
30 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

The CUSCUS simulator for distributed networked control systems: Architecture and use-cases / Zema,
Nicola Roberto; Trotta, Angelo; Natalizio, Enrico; Di Felice, Marco; Bononi, Luciano. - In: AD HOC
NETWORKS. - ISSN 1570-8705. - STAMPA. - 68:(2018), pp. 33-47. [10.1016/j.adhoc.2017.09.004]

Published Version:

The CUSCUS simulator for distributed networked control systems: Architecture and use-cases

Published:
DOI: http://doi.org/10.1016/j.adhoc.2017.09.004

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/620933 since: 2018-02-09

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1016/j.adhoc.2017.09.004
https://hdl.handle.net/11585/620933

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

Zema, N. R., et al. "The CUSCUS Simulator for Distributed Networked Control
Systems: Architecture and use-Cases." Ad Hoc Networks, vol. 68, 2018, pp. 33-47.

The final published version is available online at :
http://dx.doi.org/10.1016/j.adhoc.2017.09.004

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the
publishing policy. For all terms of use and more information see the publisher's website.

https://cris.unibo.it/
http://dx.doi.org/10.1016%2Fj.adhoc.2017.09.004

The CUSCUS simulator for Distributed Networked
Control Systems: Architecture and Use-cases

Nicola Roberto Zemaa,∗, Angelo Trottab, Enrico Natalizioa, Marco Di Feliceb,
Luciano Bononib

aSorbonne Universités, Université de Technologie de Compiègne,
Heudiasyc, UMR CNRS 7253, France.

{enrico.natalizio,nicola.zema}@hds.utc.fr.
bDepartment of Computer Science and Engineering, University of Bologna, Italy.

{trotta, difelice, bononi}@cs.unibo.it

Abstract

The current merging of networking and control research fields within the

scope of robotic applications is creating fascinating research and development

opportunities. However, the tools for a proper and easy management of ex-

periments still lag behind. Although different solutions have been proposed

to simulate and emulate control systems and, more specifically, fleets of Un-

manned Aerial Vehicles (UAVs), still they do not include an efficient and detailed

network-side simulation, which is usually available only on dedicated software.

On the other hand, current advancements in network simulations suites often

do not include the possibility to include an accurate description of controlled

systems. In the middle 2010s, integrated solutions of networking and control

for fleets of UAVs are still lacking. In this paper, we fill such gap by presenting

a simulation architecture for networked control systems which is based on two

well-known solutions in both the fields of networking simulation (the NS-3 tool)

and UAV control simulation (the FL-AIR tool). Three main research contribu-

tions are provided: (i) first, we show how the existing tools can be integrated

on a closed-loop architecture, so that the network propagation model (NS-3

side) is influenced by the drone mobility and by the 3D scenario map (FL-AIR

∗Corresponding author
Email address: nicola.zema@hds.utc.fr (Nicola Roberto Zema)

side); (ii) second, we implement a novel module, which allows modeling realistic

3D environments by importing city-wide characteristics by the popular Open-

StreetMap service; (iii) third, we demonstrate the modeling capabilities of the

CUSCUS framework on two realistic use-cases, corresponding to well-known ap-

plication scenarios of UAVs, i.e. dynamic formation control and static coverage

of a target area.

Keywords: Networked Control Systems, UAVs, Simulator

1. Introduction

Aerial networks composed by Unmanned Aerial Vehicles (UAVs) constitute

emerging cooperative systems characterized by unique features such as dis-

tributed coordination, autonomous 3D mobility, and context-awareness through

the sensing capabilities [1]. In the next few years, the pervasive diffusion of

UAVs is expected to pave the way to novel scenarios integrating IoT devices,

aerial communications and mobile/multimedia applications. At the same time,

the state of art of UAVs already includes a wide range of real-case deployments,

from disaster recovery to surveillance and precision agriculture [2][3][4].

