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Abstract

The paper addresses state estimation for clock synchronization in the presence of factors affecting the quality of synchronization. Examples
are temperature variations and delay asymmetry. These working conditions make synchronization a challenging problem in many wireless
environments, such as Wireless Sensor Networks or WiFi. Dynamic state estimation is investigated as it is essential to overcome non-stationary
noises. The two-way timing message exchange synchronization protocol has been taken as a reference. No a-priori assumptions are made on
the stochastic environments and no temperature measurement is executed. The algorithms are unequivocally specified offline, without the need
of tuning some parameters in dependence of the working conditions. The presented approach reveals to be robust to a large set of temperature
variations, different delay distributions and levels of asymmetry in the transmission path.

© 2016 Published by Elsevier Ltd.
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1. Introduction

Clock Synchronization Protocols (CSPs) have a fundamen-
tal role in many technological contexts in which a common time
reference is required [1]. For example, synchronization is used
in Wireless Sensor Networks (WSNs) [2], localization [3, 4],
home automation [5], industrial networks [6], traffic schedul-
ing [7, 8], and in a number of other contexts in which actuation
and/or sensing must be synchronous. The quantities measuring
the asynchronism between the clocks of two nodes in a net-
work are: the offset, i.e., the difference between the two clocks
and the skew, i.e., the normalized difference between the Crys-
tal Oscillator (XO) oscillation frequency and its nominal fre-
quency. The variable component of the skew is the drift. Their
precise estimation defines the target of the CSP and they are
jointly optimized [9]. They typically represent the state of the
synchronization problem, when it is formulated under dynamic
state equations.

The estimation process may be severely compromised by
a number of factors. The most important are: the random de-
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lays affecting the communication path between nodes, includ-
ing software or hardware delays inside them, the precision of
nodes in timestamping events, and changes in the environment
conditions. Estimation of offset and skew may be driven by sig-
nal processing techniques, which assume a time-fixed state (see,
e.g., [10] for WSNs) or by dynamic state tracking, e.g., through
Kalman filtering (as an example, see [11] for IEEE 1588 pro-
tocol). Addressing time-varying conditions means to follow in-
stantaneous fluctuations due to non-stationary noises, such as
temperature variations of XOs [12, 13, 14].

1.1. Background and objectives

In the present paper, we study how to compensate with a
single technique all the possible factors affecting the synchro-
nization quality. The idea to analyze and compensate a number
of causes together is not new. Algorithms derived from machine
learning (e.g., neural networks, support vector machines,...) are
typically exploited to model complex processes, in the case a
theoretical model is not known or it cannot be parameterized in
practice because too many measurements of the real system are
needed for a satisfactory characterization. The latter is the case
of synchronization protocols. For example, the oscillation fre-
quency of an XO is influenced by several environmental factor:
the temperature, the supply voltage, vibrations, age, etc. All
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these factors, well documented in the scientific literature [12],
have not the same influence on the behavior of different types of
XOs, and even the same type of XOs differently reacts to envi-
ronmental conditions, depending on its manufacturing process.
As a consequence, to compensate all these factors, each XO
must be experimentally characterized with respect to the phys-
ical phenomena that can modify its behavior. Such a kind of
analysis can only be performed during the manufacturing pro-
cess of the component, because XOs are usually soldered on the
motherboard. All these physical quantities must then be sensed
at runtime for their relevant compensation. This last step is not
easy and often it is not feasible because, for example, XOs do
not usually include temperature sensors. In this case, the es-
timation must be derived by using sensors in the proximity of
the XO. On the other hand, XOs that automatically compen-
sate some external factors exist, but they are hardly integrated
in commercial devices since they cost too much. The same dif-
ficulties in finding a correct model apply also to other quantities
such as the timestamps precision and accuracy, and asymmet-
ric delays. They depend on the hardware, but in the case of
software timestamps also on the interference caused by other
processes executed in the operating system of the node. For
these reasons, we decide to focus on an algorithm that compen-
sates all these aspects together. Some results concentrate the
attention on temperature, because it is the most affecting envi-
ronmental factor.

The algorithm we pursue should be capable to work with
minimal online adjustment of the parameters, thus avoiding the
need of reconfigurations following the actual behavior of the
noises.

Synchronization is formulated as a dynamic state tracking
problem beyond regular LQG hypoteses3 because temperature
measurement noise may not always be Gaussian in practical
systems [13, 14, 15]. The inherent optimal estimation filter
may be hardly derived in closed form. This approach typically
has consequences in terms of numerical analysis with complex
operations (see, e.g., the Particle Filtering in [10]), which are
not easily applicable in devices in which computational power
or energy are scarce resources. Since the investigated subop-
timal filter is based upon neural approximation, the approach
may lead to a heavy computational effort in the offline phase
(during which the training of the neural network is provided),
but synchronization corrections are provided online almost in-
stantly. Delay assymetry is also addressed jointly with temper-
ature variations. This avoids configuring countermeasures to
assymetry that are separate from the rest of the synchronization
scheme.

1.2. Contribution

The method firstly outlined in [15] for receiver-receiver CSPs
[6], is now applied in the sender-receiver context, more used
in practice, and under realistic conditions of WSN and WiFi
networks, including delay asymmetry. Despite the considered

3Linear dynamics of the system, quadratic cost function and Gaussian
noises.

CSP drives delay compensation, we show how no knowledge
of delay is necessary for the used estimation techniques. An
enhancement of the method is proposed to cope with expo-
nentially distributed delays, a condition not often detectable
in practice, but analyzed in some scientific works [16]. The
method provides good generalization capabilities to different
delays distributions (i.e., Gaussian and exponential delays). The
multi-hop context is also addressed to limit computational cost
and simplify the applicability of the method.

1.3. Organization of the paper

The paper is organized as follows. The next section deals
with the analysis of the state of the art and highlights the posi-
tion of the present paper. Section 3 addresses the mathematical
formulation of the estimation problem. The subsequent sec-
tions enter in the details of the estimation techniques proposed,
including computational and implementation aspects. Section 9
defines the setting of the experiments and Section 10 discusses
the results. Conclusions and future work are finally outlined at
the end of the paper.

2. Related literature

2.1. State estimation

Dynamic state estimation for synchronization is an open
issue for environments with non-Gaussian and non-stationary
noises [13, 14]. An example for WSN has been reported in
[10], by introducing Particle Filtering (PF). [10] shows how ad-
dressing time-varying conditions may considerably improve the
synchronization gain over signal processing techniques. PF is
able to adapt to Gamma distributed delays better than signal
processing, which works well under Gaussian or exponential
delays. PF belongs to the optimal Bayesian framework for dy-
namic state estimation. This is exactly the research line we want
to pursue here, without incurring in the computational burden
involved by PF.

As far as signalling processing techniques are concerned,
our approach has been compared with [17], which is a reference
target in this field (see, e.g., [16]), since it presents a computa-
tionally light approach, which is also robust to the underlying
network delay density function and asymmetry. More refined
techniques are available as well, for example, in the presence of
exponentially distributed delays [16].

2.2. Parameters setting

Online adaptation may be critical if the statistical parame-
ters of the noises cannot be known in advance. More specif-
ically, the covariance matrix of the noises is typically used as
a parameter of the mentioned algorithms (Kalman [11], signal
processing as in [16] and Particle Filtering (PF) in [10]). How
parameters setting may be a critical task in Kalman is evidenced
by [18], in which practical guidelines are provided. This criti-
cal aspect has been also registered by [14], in which the param-
eters of the estimation algorithm are tuned online and by [13],
in which the parameters of the temperature-skew mapping are
supposed to be known in advance. Synchronization solutions
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with self-learning capabilities may be hardly found in the lit-
erature. [19] has recently investigated how to adapt the time
window of linear regression. The approach has been tested in
stationary Gaussian conditions.

2.3. Temperature noise
Recent works address synchronization in WSNs by over-

coming the temperature noise. In [13], the thermal drift is re-
moved in advance, by exploiting the relationship between XO
frequency and the temperature. A multi-model Kalman filter
is studied in [14] to obtain the model likelihood for the skew,
based on the measured temperature. The main advantage of the
two approaches relies on the possibility to reduce the sending
rate of synchronization messages, by keeping unchanged the
synchronization quality since the temperature is locally com-
pensated. An ARMAX model is studied in [20] to compen-
sate temperature and aging effects. An upper bound of the
error is derived in closed-form under Gaussian assumptions.
The mentioned works rely on a mapping table from temper-
atures to clock skews [21]. [21] models the correlation be-
tween clock skews and temperature variations through the least
squares method, thus achieving more flexibility, still relying on
temperature measurements. The approach presented here does
not exploit any measurement of the temperature. [22] deals with
high latency networks by introducing a new message exchange
in two steps: in the first one the delay is estimated and, in the
second one, Kalman is applied. The refined procedure reveals
to be robust to noise, including temperature changes.

