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Abstract

Available throughput performance studies for mobile ad hoc networks (MA-
NETs) suffer from two major limitations: they mainly focus on the scaling
law study of throughput, while the exact throughput of such networks re-
mains largely unknown; they usually consider the infinite buffer scenarios,
which are not applicable to the practical networks with limited buffer. As
a step to address these limitations, this paper develops a general frame-
work for the exact throughput capacity study of a class of buffer-limited
MANETs with the two-hop relay. We first provide analysis to reveal how
the throughput capacity of such a MANET is determined by its relay-buffer
blocking probability (RBP). Based on the Embedded Markov Chain Theory
and Queuing Theory, a novel theoretical framework is then developed to en-
able the RBP and closed-form expression for exact throughput capacity to
be derived. We further conduct case studies under two typical transmission
scheduling schemes to illustrate the applicability of our framework and to
explore the corresponding capacity optimization as well as capacity scaling
law. Finally, extensive simulation and numerical results are provided to vali-
date the efficiency of our framework and to show the impacts brought by the
buffer constraint.
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1. Introduction

The mobile ad hoc network (MANET) represents a kind of self-organizing
network architecture, which consists of mobile nodes communicating with
each other without centralized infrastructure and management [1]. Since
MANET can be deployed and reconfigured rapidly at very low cost, it serves
as an appealing candidate for many critical applications, such as disaster
relief, battlefield communication and emergency rescue [2]. To support the
design and applications of MANETs, the studies on their fundamental per-
formance have been extensively reported. Despite much research activity,
however, the lack of a general capacity theory for MANETs is still a long
standing open problem and becomes an obstacle on the development and
commercialization of such networks [3, 4].

Since the pioneer work of Gupta and Kumar [5], extensive scaling law
(i.e. order sense) results on the capacity of ad hoc networks have been re-
ported in literature, which mainly focus on the study of asymptotic per node
throughput behavior as the number of network nodes increases. The results
in [5] indicate that for a static ad hoc network, its per node throughput di-
minishes to zero as the number of network nodes tends to infinity. Later,
Grossglauser and Tse demonstrated in [6] that with the help of node mo-
bility, a Θ(1)1 constant per node throughput is achievable in a MANET.
Inspired by the seminar work of [6], lots of studies have been devoted to the
analysis on the scaling laws of MANETs throughput under various mobility
models [8, 9, 10, 11, 12], and under various network scenarios [13, 14, 15, 16].
For a survey on the scaling law results of MANETs throughput, readers are
referred to [17] and references therein. Although scaling laws are helpful to
grasp the general trend of MANET performance, they provide a little insight
into its real achievable throughput. In practice, however, a thorough under-
standing on the real achievable throughput of MANETs is of great concern
for network engineers, since it serves as an instruction guideline for network
design and optimization.

1Please kindly refer to [7] for the notations of order results.

2



By now, some initial and helpful results are available on the exact through-
put capacity study of MANETs, i.e. to derive the exact expressions for the
throughput capacity of such networks. For the regular Manhattan and ring
networks, Mergen and Tong [18] derived their throughput capacity in closed-
form. Neely et al. [19] explored the exact capacity of cell-partitioned MA-
NETs, and revealed a fundamental tradeoff between the throughput capacity
and packet delay in such networks. Following this line, Wang et al. [20] ex-
tended the tradeoff results in [19] to a multicast scenario. Gao et al. [21]
considered a more general network scenario with a general setting of trans-
mission range and derived its capacity under the group-based scheduling.
Liu et al. further explored the exact throughput capacity of MANETs with
packet redundancy [22] and power control [23]. Recently, Chen et al. studied
the exact throughput capacity of MANETs with directional antennas [24]
and explored the efficient approximations for the exact throughput capacity
of MANETs with ALOHA protocol [25].

It is notable, however, that one common limitation of all these studies is
that to make their analysis tractable, they all assume the relay buffer of a
node, which is used for temporarily storing packets of other nodes, has an
infinite buffer size. This assumption does not hold for a practical MANET,
where the buffer size of a mobile node is usually limited due to both its storage
space limitation and computing capability limitation. Thus, for the practical
capacity study of MANETs, the constraint on buffer size should be carefully
addressed. Notice that the throughput capacity modeling with practical
limited-buffer constraint still remains a technical challenge. This is mainly
due to the lack of a general theoretical framework to efficiently characterize
the highly complicated buffer occupancy behaviors in such networks.

As a step to address above limitations, this paper studies the exact
throughput capacity for a class of MANETs, where each node is associated
with a shared and limited relay buffer to temporarily store the packets of
other nodes [26, 27] and the flexible two-hop relay routing scheme is adopted
for packet forwarding. The two-hop reply serves as an important routing
protocol for practical MANETs [28], since it is simple and can be imple-
mented easily in a distributed fashion. Also, the two-hop reply is efficient
in the sense that it has the capability of achieving the throughput capac-
ity under many important MANET scenarios [19, 21, 25]. For this class of
buffer-limited MANETs, as a thorough extension of our previous work [29],
this paper develops a general theoretical framework to enable the analytical
study on their exact throughput capacity to be conducted.
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The main contributions are summarized as follows:

• For one buffer-limited MANET concerned in this paper, we first pro-
vide theoretical analysis to reveal the inherent relationship between its
throughput capacity and its relay buffer blocking probability (RBP).

• For the analysis of RBP, a novel theoretical framework based on the
Embedded Markov Chain Theory is then developed to capture the
complicated queuing process in a relay buffer. With the help of the
framework and also the Queueing Theory, the RBP under any exoge-
nous input rate and the closed-form expression for exact throughput
capacity are then derived.

• Case studies are further provided under two typical transmission schedul-
ing schemes to illustrate how our theoretical framework can be applied
for exact throughput capacity analysis under one given transmission
scheduling scheme. The corresponding capacity optimization issue and
scaling law performance are also explored.

• Finally, extensive simulation and numerical results are provided to
demonstrate the efficiency of our theoretical framework on capturing
the throughput behavior of a buffer-limited MANET and to illustrate
the impacts brought by the buffer constraint.

The remainder of this paper is outlined as follows. Section 2 introduces
the system models, routing scheme and definitions involved in this study. We
present the overall framework for throughput capacity analysis in Section 3,
and then develop an Embedded Markov Chain-based framework in Section 4
for the evaluation of RBP and exact throughput capacity. Section 5 deals
with the case studies, capacity optimization issue and scaling law results, and
Section 6 provides the simulation and numerical results. Finally, we provide
the related work in Section 7 and conclude this paper in Section 8.