A key issue in most of the mentioned scenarios is the management of flying

nodes’ autonomous mobility in order to meet the Quality of Service (QoS) re-

quirements of the applications [1]. In absence of a centralized controller, the fleet

mobility is determined by decisions performed at each UAV, hence consensus-

based or distributed coordination protocols are needed to avoid collisions, keep

the network connected and achieve the mission-specific goals [5]. At the same

time, the communication among nodes is strongly affected by the propagation

conditions of the environment, so far that the effect of packet loss must be taken

into account in networked robotic architecture design [6][7]. Finally, since the

micro-mobility of each UAV involves complex electromechanical dynamics, ro-

bust controllers are required for tuning the parameters governing the position

and orientation of the flying node (e.g. the Proportional, Integrative and Deriva-

tive terms of the controller) [8]. The merging of networking and control fields is

2

a natural consequence of the above mentioned issues: several communication-

aware mobility schemes have been proposed for fleet creation and management

[9][10]. Similarly, there exists plenty of communication protocols at the MAC,

network and transport layers, which are specifically tailored to the UAVs sce-

narios, in order to cope with the dynamic topology and, at the same time, take

maximum benefit from the self-placement capabilities of the nodes [11][12]. The

growth of research in this area poses a fundamental question: which method-

ology to adopt in order to evaluate the performance of distributed networked

control systems, producing reliable and accurate results? Several studies rely

on small-case test-beds, e.g. [13]. However, experimental studies, in order to

be meaningful, should consider many UAVs at the same time, and this might

easily introduce excessive costs or present safety problems. Similarly, analytical

models might likely become infeasible due to the large number of parameters

to take into account, and the unknown correlations among them. Vice versa,

simulation tools can provide a cost-effective solution in order to model the UAV

applications before their effective deployment on a real scenario. However, al-

though there are several tools enabling to model flight control [14][15] or network

protocols [16][17], no software addresses the issues of both the fields at the same

time.

In this paper, we fill such gap by proposing a novel simulation framework for

networked control system, called CommUnicationS-Control distribUted Simu-

lator (CUSCUS). Differently from the state of the art, CUSCUS allows simu-

lating both the UAV networking and formation phases, via the integration of

two existing tools: the Framework Libre AIR (FL-AIR) simulator [18] and the

mainstream network simulator NS-3 [19]. Using FL-AIR, a real-time and fine-

grained simulation of the micro-mobility of each UAV can be achieved, including

the modeling of virtual sensors/actuators, the PID regulations and the drone

stability. Moreover, it is possible to create UAV applications and test them on

a simulated control environment before the actual deployment, since the same

code can also be plugged in real drones. More specifically, we provide three

main research contributions in this paper:

3

• First, we describe how to integrate the FL-AIR and NS-3 simulation with

a closed-loop control, so that the fleet mobility is influenced by the prop-

agation conditions and networking protocols. As a result, we are able

to perform real-time accurate simulations of the wireless communication

among the UAVs, and analyze the impact of the propagation phenomena

on the algorithms used for fleet control;

• Second, we add a Scenario Module in both FL-AIR and NS-3, in order

to make a step towards the usage of fleets of UAVs in Smart city scenar-

ios. The Scenario Module allows modeling realistic 3D environments, by

importing the scenario description directly from OpenStreetMaps and by

taking into account the location of buildings and the street topology;

• Third, we demonstrate the capabilities of the CUSCUS framework on two

use-cases, corresponding to well-known application scenarios of UAVs,

i.e. dynamic formation control [20], and Static Coverage of the target

area [21][22]. More specifically, we implement a reference algorithm for

each use-case in CUSCUS, and we show the impact of micro-mobility

control parameters, beaconing frequency, propagation conditions and sce-

nario characteristics, on the application performance. Furthermore, as in

CUSCUS it is possible to define the underlying control model, we take

into consideration different physical parameters of the drone, such as the

length of its arms and its total weight, which are information of utmost

importance when it comes to define accurate movement dynamics.

Finally, we show by experimental results the scalability of the CUSCUS frame-

work in terms of resource utilization (e.g. CPU and memory), and its fine-

grained ability to model complex UAVs dynamics, characterized by the interplay

between network-side configuration, control-side configuration and 3-D scenario

characteristics.

The rest of the paper is structured as follows. Section 2 reviews the state-of-

art of simulation tools for UAVs. Section 3 illustrates the CUSCUS framework,

describing the logical architectures, the three main components (i.e. FL-AIR,

4

NS-3 and the Scenario Module), and their interworking. Section 4 introduces

the use-cases and the mobility algorithms implemented in CUSCUS. Section

5 shows the performance of the CUSCUS framework, and demonstrates the

modeling capabilities on the use-case previously mentioned. Finally, conclusions

follow in Section 6.