2.4. Asymmetric Delays
Despite [17, 16] do not address delay asymmetry explicitly,

they reveal to be robust to several working conditions, including
asymmetry. More recent works address the mitigation of delay
asymmetry [23, 24, 25, 26, 27] explicitly. Timestamping cor-
rections are provided to compensate the synchronization error
induced by asymmetry. [23] requires additional messages in the
protocol. [24, 25] exploit different kinds of link speed measure-
ments to infer the level of asymmetry. As evidenced in [26],
those measurements may be not always sufficient if the internal
delays of the device have a predominant role. Proper statistical
information is derived from additional link/internal device de-
lays [26]. In the very rare case of intermediate devices without
the compensation of the packet residence time inside the de-
vice, traffic queues can be measured [27]. The inherent correc-
tions in [26] may require an accurate setup of the devices. [28]
and [29] apply the Boot-strap method under the assumption of
Gamma and exponential distributed bias in asymmetry, respec-
tively. A similar approach is applied to Pareto distributed delays
in [30]. The robustness of the methods are accurately analyzed
with respect to parameters of the probability distributions. An
important advantage of [28] consists of the simple calculations
executed to derive the bias estimation. In [27], the corrections
may be sensitive to parameters changes (e.g., size of the ob-
servation window) and an accurate analysis is needed for them.
Here, the correction is derived without any additional measure-
ments or knowledge of the device and it is applied jointly to the
rest of the compensation steps.

Table 1. Topics of research in synchronization and state of the art.

temp. asym. unknown real
noises applic.

[9] •

[11] ◦

[13] ◦ •

[14] ◦

[21] ◦ • ◦

[17] ◦ • •

[19] •

[15] • • ◦

[16] ◦ •

[18] ◦ ◦

[22] • •

[20, 23–29] • ◦ ◦

Present paper • • • ◦

Although in practice the communication channel is suffi-
ciently symmetric for the majority of the applications to not
affect too much the synchronization quality, this consideration
does not hold for in-node latencies, i.e., the delay inside the
nodes between the sending/reception of a packet and the acqui-
sition of the relevant timestamp exploited in clock correction.
This problem also applies to such nodes that acquire the times-
tamp in hardware, and its effect on synchronization quality is
clearly amplified if the network contains heterogeneous nodes.
From the viewpoint of the synchronization protocols, in-node or
communication channel asymmetries are indistinguishable and
they have exactly the same consequence on the achievable syn-
chronization quality. This evidence will be analyzed in detail in
subsection 9.1, which is based on data derived from scientific
literature and acquired from real devices.

2.5. Position of the paper

Table 1 summarizes the discussion presented in this section
and highlights the contribution of the present paper. A • mark
is assigned if the paper exactly addresses the topic of interest.
A ◦ mark is assigned if the topic is partially addressed; for ex-
ample, a ◦ mark is assigned to the mechanisms based on tem-
perature measurements. As summarized by the table, the aims
of the present paper are partially matched by the current litera-
ture. The table also includes another important topic: the appli-
cability of the algorithm in a real context. This pertains com-
putational cost and ease of implementation and it is archived
by algorithms requiring simple mathematical operations (such
as summations, multiplications); a topical example is the one
of [17] or the application of linear regression [19]. The pa-
pers highlighted with a • mark on applicability hardly match
the other requirements. The present approach may require a
computational expensive training phase. We consider such a
training phase the necessary step to achieve a good compromise
between performance and applicability when adaptation to un-
known noises, temperature and asymmetry compensations are
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required. Elaborating a countermeasure to those factors on the
basis of samples of the system in a single algorithm is the topi-
cal issue addressed in this work. For this reason the paper is pre-
sented in the table (last row) with all • marks, except for the ◦
mark on applicability in virtue of the computational complexity
of training. Similar considerations may hold for the use of the
least square method of [21] or for the multi-model Kalman filter
in [14] and PF in [10]. Another point of strength of the present
work is the performance metric used (the 99.9 percentile of the
synchronization error), which is even more stringent than the
90% and 92% confidence intervals of average absolute error of
[31] and [21], respectively.

3. Problem formulation

3.1. The two-way timing message exchange
We are mostly considering WSN and WiFi networks by fo-

cusing on pairwise synchronization (synchronization between a
pair of neighboring nodes) rather than network-wide synchro-
nization (hierarchical pairwise synchronization) [10]; the network-
wide model is a generalization of the pairwise model as outlined
in [16]. We take the two-way timing message exchange mecha-
nism as a reference. This basic synchronization scheme is typ-
ical of many sender-receiver CSPs, such as, e.g., the Timing-
sync Protocol for Sensor Networks (TPSN) [32] and the timing
measurement mechanism defined in the recent IEEE 802.11-
2012 specification of WiFi [33]. We consider two nodes, called
sender and receiver, which periodically take and exchange times-
tamps of their internal clocks. The sender is the one starting
the exchange that consists of 3 packets. On sending and re-
ception of the first 2 packets, 4 timestamps are acquired, de-
noted by t1, t2, t3, t4 (see Fig. 1, in which the timestamps are
reported in bold). t1 is the sending time of a synchronization
packet from the sender to the receiver (under the notion of time
of the sender). t2 is the time of the receiving of the packet at
the receiver and t3 is the time of the sending of the response
synchronization packet from the receiver to the sender. Both
t2 and t3 are defined under the notion of time of the receiver.
The last packet (from the receiver to the sender) includes the
values of t2 and t3. Finally, t4 is the time of the receiving of the
first response packet (under the notion of time of the sender).
The involved delays evidenced by Fig. 1 will be detailed later.
At the end of the exchange, a measure of the synchronization
state (offset, skew, together with the delay) is obtained. In turn,
the state estimation is updated from the collected measurements
at the end of each exchange; typically a set of K message ex-
changes is exploited for state estimation [17, 16]. The sender
makes use of the state estimation to synchronize its clock to
that of the receiver. A software layer, named for the first time
virtual clock in [34], converts the sender time into the receiver
time. A virtual clock is essential for devices that cannot adjust
the clock register at runtime. Synchronization is performed at
each discrete time instant k, k + 1, ...; let τ be the size of those
discrete time steps. We assume each message exchange starts
and ends in [k, k + 1],∀k.

We now enter in the details of the state and measurement
models.

tS(k)

tS(k+1)

dS
node’ (k)

dS
node’’ (k)

dR
node (k)

dS
send (k)

dS
rec (k)

dR
rec (k)

dR
send (k)

t1(k)

t2(k)

t3(k)

t4(k)

Request packet

sent

Request packet

received

Response packet

sent

Response packet

received

Deliver t2(k), t3(k)

to sender 

Sender (S) Receiver (R)

τ

tS
sync (k)

Synchronization

CS(k)=3 CR(k)=7 ϑ(k)=-4

CS(k+1)=3.9 CR(k+1)=8 ϑ(k+1)=-4.1

Figure 1. Timestamps, messages exchange, and involved delays.

3.2. State equations
The clock registers of the sender and the receiver (denoted

by CS (k) and CR(k), respectively and reported in Fig. 1) differ
of the offset quantity θ(k).

CS (k) = CR(k) + θ(k) (1)

A typical clock model can be represented by the following equa-
tions in the discrete domain:

θ(k) = θ(k − 1) + γ(k − 1) · τ + ωθ(k − 1) (2)
γ(k) = γ(k − 1) + ωγ(k − 1) (3)
d(k) = d(k − 1) (4)

where γ(k) represents the skew and d(k) the delay component,
which is assumed stationary over time, but whose measure-
ments are affected by noise as detailed later in subsection 3.5.
The stationarity assumption is motivated in the same section as
well.

3.3. State noise
The ωθ and ωγ quantities represent the noises affecting θ

and γ, respectively, whose distributions are usually modeled as
Gaussian type; the corresponding standard deviations are de-
noted by σωθ and σωγ , respectively.

Here and in [15] we include in ωγ an additional component,

ωγT (t, ·) = ωγT (t, tc, p,T High
E ,T Low

E ) (5)

to mimic the temperature effect of a XO periodically moved
every p [s] between two environments with temperatures T High

E
[◦C] and T Low

E [◦C]; tc is the XO thermal time constant, which
represents the thermal inertia of the XO and of its case.

The Newton’s law of cooling

T = TE + (TXO − TE) · e−
1
tc ∆t (6)

models the evolution over time of the temperature of an object
with initial temperature TXO which is placed in an environment
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characterized by a new temperature TE . The periodic move-
ment between the two environments with different temperatures
has been performed in simulation every p, and in such instants
TXO is set equal to the current temperature T of the XO and TE

is set equal to T High
E or T Low

E .
The XO is modeled as an AT-cut quartz, the more common

in real devices and the one that suffers more the temperature
effects. Given the temperature T , the frequency variation from
the nominal one can be properly approximated as

∆ f
f

= a · (T − T0) + b · (T − T0)2 + c · (T − T0)3 (7)

where T0 is the reference temperature of the XO and a, b, c
are three constants modeling the XO. This paper makes use of
parameters directly derived from a real AT-cut quartz [35]: T0 =

25 ◦C, a = 0.0, b = 0.4 · 10−9 and c = 109.5 · 10−12.
The quantity ωγT (t, ·), which corresponds to the frequency

variation ∆ f
f at a given time t, can be easily derived by substi-

tuting (6) in (7).
We noticed that the temperature variations have a predomi-

nant effect on the synchronization error rather than other varia-
tions of the parameters in (7) (a, b, c, T0). For this reason, the
performance evaluation concentrates the attention on large tem-
perature variations under a realistic XO model [35], with fixed
parameters.

The inherent probability distribution ofωγT (t, ·) is not Gaus-
sian; it is actually a multi-modal distribution, with significant
asymmetry among the peaks.

