arxXiv:1103.0133v2 [cs.Nl] 4 May 2012

Neighbor Oblivious and Finite-State Algorithms for
Circumventing Local Minima in
Geographic Forwarding

Santosh Ramachandran, Chandramani Singh, S. V. R. AnandfiM&gde, Anurag Kumar, Rajesh Sundaresan

Abstract—We propose distributed link reversal algorithms —destination-disoriented and only if there exists a node other
to circumvent communication voids in geographic routing. W than the sink that has no outgoing lifK [1]. The disadvardage
also solve the attendant problem of integer overflow in these node with no outgoing links is said to bstuck (as it is

algorithms. These are achieved in two steps. First, we demv ) . .
partial and full link reversal algorithms that do not requir e one- unable to forward towards the sink a packet that it receives)

hop neighbor information, and convert a destination-disoiented ~ destination-oriented network under geographic routing e
directed acyclic graph (DAG) to a destination-oriented DAG rendered destination-disoriented due to various reasocis s

We embed these algorithms in the framework of Gafni and as node failures, node removal or sleep-wake cycling. The
Bertsekas [1] in order to establish their termination propeties. failure of geographic routing in the presence of stuck nodes

We also analyze certain key properties exhibited by our neigbor . . .
oblivious link reversal algorithms, e.g., for any two neigtbors, is commonly referred to athe local minimum conditiof].

their ¢-states are always consecutive integers, and for any node,Numerous solutions have been proposed in the literaturelto p
its t-state size is upper bounded byog(N). In the second step, the network out of a local minimum condition (See Secfiod I-B

we resolve the integer overflow problem by analytically dewing  for details). However, all these solutions require knowledge

one-bit full link reversal and two-bit partial link reversa | versions of one-hop neighbors and their locationblaintenance of

of our neighbor oblivious link reversal algorithms. . . . . . -
one-hop neighbor information, in general, requires péciod

Index Terms—geographic forwarding, full link reversal, partial  transmissions okeep alivepackets.

link reversal, distributed algorithm, finite bit width We associate each node in the network with a unique nu-

merical value, henceforth referred to state A link between
|. INTRODUCTION a pair of neighboring nodes is oriented from the node with the
A. Motivation higher state to the node with the lower state. Thus states (of

Consider a wireless sensor network (WSN) with a singfll the nodes) determine the routing graph. It is clearly
designated sink node. We shall focus particularly on an exaffyclic. Whenever a node updates its state, it communicates
ple application where the WSN is used to detect undesirafift® néw state to its neighbors. Thus all the nodes always
events. An alarm packet originating at a node near the locatinave an updated view of the directions of all their lifks.
of the alarm event has to be routed to the sink node. Fhfhenever a node wants to determine whether it is stuck or
such purposegieographic routing?] is a popular protocol for Not. it br_oadca_sts dello _pac_ket cpntai_ning only its index.
packet delivery. It is scalable, stateless, and reactivenowt All the alive neighbors with incoming links from the tagged
the need for prior route discovery. In this protocol, a nod@de acknowledge. If the tagged node does not receive any
forwards a packet to another node within its communicatigtgknowledgment until a fixed timeout period, it concludes th
range (hence, called aeighbor node) and closer to theitS State is the least among its alive ne|ghb_ors, i.e., itusls _
destination. Ties can be broken arbitrarily, for examplg, blhen, the node updates its state appropriately to revesse it
using node indices. Such a protocol requires a node withiaks. It also broadcasts the new state to facilitate itgnleors
packet to be aware of its own geographical location, andcthatt© Update the corresponding link directions. An updatequoit
the sink and of its neighbors. To each node, the next hop nodalledneighbor obliviousf the updating node does not need
that are closer to the sink are definedgasedyneighbors, and © kqow theexactvalues of its neighbors’ states. Nelghbor
wireless “links” are oriented from the nodes to their greedyPlivious protocols do not incur the overhead of neighbor
neighbors. The resulting routing graph isdaected acyclic State discovery, and thus save precious communication time
graph (DAG). and energy. .

A DAG is said to bedestination-orientedvhen there is a Gafni and Bertsekas [1] proposed a general class of dis-

directed path in the DAG from any node to the sink. A DAG i§fibutedlink reversal algorithmsgfor converting a destination-
disoriented DAG into a destination-oriented DAG. They also

The authors are with the Electrical Communications EngingeDepart- described two representative algorithnfall link reversal

ment of the Indian Institute of Science, Bangalore, India. . . .
This work was supported in part by a research grant on Wisegmnsor and partial link reversal of their general class. Henceforth,

Networks from DRDO, Government of India, and in part by thédiFrench  We refer to their algorithms a&B algorithms In the GB

Centre for Promotion of Advanced Research (IFCPAR), Ptdjec 4000-I1T-

A. 1For communication between two neighbors, they must havenaistent
This work was presented in part at the National Conferenc€@nmuni-  view of the direction of the link between them. Thus broaticdshe updated

cations (NCC) 2010, lIT Madras, Chennai, India. state is an intrinsic part of all routing algorithms.


http://arxiv.org/abs/1103.0133v2

algorithms, a stuck node’s update depends on its one-hetpal. [15] built a leader election algorithm on the top of
neighbors’ states. Thus the GB algorithms aa neighbor TORA for mobile networks. Ingram et al [16] proposed
oblivious a modification of the algorithm in[[15] that works in an
Our work is motivated by the question: Are thedis- asynchronous system with arbitrary topology changes. All
tributed, finite-state, neighbor oblivioygsotocols that can pull these link reversal algorithms employ state variableseltaer
a network out of its local minimum condition and render itequire infinitesimal precision (e.g., current time) or \gro
destination-oriented? unbounded, thus imposing enormous memory requirements.
Further, state updates in these algorithms require frequen
information exchanges among neighboring nodes, and also
. i . ) network wide clock synchronization, thus imposing signifi-
Kranakis et al.[[4] introduced geographic routing protscokation communication overhead. These drawbacks render the
for planar mobile ad hoc networks, calledmpass routin®@r  apove algorithms unsuitable for large mobile networks with
face routing This t_echniqu_e guarantees deliveryin_a Con”eCtﬁghtweight mobile nodes. We focus on connected mobile ad
network, but requires a priori knowledge of full neighbooklo ¢ networks with single destination and develop neighbor-
Karp and Kungl[2] presentegieedy perimeter stateless rout-op|ivious and memory-savvy link reversal algorithms.
ing (GPSR) which also ensures successful routing over planaigsch and Tithapura [17] analyzed GB algorithms (full and
networks. Kalosha et al.|[5] addressed a beaconless rgcovesrtial link reversal) to determine the number of reversals
problem where the local planar subgraph is constructed®n #q time until these algorithms converge. Their perforreanc

