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Abstract

The Constrained Application Protocol (CoAP) has been designed by the In-
ternet Engineering Task Force (IETF) for Internet of Things (IoT) communi-
cations. CoAP is a lightweight, request/response-based RESTful protocol that
has been tailored to fulfill the requisites of IoT environments, such as severely
limited device hardware and link capacities. In IoT networks, congestion is
a major issue that causes performance losses or may even render the network
useless. Thus, the use of a congestion control mechanism is essential for the
performance of such networks. CoAP defines a very basic congestion control
mechanism for the reliable exchange of messages between endpoints, however
it does not specify congestion control for communications without end-to-end
reliability, even though the latter represent a relevant share of CoAP commu-
nications. Two extensions to CoAP, Observe and Simple CoAP Congestion
Control/Advanced (CoCoA), introduce rate control mechanisms for such com-
munications yet these extensions have not yet been compared or evaluated. In
this paper, we empirically evaluate these rate control mechanisms for unreliable
CoAP communications between devices over emulated GPRS/UMTS links and
in a real IEEE 802.15.4 multihop testbed of constrained devices. The results
show that in contrast to Observe, CoCoA performs better than, or at least sim-
ilarly to, default CoAP in terms of both packet delivery ratio and delay in all
analyzed scenarios.
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1. Introduction

The Constrained Application Protocol (CoAP) has been designed by the
Internet Engineering Task Force (IETF) to be the de-facto protocol for Internet
Protocol (IP)-based communications between devices in the Internet of Things
(IoT). The IoT aims to interconnect billions of Internet-capable smart objects,
building a bridge between the physical and the virtual world. Constrained
devices represent a key element of IoT networks that use low-power wireless
technologies to communicate over the Internet. As a consequence of the limited
radio capacities and the tight hardware limitations of constrained devices, the
risk of network congestion in IoT networks is high, representing a recurring
phenomenon. Moreover, IoT traffic patterns, such as the bursty transmission
of messages as a reaction to an event detected in the network or periodical
transmission of status information from large groups of devices, tend to result
in congestion. Network congestion can deteriorate the performance of a network
significantly, manifesting in increased packet latencies or packet losses, while a
network may even render useless if congestion collapse occurs.

The CoAP base specification [1] addresses this issue by defining a basic con-
gestion control mechanism for the reliable exchange of messages. However, for
unreliable transmissions (i.e., without end-to-end reliability), the CoAP base
specification does not determine any congestion control mechanism. Due to the
simplicity of congestion control for reliable communications and the missing con-
trol mechanisms for unreliable message exchanges, the CoAP base specification
envisages the definition of alternative advanced congestion control mechanisms
in form of extensions. Accordingly, the IETF released RFC 7641 [2] that ex-
tends CoAP with Observe, a publish-subscribe mechanism. Observe defines a
basic congestion control mechanism for unreliable CoAP communications, by
introducing an upper limit on the allowed rate of outgoing messages. Another
IETF document that extends CoAP with an adaptive, advanced congestion con-
trol mechanism for reliable and unreliable CoAP communications is the Simple
CoAP Congestion Control/Advanced (CoCoA) Internet Draft specification [3].

Since CoAP is a novel protocol (the CoAP specification was completed in
2014), investigation in the area of congestion control for CoAP has been limited
as of the writing. While published studies and proposals have focused on con-
gestion control for reliable CoAP communications [4, 5, 6, 7, 8, 9], congestion
control for unreliable CoAP exchanges have been considered to a very limited
extent.

To our knowledge, the only study on congestion control for unreliable CoAP
communications to date is the preliminary work of this paper [10]'. In [10],
GPRS/UMTS-based communications were investigated, which are typical for
machine-to-machine (M2M) communications in the IoT. The GPRS/UMTS
technologies used in these initial investigations are typical for machine-to-machine
(M2M) communications in the IoT. However they only represent a subset of typi-
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cal IoT communication technologies, leaving aside other important technologies.

Thus, in this paper we extend the evaluations to another realistic IoT sce-
nario to provide a more general comparative study of congestion control for
unreliable CoAP communications. We carry out evaluations in a network of
constrained devices that use IEEE 802.15.4. This scenario is significant since
IEEE 802.15.4 is the default radio type used for constrained IoT devices, and
also because it is based on a multihop topology, which complements the single-
hop GPRS/UMTS scenario and involves different phenomena which cannot be
found in the latter. To implement a typical use case with different patterns and
degrees of traffic, we use one of the IoT-Lab [11] testbeds, which offer publicly
available networks of constrained devices. The evaluation results confirm that,
in contrast with the other analyzed approaches, CoCoA is able to reduce con-
gestion and to maintain high performance in almost all the considered scenarios,
thanks to its flexibility. Default CoAP and Observe fail to achieve good perfor-
mance due to their lack of sensitivity to network conditions. We also conclude
that the benefits of CoCoA are greater in the GPRS/UMTS scenario, which
is more bursty and challenging in terms of congestion than the IEEE 802.15.4
one. CoCoA is capable of increasing the packet delivery ratio up to 44% in the
GPRS/UMTS scenario and up to 14% in the IEEE 802.15.4 scenario.

This paper is structured as follows: In Section 2 we explain the details of
congestion control for NON messages as implemented in Observe and CoCoA.
Section 3 specifies the scope of the evaluations that are carried out in this paper
and details the two network setups used for the experimental evaluations. The
evaluation results are presented in Section 4. Section 5 concludes this paper
and proposes future lines of work.

2. Congestion Control for CoAP

ToT applications are diverse regarding their requirements on reliable message
delivery. In order to support a wide range of applications, CoAP was designed to
operate over User Datagram Protocol (UDP), which offers a lightweight unreli-
able transport, and CoAP was provided with an optional mechanism for reliable
delivery. Whereas default CoAP defines a basic congestion control mechanism
for reliable transmissions, it does not define congestion control for unreliable
ones. Proposals for congestion control mechanisms for unreliable CoAP com-
munications are made in other IETF documents that extend the CoAP base
specification. In this paper we consider the two IETF documents that introduce
congestion control for unreliable end-to-end communications in CoAP: 1) the
Observe extension [2] that by default relies on the exchange of NON-messages
and introduces a static rate control. 2) The CoCoA [3] extension, which intro-
duces advanced congestion control mechanisms for both CONs and NONs. In
the following subsections, we explain the default CoAP congestion control mech-
anism, as well as the extensions provided by the IETF specifications Observe
and CoCoA.



