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Abstract 

Rigidity theory enables us to specify the conditions of unique localizability in the cooperative 
localization problem of wireless sensor networks. This paper presents a combinatorial rigidity approach 
to measure (i) generic rigidity and (ii) generalized redundant rigidity properties of graph structures 
through graph invariants for the localization problem in wireless sensor networks. We define the rigidity 
index as a graph invariant based on independent set of edges in the rigidity matroid. It has a value 
between 0 and 1, and it indicates how close we are to rigidity. Redundant rigidity is required for global 
rigidity, which is associated with unique realization of graphs. Moreover, redundant rigidity also 
provides rigidity robustness in networked systems against structural changes, such as link losses. Here, 
we give a broader definition of redundant edge that we call the "generalized redundant edge." This 
definition of redundancy is valid for both rigid and non-rigid graphs. Next, we define the redundancy 
index as a graph invariant based on generalized redundant edges in the rigidity matroid. It also has a 
value between 0 and 1, and it indicates the percentage of redundancy in a graph. These two indices allow 
us to explore the transition from non-rigidity to rigidity and the transition from rigidity to redundant 
rigidity. Examples on graphs are provided to demonstrate this approach. From a sensor network point of 
view, these two indices enable us to evaluate the effects of sensing radii of sensors on the rigidity 
properties of networks, which in turn, allow us to examine the localizability of sensor networks. We 
evaluate the required changes in sensing radii for localizability by means of the rigidity index and the 
redundancy index using random geometric graphs in simulations. 
 
Key Words: Network localizability, unique localization of networks, graph rigidity theory, localization of 
wireless sensor networks, rigidity theory, graph theory, graph invariants.  
 
 
 

1. Introduction 
 

 Localization is an essential service for many applications of wireless sensor 
networks. A wireless sensor network consists of a small number of anchors (reference 
nodes) and a large number of small, cheap ordinary nodes (non-anchors). Anchors have 
a priori knowledge of their own positions, e.g., GPS, and ordinary nodes have no prior 
knowledge of their locations. If ordinary nodes were capable making measurements to 
multiple anchors, they could determine their positions. However, several ordinary nodes 
cannot directly communicate with anchors because of power limitations or signal 
blockage. A recent paradigm is cooperative localization, in which ordinary nodes help 
each other to determine their locations [1,2]. In cooperative localization, ordinary nodes 
not only make measurements with anchors, but also they make measurements with other 
ordinary nodes. The types of measurements usually include distance estimates and/or 
angle estimates [3]. 

The set of ordinary nodes is uniquely localizable if there is a unique set of positions 
satisfying the conditions resulting from measurements. Unique solvability of the 
cooperative localization problem is characterized by the results from "rigidity theory." 
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Redundant rigidity is required for global rigidity, which is associated with unique 
realization of graphs. Use of rigidity theory in localization is well described in the 
literature [4−10]. More details will be given in Section 2. 

 
Recent works introducing the rigidity theory into formation control has also 

provided provably correct methods to model and analyze the ad hoc network topologies 
within robotic teams [11-15]. For example, rigidity theory provides us tools for 
formation control using relative distance measurements instead of relative position 
measurements. Moreover, rigidity is necessary to estimate relative positions using only 
relative distance measurements [11]. 

  
Quantitative measures of rigidity have been proposed by researchers recently. 

Jacobs et al. provided a measure of rigidity within the context of microstructures of 
proteins, and their approach are based on chemical bonds [16]. Zhu and Hu studied 
quantitative measure of formation rigidity using stiffness matrix [17]. Zelazo et al. 
introduced the rigidity eigenvalue based on symmetric rigidity matrix [11]. The latter 
two studies employed rigidity based matrices and studied the properties of those 
matrices to explore the rigidity properties of networks. 

 
In this paper, first we provide a measure of "generic rigidity" in 2-space for both 

rigid and non-rigid graphs. Then the concept of generalized redundancy is introduced, 
which allows us to provide a measure of "generalized redundancy" in 2-space for both 
rigid and non-rigid graphs. Our approach is based on the combinatorial characterizations 
of rigidity and redundancy. Specifically, the main contributions of this work are: (a) the 
translation of edge distribution in a network graph to that of a rigidity measure that we 
term the "rigidity index," (b) the translation of the generalized redundancy of edge 
distribution in a network graph to that of a redundancy measure on network rigidity that 
we term the "redundancy index."  