2. Related Works

While pertaining to robotic research, our main purpose in this work is to

give the possibility to simulate networked control algorithms on UAVs. From

a broader point of view, the literature includes examples of simulation suites

that attempt to integrate objectives that belong to the robotics research field

along with objectives of other research domains. However, at the best of our

knowledge, all the existing solutions lack the ability to simulate UAV flight

models.

Historically, the field of integrated networking and robotics simulation have

its roots into traffic simulation and analysis for V-2-X networking. The most

complete example of this technology is the Simulation of Urban MObility (SUMO)

simulator. This software couples with a network simulator and is capable to

accurately simulate the movements of road vehicles and their communication.

Also, it can be integrated with OMNeT++ through the Veins framework [23]

and with NS-3 through the iTETRIS Control System (iCS) [24]. At the same

time, these solutions are mainly tailored to 2D road-vehicle communications,

while we would like to leverage a new architecture that takes into account the

increased complexity of the simulation of a three-dimensional model.

The only example of this latter category is composed by the software that

leverages the ARGoS simulator suite [25]. ARGoS is a robot simulator aimed at

the rendition of large-scale multi-robot system. Its main features revolve around

its scalability. Being conceived with parallelism in mind, the simulation suite

is built to support multiple simulation engines at the same time. Its advanced

modularity allows for the implementation of a plethora of add-on modules for the

5

most diverse applications. However, one of the main drawbacks of the simulator

is that it does not provide suitable models for UAV flight.

The set of features displayed by ARGoS has been exploited RoboNetSim [26],

which constitues the only solution that tries to merge the issues of networking

and robotics fields. The authors of RoboNetSim integrate ARGoS with two

different networking simulators: NS-2 and NS-3. In RoboNetSim the schedulers

of ARGoS and of the network simulators are tightly coupled and the suite is

optimized for the simulation of networked swarm robotics. This means that the

level of detail for the robotic part is not suited for UAV simulation.

One of the most important features we would like to have in our tool is an

enhanced level of detail for the robotic part, which should implement a flight

and control model for each simulated UAV. For these reasons, we have decided

to survey existing solutions on the subject of control and networking simulators

for UAVs, and create our proposal out of those solutions that show an enhanced

level of detail on UAV control and flight models and an easy integration and

interoperability.

2.1. UAV Simulators

In literature, the existing works concerning the simulation of UAV fleets can

be grouped into two sets: pilot training software and robotic behavior simula-

tors.

For what concerns the first group, the number of existing works is increasing

quickly because of their purpose as pilot-training software suites like those in

[14, 15, 27]. These works fall into the category of classical flight simulators,

which include realistic flight models and scenery rendering. As their main use

is to training pilots, the software is intrinsically not capable to accurately and

correctly simulate autonomous flight, as its main purpose is human interaction.

Unfortunately, for the cases where the autonomous flight is implemented (i.e.

the opposing forces in gaming flight simulators), the software distribution is

commercial and closed-source. In this case, it is almost impossible to adapt

them to simulate mission-oriented UAV fleets.

6

For what concerns robotic-oriented simulators, the availability of software,

often released as open-source and well-documented, is higher. Some notable

examples are the Gazebo [28], Morse [29] and FL-AIR [18] simulators. Both of

them rely on the middleware provided by the Robot Operating System (ROS)

[30]. However, in this last case, when the possibility of integration with real-

time simulation or the emulation/simulation of UAVs control laws is considered,

the mileage may vary. All the mentioned tools are indeed capable of simulating

fleets of multiple robots, but FL-AIR provide the best rendition of control laws

applied to the single engines of a quad/octa-rotor and Morse is not capable to

interface with popular flight controllers like Pixhawk [31] or APM [32].

In choosing the most suited tool to simulate the behavior of a fleet of UAVs,

the choice has been restricted to two candidates: Gazebo and FL-AIR, as they

are capable to accurately simulate the control laws of the flight model of the

UAVs at an extreme level of detail, for example the flight envelope can be

calculated from the torque applied to each rotor of an UAV. For our final choice,

we took into consideration that, using FL-AIR, the transition from simulation

to real experiments and prototypes can be done seamlessly, as better detailed

in section 3.1.1.

