
ar
X

iv
:1

10
3.

01
33

v2
 [

cs
.N

I]
 4

 M
ay

 2
01

2
1

Neighbor Oblivious and Finite-State Algorithms for
Circumventing Local Minima in

Geographic Forwarding
Santosh Ramachandran, Chandramani Singh, S. V. R. Anand, Malati Hegde, Anurag Kumar, Rajesh Sundaresan

Abstract—We propose distributed link reversal algorithms
to circumvent communication voids in geographic routing. We
also solve the attendant problem of integer overflow in these
algorithms. These are achieved in two steps. First, we derive
partial and full link reversal algorithms that do not requir e one-
hop neighbor information, and convert a destination-disoriented
directed acyclic graph (DAG) to a destination-oriented DAG.
We embed these algorithms in the framework of Gafni and
Bertsekas [1] in order to establish their termination properties.
We also analyze certain key properties exhibited by our neighbor
oblivious link reversal algorithms, e.g., for any two neighbors,
their t-states are always consecutive integers, and for any node,
its t-state size is upper bounded bylog(N). In the second step,
we resolve the integer overflow problem by analytically deriving
one-bit full link reversal and two-bit partial link reversa l versions
of our neighbor oblivious link reversal algorithms.

Index Terms—geographic forwarding, full link reversal, partial
link reversal, distributed algorithm, finite bit width

I. I NTRODUCTION

A. Motivation

Consider a wireless sensor network (WSN) with a single
designated sink node. We shall focus particularly on an exam-
ple application where the WSN is used to detect undesirable
events. An alarm packet originating at a node near the location
of the alarm event has to be routed to the sink node. For
such purposes,geographic routing[2] is a popular protocol for
packet delivery. It is scalable, stateless, and reactive, without
the need for prior route discovery. In this protocol, a node
forwards a packet to another node within its communication
range (hence, called aneighbor node) and closer to the
destination. Ties can be broken arbitrarily, for example, by
using node indices. Such a protocol requires a node with a
packet to be aware of its own geographical location, and thatof
the sink and of its neighbors. To each node, the next hop nodes
that are closer to the sink are defined asgreedyneighbors, and
wireless “links” are oriented from the nodes to their greedy
neighbors. The resulting routing graph is adirected acyclic
graph (DAG).

A DAG is said to bedestination-orientedwhen there is a
directed path in the DAG from any node to the sink. A DAG is

The authors are with the Electrical Communications Engineering Depart-
ment of the Indian Institute of Science, Bangalore, India.

This work was supported in part by a research grant on Wireless Sensor
Networks from DRDO, Government of India, and in part by the Indo-French
Centre for Promotion of Advanced Research (IFCPAR), Project No. 4000-IT-
A.

This work was presented in part at the National Conference onCommuni-
cations (NCC) 2010, IIT Madras, Chennai, India.

destination-disorientedif and only if there exists a node other
than the sink that has no outgoing link [1]. The disadvantaged
node with no outgoing links is said to bestuck (as it is
unable to forward towards the sink a packet that it receives). A
destination-oriented network under geographic routing may be
rendered destination-disoriented due to various reasons such
as node failures, node removal or sleep-wake cycling. The
failure of geographic routing in the presence of stuck nodes
is commonly referred to asthe local minimum condition[3].
Numerous solutions have been proposed in the literature to pull
the network out of a local minimum condition (See Section I-B
for details). However, all these solutions require knowledge
of one-hop neighbors and their locations.Maintenance of
one-hop neighbor information, in general, requires periodic
transmissions ofkeep alivepackets.

We associate each node in the network with a unique nu-
merical value, henceforth referred to asstate. A link between
a pair of neighboring nodes is oriented from the node with the
higher state to the node with the lower state. Thus states (of
all the nodes) determine the routing graph. It is clearly
acyclic. Whenever a node updates its state, it communicates
the new state to its neighbors. Thus all the nodes always
have an updated view of the directions of all their links.1

Whenever a node wants to determine whether it is stuck or
not, it broadcasts ahello packet containing only its index.
All the alive neighbors with incoming links from the tagged
node acknowledge. If the tagged node does not receive any
acknowledgment until a fixed timeout period, it concludes that
its state is the least among its alive neighbors, i.e., it is stuck.
Then, the node updates its state appropriately to reverse its
links. It also broadcasts the new state to facilitate its neighbors
to update the corresponding link directions. An update protocol
is calledneighbor obliviousif the updating node does not need
to know theexact values of its neighbors’ states. Neighbor
oblivious protocols do not incur the overhead of neighbor
state discovery, and thus save precious communication time
and energy.

Gafni and Bertsekas [1] proposed a general class of dis-
tributed link reversal algorithmsfor converting a destination-
disoriented DAG into a destination-oriented DAG. They also
described two representative algorithms,full link reversal
and partial link reversal, of their general class. Henceforth,
we refer to their algorithms asGB algorithms. In the GB

1For communication between two neighbors, they must have a consistent
view of the direction of the link between them. Thus broadcast of the updated
state is an intrinsic part of all routing algorithms.

http://arxiv.org/abs/1103.0133v2

2

algorithms, a stuck node’s update depends on its one-hop
neighbors’ states. Thus the GB algorithms arenot neighbor
oblivious.

Our work is motivated by the question: Are theredis-
tributed, finite-state, neighbor obliviousprotocols that can pull
a network out of its local minimum condition and render it
destination-oriented?2

B. Related Literature

Kranakis et al. [4] introduced geographic routing protocols
for planar mobile ad hoc networks, calledcompass routingor
face routing. This technique guarantees delivery in a connected
network, but requires a priori knowledge of full neighborhood.
Karp and Kung [2] presentedgreedy perimeter stateless rout-
ing (GPSR) which also ensures successful routing over planar
networks. Kalosha et al. [5] addressed a beaconless recovery
problem where the local planar subgraph is constructed on the
fly. Chang et al. [6] presentedroute guiding protocol(RGP),
a shortest path routing protocol to bypass voids, but that also
requires communication of current states among neighbors.Yu
et al. [7] discussed a void bypassing scheme when both source
and sink nodes are mobile. Leong et al. [8] presented a new
geographic routing protocol calledgreedy distributed spanning
tree routing(GDSTR). GDSTR employs convex hulls which
require maintaining topology information. Casari et al. [9]
proposedadaptive load-balanced algorithm(ALBA), another
greedy forwarding protocol for WSNs. Some other algorithms
developed for mobile adhoc networks includedestination se-
quenced distance vector(DSDV) routing [10],wireless routing
protocol (WRP) [10], dynamic source routing(DSR) [11]
and node elevation ad hoc routing(NEAR) [12]. All the
above algorithms require neighbor information at a stuck node,
and some even require more extensive topology informa-
tion (e.g., [8]).