2. Preliminaries

This section presents the system models, buffer constraint, routing scheme
and basic definitions involved in this study. Table 1 summarizes the main
notations.
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Table 1: Main notations

Symbol Quantity

n Number of nodes

m The network is partitioned into m×m cells

B Relay buffer size

λ Exogenous packet arrival rate

pb(λ) Relay-buffer blocking probability

Tc Throughput capacity

α The probability that a node selects to execute S-R
transmission when it gets access to the wireless channel and
cannot execute the S-D transmission

2.1. System Models

As illustrated in Fig. 1 that we consider a time-slotted and cell-partitioned
network with n mobile nodes and m×m non-overlapping equal cells, where
the nodes roam from cell to cell over the network according to the indepen-
dent and identically distributed (i.i.d) mobility model [11, 19], and during a
time slot the total amount of data that can be transmitted from a node to
another is fixed and normalized to one packet. With the i.i.d mobility model,
each node independently selects a cell among all cells with equal probability
at the beginning of each time slot and then stays in it during this time slot,
so the location of each node is i.i.d and uniformly distributed over all cells in
each time slot, and between time slots the distributions of nodes’ locations
are independent.

We adopt the i.i.d. mobility model here mainly due to the following rea-
sons. First, the mathematical tractability of this model allows us to gain im-
portant insights into the structure of throughput capacity analysis. Second,
as illustrated in [19] and to be demonstrated in Section 6.2, the throughput
capacity result derived under this model can be applied to other typical mo-
bility models like the random walk model. Third, the analysis under this
model provides a meaningful theoretical performance result in the limit of
infinite mobility [19]. Notice that the mobility model determines the distribu-
tions of nodes’ locations and thus the opportunity that nodes encounter with
each other, so it will affect the throughput capacity that can be achieved, as
to be shown in Section 4 and Section 5.

We consider the permutation traffic model widely used in previous liter-
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Figure 1: System models.

ature [12], where n distinct unicast traffic flows exist in the network, each
node is the source of one flow and meanwhile the destination of another flow.
We assume that the exogenous (self-generated) packet arrival at each node
follows the i.i.d Bernoulli process with mean rate λ packets/slot.

2.2. Node Model and Buffer Constraint

As illustrated in Fig. 1 that we consider a practical node model similar
to that of previous studies on buffer-limited wireless networks [26, 27], where
each node maintains two independent queues, one local queue with unlimited
buffer size for storing the exogenous packets of its own flow and one shared
relay queue with fixed size B for storing the relay packets coming from all
other n− 2 traffic flows. The local queue follows the FIFO (first-in-first-out)
discipline. The relay queue follows the quasi-FIFO (Q-FIFO) discipline, i.e.,
the packets destined to the same node in the relay queue follow the FIFO
discipline.

We adopt this node model here mainly due to the following reasons. First,
in a practical network, each node usually reserves a much larger buffer space
for storing its exogenous packets rather than the relay packets. Second, even
though the local buffer space is not enough when bursty traffic comes, the
upper layer (like transport layer) can execute congestion control to avoid the
loss of local packets. Third, as illustrated in Fig. 1 that the local queue serves
as an ingress for exogenous packets entering a MANET, so it is actually
an external module of the MANET and its buffer size does not affect the
maximal achievable throughput the MANET can support. Finally, the relay
queue serves as an important internal module of a MANET for storing and
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Figure 2: Illustration of the 2HR-α routing scheme.

forwarding relay packets, so its buffer size has a critical impact on the network
throughput performance.

2.3. Routing Scheme

To support the efficient operation of buffer-limited MANETs, we extend
the Two Hop Relay (2HR) algorithm [6] and consider a more flexible Two Hop
Relay scheme with parameter α (2HR-α for short), which incorporates both
a control parameter α for transmission control and a handshaking mechanism
for avoiding unnecessary packet loss.

Regarding the 2HR scheme, for a tagged flow (S,D) with source node S
and destination node D, when S gets access to the wireless channel in a time
slot, it will transmit a packet directly to D (S-D transmission) if D is within
its transmission range; otherwise with probability 0.5, S selects to transmit a
self-generated packet to a relay node (S-R transmission), or deliver a packet
of other nodes to the corresponding destination (R-D transmission).

Notice that under the buffer-limited scenario, when node S executes the
S-R transmission while the relay queue of the receiver is full, then the trans-
mission will not be successful and the transmitted packet will be lost. To
facilitate the operation of buffer-limited MANETs and improve the through-
put performance, we adopt here the 2HR-α scheme, which is an extension of
the 2HR scheme in the following two aspects. First, as illustrated in Fig. 2
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that we introduce a parameter α to flexibly control the probability that S
selects to conduct S-R transmission, i.e., when S gets access to the wireless
channel and nodeD is not within its transmission range, S selects to transmit
a self-generated packet to a relay with probability α, and deliver a packet of
other nodes to the corresponding destination with probability 1−α. Thus, α
represents the level of selfishness of a node, from 0 (fully selfless) to 1 (fully
selfish), and it is expected that α should be set appropriately according to
the network settings to achieve the optimal throughput performance. Sec-
ond, to avoid the unnecessary packet loss in S-R transmission, the 2HR-α
scheme further adopts a handshake mechanism to confirm the relay-buffer
occupancy state of a receiver, where the S-R transmission will be conducted
only when the relay queue of the intended receiver is not full.

2.4. Basic Definitions

Relay-buffer Blocking Probability (RBP): For a buffer-limited MANET
with the 2HR-α scheme and a given exogenous packet arrival rate λ to each
node, the relay-buffer blocking probability pb(λ) of a node is defined as the
probability that the relay queue of this node is full.

Throughput: The throughput of a flow is defined as the time average of
number of packets that can be delivered from its source to its destination.

Throughput Capacity and Optimal Throughput Capacity: For a
buffer-limited MANET with the 2HR-α scheme, its throughput capacity Tc

is defined as the maximal achievable per-flow throughput the network can
support, independent of the arrival rate. The optimal throughput capacity T ∗

c

is defined as the maximum value of throughput capacity Tc optimized over
the control parameter α, i.e., T ∗

c = max
α∈[0,1]

Tc.