fly. Chang et al.[[6] presentembute guiding protocokRGP), pounds apply to our algorithms also.
a shortest path routing protocol to bypass voids, but thsat al

requires communication of current states among neighlvars.
et al. [7] discussed a void bypassing scheme when both source
and sink nodes are mobile. Leong et al. [8] presented a newVe focus on connected mobile ad hoc networks with a
geographic routing protocol callegeedy distributed spanning Single destinatio. We propose neighbor oblivious full and
tree routing(GDSTR). GDSTR employs convex hulls whichPartial link reversal (NOLR) algorithms in which a stuck
require maintaining topology information. Casari et al] [9node does not need one-hop neighbors’ states to execute its
proposecadaptive load-balanced algorithifALBA), another state update. However, as discussed earlier, a node ssill ha
greedy forwarding protocol for WSNs. Some other algorithn{ communicate with its neighbors in order to determine if
developed for mobile adhoc networks includestination se- it is stuck. But this communication only involves tzello
quenced distance vect@®SDV) routing [10],wireless routing Packet and its acknowledgments, and thus is “lightweight”.
protocol (WRP) [10], dynamic source routingDSR) [11] Then, we embed our NOLR algorithms into the framework of
and node elevation ad hoc routingNEAR) [12]. All the the GB algorithms. The embedding ensures that our proposed
above algorithms require neighbor information at a stuakeno algorithms render the network destination-oriented.
and some even require more extensive topology informa-In GB and NOLR algorithms, the state spaces are (count-
tion (e.g., [8]). ably) infinite. The reason is that in both the algorithms each
Gafni and Bertsekas'][l] introduced a genera' CIaSS dee's State gl’OWS W|th0ut bound W|th the number Of ||nk
link reversal algorithms to maintain routes to the destamat reversals. The algorithms therefore cannot be realized in a
They also presented two particular algorithms, the fulk linfeal operating environment with only a finite number of
reversal algorithm and the partial link reversal algorithn®its to represent states, when repeated link reversals may b
The GB a|gorithms were designed for connected networ@countered. We show that Simple modifications of our NOLR
In a partitioned network, GB algorithms lead to infinitedlgorithms result in finite-state link reversal algorithrast
number of state updates without ever converging. Corson a@Rch node, in addition to the initial state, the full link eesal
Ephremides[13] presentdightweight mobile routingLMR), ~ algorithm requires only a one-bit dynamic state and theigdart
a variant of GB link reversal algorithms. Park and Corsor] [14nk reversal algorithm requires only a two-bit dynamictsta
proposedtemporally-ordered routing algorithm (TORApr Throughout, we assume that new nodes or links are not
detecting and dealing with partitions in the networks. TORAdded to the existing network. We conclude the paper with a
is also an adaptation of GB partial link reversal a|gorithrﬁiSCU.SSi0n of how addition of new nodes or links affects our
and employs extended states that incluerent timeand algorithms.
originator id. GB link reversal algorithms have also motivated
severalleader electionalgorithms which are an importantD. Organization of the Paper

building block for distributed computing, €.g., mutual BXC  hg rest of the paper is organized as follows. In Sedibn I

sion algorithms or group communication protocols. Malpagje provide an overview of the GB algorithms. In Section I
20ne simple neighbor oblivious algorithm is to always makeéuaks node we discuss .fu" link reversa.'l' We begm with the NOLR pro-

increment its state by unity. This algorithm renders thevoek destination- POSal, but with a countably infinite state space. Then, weemak

oriented but requires a huge number of updates. In particiilés neither

full link reversal nor partial link reversal. Recall thatobaupdating node  3If routing to multiple destinations is required, for eachstiation, a
broadcasts its state to determine if it stuck, and then waitsa timeout logically separate copy of our algorithm should be run. Timsitation is
period for acknowledgments. Consequently, this simpleritym results in  inherent to the class of GB link reversal algorithms ($ée [[3], [14], [15],
significant energy expenditure and delay, and hence, is emitable. [1e)).

B. Related Literature

Our Contributions



an observation that renders the NOLR algorithm into a finitélgorithm 1 GB Full link reversal
state algorithm without loss of correctness. In Secfioh IV,1: loop

we address partial link reversal, and pass through the sante  if F;(h) =0 then

trajectory as for full-link reversal — an NOLR algorithm Wit 3: hi < max{h;| j € C;} +1
infinite states followed by a finite-state version. In Secfid  4: end if

we make some concluding remarks. The appendices contain end loop

the detailed proofs.