2.1. Default CoAP Congestion Control

CoAP message transmissions can be initiated with or without end-to-end
reliability, by either using confirmable (CON) or non-confirmable (NON) mes-
sages, respectively. Since CoAP operates over UDP, which does not provide
end-to-end reliability, CoAP introduces reliability in form of CON messages. In
a CoAP transaction, a CON requires to be confirmed with an acknowledgment
(ACK) by the destination endpoint of the data exchange within a retransmis-
sion timeout (RTO) interval. If no ACK is received before the RTO expires,
the CoAP message is retransmitted. This procedure may be repeated up to
4 times, before the exchange is considered to have failed. CoAP applies con-
gestion control by doubling the RTO of each retransmission, i.e., by applying
a binary exponential backoff (BEB), to keep the rate of outgoing messages at
bay. Further, it determines an upper limit of 1 allowed uncompleted transaction
per endpoint. The fact that default CoAP does not set any limitations to the
transmissions of NON messages supposes a high risk of congestion when using
default CoAP in unreliable communications with typical IoT traffic patterns,
such as bursts of packets.

The use of NON messages is common for many use cases, for example the
transmission of notification messages as defined in Observe [2]. Independently
from whether CONs or NONS are used, the traffic generated in large networks of
constrained devices can easily exceed the network capacity, saturating the wire-
less medium and resulting in congestion. Further, the small buffers and limited
packet queue sizes inherent to constrained devices may not be sufficiently large
to handle generated and forwarded data packets. Nevertheless, the CoAP base
specification does not define any congestion control mechanism for NON-based
communications, leaving CoAP susceptible to suffer from the consequences of
congestion.

2.2. Observe

Observe is an extension for the CoAP base specification that defines publish-
subscribe interactions between CoAP endpoints. This mechanism is used when
clients are interested in being kept up to date about resources located on a
CoAP server. Once a client subscribes to the desired resource, the CoAP server
holding the resource adds the subscriber to a list of endpoints that are interested
in the specific resource.

Typically, a resource generates periodic or event-based notification messages
to inform the subscribers about its state. When either the timer of a periodically
checked resource expires or the status of the resource is updated as a result of
an event, the server sends a notification message with the current status of the
resource to each of its subscribers. In Observe, the messages sent during a
notification process are normally transmitted as NONs.

In IoT use cases, for example a sensor network that collects environmen-
tal data, CoAP clients, e.g. Internet services, typically subscribe to several
resources offered by the sensor nodes, such as temperature, humidity, or air pol-
lution. In networks with many devices and numerous subscribers, the Observe



notification process can lead to the transmission of a high number of messages:
one notification message is sent per subscriber and observed resource.

In IoT networks that follow the paradigm of gathering and processing infor-
mation, large numbers of sensor nodes may maintain multiple resource-states
that are reported to a central device for further processing. This device is often
referred to as sink node, which can be a border router (BR) or a proxy server
that is capable of storing the gathered data and providing connectivity with
the Internet. The many-to-one communication patterns we observe in networks
composed of sensor nodes and sink, can easily lead to congestion as a result of
the persistent transmission of large quantities of notification messages. To re-
duce congestion, Observe introduces a mechanism that dilutes the transmission
of notifications over time: It limits the transmission frequency of notification
messages, applying a static rate control that only allows 1 message to be sent
every 3 s to each subscriber. This rate control is applied independently from
the network state or any other parameter, such as the number of subscribers
or the amount of observed resources. The static rate control behaves very con-
servatively, which can help to dilute the traffic in highly congested networks.
Like as with the default initial RTO timeout used for CONs in the CoAP base
specification, large packet travel times or processing delays are assumed in such
networks. For such cases, the conservative approach followed by Observe is ex-
pected to work well. Yet, in scenarios with even larger or with smaller delays
and RTTs, as well as in scenarios with high degrees of connection dynamicity
(varying delays and varying degrees of congestion) Observe’s rate control may
not deliver a good performance. A dynamic approach that represents an alter-
native to this rigid rate control is proposed in CoCoA, which is introduced in
the following subsection.

2.83. CoCoA

CoCoA extends the CoAP base specification with an alternative, advanced
congestion control mechanism for CONs and NONs. It is based on using round-
trip time (RTT) information that is measured from the exchange of CONs and
corresponding ACKs to maintain a RTO estimation for each Internet device
(destination endpoint) it communicates with. In general lines, a RTO for an
endpoint (RTOgyerqn) is maintained and updated following principles similar
to those of the RTO estimator defined in RFC 6298 [12] for the Transmission
Control Protocol (TCP). However, in order to achieve a better performance in
IoT networks, which incur specific types of communication patterns and condi-
tions, CoCoA introduces new mechanisms to those defined in RFC 6298. For
unreliable communications, CoCoA specifies a transmission rate of Top—
NONSs per second. Since NON messages do not require ACKs, but the ACKs
are needed to perform RTT measurements and to update the RTO, in CoCoA,
2 out of every 16 NONs are converted to CONs. In order to be able to un-
derstand how CoCoA applies congestion control for NONs, it is also necessary
to understand the RTO estimation mechanisms used for CONs. The basics of
these mechanisms are introduced in the following subsections.



The strong and weak RTO estimators

Like in TCP, CoCoA assumes an initial RTO for a destination endpoint (2 s)
and then uses RTT measurements, calculated as the time between the initial
transmission attempt for a CON and receiving an ACK, to update the RTO
estimation for a destination. We refer to an estimator that is updated after
receiving an ACK without any retransmission of the packet as strong estimator.