3. Throughput Capacity Analysis

For a buffer-limited MANET with the 2HR-α scheme, we denote by psd,
psr and prd the probabilities that in a time slot a node gets access to the
wireless channel and selects to execute S-D, S-R and R-D transmission re-
spectively. With the help of these basic probabilities, we can establish the
following theorem regarding the throughput capacity of the network.

Theorem 1. For a buffer-limited MANET with the 2HR-α scheme, its through-
put capacity Tc is determined as

Tc = psd + psr(1− pb(λ̃)) packets/slot, (1)
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where λ̃ is the unique solution of the following equation

λ = psd + psr(1− pb(λ)). (2)

Proof. To prove the Theorem, we first demonstrate that there exists an
unique solution λ̃ for the equation (2), and then show that the through-
put is λ when packet arrival rate λ < λ̃, but the throughput is always λ̃
when λ ≥ λ̃.

From our system models, it is clear that each flow experiences the same
service process without priority, so the queuing process of each flow is iden-
tical and we can focus on a tagged flow in our analysis. Under the 2HR-α
routing scheme, the delivering process of a packet from its source to destina-
tion involves at most two stages. The first stage is the queuing process at its
source node, while the second stage is the queuing process at one relay node
if the packet is not directly delivered to its destination.

Concerning the first stage queuing process, the local queue there can be
modeled as a Bernoulli/Bernoulli queue with arrival rate λ and service rate
µs(λ) determined as

µs(λ) = psd + psr (1− pb(λ)) . (3)

We can easily see that: 1) when λ = 0, we have pb(0) = 0, so µs(0) =
psd+ psr > λ; 2) as λ increases, pb(λ) tends to increase, leading to a decrease
in µs(λ); 3) when λ = psd + psr, we have pb(λ) > 0, µs(λ) < λ. Based on
these properties of service rate µs(λ), we know that there exists an unique
0 < λ̃ < psd + psr such that λ̃ = µs(λ̃).

Considering a time interval [0, t], we denote by m0(t) and m1(t) the num-
ber of packets being buffered in all local queues and all relay queues at time
slot t, respectively. Since the total number of exogenous arrival packets dur-
ing this interval is nλt, then the throughput Th is determined as

Th = lim
t→∞

nλt−m0(t)−m1(t)

n · t . (4)

Since the relay-buffer of each node has a fixed size B, then m1(t)
n

≤ B and

lim
t→∞

m1(t)
n·t

= 0.

For the case λ < λ̃, we denote by Ls the queue length of the local queue,
then the expectation E{Ls} of Ls is given by [30]

E{Ls} =
λ− λ2

µs(λ)− λ
. (5)
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Since when λ < λ̃, we have µs(λ) > λ, so the queue length E{Ls} is bounded

in this case. Thus, lim
t→∞

m0(t)
n·t

= 0 and Th = λ.

When λ ≥ λ̃, then µs(λ) < λ, leading to an increasing number of packets
buffered in the local queues. By applying the law of large numbers, we have
that as t → ∞

m0(t)

t
a.s.→ n(λ− µs(λ̃)).

Based on (4), we then have Th = λ̃ when λ ≥ λ̃.
Thus, the throughput capacity Tc of the concerned network is determined

as
Tc = µs(λ̃) = psd + psr

(

1− pb(λ̃)
)

.

Remark 1. Notice that for the heterogeneous network scenario, the network
level capacity region is defined by a vector Λ = {λ1, λ2, · · · , λn}, where λi

denotes the maximum packet arrival rate of node i that the network can
stably support. For the homogeneous network scenario considered in this
paper, the behavior of each node is the same, so we have λ1 = λ2 = · · · = λn.
Thus, the network level capacity here reduces to the per node capacity as
expressed in (1).

4. Embedded Markov Chain Framework

The result in Theorem 1 indicates that for the throughput capacity anal-
ysis of the concerned MANET, we need to determine RBP pb(λ) in such net-
work. To address this issue, in this section we first utilize a two-dimensional
Markov Chain (MC) to depict the complicated state transitions of a relay
queue, then convert the two-dimensional MC into a new Embedded Markov
Chain (EMC) to obtain its one-step transition probability, such that a com-
plete theoretical framework is developed to enable the RBP and thus the
exact throughput capacity of the concerned MANET to be derived.

4.1. State Machine of Relay Queue

Without loss of generality, we focus on the relay queue of a general node
and use a two-tuple (i, k) to denote the state that the relay queue contains i
packets and these packets are destined for k distinct destination nodes, here
0 ≤ i ≤ B, k = 0 when i = 0 and 1 ≤ k ≤ i when i > 0. As illustrated in

10
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(b) State machine of a relay queue.

Figure 3: Transitions and state machine of a relay queue.

Fig. 3a that when the relay queue is in state (i, k) at current time slot, only
one of the following transitions may happen in the next time slot:

• Case 1: transition from (i, k) to (i + 1, k), i.e., a packet enters the
relay queue and this packet is destined for a destination same as one
of packet(s) already in the queue.

• Case 2: transition from (i, k) to (i + 1, k + 1), i.e., a packet enters
the relay queue and the destination of this packet is different from all
packet(s) in the queue.

• Case 3: transition from (i, k) to (i− 1, k), i.e., a packet from the relay
queue is delivered to its destination, but there still exist other packet(s)
in the relay queue destined for this destination.

11
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Figure 4: State machine of the EMC.

• Case 4: transition from (i, k) to (i − 1, k − 1), i.e., a packet from the
relay queue is delivered to its destination, and none of the remaining
packet(s) in the relay queue is destined for this destination.

• Case 5: transition from (i, k) to (i, k), i.e., no packet entering into or
departing from the relay queue.

Based on above transitions, the state machine of the relay queue can then
be modeled as a discrete-time finite-state Markov chain illustrated in Fig. 3b,
where Ωi denotes the set of states (i, k), k ≤ i.

4.2. Markov Chain Collapsing

It is easy to see that the total number of states of the Markov chain in
Fig. 3b is 1 + (1+B)B

2
, so the Markov chain will become too complicated to

be solved when B is big. Notice also that for the analysis of RBP pb(λ),
the limiting distribution on each set Ωi rather than the limiting distribution
on each state (i, k) is of concern. For these reasons, we apply the novel
“Markov Chain Collapsing” [31] technique to convert the Markov chain in
Fig. 3b into a new EMC illustrated in Fig. 4, where Ωi denotes the state that
the relay queue contains i packets and pΩi,Ωj

denotes the one-step transition
probability from Ωi to Ωj .