Partial link reversal: In this algorithm, every node keeps a
list of its neighbors that have already reversed their littks
Consider a WSN with a designated destination node andif a node is stuck, it reverses the directions of links to a
nondestination nodes$l,2,..., N}. The nodes are assumedhose neighbors that are not in the list, and empties thelflist
to have static locations. Two nodes are neighbors if they cal its neighbors are in the list, then it reverses the dioast
directly communicate, and then we say that therelislabe- of all the incoming links, and empties the list. Nodapdates
tween them. Link reversal schemes can be used in geograptiGtate as follows.
forwarding by assigning unique states,, as, ..., ay, to the
nodes. The states are totally ordered by a relatiom the Algorithm 2 GB Partial link reversal
sense that for any two nodéandy, eithera; < a; ora; < a;, 1: loop
but not both. These states are used in assigning routing if F;(p,h) =0 then

II. OVERVIEW OF GB ALGORITHMS

directions to links. The link between a pair of neighbors is3: p; < min{p,;| j € C;} +1

always oriented from the node with the higher state to the: if there exists g € C; with p; = p; then

node with the lower state. 5: h; + min{h;| j € C; with p; = p,} — 1
In GB algorithms, the state associated with a nbidea pair  6: end if

of numbers(h;,4) for full reversal and a triplet of numbers 7: end if

(pi, hi, 1) for partial reversal, wherg; (calledi’s heigh) and 8: end loop
p; are integers. The ordering on the tuples in each case is
the lexicographical orderir@For a nodei, let C; denotei’s
neighbors Also, leth = (hy,...,hx) andp = (p1,...,pN).
Then, the forwarding set of nodecan be written as

Remarks 2.2:All p;s are initialized to0. The update
rule (Line[3) ensures that for neighboring noges are always
adjacent integers. For a stuck nagl¢he h; update (Line§UH5)

Fi(h) = {j € Ci| (hy,j) < (hs,i)} ensures that, does not_rgverse the links to the neighbors that
have updated states sinée last update.
for full reversal, and Note that all the nodes run Algorithid 1 (or Algorithih 2
in case of partial link reversal) asynchronously, i.e.,irthe
Fi(p,h) ={j € Ci| (pj, hj,7) < (pishi, i)} reversals can follow any arbitrary timing and order. Gafmi a

Bertsekasl[[1] show the following properties.

Proposition 2.1: (a) Starting from any staté, or (p, h),
Algorithms [1 and[R terminate in a finite number of
iterations yielding destination oriented DAGs.

for partial reversal. Clearly, nodeis stuckif F;(h) = 0 (for
full reversal), or F;(p,h) = 0 (for partial reversal). Node
7, to determine if it is stuck, broadcasts its state. All its

alive neighbors With lower states acknowledge (Recall th&ﬁ) Algorithm[ results in the same destination-oriented®A

a few of the n_elghbors might nOF be awake du_e to the regardless of the timing and order of reversals. The same
sleep-wake cycling in place). If nodedoes not receive any holds for Algorithm®

acknowledgment until an a priori fixed timeout, it concIudeEC) Algorithms[1 and2 are such that only those nodes that do

that its state is t_he Ieagt among its neighbors, i.e., ituslst not initially have a greedy path to the destination update
The GB algorithms distributively update the states of stuck their states at any stage.

nodes so that a destination-oriented DAG is obtained. Thegamarks 2.3 The Updates at a stuck node, in both Algo-

algor_ithms are as follqws. ) rithms[d andR, depend on knowledge of neighbors’ states (see
Full link reversal: In this algorithm, a stuck node reverses thﬁineB in Algorithmd and LineEI$1415 in Algorithd 2). After
direction of all the incoming links. Nodeupdates its state asg5ch Jink reversal, the updating node needs to broadcast its
follows. . o new state, and its neighbors need to gather this information
Remarks 2.1:Evidently, a nodei, if stuck, leapfrogs the 5 reliable fashion (e.g., using an error detection scheine).

alg(;)ri'thm. All neighbors thereby enter the forwarding set Qjesired level of ignorance that we cabighbor obliviousness
nodei.

4The heights k;s) are initialized to either hop counts or distances from the 1. FULL LINK REVERSAL
destination (evaluated from either actual or virtual lamas [18]), with the A. Neighbor Oblivious Full Link Reversal
destination’s height being zero. L .
5For tuplesa, b of the same dimensior, > b iff a; > b; wherei is the The main idea may be summarized as follows. Suppose

smallest index such that; # b;. that the algorithm is such that a node, at any stage, knows the



entirerangeof all its neighbors’ heights. Then it may execute £ ’éh‘“a%x%‘ ;
a full reversal by raising its height to a value higher thaa th ih’“(tf?)‘ h’fi(ti +‘ 1) i
maximum in the range. Note that the updating node does not* hi(ts) ha(ti+ 1)
need to know the exact states of its neighbors, so valuable; |

communication time and energy are saved. o u(t)

Notation: The notation used is listed below for ease of : : :
reference } tihmax } hmax } hmax%{

e [N] ={1,2,..., N} is the set of nodes (or node indices)Fig. 1. An illustration of Algorithn[B at a stuck node Note thatt; = ¢;

o l; € Z+ is the number of height updates made by noq/glagi Zk = t; + 1. When node; updates its state, it reverse the links to both
1; this is initialized to0 for all 7.

e hi(t;) € Z, is the height of node after¢; updateﬂ
hi(0) refers to the initial height. The destination’s heighfd) For any two neighbors and j, at any stage of the

is 0. algorithm, we have) <| t; —t; |< 1.
e a; = (t;, hi(t;), 1) is the state of nodé ¢; is referred to (e) For any node, ¢; < N at any stage of the algorithm.
as itst-state. Proof: See AppendixB. [ |
« C; is the set of neighbors af, i.e., those with whichi Remarks 3.2: 1) For any node, thsizeof the state (i.e.,
can directly communicate. the number of bits required to represent the state) grows
e Fi(h) = {5 € Ci| (hi(ty),7) < (hi(ti),3)} is with the number of state updates. However, Proposi-
the forwarding set of nodé, given the heightsh = tion [3.d(e) implies that, for any node, the number of
(h1(t1), ha(te), ..., hn(tn))- updates is upper bounded By, and hence the—state
o hmax = max{hi(0),...,hn(0)}. size is upper bounded Hyg(N). Notice that heights are
The algorithm is simple. Node updates its state, as functions oft-states (Propositidn 3r(a)), and hence need
follows. not be stored separately.
2) Propositio 31tfc) implies that the forwarding set of @od
Algorithm 3 Neighbor oblivious full link reversal 1 can be alternatively defined as
1: loop N g 0 _
2 if Fi(h) = 0 then Fla)=1{j € Gl a; <ai},
3 ti+—t;+1 wherea = (a1, ...,ay) are the nodes’ states.
4 hi(t;) < hi(t; = 1) + hmax Proposition 3.2:1n Algorithm[3, a stuck node reverses the
5: end if directions of all the incoming links.
6: end loop Proof: Consider a stuck nodé For any nodej € C;,

hj(tj) > hi(t;). So, by virtue of Propositiors_3rd(d}}(d), we

) _ have eithert; = t; or t; = t; + 1. See Figurd]l for an
Remarks 3.1:Node, if stuck, updates its state such thafjstration. '

the new height surpasses the heights of all its neighboes (%9 Considert, = t;. This is the case of nodein Figure[J. In

Line ). Thus, it reverses all the incoming links. this case, when nodemakes an update, it moves testate
Node1 broadcasts &ello packet to determine if it is stuck. t; + 1. Hence the link is from to j after the update.