3.4. Measurement equations

Let t1(k), t2(k), t3(k), t4(k) the timestamps in [k − 1, k]. A
sample of the delay at time k, ď(k), is derived as follows:

ď(k) =

(
1 − γ(k)

)
·
(
t4(k) − t1(k)

)
−

(
t3(k) − t2(k)

)
2

(8)

The equation, used by CSPs to compute the propagation delay,
clearly outlines the non-linearity of the model (between delay
and skew) and the indirect impact of the temperature noise on
delay estimation through the skew.

For every exchange of synchronization messages, two sam-
ples of θ, namely θ̌S R and θ̌RS can be computed by:

θ̌S R(k) = t1(k) − (t2(k) − d(k)) (9)
θ̌RS (k) = t4(k) − (t3(k) + d(k))

The use of both equations to compute the offset, peculiar of the
two-way timing message exchange mechanism, allows a better
estimation of the offset.

A sample of the skew, γ̌(k) = 1 − m, is derived by cal-
culating the slope m of the line interconnecting the two points
(t1(k), t2(k)− d(k)) and (t4(k), t3(k) + d(k)), placed in the sender-
receiver space. The slope represents the ratio between the re-
ceiver and the sender oscillation periods of the XO. More specif-
ically, the differences t4-t1 and t3-t2+2d lie on the sender and
receiver time-lines, respectively, as outlined in Fig. 2.

t
4

t
1

t
3
+d

t
2
-d

Sender time

Receiver time

q

� = 1 − �� =
�� + 
 − �� − 


�� − �

�� + 
 − �� − 


�� − �

Figure 2. Skew sample γ̌ from the slope m of the interpolation of t1, t2, t3, t4.

γ̌(k) = 1 −
t3(k) + d(k) − (t2(k) − d(k))

t4(k) − t1(k)
(10)

An intuitive example of the application of (8)-(10) is pro-
vided in Appendix A. Operatively, the measurement equations
may be simplified as follows. By assuming delay stationarity
over each observation period [k − K, ..., k], k = 1, 2, ..., a delay
estimation at time k, d̂(k), may be derived from the arithmetic
average of ď(k − K), ..., ď(k) and by simplifying γ(k) in (8) with
γ̂(k − 1) (i.e., with the previous estimation of γ; γ̂(1) = 1). The
d̂(k) quantity may be then substituted in (9) and (10). This kind
of calculation is however not necessary for the proposed esti-
mation schemes as outlined in subsection 5.1. The stationarity
assumption on delay means that nodes mobility takes place over
time horizons larger than K (i.e., the size of the observation pe-
riod). In case of mobility over shorter ranges, the state equation
(4) should be updated with an appropriate noise variable or with
an additional function mapping d(k − 1) in d(k).

3.5. Measurement noise

The noise affecting the equations above is due to the ran-
domness of the values of t1, t2, t3, t4, which derives from the
chain of delays evidenced in Fig. 1 and defined as follows (the
index k is not mentioned for the sake of clarity).

By following the clock register CS , at time tS (top-left of the
figure), the sender schedules the sending of a synchronization
packet. After a dnode′

s delay (corresponding to the operational
times of the local operating system, the Media Access Control
(MAC) and the transceiver) the packet is actually sent, and its
sending time t1 can be recorded by the sender node after a dsend

s
delay (corresponding to the operational time for handling the
time-stamping procedure triggered by the network adapter4).

4In order to improve precision of software timestamping, the timestamping
operation is scheduled by the first instruction of the inherent Interrupt Service
Routine (ISR). Moreover, the network adapter is sometimes assumed to be able
to insert timestamps on-the-fly, just before the packet is transferred over the air.
In this case, the third packet exploited by the protocol to deliver t2 and t3 to the
sender is no longer required. Some other adapters acquire the timestamps in
hardware, i.e., at MAC level, thus allowing the reduction of delay oscillations
even more.

5
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The packet arrives at the receiver after dprop
S R , i.e., the medium

propagation delay from the sender to the receiver.
Analogous delay quantities are defined for the receiver when

setting the values of t2 and t3 (namely, drec
R and dsend

R ), for the
sender again when setting the value of t4 (i.e., drec

S ), and for
the medium propagation delay dprop

RS for packets sent in the op-
posite direction. The last packet is sent from the receiver to
the sender (bottom right in the figure); it contains the values
of t2 and t3 needed for a clock correction step. It is sent after
the first response packet, which triggers the t4 computation at
the sender. All t1, t2, t3, t4 are involved in the synchronization
update through (8)-(10). The clock update occurs at time tsync

S
after a delay dnode′′

s (bottom left in the figure), that includes the
inherent estimation procedure and other in-node overheads.

It is important to remark that the traffic generated by other
interfering nodes in the wireless network does not influence
the precision and the accuracy of the timestamps. In practice,
timestamps t1 and t3 are recorded after the transmitting node has
already started the transmission on the ether, and after a possi-
ble wait due to carrier sense. As a consequence, t1 and t3 do not
include the error due to the indeterminism of the access schema
used by the MAC layer of the wireless communication proto-
col. On the receiving side, timestamps t2 and t4 are acquired
as quickly as possible after the arrival of the synchronization
message, and the only possible effect of interfering traffic and
disturbs is the loss of some messages. The effect of losses for a
technique based on a 1-st order regression spline was analyzed
in a real implementation in [6]. Results reveal that the impact of
losses on synchronization quality is negligible when 1-st order
regression spline is computed on at least 70% of the expected
points, and they do not worsen considerably when the number
of losses further increases. It can safely assumed that the same
applies to the approach based on a neural network proposed in
this paper, because it uses a 1-st order regression spline for fea-
tures extraction. A more detailed analysis of this aspect, and
how to further improve accuracy for the proposed technique, is
left open for future research.

4. Optimal state estimation

In principle, the problem consists of defining the optimal
filter for state estimation at each time k, on the basis of mea-
surements collected up to time k [15]. The optimal filter is a
function5 νo(·) that maps the measurements into the estimates
at each time k. Let x(k) = f (x(k − 1), ξ(k − 1)) be the state
equation in compact form from (2), (3) and (4) with x(k) =

[θ(k), γ(k), d(k)], ξ(k) being the vector of state noises and y(k) =

g(x(k), η(k)) the measurement equation from (8), (9) and (10)
with y(k) = [θ̌S R(k), θ̌RS (k), γ̌(k), ď(k)], η being the vector of
measurement noises, respectively. The optimal estimation law
νo

k(·) = νo
k(Ik) minimizes the following functional cost:

νo
k(Ik) = arg min

νk(Ik)
E

x(k)
{h(x(k) − νk(Ik))|Ik},∀ Ik (11)

5Filter, estimation law or estimation function are typically used as syn-
onyms.

Ik being the information vector collecting all the measurements
from the beginning Ik = [y(0), ..., y(k)] and h(·) being a Bayesian
risk function6. The optimal filter cannot be derived in closed-
form as in the Kalman filter owing to the non-linearity of (8)
and to the temperature noise which is not Gaussian. Here we
resort to an approximating technique, as later outlined in Sec-
tion 6.

5. Splines

Before addressing the approximation of the optimal filter,
a basic heuristics is defined. If Fig. 2 includes the collection
of K sets composed of 4 timestamps (t1, t2, t3, t4), the trend of
the current asynchronism may be derived by interpolating the
corresponding 2K points in the sender-receiver space, thus de-
riving a heuristic estimation of γ and θ. This is the underlying
idea of the splines. The following information vector is defined:

Is
k =

[
%t2,t1

k−K , ..., %
t2,t1
k , %t3,t4

k−K , ..., %
t3,t4
k

]
(12)

with:

%t2,t1
k− j =

[
t2(k − j), t1(k − j)

]
; j = 0, ...,K. (13)

%t3,t4
k− j =

[
t3(k − j), t4(k − j)

]
; j = 0, ...,K. (14)

where %t2,t1
h and %t3,t4

h pertain the timestamps of Fig. 2 at time h =

k− j and Is
k pertains the collection of timestamps in [k−K, ..., k].

The i-th order spline (denoted by Si) is derived by interpo-
lating, with the i-th order, the set of points in Is

k by means of
the Ordinary Least Squares method [37]. As intuitively sum-
marized by Fig. 2, a skew estimation is derived from the slope
of S1 and the offset estimation from putting in the spline equa-
tion the current value of time of the sender. Quadratic and cubic
splines help chase the non-linearity of the offset correction. Or-
ders higher than 3 have been disregarded to avoid overfitting, to
which the splines are more sensitive with more noise and large
K. At the sender, the synchronization step consists of directly
putting the current notion of time, CS , into the spline equation,
thus deriving the current notion of time at the receiver CR. Be-
cause the slope of a 1-st order spline is an estimation of γ(k), S1
perfectly compensate all the stationary effects on the skew (e.g.,
the real oscillation frequency of the XO which differs from the
nominal one), and all the effects on frequency with a periodic-
ity much greater than τ, such as aging. Effects with periodicity
slightly greater than τ are compensated by S1 only on average,
but they can be addressed by the technique based on a neural
approximation described in the next section. Examples are tem-
perature variations or vibration with a periodicity greater than
τ. Periods lower than τ are typically disregarded. A remedy is
the reduction of τ according to the specific working conditions.