However, communications in networks of constrained devices often suffer
from packet losses due to high Bit Error Rates (BER), and also packet drops
resulting often from the low memory capacities that limit the routing and data
packet queueing capabilities of the devices. The RTO estimator used in TCP,
which is not designed for constrained networks, does not perform any updates of
the RT'O when running into retransmissions, since it is not capable of correlating
an ACK to a specific (re)transmission of the corresponding packet. Given the
idiosyncrasy of high packet loss rates in constrained networks, the use of solely
a strong RTO estimator as it is done in TCP is not recommendable, since the
frequency with which RTT measurements are obtained would be low.

Therefore, CoCoA introduces a so called weak RTO estimator (RTOyeak),
which is maintained alongside with a strong RTO estimator (RTOgtrong) for
each endpoint. The weak RTO estimator uses RTT information obtained from
up to the second retransmission of a CON, where the RTT is the time between
the initial transmission and the reception of any of the ACKs. This behavior
allows CoCoA to obtain RTT measurements in spite of packet losses, even if it
faces the ambiguity about the correlation between the transmission intent and
the reception of an ACK.

CoCoA maintains averages of strong and weak RTT measurements, RTTs¢rong
and RTTyeaqr, respectively, that are calculated as follows, when a new RTT
measurement RTTx e is performed:

RTTVARx = (1 — 8) x RTTVARx + 8 x |[RTTx — RTTx new| (1)
RTTx = (1 —a) x RTTx + a x RTTx new, (2)

where X stands for strong or weak accordingly and using o = i and 8 = %.
Subsequently, each update of a RTTx leads to an update of RTOx as

RTOy = RTTx + Kx x RTTVARy, (3)

where Kgirong = 4 and Kyeqr = 1.

The update of either the weak or strong RTO estimators in both cases leads
to an update of RTOyyerqu Which is the overall RTO value maintained for a
destination.

RTOoverall =AX 1%T‘()X + (1 - >\) X RTOm)eralla (4)

where A is 0.5 for a strong estimator update and 0.25 for a weak estimator
update.

RTOperan is then used to determine the initial RTO (RTO;p;t) of a CON
transmission and to set the outgoing data rate of NONs to prgo——— notifica-

verall

tions per second, choosing randomly from the interval [RTOoyeraiis RTOoperair X



1.5] to avoid synchronization effects among a set of transmitters. With the
combination of strong and weak estimators, CoCoA is expected to dynamically
adapt the RTO for different endpoints in IoT networks, being capable of ad-
justing to large or small RTTs, but also being capable of reacting to sudden
changes of network conditions.

Variable Backoff Factor (VBF)

Contrarily to the BEB used in TCP, which doubles the RTO for each retrans-
mission, CoCoA uses a so called VBF that adjusts the backoff value depending
on the initial RTO of a transmission, RTO;n;t. When RT Oy is small (<1 s),
the backoff is set to 3. This is done to avoid quick successive retransmissions of
CoAP messages within a short interval of time. The main goal of this modifica-
tion is to reduce the chance for spurious retransmissions that may occur when
there is network congestion. On the other hand, the VBF applies a backoff fac-
tor of only 1.5 to CONSs that are initiated with a RT'O;,;; of more than 3 s, since
applying the BEB to a transmission that starts with a very large RT'O;,;+ can
lead to long idle times. Contrarily to the use of a BEB, as a result of applying
larger or smaller backoffs determined by the VBF, CoCoA is expected to achieve
better performance with low or high per destination RTOs, respectively.

RTO aging

In CoCoA, the RTO estimator may adopt values that are below or above the
default RTO value, depending on whether small or large RT'Ts are measured,
respectively. Since the network conditions and thus the RTT change over time,
an RTO estimation may become obsolete after some time without receiving any
updates. To avoid the use of outdated RT'O,perqn values that may have become
bogus over time, CoCoA applies an aging mechanism to the RTO estimation of
endpoints. This is an important aspect in IoT networks, where CoAP messages
may be transmitted sporadically or the dynamicity of channel conditions may
cause RTO information to become obsolete quickly.

If RTOpperan is very small (less than 1 s) and during more than 16 times its
value no new RTO update is performed, RTOyyerqi is doubled. On the other
hand, if the RTO is above the default initial value of 2 s and it is not updated
during 4 times its current value, the RTO is shifted towards the default initial
value of 2 s using

RTOoverant = (2 + 1¥I‘(Doveru,ll)/2 S. (5)

3. Experimental Setup and Test Scenarios

The investigations in this paper analyze how different approaches to conges-
tion control for NONs affect the overall network performance. The first set of
experiments focuses on communications over a single, emulated GPRS/UMTS
link between a CoAP server and an Internet cloud service. This scenario high-
lights how congestion can deteriorate the end-to-end performance in a typical
M2M use case, and how the congestion control mechanisms proposed in Observe
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Figure 1: The two scenarios evaluated in this paper: a) the GPRS/UMTS scenario evaluates
how the information stored by a CoAP server is transmitted via NONs to an Internet Cloud
service over GPRS/UMTS links, b) the IoT-Lab scenario evaluates the CoAP communica-
tions without end-to-end reliability between an IEEE 802.15.4 sensor network that generates
resource state information and a CoAP border router (BR).

and CoCoA act in order to improve the performance. The evaluations then are
extended to IEEE 802.15.4-based, multihop networks of constrained devices. A
plentitude of constrained devices build a mesh network, each of the nodes of
the network acting as a publisher of a resource state information for a central
CoAP server. In this scenario, the congestion control mechanisms have to face
heterogenous links with different link qualities, varying number of hops between
the source and destination of a packet, and the limited hardware capacities of
the constrained devices.

In this section we introduce the two network setups used for the evalua-
tions of the different congestion control mechanisms for CoAP communications
without end-to-end reliability.