Gafni and Bertsekas [1] introduced a general class of
link reversal algorithms to maintain routes to the destination.
They also presented two particular algorithms, the full link
reversal algorithm and the partial link reversal algorithm.
The GB algorithms were designed for connected networks.
In a partitioned network, GB algorithms lead to infinite
number of state updates without ever converging. Corson and
Ephremides [13] presentedlightweight mobile routing(LMR),
a variant of GB link reversal algorithms. Park and Corson [14]
proposedtemporally-ordered routing algorithm (TORA)for
detecting and dealing with partitions in the networks. TORA
is also an adaptation of GB partial link reversal algorithm
and employs extended states that includecurrent time and
originator id. GB link reversal algorithms have also motivated
several leader electionalgorithms which are an important
building block for distributed computing, e.g., mutual exclu-
sion algorithms or group communication protocols. Malpani

2One simple neighbor oblivious algorithm is to always make a stuck node
increment its state by unity. This algorithm renders the network destination-
oriented but requires a huge number of updates. In particular, it is neither
full link reversal nor partial link reversal. Recall that each updating node
broadcasts its state to determine if it stuck, and then waitsfor a timeout
period for acknowledgments. Consequently, this simple algorithm results in
significant energy expenditure and delay, and hence, is not desirable.

et al. [15] built a leader election algorithm on the top of
TORA for mobile networks. Ingram et al [16] proposed
a modification of the algorithm in [15] that works in an
asynchronous system with arbitrary topology changes. All
these link reversal algorithms employ state variables thateither
require infinitesimal precision (e.g., current time) or grow
unbounded, thus imposing enormous memory requirements.
Further, state updates in these algorithms require frequent
information exchanges among neighboring nodes, and also
network wide clock synchronization, thus imposing signifi-
cation communication overhead. These drawbacks render the
above algorithms unsuitable for large mobile networks with
lightweight mobile nodes. We focus on connected mobile ad
hoc networks with single destination and develop neighbor-
oblivious and memory-savvy link reversal algorithms.

Busch and Tithapura [17] analyzed GB algorithms (full and
partial link reversal) to determine the number of reversals
and time until these algorithms converge. Their performance
bounds apply to our algorithms also.

C. Our Contributions

We focus on connected mobile ad hoc networks with a
single destination.3 We propose neighbor oblivious full and
partial link reversal (NOLR) algorithms in which a stuck
node does not need one-hop neighbors’ states to execute its
state update. However, as discussed earlier, a node still has
to communicate with its neighbors in order to determine if
it is stuck. But this communication only involves ahello
packet and its acknowledgments, and thus is “lightweight”.
Then, we embed our NOLR algorithms into the framework of
the GB algorithms. The embedding ensures that our proposed
algorithms render the network destination-oriented.

In GB and NOLR algorithms, the state spaces are (count-
ably) infinite. The reason is that in both the algorithms each
node’s state grows without bound with the number of link
reversals. The algorithms therefore cannot be realized in a
real operating environment with only a finite number of
bits to represent states, when repeated link reversals may be
encountered. We show that simple modifications of our NOLR
algorithms result in finite-state link reversal algorithms. At
each node, in addition to the initial state, the full link reversal
algorithm requires only a one-bit dynamic state and the partial
link reversal algorithm requires only a two-bit dynamic state.

Throughout, we assume that new nodes or links are not
added to the existing network. We conclude the paper with a
discussion of how addition of new nodes or links affects our
algorithms.

D. Organization of the Paper

The rest of the paper is organized as follows. In Section II
we provide an overview of the GB algorithms. In Section III
we discuss full link reversal. We begin with the NOLR pro-
posal, but with a countably infinite state space. Then, we make

3If routing to multiple destinations is required, for each destination, a
logically separate copy of our algorithm should be run. Thislimitation is
inherent to the class of GB link reversal algorithms (see [1], [13], [14], [15],
[16]).

3

an observation that renders the NOLR algorithm into a finite-
state algorithm without loss of correctness. In Section IV,
we address partial link reversal, and pass through the same
trajectory as for full-link reversal – an NOLR algorithm with
infinite states followed by a finite-state version. In Section V
we make some concluding remarks. The appendices contain
the detailed proofs.

II. OVERVIEW OF GB ALGORITHMS

Consider a WSN with a designated destination node and
nondestination nodes{1, 2, . . . , N}. The nodes are assumed
to have static locations. Two nodes are neighbors if they can
directly communicate, and then we say that there is alink be-
tween them. Link reversal schemes can be used in geographic
forwarding by assigning unique states,a1, a2, . . . , aN , to the
nodes. The states are totally ordered by a relation< in the
sense that for any two nodesi andj, eitherai < aj or aj < ai,
but not both. These states are used in assigning routing
directions to links. The link between a pair of neighbors is
always oriented from the node with the higher state to the
node with the lower state.

In GB algorithms, the state associated with a nodei is a pair
of numbers(hi, i) for full reversal and a triplet of numbers
(pi, hi, i) for partial reversal, wherehi (calledi’s height4) and
pi are integers. The ordering< on the tuples in each case is
the lexicographical ordering.5 For a nodei, let Ci denotei’s
neighbors. Also, let h = (h1, . . . , hN) andp = (p1, . . . , pN).
Then, the forwarding set of nodei can be written as

Fi(h) = {j ∈ Ci| (hj , j) < (hi, i)}

for full reversal, and

Fi(p, h) = {j ∈ Ci| (pj , hj, j) < (pi, hi, i)}

for partial reversal. Clearly, nodei is stuck if Fi(h) = ∅ (for
full reversal), orFi(p, h) = ∅ (for partial reversal). Node
i, to determine if it is stuck, broadcasts its state. All its
alive neighbors with lower states acknowledge (Recall that
a few of the neighbors might not be awake due to the
sleep-wake cycling in place). If nodei does not receive any
acknowledgment until an a priori fixed timeout, it concludes
that its state is the least among its neighbors, i.e., it is stuck.