The lack of feedback (silence) following a broadcast susficgjj) Considert; = t;++1. This is the case of nodein Figure[1.
to determine ifF;(h) is empty or not. However, nodedoes |n this case, observe that when nodepdated its-state from
not need to know its neighbors’ states to perform updates (se g t; = t; + 1, nodei’s {-state must have been. Further,
Lines[3,[4 in Algorithm[B). Other nodes also independently must have been the case that eitthgit;) < hi(t;), or
and asynchronously execute similar algorithms. All theenzodhj t:) = hy(t;) andj < i. Thus we have eitheh;(t;) <
broadcast their new states whenever they update. Timing ang;.) 1 p_.. . or h;(t;) = hi(t;) + hmax andj < i. Hence
order of state updates can be arbitrary. We now proceed\ifien node makes an update, sinég(t;+1) = h;(t; )+ hmax,
state and prove some of the properties of this algorithm.  {he |ink is now fromi to j. This concludes the proof. m
Proposition 3.1: (a) The height of a nodéin ¢-statet; is  proposition 3.3: Algorithm [3 can be embedded within the
explicitly given by GB algorithms framework. Thus it inherits the properties in
B Propositior 2.1L.
hi(ti) = 7i(0) + tibmasx. Proof: See AppendikA n
(b) For any node, andt; € Z., we havet;hyax < hi(t;) <
(ti + 1) hmax- B. Two Bits Full Link Reversal
(c) For any two neighborg andj, andt;,t; € Z4 we have |5 hractice, states are stored using finite bit-width repre-
the following implication sentations. While the size of the states can depend on the
number of nodes in the network, it should not grow with the
number of iterations of the algorithm. Thestates which are
the counts of the number of reversals, though bounded (see
874 :=Z,\{0}. Propositiod 3.1tfe)), grow as the algorithm runs. Thereabel

t; > tj = hi(ti) > hj(tj).



1000s of nodes in the network, and in resource limited nodeetwork does the first update. Then we are left with the same
in wireless sensor networks, memory is also at a premiuset of stuck nodes as in the original network because updates
Therefore, GB and NOLR algorithms need to be modified fdead to full link reversals in both the networks. The next afgd
implementation in practical systems. is also done by the same node as in the original network,
We now give a modification of Algorithiinl 3 that uses onlythus again resulting in the same set of stuck nodes. Likewise
two bits for thet-state and does not update heights. To do thssibsequent updates also follow the same timing and order as
we exploit the fact that, for any two neighborsand j, the in the original network. Since the nodes’ updates in thestatt
link direction is entirely governed by;,¢;,h;(0) andh;(0). network satisfy the properties in Propositibnl2.1, so do the
More precisely, the link is directed fromto j if and only if updates in the original network. [ ]
eithert; > t;, ort; = t; and (h;(0),i) > (h;(0), 7). Thus
t-states along with the initial heights suffice to determin& | ~ 5.4 Bit Full Link Reversal
orientations. Moreover, since at any stagendt; are either
the same or adjacent integers (Proposifiod[3.1(d)), we n
only two bits to describe their order. Specifically, if we defi
for all 4,

eeqRecall that in full reversal, a stuck node reverses the
(ﬁrectmns of all its incoming links. Algorithial4 executesst
using initial heights and a two bit state. We now describe
a simpler way to achieve this using initial heights and a
single flag bit at each node. More precisely, with each node
and a cyclic ordering 7, we associate a binary stafethat is initialized to zero. For
any two neighbors and j with (h;(0),7) > (h;(0),j), the

00 <01 <10 <11 <00 corresponding link is directed fromnto j if 9; = ¢;, and from
on candidate values of, we obtain j toiif §; # 0;. In other words, at any stage, the forwarding
set of nodei is

For nodei, 7; is referred to as its-state. Following the above Fil8) =7 & Gl ((hs(0), ) < (hs(0),4) andd; =) or
) Ti - . ; j i(0),1 j '
discussion, we can redefine the forwarding set of nods ((h5(0),7) > (hi(0),7) andd; # &)}

Ti = ti mod 47

ti>tj<:>7'i>7'j.

Iy whered = (01, ...,0n).
Fi(r) ={j € Gil 7 < or ' _ We propose the following one bit full link reversal algo-
(r; =7 and(h;(0),) < (hi(0),4))}, rithm. Nodei updates its states as follows.

where 7 = (71,...,7n). In the two bit full link reversal
algorithm node updates its state as follows.

Algorithm 5 One bit full link reversal

1: loop
Algorithm 4 Two bit full link reversal 2 if F;(0) =0 then
1: loop 3 d; < (6; +1) mod 2
2. if Fy(r) =0 then 45 de;nd if
3 7i+ (1i+1) mod4 5. end loop
4: end if
5: end loop Remarks 3.3For a stuck node, the updated-state is

same as thej-states of neighbors with higher heights but

Following are the key properties of this algorithm. complements thej-states of neighbors with lower heights.
Thus, all its links become outgoing.