With the help of the EMC model in Fig. 4 and also the Markov Chain
model in Fig. 3b, we can establish the following lemmas regarding the eval-
uation of pΩi,Ωj

and also the limiting distribution of the EMC.

Lemma 1. The one-step transition probability pΩi,Ωj
of the EMC in Fig. 4

12



is determined as

pΩi,Ωj
=







ρs(λ) · psr, j = i+ 1 ≤ B

i

n− 3 + i
· prd, j = i− 1 ≥ 0

1− pΩi,Ωi+1
− pΩi,Ωi−1

, j = i

0, others

(6)

where ρs(λ) =
λ

psd+psr(1−pb(λ))
= λ

µs(λ)
.

Proof. See Appendix A for the proof.

Lemma 2. The limiting distribution Π = {π(Ω0), π(Ω1), · · · , π(ΩB)} of the
EMC exists and is unique, and it is given by

π(Ω0) =
1

∑B
i=0Ci · βi · ρs(λ)i

, (7)

π(Ωi) =
Ci · βi · ρs(λ)i

∑B
i=0Ci · βi · ρs(λ)i

, 0 < i ≤ B (8)

where Ci =
(
n−3+i

i

)
and β = psr

prd
= α

1−α
.

Proof. See Appendix B for the proof.

4.3. Derivation of pb(λ) and Tc

Based on above EMC-based framework, we now provide analysis on the
RBP pb(λ) and the exact throughput capacity Tc, as summarized in following
theorem.

Theorem 2. (Main result) For a concerned MANET with n mobile nodes,
where each node is allocated with a relay-buffer of fixed size B and the 2HR-α
scheme is adopted for packet delivery, its RBP is determined by the following
equation

pb(λ) =
CB · βB · ρs(λ)B
∑B

i=0Ci · βi · ρs(λ)i
, (9)

and its throughput capacity Tc is determined as

Tc = psd + psr

(

1− CB · βB

∑B
i=0Ci · βi

)

. (10)
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Proof. Notice that when the EMC is on state ΩB, the relay queue is full.
It indicates that RBP pb(λ) is just equal to the limiting distribution π(ΩB),
so (9) follows. Since ρs(λ) =

λ
psd+psr(1−pb(λ))

, equation (9) contains only one

unknown quantity pb(λ). By solving equation (9), we can then obtain the
RBP pb(λ) under any exogenous packet arrival rate λ.

From Theorem 1 we know that as λ approaches λ̃, ρs(λ) tends to 1.
Substituting ρs(λ̃) = 1 into (9), we have

pb(λ̃) =
CB · βB

∑B
i=0Ci · βi

. (11)

The formula (10) then follows by substituting (11) into (1).

Remark 2. It is notable that our EMC-based framework for throughput
capacity analysis is very general in the sense that it can be applied to other
network models (like the continuous network model [25]) and other mobility
models (like the random walk mobility model), as long as they lead to the
same steady distributions of the nodes’ locations as the i.i.d mobility model.

Based on Theorem 2, we have the following corollaries (see Appendix C
for the proofs).

Corollary 1. For a network with n ≥ 3, its throughput capacity Tc increases
as relay-buffer size B grows.

Corollary 2. With the setting of α = 0.5, i.e., each node executes S-R and
R-D transmission with equal probability, Tc is determined as

Tc = psd + psr
B

n− 2 +B
(12)

Corollary 3. When the relay-buffer size B tends to infinity, the throughput
capacity Tc is determined as

Tc|B→∞ =

{

psd + psr, α ≤ 0.5

psd + prd, α > 0.5
(13)
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5. Case Studies

The results in Theorem 2 indicate for the evaluation of throughput ca-
pacity of a MANET concerned in this paper, we need to determine the prob-
abilities psd and psr in the network, which are further related to the schemes
adopted for transmission scheduling. To demonstrate the applicability of our
Embedded Markov Chain-based framework for throughput capacity analysis,
this section provides case studies under two typical transmission scheduling
schemes, i.e., local transmission scheduling (LTS) and group-based trans-
mission scheduling (GTS). The related issues of capacity optimization and
scaling law performance will be also explored.

5.1. Throughput Capacity under LTS

We first provide analysis of throughput capacity under the LTS scheme
[19], where two nodes within the same cell can forward one packet during
a time slot, and nodes within different cells cannot communicate. Same as
[19], the node/cell density d is assumed to be O(1) (independent of n) and
without loss of generality, n is assumed to be even and source-destination
pairs are composed as: 1 ↔ 2, 3 ↔ 4, · · · , n− 1 ↔ n.

We denote by p0 and p1 the probabilities that there are at least two nodes
in a cell and there is at least one source-destination pair in a cell, respectively.
Based on the results of [19], we then have

p0 = 1−
(

1− 1

m2

)n

− n

m2

(

1− 1

m2

)n−1

, (14)

p1 = 1−
(

1− 1

m4

)n/2

. (15)

At a time slot, the total transmission opportunity in the network ism2 ·p0,
which is shared equally by all nodes, so we have

n · (psd + psr + prd) = m2 · p0. (16)

Similarly,
n · psd = m2 · p1. (17)

15



Combining with psr
prd

= α
1−α

, we have

psd =
1

d
p1, (18)

psr =
α

d
(p0 − p1), (19)

prd =
1− α

d
(p0 − p1). (20)

Substituting (18) and (19) into (10), we can see that the throughput
capacity under the LTS scheme is determined as

Tc =
1

d
p1 +

α

d
(p0 − p1)

(

1− CB · βB

∑B
i=0Ci · βi

)

. (21)

Remark 3. From Corollary 3 we can see that when α = 0.5 and B → ∞,
then (21) is reduced to the capacity result in [19], i.e., Tc =

p0+p1
2d

.

Regarding the optimal throughput capacity T ∗
c and the corresponding

optimal setting of α∗ under the LTS scheme, we have the following theorem.