6 h(z) is a Bayesian risk function if the following are met: h(z) is not nega-
tive, it is symmetric, i.e., h(z) = h(−z) and it is not decreasing with increasing
positive z; in the scalar case, examples are: h(z) = z2 and h(z) = |z|. Such a
risk function is used in statistical decision theory as a measure of the difference
between the estimation and the true value (see, e.g., subsection 1.2.1 of [36]).

6



M. Mongelli, S. Scanzio / Ad Hoc Networks 00 (2022) 1–18 7

5.1. Delay correction

Let d represents the knowledge of the delay, derived in any
way; it may be either the propagation delay, including in-node
overheads or not, or the delay estimation outlined in subsection
3.4. This knowledge reduces the noise on the timestamps t2, t3,
if we apply a correction to replace them with: t2−d and t3+d. In
principle, this may drive a better state estimation, but it reveals
to be useless for the splines. If a sufficient number of samples
is taken, the regression schemes lead to identical curves, inde-
pendently to the application of the correction. Intuitively, this
is due to the averaging operation operated by regression while
capturing the trend of the timestamps. We empirically validated
this property for all the splines considered; a formal demonstra-
tion for S1 is provided in Appendix B.

6. Neural approximation

A further generalization in the direction of tracking the non-
linearity and non-stationarity of the involved processes is now
addressed. The focus is on the offset, thus disregarding skew
and delay estimation. Similarly to the splines, the offset esti-
mation allows the direct implementation of the synchronization
step by applying, as described in the previous Section 5, the
approximating function (based either on splines or on a neu-
ral network as derived here). A standard Neural Network (NN)
training is formulated as follows. A new information vector is
defined:

INN
k = [δk−2K , ..., δk] (15)

δk being the distance between each %h in Is
k, as defined in (12)

and with h = k − 2K, ..., k, and the first order spline (S1) inter-
polating the set of points in Is

k. The corresponding training set
is stated with k = 1, ...,N samples of INN

k and the relative target
εk, i.e., it is a set of N tuples in the form 〈INN

k , εk〉. The value εk

being the error of S1, evaluated for a given time k in the sender
timescale, in predicting the time in the receiver space. Given
the S1 spline obtained for Is

k, S k
1(k) = mk · k + qk, the target can

be computed as εk = CR(k) − S k
1(k).

The optimal weights assignment wo is derived so that:

wo = arg minw J(w); J(w) =

N∑
k=1

[εk − ν̂k(INN
k ,w)]2 (16)

Problem (16) can be solved by applying standard non-linear op-
timization techniques. In particular, the proposed NN, which
has been parameterized through an extensive series of experi-
ments, has three layers: the first with 2K input nodes, the hid-
den layer with 10 nodes characterized by hyperbolic tangent ac-
tivation functions, and one linear output node in the last layer.
It was trained using 8 iterations (epochs) of the classical back-
propagation training algorithm. During the 8 epochs, at each
iteration on the training set the learning rate was decreased lin-
early between 0.001 and 0.00001. The momentum was set to
0.01. In the test phase, the output of the NN is added to the es-
timation of the receiver time, which is performed by computing
S1 on a time expressed in the sender timescale.

The sequence of approximation steps from the optimal fil-
ter to this scheme are the same referenced in [15]. Here, we
stress the fact that (16) is solved with respect to samples com-
ing from non-stationary noises. This consequently leads to the
adaptation of the approach to variable system conditions. In this
respect, differently from [14, 19], no online adaptation of the al-
gorithm is required, and, differently from PF [10], the compu-
tational effort of the approach resides in computing wo offline.

7. Implementation issues

7.1. Deployment of the neural estimator

Three steps are crucial for the deployment of the neural esti-
mator: acquiring the synchronization error ε in (16), building a
database for training and applying the training procedure (i.e.,
solving (16)). The first step can be performed through either
specialized devices [38] or by referring to a reference signal
(e.g., a periodical actuation function [6] or the deterministic ex-
pected time of reception in TDMA [8]). An external device is
in charge as well to perform the remaining two steps.

Those steps may be hardly applied in multi-hop networks
if they should be repeated for each node in the network. For
this reason, we derive a method to join the replication of the
steps into a single procedure in the multi-hop context (i.e., one
database and one training).

7.2. Computational cost

One main aim of [17] is to derive a simple synchronization
technique with less computational complexity than Linear Pro-
gramming (LP) or other traditional approaches [10]. This is
crucial for WSNs in which energy is a scarce resource. In the
LP case, for example, an optimization problem is formulated on
skew and offset. The problem can be solved by traditional opti-
mization algorithms, like the simplex one. The simplex method
is efficient in practice, even though it has exponential worst-
case complexity. The computational issue may become critical
in the synchronization context because the number of LP con-
straints scales up linearly in the size of the information window
collecting the history of the timestamps (see, e.g., (21) of [10]).
Despite the splines advocate the adoption of the Ordinary Least
Squares method, for which similar considerations may be out-
lined, their computational complexity is low, in particular for
S1. In the bivariate case (the regression is applied on the plane
reported in Fig. 2), each new sample contributes to the updating
of the S1 parameters through trivial operations, such as the up-
date of the sum of products on previous samples (see, e.g., [19]
and [39]). The NN experiences a low computational complexity
as well because it depends on the collection of S1 estimations.
After building INN on S1, the remaining NN operations consist
of computing the NN output through a cascade of summations
and multiplications involving the neural units, typically repre-
sented by hyperbolic tangent or sigmoidal functions. The NN
used in the performance evaluation has been implemented on
an Atmel ATmega328P microcontroller running at 16 MHz and
tested with a NN consisting of 15 inputs, 10 hyperbolic tangent
hidden units and one linear output. Such a microcontroller is

7
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Figure 3. Example of a multi-hop network.

of common use in the WSN context. The registered mean exe-
cution time of each iteration involving both features extraction
(from S1) and the computation of the output (after training) was
4.932 ms [15]. The NN computation also scales linearly with
respect to K. Roughly speaking, this corroborates the adoption
of the NN with τ ≥ 100 ms, τ being the size of the synchro-
nization time steps. An accurate calibration of K and of the
other NN parameters (the number of hidden units, in particular)
deserves further attention if smaller synchronization steps are
required.

The computational cost of the NN train phase is higher than
the one for test. Actually, the duration of training is not a limita-
tion because it is executed offline. Unless not differently spec-
ified, all NNs have been trained with 100000 samples, which
in real systems must be acquired at runtime through measure-
ments. As a consequence, the time needed to acquire the train
database, with τ = 1 s, is about 27 hours. The offline training
time, measured on a PC equipped with an Intel Core i7-3770
CPU running at 3.4 GHz, with a not optimized software and
with K = 60 (i.e., 120 inputs) is about 10 minutes. This time
can be reduced of at least one order of magnitude with software
optimization or by exploiting GPUs [40].

8. Multi-hop analysis

In a number of operating conditions, usually in large net-
works, nodes communicate through intermediate devices. In
the viewpoint of synchronization, the nodes are hierarchically
ordered in a tree topology [10, 19], where at the root of the
tree lies the reference clock (i.e., the time source of the network
tree). The first layer nodes synchronize directly with the ref-
erence clock. A second layer node synchronizes with the first
layer. The same applies for the subsequent layers. Each layer
suffers of a worst synchronization quality as soon as the dis-
tance from the root increases.

Given a node, only one path exists between the node and
the root of the tree. Synchronization can be separately analyzed
along each path of the tree. We focus on the example reported
in Fig. 3. The reference clock, node N0, has only the master
role, i.e., it is the time source to which all other nodes must

synchronize. A node of the first layer, N1 has a 1-hop distance
from N0, and it acts as a slave node with respect to N0 and as a
master node with respect to the nodes lying in the second layer,
for example N2. The node N2, that like N1 covers both the mas-
ter and slave roles, has a 2-hop distance with N0. The node N2
is synchronized with N1, which in turn is synchronized with N0.
Basically, timestamps obtained on timing messages by node N1,
when N2 synchronizes with N1, are obtained with the view of
N1 of the reference time held by N0. In other words, N1 exploits
the most recent estimation of the parameters of the virtual clock
to convert the timestamps obtained with its local clock to the
reference time held by N0. Since the virtual clock makes errors
in this conversion, a node belonging to a hop level greater than
1 synchronizes its clock to an incorrect clock source. We will
refer to such a kind of corruption as hop error. The hop error
increases with the number of hops and does not take place in
N1. Leaf nodes have only the slave role and are the ones with
the biggest hop error.

Three methods based on NN, namely NN link, NNgenA and
NNgenB , are defined in this context.

8.1. A distinct NN for every link

The NN link model implies that the usual NN is trained link-
by-link, i.e., by repeating a training phase for every communi-
cation link between two adjacent nodes of the network. From
the second hop onwards, the neural network is trained with
timestamp data derived from a node which is synchronized through
a NN with the node of the previous hop. This method come
out with a set of specialized NNs, able to cope with the spe-
cific experimental conditions regarding each couples of nodes.
Unfortunately, this may result in a high number of database ac-
quisitions and neural trains. Moreover, to acquire the training
database for a specific hop, the NN of the previous hops must
already be trained. This iterative approach leads to a complex
acquisition process of the training databases and waste of time
for the system setup. As a matter of fact, it is hardly applicable
in real situations, except when the number of nodes is reason-
ably limited.