P ition 3.4: In Algorith . tuck nod

roposttion (a) In gon FT]@ a stuckehode reVerseSAIgorlthmIB has similar properties as AlgoritHm 4.

the directions of all the incoming links. P ition 3.5- In Algorithm[B, a stuck nod
(b) Algorithm[4 exhibits the properties in Proposition]2.1. roposition (a) In Algorithmi3, a stuck node reverses

: ; . : the directions of all the incoming links.
Proof: (a) Consider a stuck node Following Proposi- : o D "
tion[EA[@) and the definition of-states, for any nodg € C;, (b) Algorithm[8 exhibits the properties in Proposition]2.1.

we have either; = 7, or 7, = (r; + 1) mod 4. Proof: (a) Consider a stuck nodeand an arbitrary node

() Considerr; = 7. In this case, when nodé makes an j € Ci. Then, either(h;(0),7) < (;(0),j) andg; = §;, or

update, it moves to-state(r; + 1) mod 4 which is greater (_hi(o)’i) > (h;(0), 5) ands; # 4. In either case, when node

than;. Hence the link is from to j after the update. i flips 9;, the I'.nk. betvyeen and is reverse-d..

(i) Cojnsiderfj = (1;+1) mod 4. In this case it must be that (b) The proof is identical to that of Propositign1E4(b). =
(h;(0),7) < (h;i(0),4); were it not the case, nodeat 7-state
7, would not have done an update. Thus when nodpdates IV. PARTIAL LINK REVERSAL

its 7-state to(r; +1) mod 4 = 75, the link is now from: to Recall that the link reversals are intended to yield a dastin

j. This concludes the proof of par (a). tion oriented DAG. However, link reversals are accompanied
(b) Let us consider a network and let all the nodes rumy state updates and information exchanges, and can poten-
Algorithm[4. Also consider another copy of the network (wittiially lead to more nodes being stuck. Thus, a stuck node
the same initial link orientations) where all the nodes exec could execute a partial link reversal (i.e., need not reveits
Algorithm [3 as follows. The same node as in the originais incoming links) so that the link graph converges quickly



to a destination oriented graph. We focus on the partial link, | Hhk(ti)ﬂ
reversal scheme proposed by Gafni and Bertsekas [1] (see 3hk(tz‘) | 3 hkj(ti +1) :
Algorithm [2). i 3 hi(ti) ,,,,, hz(tz+ )
l % |
()
A. Neighbor Oblivious Partial Link Reversal =z(ti — IH(t .
‘ Z(15) 1
As in neighbor oblivious full link reversal, the algorithr® i ‘ 2(ti + 1) 1

SU(.:h that ,a n(.)de’ at any stage, knows the eméinge of all O\BI% 2. An illustration of Algorithmb at a stuck node Note thatt; = ¢;
neighbors’ heights but not the exact values. Then, the NogRie 1, — ¢, + 1. Nodek has reversed its link to after i's last update but
raises its height to an appropriate value to effect only &igdar nodel has not. When nodéupdates its state, it reverse the linkitbut not
link reversal. Again, as in Sectigallll, the updating nodeslo the one tok.

not need to know the exact states of its neighbors, so vaduabl

communication time and energy are saved. given by

Notation: The new notation is collected below. o
o a; = (t;,hi(t;),(=1)ti) is the state of node; ¢; is 2(20 — 1) 4 hy(0) if ¢; is even,
referred to as itg-state.

~

_ =1
e F(h) = {5 € G (hy(8). (<1)95) < (hu(t). (-1y "= )2
is the forwarding set of node for heights h = z(1) + Z z(21) — h;(0) if ¢; is odd.
(ha(t1), ..., hn(tn)). 1=1
¢ {2(0),2(1),...} is a sequence satisfying (b) For any nodei, andt; € Z,,, we havez(t; — 1) <
2() = { 0 if £ =0, (c) For any two neighbors and j, andt;,t; € Z, we have
207 (2hmax +1) it > 1 the following implication

In the neighbor oblivious partial link reversal algorithm ti > tj = hi(ti) > hy(t;).

node: updates its state as follows. (d) For any two neighbors and j, at any stage of the
algorithm, we have <|t; —t; |< 1.

Algorithm 6 Neighbor oblivious partial link reversal (e) For any nodé, ¢; < N at any stage of the algorithm.
1: loop Proof: See AppendikC. ]
2: if F;(h) =0 then Remarks 4.2: 1) As in the case of Algorithrl3, for any
3 titi 4+ 1 node, the number of state updates is upper bounded by
4 hi(ti) < 2(t;) — ha(t; — 1) N, and hence the state size is upper boundethp/V).
5: end if 2) Propositions4]f{c) implies that the forwarding set ad@o
6: end loop 1 can be alternatively defined as

Fi(a) = {j € Ci| a; < a;},

Remarks 4.1:Assume that node is stuck. The height wherea = (a1, ...,ay) are the nodes’ states.

update (Line[#) along with the definition of sequence Proposition 4.2:1n Algorithm[@, a stuck nodéreverses the
{2(0),2(1),...} ensure thati’s updated height surpassesiirections of only those of its links that have not been regdr
the heights of those neighbors that have not updated stasggei’s last update. If every link to nodehas been reversed
since i's last update, but still falls short of the heights obfter i's last update, it performs two successive updates to
other neighbors. A similar behavior is ensured by the thiiéverse the directions of all its links.

components the states (e.g=1)% in a;) when two neighbors Proof: Since node is stuck, for any nodg € C;,
have identical initial heights. o .
As discussed before, nodebroadcasts dello packet to (hj(t;), (=1)"7) > (h(t:), (—1)"1).