3.1. GPRS/UMTS Scenario

In the first network setup, a multitude of clients running in an Internet cloud
service subscribe to status updates for a set of resources maintained by a CoAP
server that is connected to the Internet via GPRS/UMTS (Fig. 1 (a)). This
scenario represents a typical use case, where plenty of clients are interested in
the information gathered by a network of sensor nodes. The sensors send the
information they measure towards a border router (BR) or proxy server, where
the data is processed further. In our setup, the BR/proxy server corresponds to
the CoAP server, which is responsible for providing interested clients with the
information gathered from the sensor network. In the evaluations of this use
case, the CoAP server maintains several virtual resources, to which the clients
located in the Internet cloud service can subscribe to. Each of the subscribers
is then kept up to date about the resource state via notification messages.



The connection between the two physical machines that run the cloud service
and the CoAP server, respectively, is established over the Internet. While the
machine running the cloud service is connected to Internet over a broadband
connection, the CoAP server connects over a GPRS/UMTS link that is emulated
on top of an Ethernet connection via the Network Conditioner Software [13]2.
The software emulates several link parameters: the data rate, packet loss rate,
and the delay. The GPRS link has an Uplink/Downlink datarate of 20/80 kbps,
respectively, a loss ratio of 0.1% and a delay of 605 ms. On the other hand, the
UMTS link has an Uplink/Downlink datarate of 128/348 kbps, respectively, a
loss ratio of 0% and a delay of 71 ms.

In the analyzed scenario three different types of subscription models are of-
fered to the clients of the Internet cloud service. Each of the subscription models
determines with which frequency the CoAP server sends notification messages.
Two so called delay-tolerant types of subscription are analyzed, where the CoAP
server publishes notifications in intervals of 60 s or 30 s. In the so called real-time
subscription, clients are notified every second about the state of the resources
located on the server. Apart from choosing different notification intervals, the
clients of the Internet cloud service also have the choice of observing either 1,
3, or 5 of the resources located on the CoAP server, denoted as In, 3n, n,
respectively. Further, for the evaluations of this use case, we vary the numbers
of subscribers to be 25, 50, or 100, denoted as 255, 505, and 10085, respectively.

Considering all available options, the number of messages sent during each
notification interval depends on the number of subscribers (CoAP clients) and
the number of resources that are observed by each client. The combination of
the options results in a total of 27 different configurations that are evaluated
for each considered congestion control mechanism.

To run the CoAP clients and the server on the physical machines® we use
the Java-based Californium (Cf) implementation [14]. The core version of Cf
implements default CoAP. CoCoA is implemented as an additional module as
part of an optional congestion control layer.

3.2. IoT-Lab Scenario

The first scenario evaluated in this paper considers the communications be-
tween a CoAP server acting as BR of a wireless sensor network and a multi-
tude of clients of an Internet cloud service. The second network setup (Fig.
1 (b)) complements this setup by considering the communication taking place
between the nodes of a wireless sensor network and the CoAP BR. For the
second set of evaluations carried out in this paper, we use one of the IoT-Lab
[11] testbeds, that allows to experiment with constrained devices equipped with
IEEE 802.15.4-based radio transmitters. We pick a subset of 60 M3 nodes [15]
distributed across the Grenoble test site to perform the experiments.

2The two machines running the cloud Service and the CoAP server are separated geograph-
ically from each other in Europe (they are located in Spain and Greece, respectively)

3CoAP Server: Runs on a MacBook Pro with 2.4 GHz Intel Core i5 CPU and 8GB of
RAM; Clients: Run on a PC with a 3.4 GHz Intel Core i7 CPU and 8GB of RAM
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Figure 2: Overview of the different layers of the Contiki communication protocol stack.

For the evaluations of congestion control mechanisms, we program the net-
work nodes with Contiki [16] to form a large mesh network of routing-capable
devices. Contiki is an operating system designed for devices with limited hard-
ware capacities. It implements a fullly IPv6-capable communication protocol
stack, including an implementation of CoAP called Erbium [17]. In the follow-
ing we explain the different layers of the Contiki stack, as well as the settings
used for our experiments.

3.2.1. The Contiki Stack

Figure 2 depicts the Contiki protocol stack as used in our evaluations. The
physical layer implements the IEEE 802.15.4 specification [18], which defines a
frame size of up to 127 bytes. The radio operates in the unlicensed 2.4 GHz
spectrum and offers data rates of up to 250 kbit/s. By default, Contiki is set
to use the highest of the available channels (channel 26). Since we observe
interference by other testbed users in this channel, we configure Contiki to use
channel 18, in order to reduce the chances of suffering from such interference.

On top of the IEEE 802.15.4 physical layer, Contiki implements a MAC
layer that can be divided into 2 components: the carrier sense multiple access
(CSMA) layer and the radio duty cycling (RDC) layer. CSMA is the default
mechanism used in Contiki to access the radio medium. It requires a node to
detect an idle radio channel before proceeding to a packet transmission. This
is done to avoid possible packet collisions with already ongoing transmissions
or other sources of interference. Further, to reduce the number of packet losses
caused by collisions (or interference), the CSMA layer also implements MAC
layer reliability. It requires unicast transmissions from one device to another to
be acknowledged with a MAC layer ACK. If a node does not receive a MAC
layer ACK after the transmission of a packet, the message is retransmitted up
to 3 times. After that, the transmission of a packet is considered to have failed
and the packet is dropped.

Further, Contiki allows to choose from a set of RDC mechanisms that feature
different duty cycling methods. The two mechanisms that are commonly used
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are either ContikiMAC or NullRDC. ContikiMAC introduces duty cycling by
basically turning the radio on and off periodically to reduce energy consumption.
This is important for battery driven devices, since the energy consumption can
be reduced considerably by turning the radio off. When transmitting a packet,
ContikiMAC strobes the data frame many times* to ensure that a destination
node also using ContikiMAC receives one of the packets during its periodic duty
cycle.

NullRDC, however, can be used whenever no duty cycling is necessary: the
radio is maintained permanently in reception mode while no packets are trans-
mitted. Further, using NullRDC, no strobing is required, only one packet is
sent per transmission intent. When sending a packet, it is handed over to the
CSMA mechanism responsible for accessing the radio medium and for perform-
ing packet retransmissions in case that no MAC layer ACK is received. Given a
problematic behavior we observe with ContikiMAC’s strobing mechanisms con-
tinuously occupying the radio channel when used by large numbers of nodes,
causing network malfunctioning, we decide to use the NullRDC mechanism in
combination with CSMA for the experimental evaluations.