The GB algorithms distributively update the states of stuck
nodes so that a destination-oriented DAG is obtained. The
algorithms are as follows.
Full link reversal: In this algorithm, a stuck node reverses the
direction of all the incoming links. Nodei updates its state as
follows.

Remarks 2.1:Evidently, a nodei, if stuck, leapfrogs the
the heights of all its neighbors after an iteration of the above
algorithm. All neighbors thereby enter the forwarding set of
nodei.

4The heights (his) are initialized to either hop counts or distances from the
destination (evaluated from either actual or virtual locations [18]), with the
destination’s height being zero.

5For tuplesa, b of the same dimension,a > b iff ai > bi wherei is the
smallest index such thatai 6= bi.

Algorithm 1 GB Full link reversal
1: loop
2: if Fi(h) = ∅ then
3: hi ← max{hj| j ∈ Ci}+ 1
4: end if
5: end loop

Partial link reversal: In this algorithm, every node keeps a
list of its neighbors that have already reversed their linksto
it. If a node is stuck, it reverses the directions of links to all
those neighbors that are not in the list, and empties the list. If
all its neighbors are in the list, then it reverses the directions
of all the incoming links, and empties the list. Nodei updates
its state as follows.

Algorithm 2 GB Partial link reversal
1: loop
2: if Fi(p, h) = ∅ then
3: pi ← min{pj| j ∈ Ci}+ 1
4: if there exists aj ∈ Ci with pi = pj then
5: hi ← min{hj| j ∈ Ci with pi = pj} − 1
6: end if
7: end if
8: end loop

Remarks 2.2:All pis are initialized to 0. The update
rule (Line 3) ensures that for neighboring nodespis are always
adjacent integers. For a stuck nodei, thehi update (Lines 4-5)
ensures that,i does not reverse the links to the neighbors that
have updated states sincei’s last update.

Note that all the nodes run Algorithm 1 (or Algorithm 2
in case of partial link reversal) asynchronously, i.e., their
reversals can follow any arbitrary timing and order. Gafni and
Bertsekas [1] show the following properties.

Proposition 2.1: (a) Starting from any stateh, or (p, h),
Algorithms 1 and 2 terminate in a finite number of
iterations yielding destination oriented DAGs.

(b) Algorithm 1 results in the same destination-oriented DAG
regardless of the timing and order of reversals. The same
holds for Algorithm 2.

(c) Algorithms 1 and 2 are such that only those nodes that do
not initially have a greedy path to the destination update
their states at any stage.

Remarks 2.3:The updates at a stuck node, in both Algo-
rithms 1 and 2, depend on knowledge of neighbors’ states (see
Line 3 in Algorithm 1 and Lines 3, 4, 5 in Algorithm 2). After
each link reversal, the updating node needs to broadcast its
new state, and its neighbors need to gather this informationin
a reliable fashion (e.g., using an error detection scheme).In
the following sections, we see how to avoid these exchanges,a
desired level of ignorance that we callneighbor obliviousness.

III. F ULL L INK REVERSAL

A. Neighbor Oblivious Full Link Reversal

The main idea may be summarized as follows. Suppose
that the algorithm is such that a node, at any stage, knows the

4

entirerangeof all its neighbors’ heights. Then it may execute
a full reversal by raising its height to a value higher than the
maximum in the range. Note that the updating node does not
need to know the exact states of its neighbors, so valuable
communication time and energy are saved.
Notation: The notation used is listed below for ease of
reference.

• [N] = {1, 2, . . . , N} is the set of nodes (or node indices).
• ti ∈ Z+ is the number of height updates made by node
i; this is initialized to0 for all i.

• hi(ti) ∈ Z++ is the height of nodei after ti updates;6

hi(0) refers to the initial height. The destination’s height
is 0.

• ai = (ti, hi(ti), i) is the state of nodei; ti is referred to
as itst-state.

• Ci is the set of neighbors ofi, i.e., those with whichi
can directly communicate.

• Fi(h) = {j ∈ Ci| (hj(tj), j) < (hi(ti), i)} is
the forwarding set of nodei, given the heightsh =
(h1(t1), h2(t2), . . . , hN(tN)).

• hmax = max{h1(0), . . . , hN (0)}.

The algorithm is simple. Nodei updates its stateai as
follows.

Algorithm 3 Neighbor oblivious full link reversal
1: loop
2: if Fi(h) = ∅ then
3: ti ← ti + 1
4: hi(ti)← hi(ti − 1) + hmax

5: end if
6: end loop

Remarks 3.1:Node i, if stuck, updates its state such that
the new height surpasses the heights of all its neighbors (see
Line 3). Thus, it reverses all the incoming links.

Nodei broadcasts ahello packet to determine if it is stuck.
The lack of feedback (silence) following a broadcast suffices
to determine ifFi(h) is empty or not. However, nodei does
not need to know its neighbors’ states to perform updates (see
Lines 3, 4 in Algorithm 3). Other nodes also independently
and asynchronously execute similar algorithms. All the nodes
broadcast their new states whenever they update. Timing and
order of state updates can be arbitrary. We now proceed to
state and prove some of the properties of this algorithm.

Proposition 3.1: (a) The height of a nodei in t-stateti is
explicitly given by

hi(ti) = hi(0) + tihmax.

(b) For any nodei, andti ∈ Z+, we havetihmax < hi(ti) ≤
(ti + 1)hmax.

(c) For any two neighborsi and j, and ti, tj ∈ Z+ we have
the following implication

ti > tj ⇒ hi(ti) > hj(tj).

6
Z++ := Z+\{0}.

tihmax hmax

hmax

hmax

i

l

k
hk(ti) hk(ti + 1)

hi(ti + 1)

hl(ti)

hi(ti)

Fig. 1. An illustration of Algorithm 3 at a stuck nodei. Note thattl = ti
while tk = ti +1. When nodei updates its state, it reverse the links to both
l andk.