8.2. Generalized NN: temperature compensation

The limit of having a specific NN for every link of the net-
work can be circumvented by training with respect to different
temperature patterns. The accuracy of this kind of “general-
ized” NN is usually lower than the one of a NN trained with a
database coherent with the test conditions (see, e.g., [15]). We
firstly define a NN trained over a set of temperature conditions,
in-node delays, but by disregarding the hop error: NNgenA . This
means the training database can be easily obtained by connect-
ing in separate, but not consecutive, experiments all the nodes
with the master.

8.3. Generalized NN: temperature and hop error compensation

Under the NNgenB model, a single neural network is trained
under an iterative (link-by-link) approach, as done in the NN link

case. The difference relies on the superimposition of pairs of

8
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temperature and hop error conditions, which differ from the
combinations checked in the test phase.

In particular, the function ωγT (t, ·) modeling the effects of
temperature variation on the skew has been chosen to be differ-
ent in the train and test phases. To this purpose, the temperature
models evaluated in the test phase for the last and penultimate
nodes drive the collection of training data at the first and sec-
ond nodes, respectively, and so on. As an example, in a network
with 5 hops, ω1

γT , ω2
γT , ..., ω5

γT are the temperature models used
in the test phase for nodes N1, N2,...N5, respectively. The tem-
perature models associated to the same nodes (i.e., N1, N2,...N5)
in the train phase are ω5

γT , ω4
γT , ..., ω1

γT . The resulting database
contains a mix of hop errors and temperatures over which the
NN learns the clock correction, independently to the knowledge
of its position in the tree branch. More sophisticated methods
for the generation and synthesis of the training database are left
open for future research.

9. Experiments setting

The following simulation parameters are defined for the per-
formance evaluation.

Observation horizon. The value K is the number of sets
of timestamps {t1, t2, t3, t4} used to decide the synchronization
correction. K is used as a variable parameter in the results (it
appears in the x-axis of all the figures) in order to emphasize
how the techniques may be sensitive to it. As signal process-
ing techniques estimate stationary states, they achieve optimal
performance only for a strict range of K in non-stationary con-
ditions, such as in the presence of temperature variations.

Synchronization period. In the proposed simulation model,
the sender node starts a synchronization step in a cyclic fashion,
and each exchange is triggered with a period τ fixed to 1.0 s. Pe-
riods greater than 1.0 s could be useful in contexts where power
consumption is a main target, such as in WSNs. The effects of
the parameter τ on synchronization quality has been analyzed
in a specific experimental campaign in subsection 10.3.

Performance metric. The 99.9 percentile of the synchro-
nization errors is the performance metric. It is denoted by p99.9
and represents the 99.9 percentile of the absolute difference be-
tween the reference time (i.e., the time at the receiver node) and
the estimated time by the sender at the end of each timestamps
exchange, as outlined in Fig. 1. All the performed simulations
(under a fixed K) contain 100000 samples of the dynamic sys-
tem (2)-(4) whose evolution follow the temperature and delay
models presented below.

The average error is disregarded because it represents only
the systematic part of the error (i.e., the accuracy), but it does
not provide any information about the precision of synchroniza-
tion [41]. Two nodes may be synchronized, on average, while
still experiencing large synchronization errors; p99.9 helps cap-
ture a threshold limit of those errors (in the 99.9% of the cases).

Temperature. The ωθ and ωγ components of equations (2)
and (3) have variances σ2

θ = 10−17 s2 and σ2
γ = 10−19 , respec-

tively. As far as the temperature is considered, two models have
been taken into account. The ωhigh

γT (t, ·) model represents a fast

Table 2. Means and standard deviations of in-node latencies

Scenario swWiFi hwWiFi swWS N hwWS N

Type PC-WiFi PC-WiFi Mica2 TelosB
Latency (µs) (µs) (µs) (µs)
dsend

S µsend
S 5.4 1.31 259.057 0.408
σsend

S 0.310 0.046 1.291 0.0157
drec

S µrec
S 7.23 8.9 346.849 2.769
σrec

S 0.580 0.110 2.415 0.0374
dsend

R µsend
R nµ·5.4 nµ·1.31 nµ·259.057 nµ·0.408
σsend

R nσ·0.310 nσ·0.046 nσ·1.291 nσ·0.0157
drec

R µrec
R nµ·7.23 nµ·8.9 nµ·346.849 nµ·2.769
σrec

R nσ·0.580 nσ·0.110 nσ·2.415 nσ·0.0374

temperature variation of the XO (t = 600 s) in a wide range of
temperatures (T Low

E = −10 ◦C and T High
E = 40 ◦C); while the

ωnorm
γT (t, ·) model is characterized by slower temperature varia-

tion (t = 1200 s) than ωhigh
γT (t, ·), in a narrower range of temper-

ature with extremes T Low
E = 10 ◦C and T High

E = 35 ◦C. For both
temperature models tc = 60 s. The models are applicable to
mobile nodes in reality. An example may be an automatic fork-
lift that enters into and exits from an industrial oven. Outdoor
exposure is applicable as well [42, 21].

Delay. We consider two effects on delay: the propaga-
tion over the channel, dprop

S R and dprop
RS , and the in-node delays

(dsend
S , drec

S , dsend
R and drec

R ), as defined in the following. The
values dprop

S R = 150 ns and dprop
RS = 150 ns have been used in

all the simulated scenarios. The value of 150 ns was chosen
because it represents a reasonable distance of about 50 me-
ters between wireless nodes. In fact, an electromagnetic sig-
nal which a speed of ∼ 3 · 108 m/s takes 166 ns to cover 50 m.
The propagation delay is also considered as exponentially dis-
tributed in the last experiments of subsection 10.5. The other
delays of Fig. 1, unless otherwise specified, have been set to 0
(i.e., dnode′

S = dnode′′
S = dnode

R = 0).
Comparison with [17]. As a performance comparison, in

the method summarized by the CH acronym, formulas (10) and
(11) of [17] have been chosen for the estimation of the skew
and offset, respectively. In the proposed experimental setups,
they provide the best results with respect to the other variants
presented in the same paper.

9.1. In-node delays
In-node delays represent the latency between the sending

or reception times of the synchronization packet and when the
timestamp is actually obtained. In absence of nodes’ mobil-
ity or other structural changes of the environment, which may
cause variations of the fading affecting the channel, the prop-
agation delay is deterministic and the prevailing effect on syn-
chronization is due to in-node delays.

The setting of the noise on in-node delay is now detailed.
In-node delays reported in Fig. 1 are more concisely repre-
sented with: dsend

ρ and drec
ρ , where ρ represents the node role,

ρ = S for the sender node and ρ = R for the receiver node,
respectively.

9
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In [43], in-node delays have been analyzed for IEEE 802.11
WiFi devices and results are reported for hardware and software
timestamps. The resulting delay model is summarized in the
first two columns of Table 2. The two latencies dsend

ρ and drec
ρ

are not symmetric, and sender and receiver have very different
in-node delays values in terms of both mean and standard devi-
ation (for instance swWiFi and hwWiFi in Table 2).

The presented setting for software time-stamping (condi-
tion swWiFi reported as first column of Table 2), is referred to
a system with low interfering loads (i.e., CPUs often in the
IDLE state, low interrupts rate, etc.). With hardware times-
tamps, hwWiFi condition, the standard deviations σsend

ρ and σrec
ρ

are quite small.
The distribution of dsend

ρ and drec
ρ [43] may have various

shapes depending on the nodes hardware, operating system and
internal load. A good approximation is however the normal dis-
tribution: dsend

ρ = N(µsend
ρ , σ2 send

ρ ) and drec
ρ = N(µrec

ρ , σ2 rec
ρ ).

The multipliers nµ and nσ in Table 2 are used in subsection 10.4
in order to set variable asymmetry conditions on the delays dsend

ρ

and drec
ρ of the receiver node. The quantities dsend

ρ,i − µ
send
ρ and

drec
ρ,i − µ

rec
ρ are usually known as jitter.

As far as WSNs are considered, some papers [19, 44, 45]
have experimentally evaluated and analyzed the distributions of
dpath

S R and dpath
RS , where:

dpath
S R = dprop

S R + drec
R − dsend

S

dpath
RS = dprop

RS + drec
S − dsend

R

represent the measured path delays between sender and receiver,
and vice versa. At the best of authors knowledge, a separate
analysis for in-node delays is not currently available. In [44],
the transmission latency of a message between WSN nodes of
different type have been evaluated. In particular, for a Mica2
WSN node the reported delay is 605.906 µs, with a standard
deviation equal to 2.738 µs.

In order to have a coherent model for WSN, we split the
values reported in [44] between the dsend

ρ and drec
ρ contributions,

with the constraint of maintaining the ratios
µsend
ρ

µrec
ρ

and
σ2 send
ρ

σ2 rec
ρ

ex-

perienced for swWiFi. The previously described process was
used to obtain the swWS N condition (third column of Table 2).

The same splitting procedure, between the sending and the
receiving components of the delay, has been used for the hwWS N

condition. In this case, data about delays have been obtained
from [19], and the constraint regarding the two ratios are co-
herently referred to a hardware condition, i.e., hwWiFi. In [19],
the experimental setup is composed of TelosB WSN motes, and
the measured delay of a transmission between two nodes of this
type — including in-node delays but excluding the timestamps
quantization errors — has a mean value and a standard devia-
tion of 3.177 µs and 40.56 ns, respectively. An important dis-
tinguish characteristic of the hwWS N scenario is that the times-
tamps resolution is ∼ 31 µs, because nodes local clock has a
frequency of 32768 Hz. As a result, even if the precision of
the timestamp is very high (i.e., the standard deviation is below
50 ns), the use of a great number of timestamps is mandatory to
mitigate the effects related to their low resolution.