Since the IPv6 Maximum Transmission Unit (MTU) exceeds the maximum
capacity of an IEEE 802.15.4 frame, Contiki implements SICSlowpan, an I[Pv6
over Low power Wireless Personal Area Networks (6LoWPAN) adaptation layer.
The functionality of this layer includes compression of IPv6 headers and IPv6
packet fragmentation.

Contiki implements the ulPv6 stack, which includes the IPv6 Routing Pro-
tocol for Low-Power and Lossy Networks (RPL), responsible for the routing of
packets between IP-based end devices. It is designed to meet the requirements
of IoT networks. RPL maintains one or several Destination Oriented Directed
Acyclic Graphs (DODAGS) in order to determine how packets in the network
are routed. Upon network initialization, RPL starts building a routing tree-like
structure, with the RPL-root at the top, which in our experiments is always the
border router (BR). Each node maintains a set of possible parent nodes, from
which one is the preferred parent. When sending data to the BR (being the RPL
root), packets are forwarded via each node’s preferred parent until reaching the
root.

To control the dissemination of RPL control messages, RPL uses the Trickle
algorithm [19]. Trickle runs in each node and determines when a control mes-
sage is sent. It sets a timer within an interval of time that is adjusted by the
algorithm. After the expiration of the timer, a control message is sent if not
already K other control messages were overheard since the timer was set. The
initial interval in Contiki lies between 0 and 4 s and it is doubled after each
interval, up to a certain limit. However, every time a node changes its preferred
parent, Trickle resets the interval size to the (short) initial one, in order to
distribute routing information in a shorter time.

CoAP is located at the top of the stack. Contiki comes with the Erbium

4 At least for the duration of the duty cycle.
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Figure 3: Detail of the testbed used for the experimental evaluations.

implementation of CoAP [17], which we extended in previous work to include
CoCoA for the exchange of messages with end-to-end reliability [5]. For the
evaluations performed in this paper, we extend CoCoA to also implement the
rate control for NON messages as proposed in the CoCoA Internet Draft. The
draft states that 2 out of every 16 NONs need to be converted to CONs in
order to obtain RTT measurements. In our implementation, we convert every
8th NON into a CON. Finally, we also implement the static rate control defined
in Observe. The configuration presented in [20] has been used to set crucial
parameters of the Contiki stack, like queue sizes or RPL parameters.

8.2.2. loT-Lab Network Setup and Traffic Scenarios

In this subsection we define the basic network setup upon which the exper-
imental evaluations are carried out. The topology used for the experiments is
shown in Fig. 3.

We configure node 231 (as per the identity system used in the Grenoble
ToT-Lab testbed) to be the RPL root and also the sink node of the network.
The rest of the nodes in the network are CoAP servers (from here on referred
to as sensor nodes) that maintain state information about 5 virtual resources
that represent measurements, such as temperature or humidity. As defined in
Observe, the sensor nodes periodically publish the state of their resources to the
sink node that is responsible for gathering and storing the state information, to
be processed further, e.g., to be published to an Internet cloud service.

To adjust the traffic generation (and with it the degree of congestion), we
define experiments where the sensor nodes in the network publish information
for different numbers of resources. Also, we vary the periodicity of the notifica-
tion timers in the sensor nodes that determine when the sink node is notified
about the state of each of the resources. In total, we define a set of 9 experi-
ments, where each sensor node reports the status of 1, 3, or 5 resources (In, 3n,
5n), with notification intervals of 5 s, 10 s, and 20 s, respectively. Further, we
evaluate three different approaches to congestion control, namely the ones fol-
lowed by default CoAP, Observe and CoCoA. The combinations of the analyzed
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mechanisms, number of observed resources, and notification interval periodicity
result in a total of 27 experiments.

In each experiment, after an initial setup phase that is slightly different for
each node and during which the RPL DODAG is built, the nodes begin with
the generation of traffic. The duration of each experiment is 10 minutes and
each experiment is repeated 6 times, leading to a total experimental duration
of 1 hour for each configuration.

3.3. Performance Metrics

To measure the performance of the different congestion control approaches
we use a set of performance metrics: The overall packet delivery ratio (PDR),
the end-to-end delay, and the number of packet drops at the medium access
(MAC) layer. The PDR is measured in both network scenarios, whereas the
end-to-end delay and the MAC layer drops are only used to elaborate in depth
evaluations of the IoT-Lab scenario. In the following subsections we give a short
definition of these metrics and detail their relevance for the analyzed use cases.

Overall PDR

The overall PDR is an indicator of the reliability of the network and therefore
is an important Quality of Service (QoS) metric used in IoT systems. The
PDR is calculated as the ratio of total number of CoAP notification messages
received by subscribers over the total number of notifications generated during
an experiment. The use of NON messages (i.e. without reliability) does not
imply that reliability of the network is irrelevant for the operation of the network.
In fact, a low PDR can render networks useless, especially if the main purpose
of such networks is to gather information from the network devices, such as
environmental sensor readings. Further, notification messages may be of critical
nature, like for example alarm notifications sent when sensor thresholds are
exceeded. The loss of such messages may cause a grave deterioration or may
lead to malfunctioning of the services offered by the network. Therefore, in
main terms, a high PDR is always desirable and an efficient congestion control
mechanism should be able to maintain the PDR of a network as high as possible.