 
From a graph theory point of view, the benefits of these measures are as follows: 

They permit us (i) to quantify the distribution of edges in a graph in terms of rigidity 
and redundant rigidity, (ii) to compare various graphs for rigidity in terms of the 
distribution of their redundant and non-redundant edges. 

 
From a sensor network point of view, these two measures enable us to evaluate the 

effects of sensing radii of sensors on the rigidity and redundancy properties of networks, 
which in turn allows us to examine the localizability of sensor network graphs. In 
particular, we are interested in the following questions: (i) how much change in sensing 
radii do we need to reach from non-rigidity to rigidity, and to reach from rigidity to 
redundant rigidity in random geometric graphs? (ii) given that redundant rigidity is 
associated with unique localizability, is redundant rigidity a heavy burden on the 
network once rigidity is achieved? We provide answers to these questions in this paper. 

 
The localization process often needs to be repeated in mobile wireless sensor 

networks. Mobility brings the possibility of the loss of links, which enforces to have not 
only localizable network structures but also structures which remain localizable after the 
loss of links in the network. Since redundancy plays a role in robustness, redundancy 
measure also helps us to evaluate robustness to link losses. 
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The structure of the paper is as follows. We give preliminaries on rigidity in Section 

2. Main results on the rigidity index, the redundancy index and the corresponding 
complexity analysis are provided in Section 3. Examples to illustrate those indices on 
graphs are presented in Section 4. Applications of these two indices in sensor network 
simulations are demonstrated in Section 5. Finally, the paper ends with a conclusion and 
some outlook on future directions in Section 6. 

 
2. Rigidity 
 
 First we provide below some background on rigidity, redundant rigidity and 
global rigidity. We refer the reader to [18-21] and the references therein for more 
details.  
 
2.1 Rigid frameworks and the rigidity matrix 
 
 We model a network by a finite graph G = (V, E). All graphs considered are 
finite without loops and multiple edges. Nodes of the network correspond to the vertices 
of G, and for every link in the network there is an edge joining the corresponding 
vertices of the graph. A framework G(p) is a graph G = (V, E) and a plane configuration 
p : V → R2. Two frameworks G(p) and G(q) are equivalent if ||p(vi) − p(vj)|| = 
||q(vi) − q(vj)|| holds whenever vivj corresponds to an edge of G, where ||.|| denotes the 
distance. G(p) and G(q) are congruent if for any two vertices vi , vj V, ||p(vi)−p(vj)|| = 
||q(vi)−q(vj)|| holds. A framework G(p) in R2 is rigid if there is an  > 0 such that for any 
other configuration q in R2, where ||p(v) − q(v)|| <   for all v in V and G(p) is equivalent 
to G(q), then p is congruent to q. Intuitively, we may consider the rigidity of bar-joint 
frameworks. Here, bars correspond to edges, and joints correspond to vertices. A bar-
joint framework is rigid if it has only trivial deformations, e.g., translations and 
rotations. 
 
 The rigidity matrix R(G,p) of a framework G(p) is the |E| × 2|V | matrix, whose 
rows correspond to the edges and whose columns correspond to the coordinates of the 
vertices, where | . | denotes the cardinality of a set. If e = vivj   E, then the entry in the 
row e and the column vi is p(vi) − p(vj), the entry in the row e and the column vj is 
p(vj) − p(vi), and the other entries in the row e are zeros. If e = vivj is not in E, then the 
entire row e is zeros. A framework (G, p) is called infinitesimally rigid if 
rank{R(G, p)} = 2|V| − 3. Infinitesimal rigidity of (G, p) implies rigidity. The converse 
is not true in general. However, if p is generic a configuration then rigidity also implies 
infinitesimal rigidity. Configuration p is generic if the coordinates of the points do not 
satisfy any non-zero polynomial equation with integer coefficients. 
 
2.2 Rigid graphs 
 

A graph G is rigid in R2 if (G, p) is rigid for every generic configuration p. A graph 
G = (V, E) is called minimally rigid if G is rigid, and G loses its rigidity property when 
any one of the edges in E is removed. The combinatorial characterization of rigidity in 
2-space was first given by Laman in [22]. For a subset V' V let G' = (V', E') denote the 
subgraph of G induced by V'.  