2.2. Network Simulators

In the era of Cloud Computing and of extensive virtualization of networks,

the possibilities for what concerns network simulation are endless. Nowadays,

any major network simulation software can be classified either in the category

of commercial or open-source software. Among the former category, the most

important commercial solutions that have been thoroughly exploited in scientific

literature are the OPNET [33] and the Qual-Net [34] suites.

The conception of our proposal poses, however, a series of constraints on

the network simulation part, the most important of which is the capability of

arbitrarily extending and modifying the software base. For this reason, we have

decided to look for a viable candidate within this last category. Some simulators,

such as GloMoSim [35], NS-2 [17] and JiST/SWANS [36], are no longer under

7

active development. The project that are, as of 2017, still maintained and with

an adequately large community are: WSNET [37], OMNeT++ [16] (the open-

source version of OPNET) and NS-3 [38]. Focusing again on our specific needs,

we realized that, from the network part of our system we would need:

• the ability to simulate network operation at a packet-level detail;

• the ability to interface directly with the operating system and, conse-

quently, emulate a complex network in real-time

• the capability to seamlessly configure all the level of the ISO/OSI stack;

• a strong literature background;

While a combination of the above-mentioned features is to be found in many

simulation software suites, only the NS-3 tool supports all of them, and for this

reason it has been included in the CUSCUS architecture, as better detailed in

the Section below.

3. The CUSCUS Platform

This Section is devoted to the presentation of the CUSCUS platform: we

will first introduce the logical architecture and present separately the two main

simulators, FL-AIR and NS-3, on which we have built our tool, and then we

will show how we put these two blocks to interwork towards the first integrated

control-network simulator specific for fleets of UAVs.

3.1. The Logical Architecture

In this Section, we describe the logical architecture and the main compo-

nents of the CUSCUS framework. Compared to the simulation tools previously

mentioned in Section 2, our software provides the following key novelties:

• thanks to the co-simulation environment, it allows modeling the impact

of networking dynamics as well as of network protocol operations on the

fleet mobility and the UAV formation control, and vice-versa;

8

Figure 1: Overview of the CUSCUS logical architecture.

• thanks to the scenario Module, it allows modeling realistic 3D scenarios,

with street topologies and building positions imported by the popular

OpenStreetMap website;

• finally, thanks to the emulation capabilities of FL-AIR, and to the inte-

grated platform, it allows the testing and pre-deployment analysis of real

UAV applications on virtual 3D environments, reproducing the same char-

acteristics of the real scenarios, and the same run-time dynamics. This fea-

ture might produce significant advantages in terms of safety and cost/time

reduction compared to the experimental test-beds, beside guaranteeing a

much wider range of configurations for the testing and the analysis.

Figure 1 shows the logical architecture of the CUSCUS framework, com-

posed by the two simulators mentioned above: the FL-AIR framework, the

NS-3 simulator as well as by the Scenario Module. This latter is in charge of

loading the real scenario map, and works inbetween the other two components.

In FL-AIR, the user can write the C++ code of the UAV Application (e.g.

video-surveillance); mobility actions are sent to the Control component, which

9

is in charge of implementing and translating them into proper commands to

send to each motor of the UAV. Based on them, the position of the UAV within

the virtual scenario is updated by the World Simulator, which is a component of

FL-AIR. Moreover, both FL-AIR applications and the Control component can

have access to sensors (cameras, ultrasonic sensors, etc), whose input is provided

by the World Simulator, based on the characteristics of the scenario, indicated

by the Scenario Module. All the network packets produced by FL-AIR appli-

cation are routed through the network stack in NS-3, and then transmitted on

the simulated wireless channel. To this aim, we developed a novel propagation

module which takes into account the signal attenuation caused by obstacles,

again based on the information provided by the Scenario Module.

In the following, we detail the functionalities offered by each component, and

the connections among them.

3.1.1. FL-AIR

The FL-AIR suite [18] has been developed by the engineer team at the

Heudiasyc Laboratory, to facilitate the implementation and testing of algorithms

and applications for UAVs.