End-to-end Delay

We define the end-to-end delay of a notification message to be the time
between the generation of a notification message and its reception at the sub-
scriber. The end-to-end delay is relevant for use cases where the ‘freshness’ of
the information carried in notification messages is important. In the evalua-
tions performed in this paper, we consider the PDR to be more relevant for
the correct operation of the network and usually, there is a trade-off between
end-to-end delay and PDR. Yet, the end-to-end delay observed during the ex-
periments is relevant to understand the behavior of the different congestion
control mechanisms. End-to-end delay is another common QoS metric consid-
ered in IoT systems. While not being a critical parameter for unreliable CoAP
communications, low delays are indicators of a better system responsiveness.
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MAC Layer Packet Drops

When a high degree of traffic drives a network into saturation or congestion,
the chance for packet collisions increases since nodes are competing for access
to the radio channel. The CSMA applied by the network devices reduces the
number of collisions but it does not completely eliminate them. Also, even
when applying MAC layer reliability, the transmission of a packet may fail after
using all retransmissions. However, another main reason of packet losses at the
MAC layer needs to be considered: if buffers are full and no newly generated
or received packets can be stored in the node for further processing, packets are
dropped. Buffers may quickly fill if large numbers of packets are generated in a
short amount of time or when nodes act as relays for other messages.

MAC layer packet losses due to network congestion can decrease the network
performance considerably, not only affecting the data plane (e.g. CoAP), but
also the control plane (i.e., the routing protocol). Thus, an efficient congestion
control mechanism should be able to prevent network congestion, which could
lead to packet losses at the MAC layer. We analyze the MAC layer packet drops
for the IoT-Lab network scenario.

4. Evaluation Results

In this section we present the results of the experimental evaluations carried
out in the GPRS/UMTS and IoT-Lab testbed scenarios. First, we show the
results for the GPRS/UMTS scenario and provide a comparison of the perfor-
mance of default CoAP, Observe, and CoCoA. We then extend the evaluations
to the 60-node IEEE 802.15.4 IoT-Lab scenario.

4.1. Results for the GPRS/UMTS Scenario

In the GPRS/UMTS scenario, we focus on the evaluation of the PDR results
achieved by the different congestion control mechanisms with the delay-tolerant
and real-time subscription models, over the emulated GPRS and UMTS links,
respectively..

4.1.1. Delay-tolerant Subscriptions (60s/30s) over GPRS

Figure 4 shows the improvement of the PDR obtained during the experi-
ments with different numbers of subscribers (25/50/100) and observed resources
(1/3/5) with 60 s notification intervals, taking default CoAP as reference. If the
generated traffic is small (2551n, 5051n, 100S1n), the performance of all three
congestion control mechanisms is very similar. However, when the number of
observed resources and therefore the number of notifications sent with every
notification interval increases, Observe and CoCoA clearly perform better than
default CoAP.

Default CoAP tries to transmit the notification messages back-to-back dur-
ing every notification round. This creates a peak of traffic that exceeds the
limitations of the GPRS link and results in packet losses. On the other hand,
the rate control implemented by Observe and CoCoA dilutes the transmission
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Figure 4: Relative improvement of the PDR of Observe and CoCoA when compared to default
CoAP in the 60s delay-tolerant GPRS scenario.

of the bursts of 3 or 5 notifications over time. While the transmission rate of
Observe is fixed (1 message every 3 s), CoCoA uses the dynamic RTO, which
adapts depending on the measured RTTs. The difference between the static
and dynamic RTO affects the performance in the 100-node case with 3 and
5 observed resources, where Observe does not yield the same improvement as
CoCoA. The fact that the fixed rate control used by Observe dilutes the trans-
missions over time does not prevent a certain degree of synchronicity among
the large number of subscribers, since the transmission intervals (every 3 s) are
the same for each subscriber. The sum of notification messages sent to every
subscriber exceeds the GPRS link capacity. CoCoA on the other hand main-
tains a different RT'O estimation for each subscriber that is used to calculate the
allowed notification rate. This reduces the chances for synchronicity, avoiding
peaks of traffic and leading to an improvement of the PDR.

Similar results are obtained for the delay-tolerant scenario with 30 s no-
tification intervals, as can be seen in Fig. 5. Again, default CoAP’s lack of
congestion control mechanisms leads to heavy congestion when 3 or 5 resources
are observed by the subscribers in the Internet cloud service. The approach
followed by Observe again delivers improvements in this scenario that, however,
are surpassed by CoCoA, which delivers the best performance in the major-
ity of scenarios, most remarkably in the most message intensive ones (10053n,
100S5n). Note that the slightly smaller PDR observed for CoCoA (in compar-
ison with Observe) in the 5055n case can be explained by the fact that CoCoA
needs some time to adjust the RTO timers in the experiments, before it adapts
them to the observed network conditions. During the adjustment period, the
rate control applied by CoCoA may not yield an optimal performance, which
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Figure 5: Relative improvement of the PDR of Observe and CoCoA when compared to default
CoAP in the 30s delay-tolerant GPRS scenario.

reflects in a slightly lower PDR. Further discussion will be given about this
phenomenon in section 4.1.2..

4.1.2. Real-time Subscriptions (1s) over UMTS

For the real-time subscriptions, a link with a higher supported data rate and
a lower latency is required, therefore, the GPRS link from the previous evalu-
ations is replaced with a UMTS link that yields a higher performance. In the
real-time scenario, the CoAP server continuously sends notification messages to-
wards the Internet cloud service. The experiments reveal the PDR results shown
in Fig. 6. Observe yields the worst performance in every scenario, whereas de-
fault CoAP and CoCoA show a very similar performance.

The fix rate limitation of Observe does not allow all the generated packets
to be transmitted over the UMTS link, since the notification generation rate is
higher than the outgoing message rate. Observe starts losing packets as soon as
the internal buffers of the CoAP server are full and no newly generated packets
can be buffered.

On the other hand, there is a small difference in the performance between
default CoAP and CoCoA, which favours default CoAP. This difference is caused
by the RTO adaptation phase, during which CoCoA, starting with a default
RTO of 2 s, slowly adapts to the small RTT of the UMTS link. Since only
2 out of 16 NON messages are used to update the RTO information (see Fig.
7), the adjustment takes CoCoA several notification rounds, during which the
internal buffers of the CoAP server reach their limit and packets are dropped
(the same behavior was detected in Observe). Once the RTO estimation reaches
a steady state, CoCoA optimizes the rate of outgoing NONs and achieves a good
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Figure 6: Relative deterioration of the PDR of Observe and CoCoA when compared to default
CoAP in the real-time UMTS scenario.
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Figure 7: RTO values used by CoCoA to control the rate of outgoing notification towards an
endpoint during the first 120 s of a real-time subscription experiment (2553n).

and steady performance. Note that the relatively short duration of each single
experiment of 10 minutes penalizes CoCoA. If a use case involves a greater
duration, CoCoA performance will increase.