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Theorem (Laman [22]) G = (V, E) is minimally rigid if and only if |E| = 2|V| − 3 

and  
                                |E'| ≤ 2 |V'| − 3 for all V'  V with |V'| ≥ 2.                               (1) 
 

2.3 Global rigidity and redundant rigidity 
 

A framework (G, p) is globally rigid if, for every configuration q, framework (G, q) 
which is equivalent to framework (G, p) is congruent to (G, p). The essential 
characteristic of global rigidity is that the distance between every pair of nodes is 
preserved for different framework realizations, and not just those defined by the edge 
set. If a graph G = (V, E) is rigid but not minimally rigid, then G is called a redundantly 
rigid graph. For such a graph, G − e is rigid for all e   E. An edge is called a redundant 
edge if graph remains rigid after its removal. It is known that G has a unique generic 
realization in 2-space if and only if G is 3-connected and redundantly rigid [20]. A 
graph satisfying these two conditions, i.e., 3-connectivity and redundant rigidity, is 
called a globally rigid graph. 

 
3. Measures of Generic Rigidity and Generalized Redundant Rigidity 
 

3.1 Rigidity index 

Let E be a finite set and let I be a family of subsets of E. Then I forms the 
independent sets of a matroid M(G) if it satisfies the following three matroid axioms 
[20]:  

(A1) ∅ ∈ I, 
(A2) if E ' ∈ I and E '' ⊆ E ' then E '' ∈ I, 
(A3) if E1 and E2 are in I, and |E1| < |E2|, then there is an element e in E2 − E1 such 

that E1∪e ∈ I. 
 
We refer the reader to the book of Oxley [23] for more information on matroid 

theory.  
 
The rigidity matroid of the framework (G, p) is defined by linear independence of 

rows of the rigidity matrix R(G,p). For a graph G = (V, E), let E ' be a non-empty subset 
of E, V ' be the set of vertices incident with E '. Then E ' is called independent if 

 
                                       |E '| ≤ 2 | V '| − 3  for all E ' ⊆ E.                                       (2) 
 
We note that Laman's Theorem characterizes the bases of the rigidity matroid of the 

complete graph on V [21]. 
 
Let G = (V, E) be a graph. Recall that a set of edges E'⊆E is independent if the 

subgraph induced by E' satisfies Equation (2). Let S be the collection of the sets 
satisfying Equation (2). We define the rigidity index, denoted by Kr (G), as follows: 
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This index is the ratio of the size of the set of independent edges over the maximal 
number of independent edges. Note that 0 ≤ Kr(G) ≤ 1. A value of zero indicates the 
empty set, i.e., no links in the network. A larger value of Kr indicates that the network is 
closer to rigidity. A value of 1 indicates a rigid network. 

3.2 Redundancy index 

 Recall that an edge e in a rigid graph is redundant if the graph remains rigid after 
the removal of e. Here we give a broader definition of redundant edge that we call 
"generalized redundant edge." This definition of redundancy is valid for both rigid and 
non-rigid graphs. Let G = (V, E) be a graph, where G is not necessarily rigid. An edge 
e   E is called a generalized redundant edge if  

Kr (G − e) = Kr (G).  

 Let the set of generalized redundant edges in graph ),( EVG   be denoted by 

. Then the redundancy index, denoted by , is defined as, )(GEu )(GKu

)(GKu E

GEu )(
: . 

Note that 0 ≤ Ku(G) ≤ 1. A value of zero indicates that there are no redundant edges 
in E. On the other hand, if Ku(G) = 1, then this means that each edge in E is redundant. 
A larger value of Ku indicates that a network is more robust to main its rigidity index. 

 
It may suffice to know the redundancy index for most of the applications. However, 

it is possible to define higher types of redundancy indices, and that is what we will 
discuss next. 

Let  be a graph. A pair of edges , where ),( EVG  ),( ji ee Eee ji ,  is a generalized 

redundant pair if 
Kr (G − {ei , ej}) = Kr (G). 

Let the set of "all" generalized redundant pairs be denoted by . Let 2
uE 2E denote the 

set of "all pairs" of edges in E . Note that 







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We generalize the notion of redundancy index for the removal of k edges, where 
FEk

SF
 max  and S is the collection of the sets satisfying Equation (2). A k-tuple of 

edges  is a generalized redundant k-tuple if  ),,,( 21 keee 

Kr (G − {e1 , e2 , e3 , ... , ek}) = Kr (G). 
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Let the set of "all" redundant k-tuples be denoted by . Let k
uE kE denote the set of 

"all k-tuples" of edges in E . Note that 
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Note that the redundancy index Ku(G) defined above may also be called the 
"redundancy index of type 1," and may be denoted as Ku

1(G) to be consistent with the 
higher types of redundancy indices. However, in this paper, we will refer it as the 
"redundancy index" and use the notation Ku(G) for convenience. 