The components of FL-AIR are a set of independent applications running

on the host operating system (Host OS) that communicate using sockets. The

components of a running instance of FL-AIR are the Ground Control Station

(GCS), the World Simulator (WS) and n UAV programs. Figure 2 summarizes

FL-AIR’s internal functioning in the case of two simulated UAVs and a remote

controller interface. In the Figure, the blocks represent each composing applica-

tions, that are connected through UDT sockets [39] and local interfaces (Local

IF):

• The GCS is the main monitoring and multiplexing block, whose purpose

is to act as a routing point for the other components. It displays the

information and implements the commands coming from the other blocks;

• The WS is the main rendering engine. It manages the 3D environment,

10

multiplexes commands to the drones, can accept input from a localiza-

tion system (such as the Optitrack system [40]) and displays the values

measured by the sensors;

• The UAV programs not only represent each drone but are also responsible

to make the calculations for the actual flight model, to implement the

control laws and the high-level functions responsible for navigation and

mission control.

In FL-AIR there is also the possibility to use some interfaces that could

support a set of remote controls (joypads and joysticks). These are attached

to the GCS and use the network to remotely pilot the drones. The choice of

shifting the control and navigation computation on specific applications for each

drone lies in the consideration that, using this setup, a real drone could take the

place of a simulated one: FL-AIR gives the possibility to cross-compile the same

controller for the simulated drone with a real UAV system as a target. In this

way a real UAV can communicate with the rest of the components and interact

with them. The GCS and the WS are not designed to have any intelligence: all

the processing is done by the UAVs. To achieve this flexibility, in FL-AIR, UDT

sockets handle all the communications between components. This means that

all the traffic, coming either from simulated or real drones, is routed through

the machine that hosts the Ground Control Station software.

The classes interfaces to a specific set of sensor, actuators, state machines and

security checks are all included in FL-AIR. Thus, the only difference between

a simulated and a real UAV is the use of a specific implementation of them.

A shared memory (provided by the operating system libraries) superstructure

provides the links. In this way, the World Simulator can: (i) compute the UAV

states through its discretized dynamical model [41] and (ii) update the UAV

status in the 3D world. The model output handles collisions and keeps track of

the positions, which are successively sent back to the simulated UAVs control

models.

To provide a suitable engine for a set of virtual sensors that need to interact

11

UAV 1
program

UAV 2
programshared memory

World Simulator

sensorsactuators

actuators

sensors

actuators

sensors

Host OS

local IF local IFlocal IFlocal IF

DS3
(remote control)

ground control
station

optitrack

local IF

Figure 2: Overview of FL-AIR Simulator’s architecture.

with the environment, FL-AIR uses the Irrlicht engine [42] (see Figure 3), which

is capable to provide interfaces for: cameras, lidars, ultrasonic sensors and more.

It is possible to execute FL-AIR in both non-real-time and real-time mode.

For the last option, it is possible to implement strict bounds and synchronization

constraints on the dynamic model by using Xenomai [43], a real-time extension

of the Linux kernel whose interfaces are present in FL-AIR.

3.1.2. Networking with NS-3

One of the most outstanding features of NS-3 is the capability to work in

real-time mode, also called emulation mode [44]. In this mode, the simulator

can interact with the network interfaces of the machine where is hosted. It can

create virtual network interfaces on it and processes the packets sent through

them. For instance, virtual nodes from inside the simulator could access the

Internet via the host machine and vice versa. In our system, NS-3 creates a

simulated environment and a set of virtual network interfaces. The communica-

tion between FL-AIR entities are then routed through it. The approach followed

to achieve the inter-operation between the two software suites is based on a set

of network tools provided by the Linux kernel: TAP devices, Linux Containers

(LXCs) and network bridges. In our system, a set of LXCs, each containing a

FL-AIR drone, make their networking interface available to the host and all the

12

Figure 3: Overview of FL-AIR 3D environment. Two virtual cameras are displayed on the

right.

traffic coming from or going to the container is routed through a virtual NS-3

via the TAP devices.

TAP device. A TAP device is a virtual network device. All the packets that

travel through it are handled by a user-space software: from a operating system

point of view, everything that is behind them is virtual.