Theorem 3. For a concerned MANET with the 2HR-α scheme and a fixed
relay-buffer size B, its optimal throughput capacity T ∗

c under the LTS scheme
is determined as

T ∗
c =

1

d
p1 +

p0 − p1
d(1 + γ∗)

h(γ∗)

h(γ∗) + CB
, (22)

and the corresponding optimal transmission ratio α∗ is given by α∗ = 1
1+γ∗

,
where

h(γ) =

B−1∑

i=0

Ci · γB−i, (23)

h′(γ) is the derivative of h(γ), and r∗ is determined by the following equation

h(γ∗)[h(γ∗) + CB ] = (1 + γ∗)CBh
′(γ∗). (24)

Proof. We define γ = 1−α
α

(i.e., α = 1
1+γ

, β = 1
γ
), and g(γ) = (1 +

γ)
(

1 + CB

h(γ)

)

. From (21) we can see that the optimal throughput capacity
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T ∗
c is determined as

T ∗
c = max

α∈[0,1]
Tc

=
1

d
p1 +

1

d
(p0 − p1) · max

α∈[0,1]

{

α

(

1− CB · βB

∑B
i=0Ci · βi

)}

=
1

d
p1 +

p0 − p1
d

1

min
γ≥0

g(γ)
. (25)

We can see that: 1) g(γ) is an Elementary Function [32], so it is continuous
and differentiable on the interval γ ∈ (0,∞); 2) lim

γ→0
g(γ) → ∞, lim

γ→∞
g(γ) →

∞ and g(γ) > 0. According to the Extreme Value Theorem [33], there must
exists 0 < γ∗ < ∞ such that 0 < g(γ∗) ≤ g(γ) for ∀γ ∈ (0,∞) and g′(γ∗) = 0,
so equation (24) follows. Then formula (22) follows by substituting γ∗ into
(25).

Based on Theorem 3 we have the following corollary.

Corollary 4. For any setting of n and B, α∗ < 0.5; when B → ∞,
α∗|B→∞ = 0.5 and T ∗

c |B→∞ = p0+p1
2d

.

Proof. See Appendix D for the proof.

With the help of exact expression of throughput capacity (21), the achiev-
able scaling law under the LTS scheme can be further explored, as shown in
the following corollary.

Corollary 5. When the number of nodes in the concerned MANET tends to
infinity, each node can achieve a throughput Tc(n) as

Tc(n) = Θ

(
B

n

)

. (26)

Proof. See Appendix E for the proof.

Remark 4. Notice that Corollary 5 is the first time to reveal an achievable
order sense (in Θ form) on per node throughput of a buffer-limited MANET,
not just an upper bound (in O form) provided in [26], and it indicates that as
n increases, the concerned MANET can still achieve a non-vanishing through-
put as long as its relay-buffer size B grows at least linearly with n.
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5.2. Throughput Capacity under GTS

We further conduct analysis on throughput capacity under the GTS
scheme [12, 21, 34]. With GTS scheme, all cells are divided into different
groups, where any two cells in the same group have a horizontal and vertical
distance of some multiple of ǫ cells. Thus, the MANET has ǫ2 groups and
each group contains J = ⌊m2/ǫ2⌋ cells. Each group becomes active every
ǫ2 time slots and a node in an active cell can transmit one packet to an-
other node within a horizontal and vertical distance of ν − 1 cells. Based
on the Protocol Model [5], to ensure that concurrent transmissions are not
interfering with each other, ǫ is determined as [21]

ǫ = min{⌈(1 + ∆)
√
2ν + ν⌉, m}. (27)

Considering a given time slot and a given active cell c, we denote by p3
the probability that there are at least one node within c and another node
within the transmission range of c, and denote by p4 the probability that
there are at least one source-destination pair within the transmission range
of c and for each of such pair(s), at least one of its two nodes is within c.
Based on the results of [21], we have

p3 =
1

m2n
[m2n − (m2 − 1)n − n(m2 − l)n−1], (28)

p4 =
1

m2n
[m2n − (m4 − 2l + 1)n/2], (29)

where l = (2ν − 1)2. Notice also that psd = J
n
p4, psr = αJ

n
(p3 − p4) and

prd =
(1−α)J

n
(p3−p4). By substituting these results into (10), the throughput

capacity under the GTS scheme is then determined as

Tc =
J

n
p4 +

αJ

n
(p3 − p4)

(

1− CB · βB

∑B
i=0Ci · βi

)

. (30)

We can see that when α = 0.5 and B → ∞, then (30) is reduced to the

capacity result in [21], i.e., Tc =
J(p3+p4)

2n
. Based on the proofs similar to that

of Theorem 3 and Corollary 5, we have the following corollary regarding the
optimal throughput capacity T ∗

c and scaling law under the GTS scheme.

Corollary 6. For a concerned MANET, its optimal throughput capacity T ∗
c

under the GTS scheme is determined as

T ∗
c =

J

n
p1 +

J(p3 − p4)

n(1 + γ∗)

h(γ∗)

h(γ∗) + CB
, (31)
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and the corresponding optimal transmission ratio α∗ is given by α∗ = 1
1+γ∗

,

where h(γ) and γ∗ are determined by (23) and (24), respectively. The order
of throughput capacity Tc(n) under the GTS scheme is determined as

Tc(n) = Θ

(
B

n

)

. (32)

6. Simulation Results and Discussions

In this section, we first provide the simulation results to validate our
theoretical framework for the throughput capacity analysis of buffer-limited
MANETs, and then apply our theoretical results to illustrate the performance
of such networks.

6.1. Simulation Setting

For the validation of our framework, a C++ simulator was developed
to simulate the packet delivery process in the concerned MANETs under
both LTS and GTS schemes [35]. In addition to the i.i.d mobility model,
the random walk model was also implemented in the simulator. Under the
random walk model, at the beginning of each time slot, every node indepen-
dently selects a cell among its current cell and its 8 adjacent cells with equal
probability 1/9, then stays in it until the end of this time slot [8].

Two network scenarios of (n = 72, m = 6, B = 5, α = 0.5) and (n =
200, m = 10, B = 8, α = 0.3) are considered in the simulation, where we set
ν = 1 and ∆ = 1 for the GTS scheme [36]. To simulate the throughput,
we focus on a specific node and count its received packets over a period of
2 × 108 time slots, and then calculate the averaged number of packets this
node can receive per time slot. The system load ρ is defined as ρ = λ/Tc,
and Tc is given by (21) and (30) for the LTS and GTS, respectively.