(d) For any two neighborsi and j, at any stage of the
algorithm, we have0 ≤| ti − tj |≤ 1.

(e) For any nodei, ti ≤ N at any stage of the algorithm.
Proof: See Appendix B.

Remarks 3.2: 1) For any node, thesizeof the state (i.e.,
the number of bits required to represent the state) grows
with the number of state updates. However, Proposi-
tion 3.1(e) implies that, for any node, the number of
updates is upper bounded byN , and hence thet−state
size is upper bounded bylog(N). Notice that heights are
functions oft-states (Proposition 3.1(a)), and hence need
not be stored separately.

2) Proposition 3.1(c) implies that the forwarding set of node
i can be alternatively defined as

Fi(a) = {j ∈ Ci| aj < ai},

wherea = (a1, . . . , aN) are the nodes’ states.
Proposition 3.2: In Algorithm 3, a stuck node reverses the

directions of all the incoming links.
Proof: Consider a stuck nodei. For any nodej ∈ Ci,

hj(tj) ≥ hi(ti). So, by virtue of Propositions 3.1(c)-(d), we
have eithertj = ti or tj = ti + 1. See Figure 1 for an
illustration.
(i) Considertj = ti. This is the case of nodel in Figure 1. In
this case, when nodei makes an update, it moves tot-state
tj + 1. Hence the link is fromi to j after the update.
(ii) Considertj = ti+1. This is the case of nodek in Figure 1.
In this case, observe that when nodej updated itst-state from
ti to tj = ti + 1, nodei’s t-state must have beenti. Further,
it must have been the case that eitherhj(ti) < hi(ti), or
hj(ti) = hi(ti) and j < i. Thus we have eitherhj(tj) <
hi(ti) + hmax, or hj(tj) = hi(ti) + hmax and j < i. Hence
when nodei makes an update, sincehi(ti+1) = hi(ti)+hmax,
the link is now fromi to j. This concludes the proof.

Proposition 3.3:Algorithm 3 can be embedded within the
GB algorithms framework. Thus it inherits the properties in
Proposition 2.1.

Proof: See Appendix A

B. Two Bits Full Link Reversal

In practice, states are stored using finite bit-width repre-
sentations. While the size of the states can depend on the
number of nodes in the network, it should not grow with the
number of iterations of the algorithm. Thet-states which are
the counts of the number of reversals, though bounded (see
Proposition 3.1(e)), grow as the algorithm runs. There could be

5

1000s of nodes in the network, and in resource limited nodes
in wireless sensor networks, memory is also at a premium.
Therefore, GB and NOLR algorithms need to be modified for
implementation in practical systems.

We now give a modification of Algorithm 3 that uses only
two bits for thet-state and does not update heights. To do this
we exploit the fact that, for any two neighborsi and j, the
link direction is entirely governed byti, tj , hi(0) andhj(0).
More precisely, the link is directed fromi to j if and only if
either ti > tj , or ti = tj and (hi(0), i) > (hj(0), j). Thus
t-states along with the initial heights suffice to determine link
orientations. Moreover, since at any stageti andtj are either
the same or adjacent integers (Proposition 3.1(d)), we need
only two bits to describe their order. Specifically, if we define,
for all i,

τi = ti mod 4,

and a cyclic ordering

00 < 01 < 10 < 11 < 00

on candidate values ofτi, we obtain

ti > tj ⇐⇒ τi > τj .

For nodei, τi is referred to as itsτ -state. Following the above
discussion, we can redefine the forwarding set of nodei as

Fi(τ) = {j ∈ Ci| τj < τi or

(τj = τi and (hj(0), j) < (hi(0), i))},

where τ = (τ1, . . . , τN). In the two bit full link reversal
algorithm nodei updates its state as follows.

Algorithm 4 Two bit full link reversal
1: loop
2: if Fi(τ) = ∅ then
3: τi ← (τi + 1) mod 4
4: end if
5: end loop

Following are the key properties of this algorithm.
Proposition 3.4: (a) In Algorithm 4, a stuck node reverses

the directions of all the incoming links.
(b) Algorithm 4 exhibits the properties in Proposition 2.1.

Proof: (a) Consider a stuck nodei. Following Proposi-
tion 3.1(d) and the definition ofτ -states, for any nodej ∈ Ci,
we have eitherτj = τi or τj = (τi + 1) mod 4.
(i) Considerτj = τi. In this case, when nodei makes an
update, it moves toτ -state(τj + 1) mod 4 which is greater
thanτj . Hence the link is fromi to j after the update.
(ii) Considerτj = (τi+1) mod 4. In this case it must be that
(hj(0), j) < (hi(0), i); were it not the case, nodej at τ -state
τi would not have done an update. Thus when nodei updates
its τ -state to(τi + 1) mod 4 = τj , the link is now fromi to
j. This concludes the proof of part (a).
(b) Let us consider a network and let all the nodes run
Algorithm 4. Also consider another copy of the network (with
the same initial link orientations) where all the nodes execute
Algorithm 3 as follows. The same node as in the original

network does the first update. Then we are left with the same
set of stuck nodes as in the original network because updates
lead to full link reversals in both the networks. The next update
is also done by the same node as in the original network,
thus again resulting in the same set of stuck nodes. Likewise,
subsequent updates also follow the same timing and order as
in the original network. Since the nodes’ updates in the latter
network satisfy the properties in Proposition 2.1, so do the
updates in the original network.

C. One Bit Full Link Reversal

Recall that in full reversal, a stuck node reverses the
directions of all its incoming links. Algorithm 4 executes this
using initial heights and a two bit state. We now describe
a simpler way to achieve this using initial heights and a
single flag bit at each node. More precisely, with each node
i, we associate a binary stateδi that is initialized to zero. For
any two neighborsi and j with (hi(0), i) > (hj(0), j), the
corresponding link is directed fromi to j if δi = δj, and from
j to i if δi 6= δj . In other words, at any stage, the forwarding
set of nodei is

Fi(δ) = {j ∈ Ci| ((hj(0), j) < (hi(0), i) andδj = δi) or

((hj(0), j) > (hi(0), i) andδj 6= δi)},

whereδ = (δ1, . . . , δN).
We propose the following one bit full link reversal algo-

rithm. Nodei updates its states as follows.