The use of more than one timestamp to drive estimation
(i.e., K > 1) helps mitigate in-node jitter or quantization er-
rors for all the conditions, with the only exception of hwWiFi,
whose timestamps are characterized by a higher precision. Un-
der hwWiFi conditions, small values of K, e.g., K = 2, are
sufficient for synchronization with S1. Under peculiar circum-
stances, e.g., with high values of τ, or communication losses be-
tween sender and receiver, further adjustments may be needed;
this has been left open for future research.

10. Performance evaluation

10.1. Simulation environment
Typical network simulators are designed to model adequately

communication protocols, and they can easily scale to large size
networks composed of a high number of nodes. Examples of
popular network simulators are the open source ns-2, ns-3 and
Omnet++, or the commercial solution OPNET modeler. Unfor-
tunately, for clock synchronization, and in particular for those
aspects mostly taken into account here (i.e., effects of temper-
ature and in-node latencies on synchronization quality), avail-
able network simulators are not adequate. Firstly, they can-
not currently model XOs and in-node latencies. Both aspects
can be in theory included by modifying simulator models, but
this requires a good knowledge of the simulator, a lot of effort,
and there is no guarantee that changes will be compatible with
newer versions of the simulator. Secondly, network simulators
are not designed to model more than one timescale. In syn-
chronization, each node has a different view of the time, and
its dependence with respect to the timescale of the simulator is
complex (see, e.g., subsections 3.2 and 3.3). Finally, to model
the schema proposed in Fig. 1, if each message exchange starts
and end in [k, k+1],∀k, a discrete event simulator is not needed.
In fact, timestamps acquired by nodes in the exchange started
at time k + 1 do not depend on that acquired in the exchange k.
This reasonable assumption reduces considerably the complex-
ity of the simulator.

For all these reasons, an “ad-hoc” simulation environment
has been specifically developed to model the system as described
in the previous sections. The simulation software was pro-
grammed in python, and it was executed in parallel (a pro-
cess for every value of K) in a High-Performance Computing
(HPC) cluster consisting of 544 cores placed in 17 computa-
tional nodes, and with a total amount of RAM equal to 2.2 TB.
The simulation process is subdivided in two phases. In the first
phase, the simulator makes use of state equations (including
noises, environmental temperature variation and XO models)
described in Section 3, to obtain for each time instant the four
timestamps exploited by the clock correction algorithm (i.e, t1,
t2, t3 and t4), and the correct target time. In the second phase,
data obtained in the first step are exploited to compare clock
correction algorithms. Splitting the simulation into two steps
offers a big advantage in terms of execution speed, because data
have not to be reproduced each time the performance of a clock
correction algorithm has to be tested, and it ensures a fair com-
parison between algorithms [46], i.e., all are applied to the same
data set.
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b swWS N ωnorm
γT (t, ·) WSN node with software timestamps and normal temperature variations (between 10 ◦C and 35 ◦C every 1200 s)

c hwWS N ωnorm
γT (t, ·) WSN node with hardware timestamps and normal temperature variations (between 10 ◦C and 35 ◦C every 1200 s)

d hwWiFi ω
high
γT (t, ·) WiFi node with software timestamps and huge temperature variations (between −10 ◦C and 40 ◦C every 600 s)
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f hwWS N ω
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Figure 4. 99.9-percentile of the synchronization error, for S1, S2, S3, NN and CH (ωhigh
γT (t, ·) andωnorm

γT (t, ·) temperature models; swWiFi and swWS N in-node latencies;
nµ = 1 and nσ = 1).

10.2. Varying nodes type and environmental conditions

In the first set of experiments (Fig. 4), we evaluate the per-
formance of all the techniques and temperature models pro-
posed, with the exception of hwWiFi. For the hwWS N condi-
tion, the delays dnode′

S and dnode
R have been distributed uniformly

between 0 and 31 µs. This setting makes it possible to put
out of phase the sending times of the two exchanged packets.
This procedure also removes possible correlations between the
timestamps obtained in subsequent synchronization steps.

It is clear from the figure that CH is never optimal. The
splines, especially S1, guarantee the optimal performance only
for short ranges of K. The optimal setting (i.e., minimum p99.9)
of K is denoted with K∗. Under high temperature oscillations
(i.e., ωhigh

γT (t, ·)), both the splines and CH have a significant per-
formance degradation as soon as K slightly differs from K∗.
The value K∗ is not constant and it depends on the spline used,
on the temperature model and on the in-node delays. As a con-

sequence, the estimation of K∗ is hardly possible. Conversely,
the NN guarantees optimal performance for larger ranges of K.
Only the most critical condition of Plot 4.e (software times-
tamping in WSN and high temperature variations) leads to larger
performance oscillations in the NN. The method based on NN
provides lower synchronization errors also in the case of hard-
ware timestamps with 31 µs resolution (hwWS N condition), out-
performing all the other methods.

In Fig. 5, the S1, S3 and CH techniques have been analyzed
in the proximity of a trend inversion (at time 40 s, the tempera-
ture reaches the minimum, ∼ T Low

E , and starts to increase again).
Fig. 5 helps highlight the impact of tracking the variability of
the target offset, which is slowly approximated by S1 and CH.
In this case, with K = 70, the best tracking is obtained by S3
and NN (the NN is not reported for the sake of clarity). Under
small values of K, however, the use of high order splines is not
convenient, because the contribution of the measurement noise

11
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Figure 5. Estimation of the offset (θ̂), with different time-varing techniques, in
proximity of a trend inversion at time 40 s (K = 70).
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S1 (τ = 60 s)
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Figure 6. 99.9-percentile of the synchronization error, for S1 and NN with
different values of the synchronization period (τ = 1, 10, 60 s). For τ = 10 s
also the results of the S2 technique has been reported. Experimental condition:
swWS N — ωnorm

γT (t, ·), i.e., WSN node with software timestamps and normal
temperature variations (between 10 ◦C and 35 ◦C every 1200 s).

is predominant with respect to the temperature effect. In virtue
of the small sensitivity on K variations, NN is not affected by
this problem.

10.3. Synchronization period τ

In many WSN applications, the interval between two ad-
jacent synchronization steps, τ, is usually increased as much
as possible to improve battery duration. Unfortunately, an in-
creasing τ (leaving K unchanged) decreases the ability to track
temperature variations. To compensate large τ, a reduction of
K may be applied, but this would lead to worst in-node delays
compensations. The estimation performance thus plays an im-
portant role in this perspective as well.

A number of experiments with variable τ have been carried
out for the swWS N scenario, the ωnorm

γT (t, ·) temperature model,
and with different values of τ, namely τ = 1 s, 10 s, 60 s.

Results reported in Fig. 6 show how synchronization error
is directly related to τ. For instance, increasing of one order of
magnitude the value τ, from 1 s to 10 s, the error in correspon-
dence to K∗ passes from 2.211 µs to 5.590 µs for S1 and from

2

3

4

5

6

7

8

0 20 40 60 80

p 9
9.

9
[µ

s]

K

swWS N — ωnorm
γT (t, ·)

τ = 1 s

τ = 10 s
τ = 60 s

τ = 120 s
τ = 180 s

τ = 300 s

τ = 600 s

Figure 7. 99.9-percentile of the synchronization error, for NN with differ-
ent values of the synchronization period (τ = 1, 10, 60, 120, 180, 300, 600 s).
Experimental condition: swWS N — ωnorm

γT (t, ·), i.e., WSN node with software
timestamps and normal temperature variations (between 10 ◦C and 35 ◦C every
1200 s).

2.212 µs to 4.162 µs for NN. After a further increase to τ = 60 s,
the synchronization error worsens and it reaches in the point K∗

the minimum errors of 6.245 µs and 4.678 µs for S1 and NN,
respectively.

For τ = 10 s, also the statistics related to S2 has been re-
ported in the plot. The minimum achieved error is 4.621 µs
with K∗ = 16. The errors of S1 and S2 are higher than the one
of the NN method, for every value of K and τ.

With values of τ greater than a given threshold (i.e., τ ≥
180 s as in Fig. 7), synchronization quality worsen because NN
method is no longer able to estimate correctly the temperature
variations. In other words, the error achieved by NN in com-
pensating temperature variations is bigger than the error due to
in-node delay.

10.4. Delay asymmetry

In Fig. 8, the effect of latency asymmetries on synchroniza-
tion accuracy are analyzed. Tests have been performed using
swWiFi and ωnorm

γT (t, ·) as temperature model. Plot 8.a represents
a perfect symmetry where both sender and receiver experience
the same latency distributions (i.e., nµ = 1 and nσ = 1 in Table
2). Results for this configuration are equal to those discussed in
the previous subsection.

In the second experiment (Plot 8.b), an asymmetry on the
width of the gaussian distributions that model the latencies has
been introduced by setting nσ = 1.5. As expected, the synchro-
nization quality worsen for all the analyzed techniques, because
the precision of the timestamps at the receiver has been reduced.
The technique mostly affected by the asymmetry is CH.