6.2. Simulation Results

To validate the throughput capacity results (21) and (30), we provide
plots of throughput versus system load ρ in Fig. 5. It can be observed from
Fig. 5 that the simulation results agree well with the theoretical ones under
both LTS and GTS schemes, indicating that our framework is highly efficient
in capturing the throughput behaviors of concerned buffer-limited MANETs.
We can see from Fig. 5 that just as Theorem 1 predicates that for a concerned
MANETs, its throughput increases linearly with ρ when ρ ≤ 1 and then keeps
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Figure 5: Throughput performance under the LTS and GTS schemes. Case 1: n = 72,m =
6, B = 5, α = 0.5. Case 2: n = 200,m = 10, B = 8, α = 0.3.

as a constant Tc determined by (1) when ρ > 1. A further observation of
Fig. 5 indicates that for a network under the random walk mobility model,
its throughput performance is very similar to that under the i.i.d mobility
model. This is expected since according to Remark 2 and [19, 37], nodes in
the network with i.i.d mobility model and random walk model have the same
steady distribution, leading to the same throughput capacity performance
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Figure 7: Throughput capacity Tc vs. number of nodes n.

under these two mobility models.

6.3. Throughput Capacity

With the help of our theoretical results, we illustrate here the impacts of
network parameters on the throughput capacity. Notice that for a concerned
MANET its overall throughput behavior under the LTS is very similar to that
under the GTS, so we consider the LTS scheme here only for illustration.

We first summarize in Fig. 6 how throughput capacity Tc varies with
relay-buffer size B under two network scenarios of (n = 72, m = 6) and
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Figure 8: Throughput capacity Tc vs. transmission ratio α.

(n = 200, m = 10), where α is fixed as 0.5. We can see from Fig. 6 that
just as discussed in Corollary 1, the throughput capacity of a buffer-limited
MANET can be improved by adopting a larger relay-buffer in such network.
A careful observation of Fig. 6 shows that as B increases the capacity Tc first
increases quickly and then gradually converges to a constant determined by
Corollary 3. This observation indicates we can determine a suitable buffer
size B according to the requirement on network capacity such that a graceful
trade-off between capacity performance and buffer cost can be achieved.

To further illustrate the impact of buffer constraint on the throughput
capacity, we show in Fig. 7 the relationship between Tc and n under three
typical relay-buffer settings, i.e., B is fixed as a constant (5 here), B = n
and B → ∞. We can see from Fig. 7 that in general Tc decreases as n
increases, but as n → ∞, Tc vanishes to 0 when B is fixed, while a non-zero
constant throughput capacity can still be achieved when B = n or B → ∞.
These behaviors are expected, since the result in Corollary 5 indicates that
to achieve a non-vanishing throughput capacity in the concerned MANET,
its relay-buffer size B should grow at least linearly with n.

6.4. Optimal Throughput Capacity

To illustrate the optimal throughput capacity, we show in Fig. 8 the
impact of transmission ratio α on throughput capacity Tc under the settings
of n = 72, m = 6 and B = {5, 20}. We can see from Fig. 8 that under a
given setting of B, as α increases Tc first increases and then decreases, and
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Figure 9: Optimal transmission ratio α∗ vs. B and n.

just as discussed in Theorem 3 that there exists an optimal α∗ to achieve
the optimal throughput capacity T ∗

c . This is mainly due to the reason that
the effects of α on Tc are two folds. On one hand, a larger α will lead to
a higher probability of conducting S-R transmission; on the other hand, a
larger α will result in a higher RBP thus a lower opportunity of conducting
the S-R transmission. As a summary, in order to improve the throughput
performance of a buffer-limited MANET, nodes should cooperate with each
other, and they should be neither too selfish nor too selfless.
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Based on the results of Theorem 3, we illustrate in Fig. 9 how the optimal
transmission ratio α∗ is related to B and n. We can see that just as proved in
Corollary 4 that α∗ increases as B grows while it decreases as n grows, and the
optimal transmission ratio never exceeds 0.5. These behaviors indicate that
in a network with the fixed number of nodes n, if we upgrade the capacity of
each node by adopting a larger relay-buffer, we should accordingly allocate a
higher probability for S-R transmission (i.e., nodes should be more selfish), to
achieve the optimal throughput capacity. On the other hand, when the relay-
buffer size of each node is fixed, if we increase the scale of the network by
accommodating more nodes, we should accordingly increase the probability
of R-D transmission (i.e., nodes should be more selfless), to release the relay-
buffer space and thus guarantee the optimal throughput capacity there.

7. Related Work

A significant amount of work has been devoted to the performance anal-
ysis of wireless ad hoc networks, among which some initial studies focused
on the buffer-limited network scenarios.

Herdtner and Chong [26] explored the throughput-storage tradeoff in MA-
NETs and showed that the per node capacity under the finite buffer con-
straint cannot achieve Θ(1) even though node mobility is utilized. Later,
Eun and Wang [38] considered TCP/AQM system and developed a doubly-
stochastic analytical model to study the tradeoff among link utilization,
packet loss, and buffer size. Subramanian et al. [39] developed a theoreti-
cal framework for throughput analysis in Delay Tolerant Networks (DTNs).
They derived closed-form expressions for the per node throughput capacity
of a sparse network which consists of one source-destination pair and several
mobile relay nodes with limited buffer size, and further extended their re-
sults to the multi-cast network scenarios [40]. Wang et al. [41] studied the
node buffer occupancy behaviors in static random wireless networks with
intermittent connectivity and provided some scaling results of fundamental
achievable lower bound for the occupied buffer size. Krifa et al. [42] fo-
cused on the buffer management policies in DTNs. They demonstrated that
drop-tail and drop-front policies are sub-optimal and meanwhile proposed
an optimal buffer management policy based on global knowledge about the
network. Following this line, Elwhishi et al. [43] developed a new message
scheduling framework for Epidemic [44] and Spray-Wait [45] forwarding rout-
ings in DTNs with finite buffer to optimize either the message delivery ratio
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or message delivery delay.

8. Conclusion

In this paper, we first revealed the inherent relationship between the
throughput capacity and relay-buffer blocking probability in a buffer-limited
MANET with the 2HR-α scheme, and then developed an Embedded Markov
Chain-based framework to fully characterize the complicated packet delivery
processes of the concerned MANET. Based on this framework, we derived the
throughput capacity in closed form and further conduct cases studies under
two typical transmission scheduling schemes to illustrate the impacts of some
key network parameters on throughput capacity. It is expected the theoret-
ical framework developed in this paper will be also helpful for exploring the
throughput capacity of buffer-limited MANETs under other mobility mod-
els and other transmission schemes. The results in this paper indicate that
in large scale MANETs a non-zero constant throughput capacity can still be
guaranteed as long as its relay-buffer size grows at least linearly with network
size. Another interesting finding of this paper is that for throughput capacity
optimization in such MANETs, the optimal setting of transmission ratio in
the 2HR-α scheme there increases with the relay-buffer size but decreases
with the network size, and it never exceeds 0.5.