Algorithm 5 One bit full link reversal
1: loop
2: if Fi(δ) = ∅ then
3: δi ← (δi + 1) mod 2
4: end if
5: end loop

Remarks 3.3:For a stuck nodei, the updatedδ-state is
same as theδ-states of neighbors with higher heights but
complements theδ-states of neighbors with lower heights.
Thus, all its links become outgoing.
Algorithm 5 has similar properties as Algorithm 4.

Proposition 3.5: (a) In Algorithm 5, a stuck node reverses
the directions of all the incoming links.

(b) Algorithm 5 exhibits the properties in Proposition 2.1.
Proof: (a) Consider a stuck nodei and an arbitrary node

j ∈ Ci. Then, either(hi(0), i) < (hj(0), j) andδi = δj , or
(hi(0), i) > (hj(0), j) andδi 6= δj . In either case, when node
i flips δi, the link betweeni andj is reversed.
(b) The proof is identical to that of Proposition 3.4(b).

IV. PARTIAL L INK REVERSAL

Recall that the link reversals are intended to yield a destina-
tion oriented DAG. However, link reversals are accompanied
by state updates and information exchanges, and can poten-
tially lead to more nodes being stuck. Thus, a stuck node
could execute a partial link reversal (i.e., need not reverse all
its incoming links) so that the link graph converges quickly

6

to a destination oriented graph. We focus on the partial link
reversal scheme proposed by Gafni and Bertsekas [1] (see
Algorithm 2).

A. Neighbor Oblivious Partial Link Reversal

As in neighbor oblivious full link reversal, the algorithm is
such that a node, at any stage, knows the entirerange of all
neighbors’ heights but not the exact values. Then, the node
raises its height to an appropriate value to effect only a partial
link reversal. Again, as in Section III, the updating node does
not need to know the exact states of its neighbors, so valuable
communication time and energy are saved.

Notation: The new notation is collected below.

• ai = (ti, hi(ti), (−1)tii) is the state of nodei; ti is
referred to as itst-state.

• Fi(h) = {j ∈ Ci| (hj(tj), (−1)tj j) < (hi(ti), (−1)ti i)}
is the forwarding set of nodei for heights h =
(h1(t1), . . . , hN(tN)).

• {z(0), z(1), . . .} is a sequence satisfying

z(t) =

{

0 if t = 0,
2t−1(2hmax + 1) if t ≥ 1.

In the neighbor oblivious partial link reversal algorithm
nodei updates its state as follows.

Algorithm 6 Neighbor oblivious partial link reversal
1: loop
2: if Fi(h) = ∅ then
3: ti ← ti + 1
4: hi(ti)← z(ti)− hi(ti − 1)
5: end if
6: end loop

Remarks 4.1:Assume that nodei is stuck. The height
update (Line 4) along with the definition of sequence
{z(0), z(1), . . .} ensure thati’s updated height surpasses
the heights of those neighbors that have not updated states
since i’s last update, but still falls short of the heights of
other neighbors. A similar behavior is ensured by the third
components the states (e.g.,(−1)tii in ai) when two neighbors
have identical initial heights.

As discussed before, nodei broadcasts ahello packet to
determine if it is stuck. However, it does not need to know
its neighbors’ states to perform updates (see Lines 3, 4 in
Algorithm 6). Also, whenever it updates its state, it broad-
casts its new state to facilitate its neighbors updating the
corresponding link directions. Other nodes also independently
and asynchronously execute similar algorithms. In particular,
multiple nodes can update at the same time. The following
properties of this algorithm are similar to those of Algorithm 3.

Proposition 4.1: (a) The height of a nodei is explicitly

z(ti − 1)
z(ti)

z(ti + 1)

hi(ti) hi(ti + 1)

hk(ti)

hk(ti + 1)
k

i

l

hk(ti)

hl(ti)

Fig. 2. An illustration of Algorithm 6 at a stuck nodei. Note thattl = ti
while tk = ti + 1. Nodek has reversed its link toi after i’s last update but
nodel has not. When nodei updates its state, it reverse the link tol but not
the one tok.

given by

hi(ti) =



























ti/2
∑

l=1

z(2l− 1) + hi(0) if ti is even,

z(1) +

(ti−1)/2
∑

l=1

z(2l)− hi(0) if ti is odd.

(b) For any nodei, and ti ∈ Z++, we havez(ti − 1) <
hi(ti) < z(ti).

(c) For any two neighborsi and j, and ti, tj ∈ Z+ we have
the following implication

ti > tj ⇒ hi(ti) > hj(tj).

(d) For any two neighborsi and j, at any stage of the
algorithm, we have0 ≤| ti − tj |≤ 1.

(e) For any nodei, ti ≤ N at any stage of the algorithm.
Proof: See Appendix C.

Remarks 4.2: 1) As in the case of Algorithm 3, for any
node, the number of state updates is upper bounded by
N , and hence the state size is upper bounded bylog(N).

2) Propositions 4.1(c) implies that the forwarding set of node
i can be alternatively defined as

Fi(a) = {j ∈ Ci| aj < ai},

wherea = (a1, . . . , aN) are the nodes’ states.
Proposition 4.2: In Algorithm 6, a stuck nodei reverses the

directions of only those of its links that have not been reversed
sincei’s last update. If every link to nodei has been reversed
after i’s last update, it performs two successive updates to
reverse the directions of all its links.

Proof: Since nodei is stuck, for any nodej ∈ Ci,

(hj(tj), (−1)
tj j) > (hi(ti), (−1)

ti i).

