that if the calendars are well chosen
(in that they adapt to demands) then similar power reductions
may be achieved while keeping high performance scores.

Figure 5 quantifies the energy saving and performance degra-
dation, relative to the reference case Cr=1 over the whole
week and only during the EP request interval, with each of the
schemes. The figures show that the strategies that save more
energy degrade the performance excessively, and vice-versa,
while the EEACD approach reaches a good trade-off among
both. Notice that the savings with EEACD are higher than with
the ideal case, because in the former, the system response is not
instantaneous nor perfect, due to the adaptation delay and the
inaccuracy of the moving average estimator of the utilization.

Note that attending an EP request greatly reduces the energy
spent during the requested interval, but has a minimal effect
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Figure 3: Top: Energy consumption of the DC for different power management
strategies, with profile P1 and workload W1. Bottom: Mean relative perfor-
mance of the IT Services.
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Figure 4: Top: Energy consumption of the DC for different power management
strategies, with profile P1 and workload W2. Bottom: Mean relative perfor-
mance of the IT Services.

on the weekly consumption. An important observation is that
energy reduction outweighs the performance degradation. For
instance, a 30% weekly energy reduction is achieved (top plot),
at a mean performance degradation of 5% (bottom).

With workload W2, energy savings can be superior over the
whole week as well as during the EP requests, as the demands
are lower and follow the calendars more closely. Consistently,
the performance score is also better.

Figure 6 quantifies the influence of workload patterns on the
energy savings and the performance of services. We compare
here the periodical (P1) and random (P2) arrival profiles (which
have the same total amount of services, but distributed differ-
ently along the week) when combined with the sinusoidal (W2)
and uniform (W3) workloads, both adjusted to a maximum 60%
load during non-busy periods. The main conclusion here is that
the service arrival pattern has a small influence, while the CPU
load is much more influential. Again, in all the cases, the en-
ergy reduction outweighs the performance degradation.
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Figure 5: Energy saving (top) and performance reduction (bottom) for profile
P1 and workloads W1 (left) and W2 (right).
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Figure 6: Energy saving (left) and performance reduction (right) for the com-
binations of profiles P1 and P2 and workloads W2 and W3.

We conducted experiments changing servers’ properties. In
many of the datasets we considered from [9], we saw that most
servers b = “;,/L ratios ranged around 0.2. The number of cores
affects the number of servers needed to satisfy the demands (as-
suming the same type of cores in all), as can be seen in Figure
7-top, which shows the number of servers required to course
VM workloads. Note that the performance does not depend on
servers’ power properties. While the specific energy savings
depend on the power curves considered, similar energy savings
(in relative terms) are observed in all cases. The results with
servers with 16 cores are slightly worse since the model con-
sidered was less energy proportional.

Figure 8 shows several things. The leftmost scatterplots show
how the CPU utilization achieved relates to that demanded,
for two services (VM1 and VM2). Each dot corresponds to a
(dy, u,) pair. VM1 is an always-on VM and thus has activity in
busy and non-busy hours. During busy hours, minCg = 2. Thus
it has 50% of a core guaranteed. When d,, > 50%, the utiliza-
tion depends on the availability of CPU cycles and the elasticity
of the scheme to adapt to the demand. Thus, u, < d,. A sim-
ilar effect is seen during non-busy hours, where minCg = 4.
VM2 is only active during busy hours, achieving u, = d, when
d, < 0.5. The plots in the middle show, at every slot, the price
per slot as a function of the CPU demanded. Prices are propor-
tional to the energy apportioned to the VM in each slot. For
clarity, we normalized them by Wm“’{ , which is the maximum
amount of energy that can be spé;"ftw%y a VM given assuming
that the active idle power W,,;, is also equally divided by the
number of cores. The relation is similar to that of the u,,d,
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Figure 7: Top: number of active servers during the week, for the arrival pattern
P1 and workload W2, for three models of servers with 4, 8 and 16 cores each.
Bottom: Energy saving (left) and performance reduction (right).
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Figure 8: Scatterplots showing the relations among services utilization u,, de-
mands d,, and prices, per slot, for two sample services.

pairs, except for a fixed offset. This is confirmed by the right-
most plots, which, consistently, show a linear correlation be-
tween price and utilization. Thus, the scheme is fairer than in
the case that a fixed fee were employed. In this regard, note that
we do not depict the fixed fee f per slot. Its inclusion would
shift prices up by a constant offset. Obviously, if the fixed com-
ponents f overexceed the energy costs, variations in the latter
would not compensate the performance reduction. However,
we expect the case to be the opposite.

Lastly, fig.9 shows, in the EEACD strategy, how prices and
utilization relate on the average for each IT Service, in both
P1 and P2 profiles, workloads W2 and W3. Note that, while
the demand pattern determines the ranges on both axes, a linear
correlation is observed.

9. Summary and conclusions

Advances in server and virtualization technologies, along
with efficient workload consolidation methods, have greatly
contributed to the reduction of the energy consumed by DCs. A
step ahead toward a higher energy efficiency and carbon foot-
print reduction can consist, as recent work suggests, in a con-
certed approach where DCs adapt their power demands accord-
ing to a demand-response scheme with their EPs and the per-
formance of IT services is modulated, in a customer-consent
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Figure 9: Price per IT service as a function of its average utilization.

manner, according to workload fluctuations, time of day, and
the energy EPs can supply.

In this paper we argue that, while such a paradigm seems
promising and the benefits to EPs are clear (as it can help EPs
mitigate demand peaks and avoid shortages without resorting
to non-renewable sources, or fit renewable ones in the energy
mix), it will hardly be adopted by DCs or be well-perceived
by customers unless some evidence exists that their economic
interests are preserved. To overcome this, we propose a ser-
vice model and pricing scheme that can be attractive for all the
parties and is technically realizable given today’s monitoring
capabilities and the advances of elastic computing.

The idea behind our service type and pricing scheme is sim-
ple: dynamically adjust resources (thus power expenditure) de-
pending to services’ needs (load), performance bounds (calen-
dars) and the availability of energy; and let customers pay ac-
cording to the energy spent. By linking energy costs with ser-
vice tariffs, customers may see their bills lowered while expe-
riencing similar performance due to the elasticity. On the other
hand, DCs can retain their profit, better plan their infrastructure
(due to the calendars), reduce financial risks, and even enlarge
their market share (given the advantages from the customer per-
spective), while still striving for energy efficiency and a tighter
collaboration with EPs in order to offer attractive prices and
stay competitive. Thus, the interests of all parties are protected
while achieving higher energy efficiency.

Our simulation study suggests that customers may enjoy a
performance similar to that in case they were given strict re-
source guarantees, but at a lower cost and overall power expen-
diture. Although the simulated scenario focuses on a cloud-
computing environment and the performance score refers to
CPU utilization (when other factors may influence), we note
that the proposed service type is itself independent of the type
of applications and energy-saving strategies used by DCs. Nat-



urally, it may not suit all types of applications, and its utility
depend on the effectiveness of energy-saving measures. Nev-
ertheless, we envisage that future advances in elastic comput-
ing will allow for a rapid and accurate provisioning of appli-
cations in multiple dimensions (CPU, memory, bandwidth), in
which case the performance experienced by applications may
be smoothly adapted, and our proposed service type suit a wide
range of IT services.
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