Overall, CoCoA delivers a very dynamic congestion control mechanism that,
in contrast with Observe, provides a performance similar to or better than that
of default CoAP A minimal deterioration is measured in the real-time scenario,
where CoCoA suffers from a minor amount of packet losses until the RTO
estimator is adjusted. In the next subsection, we perform in-depth evaluations
of CoAP end-to-end communications without reliability in an IEEE 802.15.4-
based multihop network of constrained devices.
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Figure 8: PDR measured for different notification intervals and notification message numbers
in the 60-node topology.

4.2. Results for the 60-Node IoT-Lab Scenario

Contrarily to the GPRS/UMTS scenario, where two devices are communi-
cating over a single link, the IoT-Lab scenario evaluates CoAP communications
in a setup with 60 constrained devices. These form a mesh network, where all
nodes generate traffic towards the sink node, which in this case is the BR.

4.2.1. PDR results

Figure 8 shows the overall PDR achieved with the different congestion control
mechanisms (Default, Observe, CoCoA) in experiments with varying periodic
intervals (5s, 10s, 20s) and number of notifications sent per interval (In, 3n,
5n). In the scenarios with the lowest amount of generated traffic (20sin), the
PDR of the three mechanisms is similar, reaching overall PDRs of around 80 %.
Since no end-to-end reliability is used, the rest of messages are lost due to packet
drops caused due to lossy links, packet collisions, or buffer overflows by the ag-
gregate traffic in the network (RPL control traffic + CoAP traffic). As soon as
the number of notifications per interval is increased (20s3n, 20s5n), we start
seeing clearer differences in the performance of congestion control mechanisms.
Since in the scenarios with multiple notifications per interval several packets
are sent in a burst, the chances for the network to suffer from congestion in-
crease. Observe and CoCoA both apply their rate control mechanisms, sending
notifications only every 3 s (Observe) or ﬁ seconds (CoCoA), respectively.
Default CoAP, on the other hand, sends the notifications back to back, as soon
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as they are generated every 20 s. These small bursts of notifications lead to
packet losses, mainly caused by a higher amount of MAC layer packet drops.

In the 10s scenarios, we observe slightly different results as the traffic is dou-
bled, compared to the 20s scenarios. First of all, the overall PDR decreases in
general when compared to the 20s notification interval results, which is a result
of the higher degree of traffic increasing the chances for congestion, which in
return can lead to packet losses. Second, while the difference in the performance
between the different congestion control mechanisms for 1 and 3 notifications
is similar to the one observed for the 20 s interval scenario, the 5 notification
scenario yields different results. Here Observe clearly delivers a lower PDR, only
allowing one NON to be transmitted every 3 s. Thus, with an interval of 10s and
5 notification messages generated per interval, more notifications are generated
than can actually be transmitted. In this situation, notification messages are
buffered over longer periods of time. However, each node has a limited amount
of buffer space dedicated to CoAP messages, meaning that at some point the
buffers fill and some of the messages need to be dropped.

In the scenario with the highest degree of traffic (5 s notification interval),
in general, the overall PDR drops even further, since the network suffers from
even a higher degree of congestion than in the scenarios analyzed so far. While
the network seems to be able to cope with the traffic when only transmitting a
single notification (5s1n), the results indicate that with bursts of 3 and 5 notifi-
cation messages the network clearly has to deal with a high degree of congestion.
CoCoA clearly performs better than default CoAP when the notification bursts
consist of 3 messages (5s3n), whereas Observe clearly underperforms default
CoAP. In the 5sbn scenario, CoCoA no longer performs clearly better than
default CoAP, only yielding a minor improvement. Under these heavy traffic
conditions, Observe only delivers a PDR of 23%. This, again, can be attributed
to the fact that the notification generation rate is higher than the rate of mes-
sages that are actually allowed to be transmitted. Overall, the adaptive rate
control applied by CoCoA reduces the risk of packet losses due to network con-
gestion. Some increase of transmission reliability can be achieved by Observe as
well, yet there are traffic scenarios where Observe’s static rate control decreases
performance noticeably.

4.2.2. Delay results

The end-to-end delays in the scenarios with 1 notification are nearly negli-
gible for all congestion control mechanisms, as can be seen in Fig. 9. Assuming
that the radio channel is almost idle when packets are transmitted, the notifi-
cations generated by the sensor nodes only need tens of milliseconds to reach
the sink node. Slightly larger delays are measured for CoCoA, since some of
the messages are CONs that may require a retransmission after a packet loss,
contributing to a higher average delay.

Very small delays are also observed for default CoAP in the 3 and 5 notifica-
tion scenarios, where notifications are sent back to back and either the packets
arrive at the BR shortly after their transmission or they are lost on the route
due to packet drops. Compared to the In scenarios, the delay may double due
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Figure 9: End-to-end delay with 95% confidence intervals between sensor nodes and sink node
for different notification intervals and notification message numbers in the 60-node topology.

to packets being buffered at relay nodes, but the values remain low (i.e., less
than 50 ms). Observe and CoCoA on the other hand show clearly different
results, which is a consequence of introducing rate control, consisting mainly in
holding back packets after they have been generated. With the alternative con-
gestion control mechanisms, only the initial message of a burst of notification
messages is sent immediately. The second and subsequent messages are each
retained until the rate control mechanism allows their transmission. In Observe,
each retained message after the initial one is delayed by additional 3 s. In the
20s3n scenario this leads to an average end-to-end delay of 3 s and in the 20s5n
scenario to an average of 6 s. In the 10s3n scenario Observe again yields an
average delay of 3 s, however, in the 10s5n scenario, the delay does not increase
linearly to 6 s like in the 20s5n scenario. It grows up to nearly 18 s, since the
allowed NON transmission rate is now lower than the packet generation rate.
We observe the same effect in the 5s3n and 5s5n scenarios, where the delay
grows to values between 19 s and 21 s respectively.