By virtue of Propositions 4.1(c)-(d), we also have eithertj =
ti or tj = ti + 1. See Figure 2 for an illustration.
(i) Considertj = ti. This is the case of nodel in Figure 2.
We claim that nodej has not reversed its link toi since i’s
last update. Ifti = 0, this claim is trivially valid. If ti ≥ 1, we
will show that the progression of updates when both nodes’
t-states wereti−1 was: nodej updated, then nodei updated.
As a consequence, again, our claim will be valid. To see the
progression of updates, observe that ifhj(tj) = hi(ti), then
(−1)tj j > (−1)ti i. Thus, by sign flipping, att-statesti−1 =

7

tj − 1, (−1)tj−1j < (−1)ti−1i. Also, by the form of the
updates atti − 1, hj(tj − 1) = hi(ti − 1). So the link was
from nodei to nodej and it must bej that updated first. On
the other hand, ifhj(tj) > hi(ti), then

hj(tj − 1) = z(tj)− hj(tj)

< z(ti)− hi(ti)

= hi(ti − 1).

Again we conclude that the link was fromi to j, and it must be
j that updated first. This establishes the claimed progression
of states.

Continuing with the case, when nodei now makes an
update, it moves tot-statetj + 1. Hence the link is fromi
to j after the update.
(ii) Considertj = ti+1. This is the case of nodek in Figure 2.
We claim that nodej has reversed its link toi after i’s last
update. Were it not the case, nodei’s t-state immediately prior
to its last update would have beenti − 1 = tj − 2 which
contradicts Proposition 4.1(d).

Moreover, when nodej’s t-state wastj − 1 = ti, it must
have been the case that

(hj(tj − 1), (−1)tj−1j) < (hi(ti), (−1)
ti i).

If hj(tj − 1) = hi(ti), then (−1)tj−1j < (−1)tii. Thus, by
sign flipping, att-statesti + 1 = tj , (−1)tj j > (−1)ti+1i.
Also, hj(tj) = hi(ti + 1). So, even after nodei makes an
updates and moves tot-stateti + 1, the link continues to be
from j to i. If hj(tj − 1) < hi(ti), then

hj(tj) = z(tj)− hj(tj − 1)

> z(ti + 1)− hi(ti)

= hi(ti + 1).

Again, even after nodei makes an updates and moves tot-
stateti + 1, the link continues to be fromj to i. This proves
the first part of the proposition.

Finally, suppose that every neighbor of nodei has reversed
its link to i after i’s last update. Then, as shown above,tj =
ti+1 for all j ∈ Ci. Again as argued above, if nodei updates
its state, it does not reverse any of its links, i.e., it is still stuck.
Thus it performs one more update. After this update itst-state
is ti + 2 which exceedstj for all j ∈ Ci. So all its links are
reversed.

Remarks 4.3:For a stuck node, if all its neighbors have
reversed the corresponding links after its last update, it takes
two iteration to reverse all the incoming links. This is unlike
Algorithm 2 which needs only one iteration.

Proposition 4.3:Algorithm 6 can be embedded within the
GB algorithms framework. Thus it inherits the properties in
Proposition 2.1.

Proof: See Appendix A.

B. Two-Bit Partial Link Reversal

In Algorithm 6, nodes’t-states grow as they update. We
now give a modification of Algorithm 6 that uses only two
bits for t-state and does not update heights. To do this we
exploit the fact that for any two neighborsi and j, the link

direction is entirely governed byti, tj , hi(0) andhj(0). More
precisely, the link is directed fromi to j if and only if either
ti > tj , or ti = tj and (−1)ti(hi(0), i) > (−1)tj (hj(0), j).
Thust-states along with the initial heights suffice to determine
link orientations. Moreover, since at any stageti and tj are
either same or adjacent integers (Proposition 4.1(d)), we need
only two bits to describe their order. Specifically, if we define
τ -states for all the nodes as in Section III-B, we obtain

ti > tj ⇐⇒ τi > τj .

As before, for nodei, τi is referred to as itsτ -state. Following
the above discussion, we can redefine the forwarding set of
nodei as

Fi(τ) = {j ∈ Ci| τj < τi or (τj = τi

and (−1)τi(hi(0), i) > (−1)τj(hj(0), j))},

where τ = (τ1, . . . , τN). We are thus led to the following
two bit version of the partial link reversal algorithm. Nodei
updates its states as follows.

Algorithm 7 Two bit partial link reversal
1: loop
2: if Fi(τ) = ∅ then
3: τi ← (τi + 1) mod 4
4: end if
5: end loop

Following are the key properties of this algorithm.
Proposition 4.4: (a) In Algorithm 7, a stuck nodei re-

verses the directions of only those of its links that have
not been reversed sincei’s last update. If every link to
nodei has been reversed afteri’s last update, it performs
two successive updates to reverse the directions of all its
links.

(b) Algorithm 7 exhibits the properties in Proposition 2.1.
Proof: (a) Following Proposition 4.1(d) and the definition

of τ -states, for any nodej ∈ Ci, we have eitherτj = τi or
τj = (τi + 1) mod 4.
(i) Considerτj = τi. We claim that nodej has not reversed its
link to i sincei’s last update. If neitheri nor j has ever made
an update, this claim is trivially valid. If both of them have
made updates, by Proposition 4.1(d), it cannot be that one of
them made two updates without the other updating. So both
must have been at(τi− 1) mod 4 at some point of time. We
will show that the progression of updates when both nodes’
τ -states wereτi− 1 mod 4 was: nodej updated, then nodei
updated. As a consequence, again, our claim is valid. To see
the progression of updates, observe that

(−1)τj (hj(0), j) > (−1)τi(hi(0), i).

Thus, by sign flipping, at the nodes’ immediately priorτ -
states, the inequality was in reverse direction. So the linkwas
from nodei to nodej and it must bej that updated first.

Continuing with the case, when nodei makes an update, it
moves toτ -state(τj +1) mod 4. Hence the link is fromi to
j after the update.

8

(ii) Considerτj = (τi +1) mod 4. We claim that nodej has
reversed its link toi after i’s last update. Were it not the case,
nodei’s τ -state immediately prior to its last update would have
been(τi−1) mod 4 = (τj−2) mod 4 which contradicts the
fact that at any stageτi andτj assume either same or adjacent
values.

Moreover, when nodej’s τ -state was(τj−1) mod 4 = τi,
it must have been the case that

(−1)τi(hj(0), j) < (−1)τi(hi(0), i).

Thus, by sign flipping, atτ -states(τi + 1) mod 4 = τj ,

(−1)τj (hj(0), j) > (−1)τj(hi(0), i).