Notice that the theoretical framework and closed-form results for per node
throughput capacity developed in this paper is based on the i.i.d mobility
model, so one of our future research directions is to develop theoretical models
for other more realistic mobility models, like the inter-meeting time based
mobility model.

Appendix A. Proof of Lemma 1

Notice that each local queue is a Bernoulli/Bernoulli queue with exoge-
nous packet arrival rate λ, so the output process of the local queue is also a
Bernoulli flow with rate λ due to the reversible property of Bernoulli/Bernoulli
queue [30].

Based on the property of the i.i.d mobility model we know that for a
specific node, except itself and its destination, each of the remaining n − 2
nodes will equal likely to serve as its relay. Similarly, for each node serving
as a relay, except itself and its source, all the remaining n − 2 nodes will
equal likely to forward packets to it. From (3) we know that the ratio of
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S-R transmission to the service rate µs(λ) is
psr(1−Pb(λ))

µs(λ)
. Hence, the packet

arrival rate at a relay queue λR is determined as

λR = (n− 2)λ · psr (1− pb(λ))

µs(λ)

/
(n− 2)

= ρs(λ)psr (1− pb(λ)) . (A.1)

We denote by p(i,k),Ωi+1
the transition probability from state (i, k) to set

Ωi+1, 0 ≤ i < B. Since when a relay queue is full, its packet arrival rate will
be 0. Thus, we have

p(i,k),Ωi+1
· (1− pb(λ)) + 0 · pb(λ) = λR,

⇒p(i,k),Ωi+1
= ρs(λ) · psr. (A.2)

Notice that the transition probability pΩi,Ωj
of the EMC is the “set-

averaged” transition probability of the original Markov chain [31], then we
have

pΩi,Ωj
=

i∑

k=1

p(i,k),Ωj
· P
(
(i, k)

∣
∣Ωi

)
, (A.3)

where P
(
(i, k)

∣
∣Ωi

)
is the conditional probability that relay queue is in state

(i, k) given that it belongs to the set Ωi. Substituting (A.2) into (A.3) we
have

pΩi,Ωi+1
= ρs(λ) · psr.

A node gets a R-D transmission opportunity with probability prd, and
due to the i.i.d mobility model, this opportunity arises for each of the n− 2
destination nodes with equal probability. Thus, we have

p(i,k),Ωi−1
= k · prd

n− 2
. (A.4)

Based on (A.3), it is clear that in order to obtain pΩi,Ωi−1
, we should derive

the conditional probability P
(
(i, k)

∣
∣Ωi

)
. To address this issue, we utilize the

Occupancy approach (Chapter 1 in [46]). When the relay queue has i packets
being buffered, where each packet may be destined for any one of the n− 2
destination nodes, the number of all possible cases EΩi

is given by
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EΩi
=

(
n− 3 + i

i

)

. (A.5)

Suppose that these i packets are destined for k distinct destination nodes,
the number of cases E(i,k) is given by

E(i,k) =

(
n− 2

k

)

·
(
(k − 1) + (i− k)

i− k

)

. (A.6)

Due to the i.i.d mobility model, each of these cases occurs with equal proba-
bility. According to the Classical Probability, P

(
(i, k)

∣
∣Ωi

)
is then determined

as

P
(
(i, k)

∣
∣Ωi

)
=

E(i,k)

EΩi

=

(
n−2
k

)
·
(
i−1
k−1

)

(
n−3+i

i

) . (A.7)

It can be easily verified that
∑

k≤i

P
(
(i, k)

∣
∣Ωi

)
= 1. Substituting (A.7) into

(A.3) we have

pΩi,Ωi−1
=

i∑

k=1

{(
n−2
k

)
·
(
i−1
k−1

)

(
n−3+i

i

) · kprd
n− 2

}

=
prd

(
n−3+i

i

) ·
i−1∑

k=0

{(
n− 3

k

)

·
(
i− 1

k

)}

= prd ·
(
n−4+i
i−1

)

(
n−3+i

i

) =
i

n− 3 + i
· prd.

Appendix B. Proof of Lemma 2

Based on the Lemma 1, the one-step transition probability matrix P of
the EMC is given by

P =








pΩ0,Ω0
pΩ0,Ω1

pΩ1,Ω0
pΩ1,Ω1

pΩ1,Ω2

. . .
. . .

. . .

pΩB,ΩB−1
pΩB ,ΩB







. (B.1)
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From the transition matrix (B.1) and the state machine in Fig. 4, we can
see that: 1) the EMC is irreducible; 2) each state Ωi is recurrent, 0 ≤ i ≤ B;
3) the period of each state Ωi is 1, so each state is aperiodic. Based on these
properties, we know that the EMC is ergodic, so its limiting distribution
exists and is unique, which is just the stationary distribution of the EMC
[47]. Thus, we have

Π ·P = Π,

⇒







ρs(λ) · psr · π(Ω0) =
prd

n− 2
· π(Ω1),

ρs(λ) · psr · π(Ω1) =
2 · prd
n− 1

· π(Ω2),

· · · ,

ρs(λ) · psr · π(ΩB−1) =
B · prd

n− 3 +B
· π(ΩB),

(B.2)

⇒π(Ωi) = Ci · βi · ρs(λ)i · π(Ω0), (B.3)

Combining (B.3) with the normalization equation
∑B

i=0 π(Ωi) = 1, the
results (7) and (8) then follow.