In the third experiment (Plot 8.c), the asymmetry has been
obtained adding a systematic error on timestamps acquisition,
by multiplying only the mean value of the gaussian distribu-
tions of the receiver node: nµ = 1.5 and nσ = 1. Only the NN

12
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Plot. nµ nσ Description
a 1 1 Perfect symmetry between sender and receiver in-node latencies
b 1 1.5 Asymmetry on in-nodes latencies precision was obtained by increasing the width of the receiver node in-node latencies
c 1.5 1 Asymmetry on in-nodes latencies accuracy was obtaining by adding a systematic error in the receiver node in-node latencies
d 1.5 (test) 1 Same test configuration regarding asymmetry of Plot c. Three different train configurations:

NNnµ=1 equal to Plot a; NNnµ=1 equal to Plot c; NNgen obtained mixing different nµ values

Figure 8. The effect of in-node asymmetries on the 99.9-percentile of the synchronization error, for S1, S2, S3, NN and CH (ωnorm
γT (t, ·) temperature models; swWiFi

in-node latencies).

technique compensates the asymmetry, while other techniques
suffer of a degradation on accuracy of about 3.2 µs.

Experimental results reflect directly the systematic accuracy
error introduced by the asymmetry. Since the delay sampling of
equation (8) does not hold under asymmetry (the multiplication
by 1

2 assumes path symmetry), asymmetry may cause a system-
atic error, whose correction requires an accurate calibration (as
mentioned, for example, in [43]). The calibration may be driven
by a-priori calculations as shown in Appendix C. Since a-priori
calculations may be hardly applied in practice, the calibration
may derive from the direct measurement of the synchroniza-
tion error. The calibration provided by the NN, together with
the compensation of other non-stationary effects (e.g., temper-
ature), greatly simplifies the synchronization process.

The fourth experiment (Plot 8.d) analyzes the robustness of
NN with respect to the asymmetry of the channel. All tests are
performed using nµ = 1.5. Results, reported as NNnµ=1 and
NNnµ=1.5, denote NN models trained with nµ = 1 and nµ = 1.5,
respectively. For NNgen, the NN model has been trained with
five data sets composed of 25000 samples that differ on the val-
ues of nµ (0.25, 0.75, 1, 1.25, 1.75, respectively). As expected,
NN cannot generalize the channel asymmetry as in the case of
temperature [15], because formula (8) supposes dpath

S R = dpath
RS .

Basically, when the NN is trained by using data sets with dif-
ferent channel asymmetries, it reaches a minimum error only
for one of the possible asymmetries. NNnµ=1.5 has the same sys-
tematic error in all the cases. This error can be derived from
the calculations presented in Appendix C. When the test and
training conditions are consistent from the viewpoint of chan-
nel asymmetry, NN compensates the error.

10.5. Exponentially distributed delay

For the sake of completeness, we consider also exponen-
tially distributed delays as in [17, 16], which may characterize
peculiar scenarios [16]. In the first two experiments of Fig. 9,

no in-node delays are considered, while dprop
S R and dprop

RS are ex-
ponentially distributed with mean 1 µs. This condition has been
denoted as exp( 1

1 µs ) in Fig. 9.
In the first Plot 9.a, CH achieves the best performance. The

NN tries to follow the performance of the best spline, which
changes from S1 to S3 with increasing K.

In the second Plot 9.b, the NN information vector is col-
lected on the basis of a first-order regression scheme, whose
slope and y-intercept coefficients are derived from CH (denoted
with SCH

1 ). Results regarding this new information vector have
been reported as NNS CH

1 , while NNS 1 identifies those derived
from S1. More specifically, the SCH

1 is obtained from computing
the slope and the y-intercept of S1 through the skew and offset
estimated by equations (10) and (11) in [17], respectively. As
outlined in Fig. 2, skew and S1 slope are strictly related. With
exponential distributed delay, the NNS CH

1 method guarantees the
best performance with a larger set of K. The quality of synchro-
nization is always better, regardless the value of K.

The new information vector based on SCH
1 is analyzed in

the third experiment (Plot 9.c) with Gaussian in-node delays
(swWiFi) and with dprop

S R = dprop
RS = 0. Surprisingly, the syn-

chronization accuracy of NNS CH
1 is comparable with the one of

NNS 1 (Plot 4.a). This means that the information vector based
on SCH

1 generalizes the NN technique to both in-node Gaussian
and exponential delays.

As a further verification of this property, in the last Plot 9.d,
both Gaussian swWiFi and exponential exp( 1

1 µs ) delays have
been activated in the simulator. Once again, the results high-
light the capability of NNS CH

1 to generalize to different delays
distributions.

10.6. Multi-hop scenario
The swWiFi and swWS N conditions have been analyzed as

they lead to the lower synchronization quality. Five hops are
considered as in [19]. Table 3 lists the parameters of the func-
tion ωγT (t, ·) for the five hops. The parameters assigned to the
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Plot. Information Delay Description
vector model

a NNS 1 exp( 1
1 µs ) Information vector based on S 1, and only exponentially distributed delay
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1 µs ) Information vector based on S CH
1 , and only exponentially distributed delay

c NNS CH
1 swWiFi Information vector based on S CH

1 , and only Gaussian in-node delay
d NNS CH

1 swWiFi + exp( 1
1 µs ) Information vector based on S CH

1 , and both Gaussian in-node delay and exponentially distributed delay

Figure 9. 99.9-percentile of the synchronization error, with different delays distributions (swWiFi and exp( 1
1 µs )), and evaluation of the NNS CH

1 method.

Table 3. Environment characterization (i.e., parameters of the function
ωγT (t, ·) = ωγT (t, tc, p,T High

E ,T Low
E )) for every hop of the multi-hop scenario.

hop T Low
E T High

E tc p
[◦C] [◦C] [s] [s]

1 10 35 60 1200
2 15 30 60 1200
3 5 40 60 1200
4 17 33 120 1200
5 10 35 90 900

different hops involve all the parameter of the function ωγT (t, ·).
In the first three hops, changes regard temperature boundaries
(i.e., T Low

E and T High
E ); in the fourth hop, variations on both

temperature boundaries and thermal time constant have been
considered; the last hop takes into account a different periodic-
ity (e.g., the node is placed in another operating environment,
which is characterized by a different temperature variation pe-
riod).

Table 4 reports the experimental results. In addition to the
p99.9, also the standard deviation (σ) and the maximum (Max)
of the absolute value of the synchronization error have been
provided.

The three methods based on NN, namely NN link, NNgenA and
NNgenB , have been compared with S1.

The first column of results of Table 4 regards S1. For this
experiment, the values K∗ obtained for the first hop (i.e., 20
for swWiFi and 40 for swWS N) have been fixed and used for the
remaining four hops. The symbol K∗ has been substituted in
the result table with the symbol K, because the optimality of its
value only applies to the first hop.

All the statistical indexes worsen with the distance from the
root. Specifically, in the case of σ, the increase in the hop

number is almost constant. The values of these constants are
0.201 µs for swWiFi and 0.702 µs for swWS N . Roughly speak-
ing, the value of σ doubles every hop. A similar behavior af-
fects p99.9 and Max. Their trends with the distance are less
deterministic because they are more affected by rare events.

In all the NN methods presented, K must be chosen large
enough in order to obtain timestamps jitter compensation; it
should be greater than the values K∗ obtained for S1 and for all
the possible combinations of timestamps jitters and temperature
variations. Fixing K = 60 meets the requirement (values of K
greater than 60 lead to similar results because the NN is not too
sensitive to changes of K).

The NN link method is the best from the point of view of
performance because the resulting NNs are specialized to cope
with the specific experimental conditions of each couples of
nodes, the network channel and the environment. The results
reported in the column NN link of Table 4 confirm the ability
of the NN to outperform S1, and the benefit of using NN link in-
creases with the number of hops. Actually, the results regarding
the synchronization between N1 and N0 in the first hop reflect
exactly those reported for the same condition in Fig. 4.

The training database of NNgenA has been derived by merg-
ing the training databases of five separate experiments in which
the nodes N1, N2, N3, N4 and N5 of Fig. 3 are directly connected
with the reference clock N0. In this case, the training patterns
contain only the information regarding temperature variations
and the in-node delays, but not the hop error. The resulting
database contains 1500000 patterns. As expected, all the per-
formance indicators have worse performance than in the NN link

case, but, excluding the maximum value of the swWiFi condition
for the hop number 5, the synchronization quality of NNgenA is
similar or outperforms the one of S1.

Under NNgenB , the temperature conditions 5, 4, 3, 2, 1 of
Table 3 have been used, in the reported inverted order from 5
to 1, to train the 5 hops of the network presented in Fig. 3,
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Table 4. Synchronization quality in a multi-hop scenario for S1, NNlink (i.e, NN trained for every hop), and NNgenA and NNgenB (i.e., the same NN for every hop).