On the other hand, CoCoA adapts the rate control based on the RTO esti-
mator that is updated by RTT measurements thanks to the use of CONs for a
subset of messages, as described in subsection 2.3. The measured RTT varies
depending on the network state in which the measurement is performed and
it also depends on where the node is located in the network topology, directly
impacting the RTO. In spite of varying packet retention durations as a result
of varying RTO estimations, a relatively small variation of end-to-end delays
is observed in CoCoA, as indicated by the 95% confidence intervals (Figure 9).
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Figure 10: Snapshot of the routing tree of the 60 nodes, taken during an experiment. The
circles represent the nodes and their correspondent preferred parent, connected via a line. The
BR is located at the root.

Figure 10 depicts a snapshot captured during one of the experiments of the net-
work tree showing the relationship between preferred parents and their children
nodes. Each hop between the BR and a sensor node increases the chance for
packet losses, since for each hop a transmission over a potentially lossy link is
required. Moreover, each relay node may drop a packet if its message queues
are already full, thus not being able to buffer incoming packets. Therefore, the
chances of congestion are higher for nodes that are closer to the BR.

Figure 11 shows the average RTO maintained by the nodes when using
CoCoA in all analyzed scenarios, laying between 1.4 s and 2.2 s. While a
majority of the sensor nodes maintain rather small RTO values, several nodes
have large RTO values, which is a consequence of obtaining weak RT'O estimates
due to packet losses. The average RTO increases slightly as the notification
intervals get smaller (Fig. 11). Since packet losses are more frequent during
the exchange of a CON and the correspondent ACK with increasing traffic, it
becomes more likely for CoCoA to measure weak RTTs. Weak RTTs can lead
to an increase of the RTO for an endpoint, which overall reflects in a larger
average of the RTO values across the network. This has a controversial effect
on the performance of the nodes: Nodes that have large RTOs introduce less
traffic into the network, which reduces congestion. On the other hand they
are likely to suffer from buffer overflows losses, since the notification generation
rate may exceed the outgoing NON rate, forcing them to queue NONs until the
maximum buffer limit is reached.

The impact on the end-to-end delay of the variable NON transmission rate
in CoCoA is therefore different for every node. The average delays measured for
CoCoA in the 20s3n, 20s5n, 10s3n scenarios resemble the values measured for
Observe. However, in the rest of scenarios with higher network loads, the rate
control applied by CoCoA clearly leads to lower delays. There is a clear trade-
off in between the delay introduced by CoCoA’s rate control to prevent CoCoA
from sending packets immediately after their generation like default CoAP, and
risking network congestion.

21



NON Rate Limit (s)

0.5 i

0
20s1n 20s3n 20s5n 10s1n 10s3n 10s5n 5sin  5s3n  5s5n
Traffic Scenario (Interval/Notifications)

Figure 11: Average RTO values applied for CoCoA rate control by the nodes in the 60-node
topology.

4.2.3. MAC Layer Drops

The effects of the congestion control applied by Observe and/or CoCoA
also reflect in the MAC layer drops, which are considerably less than the ones
measured if no congestion control is applied as in default CoAP (see Fig. 12).
Diluting the transmissions of notifications over time decreases the chance for
packet collisions in the radio and also reduces the traffic load the relay nodes of
the network have to handle. The reduction of MAC layer packet drops achieved
by Observe and CoCoA applies to all the evaluated traffic scenarios. In the 20s
interval scenarios, CoCoA can clearly reduce the number of MAC layer drops
applying its dynamic rate control. While in general still performing better than
default CoAP in the 10s and 5s scenarios, the drops measured with CoCoA no
longer are lower than the ones measured with Observe. This can be explained
by the fact that Observe behaves much more conservatively, which makes it
cause less congestion. However, the main drawback of this overly conservative
behavior are the losses introduced at the CoAP layer due to overflowing message
buffers which cannot be compensated by the (slightly) lower number of MAC
layer drops.

5. Conclusions and Future Work

This paper has evaluated the performance of default CoAP, Observe and
CoCoA as the main approaches to congestion control for unreliable CoAP
communications, for various load caracteristics and in two setups: a single-
hop, GPRS/UMTS emulated link, and a real 60-node IEEE 802.15.4 multihop
testbed.
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Figure 12: Average number of MAC layer packet drops in the 60-node topology.

The risk of suffering network performance degradation when not using any
congestion control mechanisms is high. Default CoAP faces serious issues when
dealing with bursts of packets that cause peaks of congestion which result in
packet losses independent from the communication technologies used. Using a
fixed rate control as it is done in Observe is a two-edged sword: in scenarios
with moderate traffic or seldom bursts of packets it can increase the perfor-
mance of a network by diluting notification transmissions over time. Yet, it also
can potentially lead to issues when the notification generation rate exceeds the
permitted transmission rate, and the rate limitations cause a bottleneck effect,
leading to a degradation of the performance when compared to default CoAP.
Performance losses are also observed when there is heavy congestion and the
constant outgoing message rate is too high to effectively decrease congestion.
On the other hand, due to its adaptive nature, CoCoA maintains relatively high
QoS or shows improvements over default CoAP and Observe in nearly all traffic
scenarios. The results show that a dynamic rate control as applied by CoCoA
adapts much better than a static rate control (Observe) or no rate control at
all (default CoAP) in all analyzed scenarios.

In order to improve the performance of CoCoA further, we also propose
a future line of work: If a multitude of destinations are notified with NON
messages, even when applying rate control on a per destination basis, the sum
of traffic sent to the entirety of destination endpoints may cause congestion. In
such cases, congestion control mechanisms need to go beyond a per-destination
basis, applying an aggregate congestion control is required to solve this issue.
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