 
3.3 Complexity analysis of computing the rigidity index and the redundancy index 
 
 For a graph G with n vertices, there are polynomial algorithms for testing 
rigidity in O(n2) time. Performing the independence test to compute the rigidity index 
takes the total running time of O(n2) [21]. 

 It is possible to test redundant rigidity, by removing one edge at a time, and by 
using the algorithm for rigidity repeatedly. So determining the redundancy index has 
O(mn2) complexity, since rigidity has to be tested for the removal of each edge, where 
m is the number of edges in G. In general, determining the redundancy index of type k, 
where FEk

SF
 max , has O(mkn2) complexity, since rigidity has to be tested for the 

removal of every k-combination of m edges. There are more efficient algorithms for 
testing redundant rigidity in the literature, where redundant rigidity in 2-space can be 
decided in O(n2) time. See [21,24] for more details on the algorithmic aspects.  

4. Examples 
 
 In this section, we provide illustrative examples to demonstrate the rigidity index 
and the redundancy index.  

 A minimally rigid graph G1 (V, E1) is shown in Figure 1a. There are 2|V| − 3 
edges in G1 and the generic rigidity index Kr(G1) is 1. All the edges in E1 are 
independent since there is no redundancy. Therefore the redundancy index Ku(G1) is 
zero. In fact, all the redundancy indices of higher orders are also zero.  

 A non-minimal rigid graph G2 (V, E2) is shown in Figure 1b. Its rigidity index 
Kr(G2) is 1. Note that |E|=18 and Eu(G2) = {(v1,v2), (v1,v3), (v1,v4), (v1,v5), (v2,v3), (v2,v4), 
(v2,v5), (v3,v4), (v3,v5), (v4,v5)}. Therefore, its redundancy index Ku(G2) = |Eu(G2)| / |E| = 
10/18 ≈ 0.5556. 

 In Figure 2a, G3 (V, E3) is an example for a non-rigid graph with no redundant 
edges. All the edges are independent since there is no redundancy. Therefore 

.13max 


F
SF

 Since the number of vertices is |V| = 9, maximal number of independent 
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edges is 2|V| − 3 = 15. Therefore, the rigidity index Kr(G3) = 13/15 ≈ 0.8667. Since there 
is no redundancy at all in this graph, its redundancy index Ku(G3) is zero.  

 In Figure 2b, G4 (V, E4) is a non-rigid graph with redundant edges. The number 
of independent edges is 14. Since the number of vertices is |V| = 9, 2|V| − 3=15. 
Therefore its rigidity index Kr(G4) = 14/15 ≈ 0.9333. The set of generalized redundant 
edges is Eu(G4) = {(v1,v2), (v1,v3), (v1,v6), (v2,v3), (v2,v6), (v2,v7), (v3,v6), (v3,v7), (v6,v7)}. 
The total number of edges is 16 in this graph. So its redundancy index Ku(G4) = 9/16 = 
0.5625. 

5. Simulations 
 
5.1 Simulation using random geometric graphs 

In our simulations, we use random geometric graphs in modeling sensor 
networks. A set of n vertices are placed independently and uniformly at random. If the 
distance between any two vertices is at most the sensing radius rs, then there is an edge 
between these two vertices [4]. 

A uniform random distribution of n sensor nodes (n = 25) in an area of d×d, 
where the side length of the area d = 30 units, is shown in Figure 3. A depiction of a 
resulting graph for rs = 12 units, i.e., 40% of d (the side length of the area), is shown in 
Figure 4. For this random geometric graph, Kr(G) = 1 and Ku(G) = 1.  

As rs changes, the values of the rigidity index Kr(G), and the redundancy index 
Ku(G) do also change.  Plot of the rigidity index and the redundancy index against the 
ratio rs / d between the sensing radius rs and the side length of the area d, for the node 
distribution in Figure 3, are shown in Figure 5. 