LXCs. The Linux Container is a virtualisation method that grants the possi-

bility to encapsulate and run a separated Linux system in a controlling host

[45]. Without the need of a separate kernel, it creates a virtual machine with an

environment closely resembling the host and provides the following advantages:

• sealed environment where to run the guest system;

• network interface sharing with the host system;

• ease of installation and minimal resource footprint.

It is important to note that, in fact, the processes executed on LXC are

not subject to emulation and are executed directly on the host machine. The

13

container can be seen just as a replication of the host system. Thus, the per-

formance degradation in using them is not at all comparable with the one of a

virtual machine in the classical sense.

Bridge. A network bridge is a device that is used to unite two or more network

segments. Under Linux, a bridge behaves transparently: it works like a network

switch (L2) so that virtual and real devices can easily connect to it.

These elements can be exploited by the use of the NS-3 Tap Bridge module.

The module is responsible of bridging different networks from inside NS-3. Using

it, an external application, nominally using a TAP device on the host system,

can connect to one of the network devices of a ghost node running on the

simulator. All the traffic generated from and to the TAP device is intercepted

and routed through the network device of the NS-3 node.

Network stack and Propagation Module. The packets routed by FL-AIR to NS-3

are then managed by the simulated network protocols, based on the stack con-

figured by the user. To this aim, NS-3 offers a wide library of network protocols,

from the PHY/MAC to the transmission layers. However, the currently avail-

able propagation models do not allow taking into account the attenuation caused

by the presence of obstacles at a specific location, unless tuning the standard

deviation of the shadowing distribution. However, the same shadowing random

variable is used at all the locations of the scenario. For this reason, we imple-

mented a novel Path Loss (PL) model, which takes into account the map of

obstacles provided by the Scenario Module. More specifically, we compute the

Path Loss between 3D locations i and j as follows:

PL(i, j) = α · log(
dij

1000
) + α · log(f) + 92.45 +

+ nW · γW + nw · γw + Ψ (1)

Here, dij is the 3D distance between the locations j and i, f is the transmit-

ting frequency, nW and nw are respectively the number of outdoor/indoor walls

traversed by the Line-of-Sight (LOS), with γW and γw the corresponding at-

tenuation factor, and Ψ is a Gaussian variable with zero mean and variance

14

Container 1

UAV 1
program

eth0eth1

veth1.0veth1.1 tap 1

bridge 1

Container 2

UAV 2
program

eth0 eth1

veth2.0 veth2.1tap 2

bridge 2

ghost
node 1

ip

tap
bridge

net
devmobility

ghost
node 2

ip

tap
bridge

net
dev mobility

NS-3 channel

NS-3 Simulator

shared memory

World Simulator

sensors
&

positions
actuators

actuators

sensors

actuators

sensors

positionspositions

Host OS

local IF local IFlocal IFlocal IF

DS3
(remote control)

ground control
station

optitrack local IF

Host OS

Figure 4: Overview of CUSCUS architecture

equal to χ. The tuning of γW , γw and χ is decided by the user, based on the

characteristics of the scenario.

3.2. Implementation/Interworking

After the description of the composing elements, here we present the core

component of CUSCUS, i.e. how it enables the connection and inter-operation

of FL-AIR and NS-3.

In our proposal, FL-AIR and NS-3 will be run in parallel within an unified

environment. After defining the simulation scenario to implement, the two

components are setup according to it: the UAVs and their control logics are set

15

up in FL-AIR and their arrangement is replicated as a set of nodes and their

connections in NS-3. For the drone simulation part, in CUSCUS, a set of FL-

AIR UAV applications, as the ones described in section 3.1.1, will be run inside

LXC containers: they will envelope the UAV application and intercept all of its

network traffic. For the networking simulator part, a set of TAP devices, equal,

in numbers, with the UAVs to simulate, will be created on the host machine. In

this way each container, with one drone inside, can connect to the virtual NS-3

network. Again on the host machine, the set of network bridges will allow the

connection between the LXCs and the NS-3 TAP devices. Among the various

operating modes of the Tap bridge NS-3 module, we have chosen to use the

one that connects directly to a preconfigured TAP device: the UseLocal mode.

In this way the configuration of the interlocks between FL-AIR and NS-3 is

completely external to the two.

In Figure 4, the main architecture of the CUSCUS framework is depicted.