determine if it is stuck. However, it does not need to knoy virtue of Proposition§ 4li(cjH(d), we also have either=
its neighbors’ states to perform updates (see L[neEl 3, 4 +inor t; = t; + 1. See Figur&l2 for an illustration.
Algorithm [6). Also, whenever it updates its state, it broadyj) Considert; = t;. This is the case of nodein Figure[2.
casts its new state to facilitate its neighbors updating thge claim that node has not reversed its link to sincei's
corresponding link directions. Other nodes also indepetigle |ast update. It; = 0, this claim is trivially valid. If¢; > 1, we
and asynchronously execute similar algorithms. In padicu will show that the progression of updates when both nodes’
multiple nodes can update at the same time. The followingstates were; — 1 was: nodej updated, then nodieupdated.
properties of this algorithm are similar to those of Algbnid. As a consequence, again, our claim will be valid. To see the
progression of updates, observe thatj{t;) = h,(¢;), then
Proposition 4.1: (a) The height of a node is explicitly (—1)%j > (—1)%4. Thus, by sign flipping, at-statest; — 1 =



t; — 1, (-4~ < (=1)t~1. Also, by the form of the direction is entirely governed by, ¢;, h;(0) andh;(0). More
updates at; — 1, h;(t; — 1) = h;(t; — 1). So the link was precisely, the link is directed fromto j if and only if either
from nodei to nodej and it must bej that updated first. On ¢; > ¢;, ort; = t; and (—1)% (h;(0),4) > (—=1)% (h;(0), j).

the other hand, if.;(t;) > h;(t;), then Thust-states along with the initial heights suffice to determine
link orientations. Moreover, since at any stageandt; are
hi(ti —1) = 2(tj) — hy(t;) either same or adjacent integers (Propositiof( %.1(d)), eezin
< z2(ti) = hi(ti) only two bits to describe their order. Specifically, if we defi
= hi(t; —1). T-states for all the nodes as in Section 1lI-B, we obtain
Again we conclude that the link was froitto j, and it must be ti > t; <=7 > 75
j that updated first. This establishes the claimed prognessio ] . .
of states. As before, for nodé, 7; is referred to as its-state. Following

Continuing with the case, when nodenow makes an the above discussion, we can redefine the forwarding set of

update, it moves td-statet; + 1. Hence the link is fromi Nodei as
to j after the update.

i) Considert; = t;+1. This is the case of nodein Figure[2. v ) _ )
\(N)e claim that nodg has reversed its link té after zg’s last and (—1)" (hi(0),4) > (=1)7 (h;(0), J))},
update. Were it not the case, nacket-state immediately prior \yhere + — (
to its last update would have beeén— 1 = t; — 2 which
contradicts Proposition 4[1(d).

Moreover, when nodg’s t¢-state wast; — 1 = ¢;, it must
have been the case that

FZ(T) :{_] GCZ| T; < T; OF (Tj =T;

T1,...,7n). We are thus led to the following
two bit version of the partial link reversal algorithm. Node
updates its states as follows.

Algorithm 7 Two bit partial link reversal
(hi(t; — 1), (=1)%715) < (hi(t:), (=1)"3). L loop

. . 2. if Fi(r) =0 then
If hj(t; —1) = hi(t;), then(=1)%~1j < (=1)%4. Thus, by .. 7+ (i +1) mod 4
sign flipping, att-statest; + 1 = t;, (=1)%j > (=1)"Tli. .. g if
Also, h;(t;) = hi(t; + 1). So, even after nodé makes an . onq loop

updates and moves tostatet; + 1, the link continues to be
from j to 4. If h;(t; — 1) < hi(t;), then ) ) ] _
Following are the key properties of this algorithm.

hj(t;) = =2(t;) = h;(t; = 1) Proposition 4.4:(a) In Algorithm[7, a stuck nodé re-
> z(t;+ 1) — hi(ts) verses the directions of only those of its links that have
= hi(ti+1). not been reversed sindés last update. If every link to
nodei has been reversed aftés last update, it performs
Again, even after nodé makes an updates and movestio two successive updates to reverse the directions of all its
statet; + 1, the link continues to be fromj to i. This proves links.
the first part of the proposition. (b) Algorithm[7 exhibits the properties in Proposition]2.1.

Finally, suppose that every neighbor of nadeas reversed Proof: (a) Following PropositioR 4]I{d) and the definition
its link to ¢ afters’s last update. Then, as shown abote=  of r-states, for any nodg € C;, we have eitherr; = 7; or
t;+1 forall j € C;. Again as argued above, if nodeipdates 7; = (1 +1) mod 4.
its state, it does not reverse any of its links, i.e., it i stuck. () Considerr; = 7;. We claim that nodg has not reversed its
Thus it performs one more update. After this update-#&ate |ink to ; sincei’s last update. If neithei nor j has ever made
is ¢; + 2 which exceeds; for all j € C;. So all its links are an ypdate, this claim is trivially valid. If both of them have
reversed. B made updates, by Propositibn¥fl1(d), it cannot be that one of

Remarks 4.3:For a stuck node, if all its neighbors havahem made two updates without the other updating. So both
reversed the corresponding links after its last updat@kiés must have been dt; —1) mod 4 at some point of time. We
two iteration to reverse all the incoming links. This is Weli | show that the progression of updates when both nodes’
Algorithm[2 which needs only one iteration. r-states were; — 1 mod 4 was: nodej updated, then node

Proposition 4.3: Algorithm[§ can be embedded within theypdated. As a consequence, again, our claim is valid. To see
GB algorithms framework. Thus it inherits the properties ithe progression of updates, observe that
Propositio 2.11.

Proof: See AppendiXA. N (=1)7(h;(0),5) > (=1)7 (hi(0), ).
) o Thus, by sign flipping, at the nodes’ immediately prior
B. Two-Bit Partial Link Reversal states, the inequality was in reverse direction. So theiak

In Algorithm [@, nodes’t-states grow as they update. Wdrom nodei to node; and it must bej that updated first.
now give a modification of Algorithni]6 that uses only two Continuing with the case, when nodenakes an update, it
bits for ¢-state and does not update heights. To do this wmeoves tor-state(r; +1) mod 4. Hence the link is from to
exploit the fact that for any two neighboisand j, the link ; after the update.



(i) Considerr; = (1; +1) mod 4. We claim that nodg has N-tuples. For each € V, let S(v) C [N] denote the set of
reversed its link ta afteri’s last update. Were it not the casestuck nodes.

nodei’s T-state immediately prior to its last update would have ) ,

been(r;—1) mod 4 = (7;—2) mod 4 which contradicts the S() ={i€ [N]| a; > a; for all j € Ci}.
fact that at any stage and7; assume either same or adjacent We consider iterative algorithms of the form
values.