Appendix C. Proofs of Corollaries 1, 2 and 3

Proof of Corollary 1: Let sk =
Ck·β

k

∑k
i=0

Ci·βi
, then

sk+1

sk
=

Ck+1β
k+1
∑k

i=0Ci · βi

Ckβk
∑k+1

i=0 Ci · βi

=

∑k
i=0 (n− 2 + k)Ci · βi+1

1 + k +
∑k

i=0 (k + 1)Ci+1 · βi+1
,

Since

(k + 1)Ci+1 = (k + 1)
n− 2 + i

i+ 1
· Ci,

and

(k + 1)(n− 2 + i)− (i+ 1)(n− 2 + k)

=(n− 3)(k − i) ≥ 0,
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then

(k + 1)Ci+1 ≥ (n− 2 + k)Ci,
sk+1

sk
< 1,

Substituting the result into (10), the Corollary 1 then follows.
Proof of Corollary 2: When α = 0.5, then β = 1, and (10) is simplified

as

Tc = psd + psr

(

1− CB
∑B

i=0Ci

)

. (C.1)

Since

B∑

i=0

Ci =
1

(n− 3)!
[(n− 3)× (n− 4) · · · × 1

+ (n− 2)× · · · × 2 + · · ·+ (n− 3 +B)× · · · × (B + 1)]

=
1

(n− 3)!
· (n− 2 +B)× · · · × (B + 1)

n− 2

=

(
n− 2 +B

B

)

, (C.2)

substituting (C.2) into (C.1), the Corollary 2 then follows.
Proof of Corollary 3: For the case α = 0.5, since lim

B→∞

B
n−2+B

= 1,

substituting it into (12) we have

Tc
α=0.5,B→∞

= psd + psr.

For the case α < 0.5, we have β < 1 and

B∑

i=0

Ci · βi =
1

(n− 3)!

×
[
(n− 3)× · · · × 1× β0 + (n− 2)× · · · × 2× β1

+ · · ·+ (n− 3 +B)× · · · × (B + 1)× βB
]

=
1

(n− 3)!
·
(
βn−3 + βn−2 + · · ·+ βn−3+B

)(n−3)
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=
1

(n− 3)!
·
(

n−3+B∑

i=0

βi

)(n−3)

=
1

(n− 3)!

(
1− βn−2+B

1− β

)(n−3)

, (C.3)

where f(β)(k) denotes the k-th order derivative of f(β). Since

lim
B→∞

1− βn−2+B = 1,

we have

lim
B→∞

B∑

i=0

Ci · βi =
1

(n− 3)!

(
1

1− β

)(n−3)

=
1

(1− β)n−2 , (C.4)

and then

lim
B→∞

CBβ
B(1− β)n−2 ≤ lim

B→∞
(B + n)nβB

≤ lim
B→∞

2nBnβB. (C.5)

Since

lim
x→∞

xnβx = lim
x→∞

xn

1
β

x = lim
x→∞

n!

(− ln β)n · 1
β

x = 0,

substituting it into (10) we have

Tc
α<0.5,B→∞

= psd + psr

For the case α > 0.5, we have β > 1 and

1− CB · βB

∑B
i=0Ci · βi

=

∑B−1
i=0 Ci · βi

1 + β
∑B−1

i=0 Ci+1 · βi

=
1

1
∑B−1

i=0
Ci·βi

+ β ·
∑B−1

i=0
Ci+1·βi

∑B−1

i=0
Ci·βi

.
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Since

lim
B→∞

1
∑B−1

i=0 Ci · βi
= 0,

lim
B→∞

∑B−1
i=0 Ci+1 · βi

∑B−1
i=0 Ci · βi

= 1,

then

lim
β>1,B→∞

1− CB · βB

∑B
i=0Ci · βi

=
1

β
. (C.6)

Substituting it into (10) we have

Tc
α>0.5,B→∞

= psd + psr
1

β

= psd + psr
α

1− α
= psd + prd.

Appendix D. Proof of Corollary 4

Considering γ ∈ (0, 1], the first order derivative of g(γ) is

g′(γ) =
1

h(γ)2
· {h(γ)[h(γ) + CB]− (1 + γ)CBh

′(γ)
︸ ︷︷ ︸

(a)

}.

For ∀n > 3, when B = 1, (a) is determined as

(a) = γ(γ + n− 2)− (1 + γ)(n− 2) = (γ2 − 1)− (n− 3) ≤ 0.

When B = k, we assume that

(a) = hk(hk + Ck)− (1 + γ)Ckh
′
k ≤ 0,
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where hk and h′
k are the abbreviations of h(γ) and h′(γ) under B = k,

respectively. When B = k + 1, we have

(a) = hk+1(hk+1 + Ck+1)− (1 + γ)Ck+1h
′
k+1

= γ · (hk + Ck) · [γ(hk + Ck) + Ck+1]

− (1 + γ) · Ck+1 · [hk + γh′
k + Ck]

= γ2hk(hk + Ck)
︸ ︷︷ ︸

(b1)

+γ2Ck(hk + Ck) + γCk+1hk
︸ ︷︷ ︸

(c1)

+ γCkCk+1
︸ ︷︷ ︸

(d1)

− (1 + γ)Ck+1hk
︸ ︷︷ ︸

(c2)

− γ(1 + γ)Ck+1h
′
k

︸ ︷︷ ︸

(b2)

− (1 + γ)CkCk+1
︸ ︷︷ ︸

(d2)

.

Since

(b1)− (b2) = γ[γhk(hk + Ck)− (1 + γ)Ck+1h
′
k]

< γ[hk(hk + Ck)− (1 + γ)Ckh
′
k] ≤ 0,

combining (c1),(c2) and (d1),(d2) we have

(a) < γ2Ck(hk + Ck)− Ck+1hk − CkCk+1

= (hk + Ck)(γ
2Ck − Ck+1) < 0.

According to the above mathematical induction, we can conclude that g′(γ) <
0 for γ ∈ (0, 1) and g′(1) ≤ 0. Thus, g(γ) monotonically decreases when
γ ∈ (0, 1], so we know that γ∗ > 1 and α∗ = 1

1+γ∗
< 0.5.

For the limiting case B → ∞, from (13), (19) and (20) we can easily see
that α∗|B→∞ = 0.5 and T ∗

c |B→∞ = p0+p1
2d

.

Appendix E. Proof of Corollary 5

As n → ∞ we have

p0 = 1−
(

1− d

n

)n
d
·d

− d

(

1− d

n

)n
d
·d−1

→ 1− e−d − de−d,
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p1 = 1−
(

1− d2

n2

)n
2

= 1− e
n
2
·ln(1− d2

n2 )

→ 1− e0 = 0,

1− CB · βB

∑B
i=0Ci · βi

=

∑B−1
i=0 Ci · βi

∑B
i=0Ci · βi

→ B

(n− 3 +B)β
.

Substituting above results into (21), we have that as n → ∞

Tc →
α(1− e−d − de−d)

dβ

B

(n− 3 +B)
= Θ

(
B

n

)

.
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