5.2 Average results of simulations 

 We generated 50 different uniform random distributions of 25 sensor nodes in an 
area of 30×30. Then, for each node distribution, we computed Kr(G) and Ku(G) as a 
function of the ratio rs/d between the sensing radius rs and the side length of the area d. 
Next, we took the average of these fifty simulations. The resulting plot is shown in 
Figure 6. Figure 7 presents a zoomed-in version of Figure 6 focusing on the region 
where Kr(G) and Ku(G) are getting close to the value of 1. For the average result, Kr(G) 
becomes 1 when rs/d = 0.49, and Ku(G) becomes 1 when  rs/d = 0.57. 

5.3 Discussion 

From the simulations of the average result, we see that a network graph reaches rigidity 
when rs/d is approximately 0.49, and it reaches redundant rigidity when rs/d is 
approximately 0.57. Therefore, from the average result of Kr(G) and Ku(G), we observe 
that approximately 16 percent increase in rs transforms a rigid graph into a redundantly 
rigid graph. We conclude that achieving redundant rigidity imposes considerably less 
burden on the network once rigidity is achieved. Recall that these were the issues that 
we posed at the beginning of this paper. We also note that, for both the individual and 
the average result, Kr(G) is a non-decreasing function of the ratio rs/d, while Ku(G) is a 
non-monotonic function. 

  7



 

 

 
Figure 1. (a) G1 (V, E1) is an example for a minimally rigid graph, and its rigidity index 
Kr(G1) = 1, and its redundancy index  is zero. (b) G2 (V, E2) is a non-minimal 

rigid graph, and its rigidity index Kr(G2) = 1, and its redundancy index,  = 10/18 

≈ 0.5556. 
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Figure 2. (a) G3 (V, E3) is an example for a non-rigid graph with no redundant edges, 
and its rigidity index Kr(G3) = 13/15 ≈ 0.8667, and its redundancy index  is zero. 

(b) G4 (V, E4) is a non-rigid graph with redundant edges, and its rigidity index 
Kr(G4) = 14/15 ≈ 0.9333, and its redundancy index Ku(G4) = 9/16 = 0.5625. 
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6. Conclusion and Future Work 
 
This work presented identifications of graph invariants for generic rigidity and 

redundant rigidity that we termed the rigidity index and the redundancy index. These 
indices are scalars resulting from the combinatorial rigidity properties of a network 
graph. The results were demonstrated with examples and simulations. 

 
We explored the transition from non-rigidity to rigidity and from rigidity to 

redundant rigidity. These indices are quantitative measures of network rigidity and they 
have properties that meet the demands in applications. Specifically, these indices are 
helpful to determine the necessary increase in sensing radii to transform a non-rigid 
graph to a rigid graph, and transform a rigid graph to a redundantly rigid graph. 

 
Redundancy index can also be considered as a measure of robustness. A larger 

redundancy index indicates a more robust network against link losses. From a network 
point of view, redundant rigidity in networked systems is essential in unknown 
environments for a reliable performance against structural changes, where redundant 
rigidity ensures to maintain rigidity properties of the network when some 
communication links may become unavailable because of the dynamic conditions of the 
changing environment, such as obstruction. 

 
Higher types of redundancy indices as defined in Section 3 will provide us 

information on robustness to multiple link losses and these indices deserve further 
investigation, which also constitutes our future work. Another possible future research 
direction is to determine and examine the rigidity index and the redundancy index in 3-
dimensional space. 
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Figure 3. A uniform random distribution of n sensor nodes (n = 25) in an area of d × d, 
where d = 30 units.  
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Figure 4. The random geometric graph resulting from the node distribution shown in 
Figure 3. Sensing radius rs =12 units, i.e., 40% of d (the side length of the area) for this 
particular simulation.   
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Figure 5.  Plot of the generic rigidity index Kr(G) (plotted with solid blue line), and the 
redundancy index Ku(G) (plotted with red dashed line), against the ratio rs/d between the 
sensing radius rs and the side length of the area d, for the node distribution shown in 
Figure 3. 
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Figure 6.  Plot of the average rigidity index Kr(G), and the average redundancy index 
Ku(G), against the ratio rs/d between the sensing radius rs and the side length of the area 
d. A total of fifty different uniform node distributions are used in calculating the 
average. 
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Figure 7.  Zoomed-in version of Figure 6 focusing on the region where Kr(G) and 
Ku(G) are getting close to the value of 1. 
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