From the figure it is possible to identify the former structure of Figure 2.

The UAV programs are enclosed in containers with multiple interfaces. It is still

present the former UDT socket structure where the GCS is directly connected

to the UAVs and the remote controls through the local interfaces. It is present

altogether a new set of communication links: using another interface (eth0 in

the figure), an UAV can offload its packets to NS-3 using the TAP-bridge-LXC

chain. To further increase the level of abstraction, it is possible to route all the

traffic through NS-3, including the one with the GCS and the remote controls,

allowing to have a completely customizable environment. In our proposal, as

the containers will run on the same host machine, they use the shared memory

to exchange data with the world simulator and with NS-3. In the system there

are always two running abstractions of each simulated UAV: the FL-AIR UAV

in its container is mirrored in NS-3 ghost node. The former is responsible for the

simulation of the movement and the interaction with the physical environment;

the latter is responsible of network operation. Each position update in FL-AIR

is written in NS-3 using the shared memory and a closed loop is maintained.

While a UAV moves in FL-AIR, its position is mirrored in the NS-3 world and

16

the communication is modified accordingly.

4. Use Cases

To demonstrate the validity and the effectiveness of CUSCUS, we have cho-

sen to showcase its features by analyzing its behavior in two relevant use cases.

The two use cases implemented in CUSCUS are: (i) a UAV dynamic forma-

tion control that leverages Corrective Consensus, and (ii) the implementation of

a Static Coverage algorithm. Both of them represent important scientific chal-

lenges for the worlds of networking and control. In the first use case a networked

fleet of UAVs is required to follow a leader, while maintaining an arbitrary for-

mation, by running a control model that requires the exchange of messages. In

the Static Coverage case, a fleet of sensor-equipped UAVs is required to cover a

target area, while maintaining the network connectivity in order to transmit the

collected data to a central server. We remark here that the goal of the discussion

is not to introduce novel solutions for UAV fleet management. Instead, we aim

at demonstrating the capabilities of CUSCUS on (i) modeling realistic UAV

scenarios, (ii) supporting communication-aware algorithms and (iii) capturing

the impact of UAV characteristics, propagation conditions and micro-mobility

on the performance of the algorithms described below.

4.1. Dynamic Formation Control

The first use case refers to the implementation of dynamic formation control

in fleets of flying robots. For this last class of systems, a cooperative broadcast-

based packet-loss-tolerant algorithm is introduced in [46] and [20]. The scheme

is designed to effectively reduce link losses by introducing a negligible level of

redundancy in a leader-follower scenario coupled with formation control. In the

paper, the authors consider a WNR composed of n+ 1 robots with n followers

and one leader. A graph G = (V,E) is used to denote the network topology

among n + 1 vehicles with E ⊂ V × V as the edge set and V = {1, ..., n + 1}

as the node set. F = {1, ..., n} denotes the set of followers. The authors

17

consider a discrete-time second-order model [47] to describe the dynamic of

leader/followers, namely:

vi(t+ 1) = vi(t) + T ·


ui(t, xi, vi, xj , vj),

i ∈ Vj ∈ V

f(t), i = n+ 1

(2)

xi(t+ 1) = xi(t) + T · vi(t) (3)

where xi(t), vi(t) ∈ R2, ui(t, xi, vi, xj , vj) : [0,+∞[×R2(n+1) → R2 are, respec-

tively, the position, velocity and control input1 associated with the i−th vehicle.

f(t) : [0,+∞[→ R2 is a signal describing the leader acceleration and T is the

step-size. Their objective is to design ui(t) such that the robots follows the

leader and, at the same time, maintain a desired formation. Assuming the re-

lated matrix D = [Dij] being a skew-symmetric matrix, let Dij : Rn+1 → Rn+1

the desired Euclidean distance between vehicle i and vehicle j. Following this

definition, at each follower is applied the following consensus-based control law

[48] to the robot motion:

ui(t) = uiF (t) + uiL(t) =

=

n∑
j=1

aij(t)
[(
xj(t)− xi(t)

)
+Dij + γ

(
vj(t)− vi(t)

)]
+

+ aiL(t)
[(
xL(t)− xi(t)

)
+DiL + γ

(
vL(t)− vi(t)

)]
(4)

Where the coupling strength is represented by γ > 0.