Moreover, when nodg’s 7-state wag7; —1) mod 4 = 7, v T € M(v),

it must have been the case that where M(-) is a point-to-set mapping)/(v) c V for all
. ) . , v € V. In the following we show that the proposed neighbor
(=1)7(h;(0),5) < (=1)™(hi(0), ). oblivious link reversal algorithms satisfy the assumpsiari
Thus, by sign flipping, at-states(r; +1) mod 4 = 7;, GB algorithms. _
' First, we consider Algorithm[]3. Recall that; =
(=1)™(h;(0),5) > (=1)" (hi(0),1). (ti, hi(t;), ) in this case.
(A.1): Defineg;, : V — A;,i=1,...,N as

So, even after nodé makes an update and movesestate

(7; +1) mod 4, the link continues to be from to i. gi(v) = { (s & 3 Ralle) + hmaxy?) 116 € SH0),
Finally, suppose that every neighbor of nadeas reversed (i, hiti), 7) it i ¢ S(v).

its link to 7 afteri’s last update. Then, by the arguments abov&he setM (v) is then given by

7; = (1, + 1) mod 4 for all j € C;. Also, if nodei updates it S(0) =0

its state once, it does not reverse any of its links, i.es dtill {E}_ _ — | = d it S(v) =0,

stuck. Thus it performs one more update. After this update it/ (v) = {v= '(t(rlwl’ '_" fN” “Z’é ian for all i € [N

r-state is(r; + 2) mod 4 which exceeds; for all j € C;. eithera, = a; ora; = g;(v) for i? Sl(f) [75 ](Z)

So all its links are reversed.
(b) The proof is identical to that of Propositibn I84(b). m (A.2): From (A.1), it is clear that for each = (a4, ..., an)
and: =1,..., N, the functionsy;(-) satisfy

V. CONCLUSION gi(v) > a; if i € S(v),
We proposed neighbor oblivious link reversal (NOLR) andg;(v) = a; if i ¢ S(v).
schemes to get a destination oriented network out of thd 'W’%rthermore for each = 1,..., N, gi(v) depends only on

minimum condition in geographic routing. Our algorithm%l_ and{a;| j € C;}: the latter states determineiife S(v) or
fall within the general class of GB algorithms| [1]. We the%therwisej

argued that both the algorithms, GB and NOLR, may suﬁ?};s): Consider a nodé and a sequenci*}  V for which
the problem of state storage overflow. This led us to mody tf) € S(v*) for an infinite number of indice&. If r is one of
NOLR algorithms to obtain one bit full link reversal and twgy, o indicesg; (v") — X > (1, humax, 0), otherwiseg; (v") —
bit partial link reversal algorithms. The finite state aigans » _ ) Hence the seqaeﬁce7 ’
inherit all the properties of NOLR algorithms which in turn*
inherit the properties of GB algorithms, and are pragmatic | 0 k . ;
reversal solutions to convert a destination-disorient&GRo a; + Z[gi(” ) —ai]
a destination-oriented DAG. r=0

The property|t; — t;| < 1 at every stage for all pairs of is unbounded in4;. Next, we consider Algorithri]l6. Recall
neighboring nodes is crucial for getting the finite statesioer thata; = (t;, hi(t;), (—1)%i) in this case. We defing; : V —
of our NOLR algorithms. If addition of new nodes or links todi as
the existing graph is allowed, this property could be vietat (ti +1,2(t + 1) — hi(t;), (=1)t+1) if i € S(v),
If full ¢-states (instead of only-states) are maintained, thergi(v) = { (t;, hi(t:), (—1)t4) if i ¢ S(v).
since Algorithm$B and]6 belong to the class of GB algorithms, . )
they continue to exhibit the properties in Proposition] 0. fr0ain, !t is easy to check that Assumptlops (A.1)-(A-3) h9ld
However, AlgorithmB does not execute a full link reversal, Gafni an_d BertsekasL[1] show thqt if the_ communica-
and similarly, Algorithm[ does not execute a partial Iinlgon graph is connected and_an algorithm satlsﬁes_ Assump-
reversal. Furthermore, the finite state algorithms are oloiist tions (A.1)-(A.3), then Propositidn 2.1 holds for the algom.

to addition of new nodes or links because the newly addgg'is concludes the proof of Propositidnsl3.3 4.3.

nodes may not be able to take up a state consistent with the

above property, or the DAG may be burdened by cycles. APPENDIXB

PROOF OFPROPOSITION3. ]

(@ This follows immediately from the height update
rule (Line[2 in Algorithm[3).
(b) This follows from &) and) < £;(0) < Amax-
For all i € [N], let A; be the set of feasible states of nodéc) The implication holds becausk;(t;) > t;hmax and
i. Definev = (a1, as,...,an). Let V be the set of all such h;(t;) < (t; + 1)hmax (s€€ [(b)).

APPENDIXA
PrROOFS oFPROPOSITIONS3. 3AND 4.3



(d) Without loss of generality, assunig> ¢;. We claim that [4]
t; < t; + 1. We prove the claim via contradiction. Suppose
t; > t;+1. Node: must have reached this state through1 5
because; is initialized to zero and is incremented by one each
time nodei updates its state. When nodle ¢-state was; +1,
from @) hi(t; +1) > h;(t;), and therefore it had an outgoing g
link to nodej. Thus,i would not have updated itsstate to
t; + 2 or higher. This contradicts our supposition, and proves
the claim. [7
(e) Observe that any one hop neighbor of the destination
never updates its heights; it always has an outgoing link to
the destination. Consequently, for any such node, say noderg,
t; = 0 at any stage of the algorithm. Now, assume that for a
nodej, t; > N at some stage. Then, there is pair of neighborlsg]
k andl such that| ¢, — ¢; |> 2. But this contradicts parf{d).
Thus, we have the boungd < N for any node;.

[10]

APPENDIXC

PROOF OFPROPOSITIONZ ] 1]

(a) We first obtain a recursion dn(t;) using the height update
rule (Line[2 in Algorithm[®). For any; > 2,

hi(ts)

[12]
2(t) — hi(t — 1)

22(t; — 1) — (2(t; — 1) — hi(t; — 2))
2(ti — 1) + h(t; — 2).