Hop S1 NN link NNgenA NNgenB

K σ p99.9 Max K σ p99.9 Max σ p99.9 Max σ p99.9 Max

W
iF

i(
sw

W
iF

i ) 1 20 0.207 0.717 1.184 60 0.186 0.761 1.202 0.183 0.772 1.192 0.198 0.832 1.262
2 20 0.400 1.339 2.103 60 0.280 1.090 1.669 0.330 1.245 1.805 0.308 1.136 1.988
3 20 0.635 2.369 3.946 60 0.432 1.553 2.413 0.528 2.180 3.045 0.477 1.862 3.176
4 20 0.855 3.060 5.403 60 0.493 1.673 2.359 0.711 2.802 5.030 0.561 2.093 4.039
5 20 1.110 3.846 6.415 60 0.600 2.006 2.734 0.946 3.854 11.052 0.668 2.567 4.972

W
SN

(s
w

W
S

N
) 1 40 0.633 2.205 3.349 60 0.647 2.794 3.479 0.623 2.267 3.104 0.676 2.328 3.018

2 40 1.200 4.001 5.658 60 1.112 4.270 5.754 1.080 3.926 5.254 1.162 4.049 5.110
3 40 1.947 7.111 10.200 60 1.561 5.290 7.314 1.860 7.089 9.176 1.720 6.020 7.786
4 40 2.630 9.347 13.158 60 1.967 6.478 8.460 2.390 9.009 11.016 2.105 7.358 9.190
5 40 3.440 11.831 16.825 60 2.355 7.626 10.500 2.999 11.198 13.862 2.484 8.744 11.163

All values are expressed in µs.

respectively. The resulting database contains 1500000 patterns.
The results reported in the last column of Table 4 show that

NNgenB performance is very closed to that of NN link. This tells
us two things: that the use of a generalized NN is possible be-
cause results are close enough to the optimum represented by
NN link, and that the knowledge of the hop error is important
because it drives to a better performance.

10.7. Testbed

Implementation and validation of synchronization protocols
in real devices deserve specific attention. Results reproducibil-
ity is the first issue to be considered. Some experimental condi-
tions may be difficult to be reproduced (i.e., temperature varia-
tions, in-node latencies or packet losses) as well as experiments
duration that may be limited. The interested reader is referred
to [47] for details on reproducibility issues. How to measure the
synchronization quality is another concern. In [48], the genera-
tion of two synchronous signals is used, together with an exter-
nal device to check their time differences. Unfortunately, real
devices add variable jitters when they trigger an actuation. In
order to minimize this jitter, a hard real-time implementation is
required. Moreover, a temperature-controlled environment may
be also used to analyze temperature variations (see, e.g., [21]).

Some preliminary results of the NN on the real implemen-
tation of [48] are summarized here. Besides the fact that tem-
perature variations are lower than the ones considered in the
simulations (due to the heating system of the room considered),
we obtained interesting results that confirm the applicability of
the approach. The RBIS protocol [6] is used to acquire two
databases with respect to working days [47] and weekend, re-
spectively. The performance of the NN is qualitatively compa-
rable with the one obtained in simulations here when compared
to the splines. An interesting result is that the NN outperforms
S1 for small value of K. This is useful in a WSN device because
it reduces the size of the information vector and the inherent
computation. Another promising issue relies on the fact that
the NN shows to be robust to loss of packets. This may open
the door to outperforming other estimation approaches, specifi-
cally designed for intermittent observations, still being based on

the Gaussian hypothesis. On the other hand, the NN fails when
trained on the week days and tested over the weekend. In order
to prevent such a performance degradation, one may anticipate
the working conditions of the NN, in particular with respect to
the temperature ranges to be addressed. This was validated by
results not reported here for the sake of conciseness.

11. Conclusions and Future Work

We have examined and discussed a neural estimation tech-
nique for the popular two-way timing message exchange syn-
chronization protocol and for nodes affected by temperature
variations and delay asymmetry. The impacts of the delay knowl-
edge and the presence of several hops in the network have been
accurately analyzed. Numerical analysis reveals significant per-
formance improvements over existing techniques (splines and
[17]) under variable temperatures and different delay distribu-
tions. One of the most important outcomes is the robustness to
increasing synchronization steps (high accuracy, independently
to the number of timestamps used).

Future work includes different topics. The skew estimation
and the robustness to loss of timestamps are currently under
investigation. Other intriguing issues are: the impact of the
knowledge of the temperature through observations, runtime
retraining of the neural estimator to unexpected conditions, as
well as the management of the multi-hop database under “big
data” paradigms. Preliminary results on a real implementa-
tion [48] confirm the effectiveness of the proposed technique.
A more in-depth validation on a number of real installations
and environmental conditions is argument of future research as
well.
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Figure A.10. Example of application of the measurement equations.

Appendix A.

An example for explaining the measurement equations (8)-
(10) of subsection 3.4 has been reported in Fig. A.10. The index
k has been removed for the sake of simplicity and because only
one message exchange is analyzed. The quantity CR is the free-
running clock register of the receiver node, which holds the
reference time. Instead, CS (i.e., the free-running clock reg-
ister of the sender node) is updated with a lower frequency
than CR. The timestamps exploited for synchronization are:
t1 = 3, t2 = 8, t3 = 10, t4 = 6.2. The value γ has been initial-
ized with the estimation of the skew performed in the previous
k−1 synchronization step (i.e., γ̂ = −0.25). The new estimation
of the delay from (8) is:

d̂ =
(1 − γ̂) · (t4 − t1) − (t3 − t2)

2
= (A.1)

=
1.25 · (6.2 − 3) − (10 − 8)

2
=

4 − 2
2

= 1

By using the value d̂ computed in (A.1), the new estimations
of the offsets and of the skew can be obtained from (9) and (10):

θ̂S R = t1 − (t2 − d) = 3 − 8 + 1 = −4 (A.2)
θ̂RS = t4 − (t3 + d) = 6.2 − 10 − 1 = −4.8

γ̂ = 1 −
(

t3 + d − (t2 − d)
t4 − t1

)
= 1 −

(
11 − 7
6.2 − 3

)
= (A.3)

= 1 −
4

3.2
= 1 − 1.25 = −0.25

Appendix B.

We demonstrate here that 1-st order regression applied to
timestamps is independent to the delay correction outlined in
subsection 5.1.

The parameters of the 1-st order regression (S1) interpolat-
ing a set of two-dimensional points (Xk,Yk), k = 1, ...,K, i.e.,
slope m and y-intercept q, are:

m =

∑K
k=1 XkYk −

1
K

∑K
k=1 Xk

∑K
k=1 Yk∑K

k=1 X2
k −

1
K (

∑K
k=1 Xk)2

; q = Ȳ − mX̄ (B.1)

Two straight lines are compared, with and without delay correc-
tion (d). The timestamps without correction consist of the se-
quence {tk

1, t
k
2, t

k
3, t

k
4}, k = 1, ...,K; let m and q be the resulting S1

parameters. The timestamps with correction are {tk
1, t

k′
2 , t

k′
3 , t

k
4},

k = 1, ...,K, tk′
2 = tk

2 − d, tk′
3 = tk

3 + d with m′ and q′ the cor-
responding S′1 parameters. The two sets of parameters asymp-
totically converge (in the number of timestamps) to identical
values. If m ∼ m′ (‘∼’ means asymptotical equivalence), q ∼ q′

because the averages Ȳ and X̄ (in B.1) are identical in the two
cases. In order to show m ∼ m′, we substitute in (B.1) the times-
tamps and consider the difference ∆m = m′ − m as K → +∞.
After some algebraic manipulations, we obtain:

∆m =
d
∑K

k=1(tk
4 − tk

1)∑K
k=1((tk

1)2 + (tk
4)2) − 1

K (
∑K

k=1(tk
1 + tk

4))2
(B.2)

The ∆m quantity tends to 0 for the following reasons. The nu-
merator is positive (tk

4 > tk
1,∀k) and grows linearly. The denom-

inator defines a definite positive quadratic form of the times-
tamps in <+K ; the determinant of the corresponding Hessian
matrix is (2k ·

(k−1)k−1
kk ) > 0,∀k > 2.

This asymptotic behavior is measured in practice with a
small number of timestamps. For example, in the swWiFi con-
dition with τ = 1 s and K = 60, ∆m = 1.8 · 10−9 and ∆q =

q′ − q = −54 ns7. The difference of the synchronization error
between S′1 and S1 is 54 ns. By doubling the number of times-
tamps (i.e., K = 120) the difference is halved, i.e., it amounts to
27 ns, with ∆m = 4.5 · 10−10 (an order of magnitude lower than
with K = 60) and ∆q = −27 ns.

Appendix C.

The asymmetry error outlined in subsection 10.4 can be a-
priori computed by considering the propagation delays between
the sender and the receiver nodes (d

path
S R ), and the one in the

opposite direction (d
path
RS ):

d
path
S R = d

prop
S R + d

rec
R · nµ − d

send
S =

= 0 + 7.23 µs · 1.5 − 5.4 µs = 5.45 µs

d
path
RS = d

prop
RS + d

rec
S − d

send
R · nµ =

= 0 + 7.23 µs − 5.4 µs = −0.87 µs

As a consequence, the systematic error on the estimation of
the propagation delay is:

ε ď(k)
=

d
path
S R − d

path
RS

2
=

5.45 µs − 0.87 µs
2

= 3.16 µs (C.1)

7The value d = dprop + drec − dsend = 2.16 µs has been obtained with
drec = µrec = 7.23 µs, dsend = µsend = 5.4 µs and dprop = 334 ns. dprop is the
time the light takes to cover a distance of 100 m. The quantity dnode

R has been set
to 0.5 s. Values larger than 0.5 s lead to higher differences (∆m,∆q) and worse
synchronization accuracy, the opposite holds for values smaller than 0.5 s.
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