So, even after nodei makes an update and moves toτ -state
(τi + 1) mod 4, the link continues to be fromj to i.

Finally, suppose that every neighbor of nodei has reversed
its link to i afteri’s last update. Then, by the arguments above,
τj = (τi + 1) mod 4 for all j ∈ Ci. Also, if nodei updates
its state once, it does not reverse any of its links, i.e., it is still
stuck. Thus it performs one more update. After this update its
τ -state is(τi + 2) mod 4 which exceedsτj for all j ∈ Ci.
So all its links are reversed.
(b) The proof is identical to that of Proposition 3.4(b).

V. CONCLUSION

We proposed neighbor oblivious link reversal (NOLR)
schemes to get a destination oriented network out of the local
minimum condition in geographic routing. Our algorithms
fall within the general class of GB algorithms [1]. We then
argued that both the algorithms, GB and NOLR, may suffer
the problem of state storage overflow. This led us to modify the
NOLR algorithms to obtain one bit full link reversal and two
bit partial link reversal algorithms. The finite state algorithms
inherit all the properties of NOLR algorithms which in turn
inherit the properties of GB algorithms, and are pragmatic link
reversal solutions to convert a destination-disoriented DAG to
a destination-oriented DAG.

The property|ti − tj | ≤ 1 at every stage for all pairs of
neighboring nodes is crucial for getting the finite state version
of our NOLR algorithms. If addition of new nodes or links to
the existing graph is allowed, this property could be violated.
If full t-states (instead of onlyτ -states) are maintained, then
since Algorithms 3 and 6 belong to the class of GB algorithms,
they continue to exhibit the properties in Proposition 2.1.
However, Algorithm 3 does not execute a full link reversal,
and similarly, Algorithm 6 does not execute a partial link
reversal. Furthermore, the finite state algorithms are not robust
to addition of new nodes or links because the newly added
nodes may not be able to take up a state consistent with the
above property, or the DAG may be burdened by cycles.

APPENDIX A
PROOFS OFPROPOSITIONS3.3 AND 4.3

For all i ∈ [N], let Ai be the set of feasible states of node
i. Definev = (a1, a2, . . . , aN). Let V be the set of all such

N -tuples. For eachv ∈ V , let S(v) ⊂ [N] denote the set of
stuck nodes.

S(v) = {i ∈ [N]| aj > ai for all j ∈ Ci}.

We consider iterative algorithms of the form

v ← v ∈M(v),

whereM(·) is a point-to-set mapping;M(v) ⊂ V for all
v ∈ V . In the following we show that the proposed neighbor
oblivious link reversal algorithms satisfy the assumptions of
GB algorithms.

First, we consider Algorithm 3. Recall thatai =
(ti, hi(ti), i) in this case.
(A.1): Definegi : V → Ai, i = 1, . . . , N as

gi(v) =

{

(ti + 1, hi(ti) + hmax, i) if i ∈ S(v),
(ti, hi(ti), i) if i /∈ S(v).

The setM(v) is then given by

M(v) =















{v} if S(v) = ∅,
{v = (a1, . . . , aN)| v 6= v and

eitherai = ai or ai = gi(v) for all i ∈ [N]}
if S(v) 6= ∅.

(A.2): From (A.1), it is clear that for eachv = (a1, . . . , aN)
and i = 1, . . . , N , the functionsgi(·) satisfy

gi(v) > ai if i ∈ S(v),

andgi(v) = ai if i /∈ S(v).

Furthermore, for eachi = 1, . . . , N , gi(v) depends only on
ai and{aj| j ∈ Ci}; the latter states determine ifi ∈ S(v) or
otherwise.
(A.3): Consider a nodei and a sequence{vk} ⊂ V for which
i ∈ S(vk) for an infinite number of indicesk. If r is one of
these indices,gi(vr) − ari ≥ (1, hmax, 0), otherwisegi(vr)−
ari = 0. Hence the sequence

{

a0i +

k
∑

r=0

[gi(v
r)− ari]

}

is unbounded inAi. Next, we consider Algorithm 6. Recall
thatai = (ti, hi(ti), (−1)tii) in this case. We definegi : V →
Ai as

gi(v) =

{

(ti + 1, z(ti + 1)− hi(ti), (−1)ti+1i) if i ∈ S(v),
(ti, hi(ti), (−1)ti i) if i /∈ S(v).

Again, it is easy to check that Assumptions (A.1)-(A.3) hold.
Gafni and Bertsekas [1] show that if the communica-

tion graph is connected and an algorithm satisfies Assump-
tions (A.1)-(A.3), then Proposition 2.1 holds for the algorithm.
This concludes the proof of Propositions 3.3 and 4.3.

APPENDIX B
PROOF OFPROPOSITION3.1

(a) This follows immediately from the height update
rule (Line 4 in Algorithm 3).
(b) This follows from (a) and0 < hi(0) ≤ hmax.
(c) The implication holds becausehi(ti) > tihmax and
hj(tj) ≤ (tj + 1)hmax (see (b)).

9

(d) Without loss of generality, assumeti ≥ tj . We claim that
ti ≤ tj + 1. We prove the claim via contradiction. Suppose
ti > tj+1. Nodei must have reached this state throughtj+1
becauseti is initialized to zero and is incremented by one each
time nodei updates its state. When nodei’s t-state wastj+1,
from (c) hi(tj +1) > hj(tj), and therefore it had an outgoing
link to nodej. Thus,i would not have updated itst-state to
tj + 2 or higher. This contradicts our supposition, and proves
the claim.
(e) Observe that any one hop neighbor of the destination
never updates its heights; it always has an outgoing link to
the destination. Consequently, for any such node, say nodei,
ti = 0 at any stage of the algorithm. Now, assume that for a
nodej, tj > N at some stage. Then, there is pair of neighbors
k and l such that| tk − tl |> 2. But this contradicts part (d).
Thus, we have the boundti ≤ N for any nodei.

APPENDIX C
PROOF OFPROPOSITION4.1

(a) We first obtain a recursion onhi(ti) using the height update
rule (Line 4 in Algorithm 6). For anyti ≥ 2,

hi(ti) = z(ti)− hi(ti − 1)

= 2z(ti − 1)− (z(ti − 1)− hi(ti − 2))

= z(ti − 1) + hi(ti − 2).