(13]

[14]
Successive applications of this recursion leads to exjoress
for the case wher; is even. If we also use thdt;(1) =
z(1) — h;(0), we get the expression for the case whens
odd.
(b) We prove the inequalities by induction on Fort; = 1,

0 < hi(1) < z(1).

[15]

[16]

Now, assume thab < h;(t;) < z(t;) for somet;, € Z, .
From the height update rule (Lifé 4 in AlgoritHm 6),

Z(ti)7

where the inequality holds becaubgt;) < z(t;). Also, 0 <
h;(t;) implies thath;(t; + 1) < z(t; + 1). This completes the
induction, and shows that the inequalities hold for #@lle
Z++.

(c) The implication holds because (t;) < z(t;), hi(t;) >
z(t; — 1) and z(t) is increasing ir.

(d) The proof is identical to that of Propositibn I8.11(d).

(e) The proof is identical to that of Propositibn1811(e).

[17]

— (18]

>

REFERENCES

[1] E. M. Gafni and D. P. Bertsekas, “Distributed algorithifios generating
loop-free routes in networks with frequently changing togy,” IEEE
Transactions on Communicatigneol. 29, pp. 11-18, 1981.

B. Karp and H. T. Kung, “GPSR: Greedy perimeter statelessing
for wireless networks,” irProceedings of the 6th annual international
conference on Mobile Computing and Networking (MobiGog900,
pp. 243-254.

Q. Fang, J. Gao, and L. J. Guibas, “Locating and bypashivigs in
sensor networks,Mob. Netw. Appl.vol. 11, no. 2, pp. 187-200, 2006.

(2]

(31

E. Kranakis, H. Singh, and J. Urrutia, “Compass routinggeometric
networks,” inin Proc. 11 th Canadian Conference on Computational
Geometry (CCCG) Citeseer, Aug. 1999, pp. 51-54.

] H. Kalosha, A. Nayak, S. Ruhrup, and |. Stojmenovic, &¢land-

protest-based beaconless georouting with guaranteeetidein wireless
sensor networks,” ir27th IEEE Conference on Computer Communica-
tions (INFOCOM) April 2008, pp. 346—350.

C.-Y. Chang, K.-P. Shih, S.-C. Lee, and S.-W. Chang, “R@etive
route guiding protocol for wireless sensor networks withstables,”

in IEEE International Conference on mobile adhoc and sens@- Sy
tems (MASS)Oct. 2006, pp. 367-376.

1 F. Yu, S. Park, Y. Tian, M. Jin, and S.-H. Kim, “Efficient leodetour

scheme for geographic routing in wireless sensor netwomks|EEE
Vehicular Technology Conference (VTC Spriniylay 2008, pp. 153—
157.

B. Leong, B. Liskov, and R. Morris, “Geographic routingithout
planarization,” in Proceedings of the 3rd conference on Networked
Systems Design & Implementation (NSID06, pp. 25-25.

P. Casari, M. Nati, C. Petrioli, and M. Zorzi, “ALBA: An aptive
load - balanced algorithm for geographic forwarding in \@ss sensor
networks,” in IEEE Military Communications Conference (MILCOM)
Oct. 2006, pp. 1-9.

C. Perkins and P. Bhagwat, “Highly dynamic destinatimguenced
distance-vector routing (dsdv) for mobile compute’sCM SIGCOMM
Computer Communication Revigwol. 24, no. 4, pp. 234-244, 1994.
D. Johnson, D. Maltz, J. Broaét al,, “Dsr: The dynamic source routing
protocol for multi-hop wireless ad hoc network#ytd hoc networking
vol. 5, pp. 139-172, 2001.

N. Arad and Y. Shavitt, “Minimizing recovery state in @graphic ad
hoc routing,” Mobile Computing, IEEE Transactions ,owol. 8, no. 2,
pp. 203-217, 2009.

M. Corson and A. Ephremides, “A distributed routing @ighm for
mobile wireless networksWireless Networksvol. 1, no. 1, pp. 61-81,
1995.

V. Park and M. Corson, “A highly adaptive distributedutimg algorithm
for mobile wireless networks,” INNFOCOM'97. Sixteenth Annual
Joint Conference of the IEEE Computer and Communicationsetes.
Proceedings IEEEvol. 3. |EEE, 1997, pp. 1405-1413.

N. Malpani, J. Welch, and N. Vaidya, “Leader electiorg@ithms
for mobile ad hoc networks,” ifProceedings of the 4th international
workshop on Discrete algorithms and methods for mobile cdimg
and communications ACM, 2000, pp. 96-103.

R. Ingram, P. Shields, J. Walter, and J. Welch, “An asyanous leader
election algorithm for dynamic networks,” iRarallel & Distributed
Processing, 2009. IPDPS 2009. IEEE International Symposion
IEEE, 2009, pp. 1-12.

C. Busch and S. Tirthapura, “Analysis of link reversaluting algo-
rithms,” SIAM Journal on Computingvol. 35, no. 2, p. 305, 2005.

A. Rao, S. Ratnasamy, C. Papadimitriou, S. Shenker, larfstoica,
“Geographic routing without location information,” iRroceedings of
the 9th annual international conference on Mobile compmutiand
networking (MobiCom)2003, pp. 96-108.



	I Introduction
	I-A Motivation
	I-B Related Literature
	I-C Our Contributions
	I-D Organization of the Paper

	II Overview of GB Algorithms
	III Full Link Reversal
	III-A Neighbor Oblivious Full Link Reversal
	III-B Two Bits Full Link Reversal
	III-C One Bit Full Link Reversal

	IV Partial Link Reversal
	IV-A Neighbor Oblivious Partial Link Reversal
	IV-B Two-Bit Partial Link Reversal

	V Conclusion
	Appendix A: Proofs of Propositions ?? and ??
	Appendix B: Proof of Proposition ??
	Appendix C: Proof of Proposition ??
	References