Successive applications of this recursion leads to expression
for the case whenti is even. If we also use thathi(1) =
z(1) − hi(0), we get the expression for the case whenti is
odd.
(b) We prove the inequalities by induction onti. For ti = 1,

0 < hi(1) < z(1).

Now, assume that0 < hi(ti) < z(ti) for someti ∈ Z++.
From the height update rule (Line 4 in Algorithm 6),

hi(ti + 1) = z(ti + 1)− hi(ti)

= 2z(ti)− hi(ti)

> z(ti),

where the inequality holds becausehi(ti) < z(ti). Also, 0 <
hi(ti) implies thathi(ti + 1) < z(ti + 1). This completes the
induction, and shows that the inequalities hold for allti ∈
Z++.
(c) The implication holds becausehj(tj) < z(tj), hi(ti) >
z(ti − 1) andz(t) is increasing int.
(d) The proof is identical to that of Proposition 3.1(d).
(e) The proof is identical to that of Proposition 3.1(e).

REFERENCES

[1] E. M. Gafni and D. P. Bertsekas, “Distributed algorithmsfor generating
loop-free routes in networks with frequently changing topology,” IEEE
Transactions on Communications, vol. 29, pp. 11–18, 1981.

[2] B. Karp and H. T. Kung, “GPSR: Greedy perimeter statelessrouting
for wireless networks,” inProceedings of the 6th annual international
conference on Mobile Computing and Networking (MobiCom), 2000,
pp. 243–254.

[3] Q. Fang, J. Gao, and L. J. Guibas, “Locating and bypassingholes in
sensor networks,”Mob. Netw. Appl., vol. 11, no. 2, pp. 187–200, 2006.

[4] E. Kranakis, H. Singh, and J. Urrutia, “Compass routing on geometric
networks,” in in Proc. 11 th Canadian Conference on Computational
Geometry (CCCG). Citeseer, Aug. 1999, pp. 51–54.

[5] H. Kalosha, A. Nayak, S. Ruhrup, and I. Stojmenovic, “Select-and-
protest-based beaconless georouting with guaranteed delivery in wireless
sensor networks,” in27th IEEE Conference on Computer Communica-
tions (INFOCOM), April 2008, pp. 346–350.

[6] C.-Y. Chang, K.-P. Shih, S.-C. Lee, and S.-W. Chang, “RGP: Active
route guiding protocol for wireless sensor networks with obstacles,”
in IEEE International Conference on mobile adhoc and sensor Sys-
tems (MASS), Oct. 2006, pp. 367–376.

[7] F. Yu, S. Park, Y. Tian, M. Jin, and S.-H. Kim, “Efficient hole detour
scheme for geographic routing in wireless sensor networks,” in IEEE
Vehicular Technology Conference (VTC Spring), May 2008, pp. 153–
157.

[8] B. Leong, B. Liskov, and R. Morris, “Geographic routing without
planarization,” in Proceedings of the 3rd conference on Networked
Systems Design & Implementation (NSDI), 2006, pp. 25–25.

[9] P. Casari, M. Nati, C. Petrioli, and M. Zorzi, “ALBA: An adaptive
load - balanced algorithm for geographic forwarding in wireless sensor
networks,” in IEEE Military Communications Conference (MILCOM),
Oct. 2006, pp. 1–9.

[10] C. Perkins and P. Bhagwat, “Highly dynamic destination-sequenced
distance-vector routing (dsdv) for mobile computers,”ACM SIGCOMM
Computer Communication Review, vol. 24, no. 4, pp. 234–244, 1994.

[11] D. Johnson, D. Maltz, J. Brochet al., “Dsr: The dynamic source routing
protocol for multi-hop wireless ad hoc networks,”Ad hoc networking,
vol. 5, pp. 139–172, 2001.

[12] N. Arad and Y. Shavitt, “Minimizing recovery state in geographic ad
hoc routing,” Mobile Computing, IEEE Transactions on, vol. 8, no. 2,
pp. 203–217, 2009.

[13] M. Corson and A. Ephremides, “A distributed routing algorithm for
mobile wireless networks,”Wireless Networks, vol. 1, no. 1, pp. 61–81,
1995.

[14] V. Park and M. Corson, “A highly adaptive distributed routing algorithm
for mobile wireless networks,” inINFOCOM’97. Sixteenth Annual
Joint Conference of the IEEE Computer and Communications Societies.
Proceedings IEEE, vol. 3. IEEE, 1997, pp. 1405–1413.

[15] N. Malpani, J. Welch, and N. Vaidya, “Leader election algorithms
for mobile ad hoc networks,” inProceedings of the 4th international
workshop on Discrete algorithms and methods for mobile computing
and communications. ACM, 2000, pp. 96–103.

[16] R. Ingram, P. Shields, J. Walter, and J. Welch, “An asynchronous leader
election algorithm for dynamic networks,” inParallel & Distributed
Processing, 2009. IPDPS 2009. IEEE International Symposium on.
IEEE, 2009, pp. 1–12.

[17] C. Busch and S. Tirthapura, “Analysis of link reversal routing algo-
rithms,” SIAM Journal on Computing, vol. 35, no. 2, p. 305, 2005.

[18] A. Rao, S. Ratnasamy, C. Papadimitriou, S. Shenker, andI. Stoica,
“Geographic routing without location information,” inProceedings of
the 9th annual international conference on Mobile computing and
networking (MobiCom), 2003, pp. 96–108.

	I Introduction
	I-A Motivation
	I-B Related Literature
	I-C Our Contributions
	I-D Organization of the Paper

	II Overview of GB Algorithms
	III Full Link Reversal
	III-A Neighbor Oblivious Full Link Reversal
	III-B Two Bits Full Link Reversal
	III-C One Bit Full Link Reversal

	IV Partial Link Reversal
	IV-A Neighbor Oblivious Partial Link Reversal
	IV-B Two-Bit Partial Link Reversal

	V Conclusion
	Appendix A: Proofs of Propositions ?? and ??
	Appendix B: Proof of Proposition ??
	Appendix C: Proof of Proposition ??
	References