For the control law to operate, it is necessary that each robotic element

knows the state of the others. Assuming full-duplex, instantaneous and perfect

communications, an undirected edge (j, i) ∈ E exists if vehicle i and vehicle j

can access information from each other. It is also assumed that (i, i) /∈ E. The

adjacency matrix A = [aij] ∈ R(n+1)×(n+1) is defined as aij = 1 if (j, i) ∈ E

1in the following we use ui(t) as the acceleration, for the sake of simplicity of notation

18

and aij = 0 otherwise. The desired formation is asymptotically reached if

‖ xj(t)− xi(t) ‖→ Dij and ‖ vj(t)− vi(t) ‖→ vL(t) ∀i, j.

However, the above algorithm is not resilient to network disruption as packet

losses would significantly reduce the accuracy of the control action. For these

reasons, the authors proposed a Corrective Consensus approach where, starting

from the already defined distributed rendezvous algorithm of equation (4), they

defined a new set of variables φij(t) with (i, j) ∈ V 2.

φij(t+ 1) =φij(t) + aij(t)[(xj(t)− xi(t))+

+Dij + γ(vj(t)− vi(t))] (5)

φij(0) =0. (6)

For each node i, the auxiliary variables φij(t) represent the amount of change

that node i has made to its state variables xi(t) and vi(t) due to neighbor j. To

update the φij(t) according to (5) and (6) do not need any additional message

exchange. If robot i and j always take the same action, then the changes they

make should be symmetric, i.e., φij(t) = -φji(t). From the last assumption it is

possible defining a new set of variables:

∆ij(t) = φij(t) + φji(t) (7)

that represent the amount of bias (as the sum of the states) that a robot

has accumulated on both directions of the (i, j) link. By minimizing the bias,

the robots reduce the error in a distributed and iterative manner: each robot i

corrects its own state value. Specifically, node i collects φij(t) (j ∈ Ni) from its

neighbors to calculate the ∆ij(t). Then node i adjusts its control input ui using

the ∆ij(t)’s. After this iteration, the robots resume the Standard Consensus

shown in (4) while periodically performing the corrective step described above.

For the Corrective Consensus after every k consecutive Standard Consensus

iterations, the corrective one takes place using the following control input:

ui(k) = −1

2

n+1∑
j=1

∆ij(k), i = 1, . . . , n (8)

19

The auxiliary variables, instead, after k consecutive standard iterations up-

date their value according to:

φij(k + 1) = φij(k)− 1

2
∆ij(k), i, j = 1, . . . , n+ 1 (9)

In their paper, the authors proposed a practical implementation of the mes-

sage exchange mentioned earlier.

Their simulative approach involved simulation on the NS-3 platform with

a custom-built two-dimensional mobility model and a network implementation

based on IEEE 802.11g. In this paper we implement the Corrective Consensus of

[46] in CUSCUS. In this way, we will demonstrate the capability of our proposal

to simulate a three-dimensional control model tailored for a Wireless Networked

Robot system based on UAVs, and the impact of micro-mobility parameters on

the overall fleet mobility.

4.2. Static Coverage

The second use case refers to a well-known networking problem, i.e. the

Static Coverage (SC) of a target area from a group of UAVs. From video-

surveillance to emergency communications [49], several different applications,

especially in the context of Smart cities, might benefit from SC functionalities

[7]. In its general formulation, the SC problem can be defined as follows. Let S

be the set of available UAVs, with |S| = n, moving on a 2D plane. Each UAV

is equipped with a short-range radio interface, through which it can communi-

cate with all the neighbors in a transmitting range equal to Rt; moreover, it is

provided with sensors through which it can gather location-aware information

from the environment. Let As be the sensing area, assumed circular and equal

for all the UAVs. The goal is to determine the Euclidean graph G(V,E) such

that: (i) each vertex represents the location of a UAV on the target scenario,

i.e. V = S; (ii) there exists an edge e(i, j) ∈ E iff the UAV i and j are in

their reciprocal wireless communication ranges; (iii) G is a connected graph,

which means that the aerial network is not partitioned and (iv) the total area

A∗ covered by the aerial network is maximized, i.e. A∗ = max(
⋃n

i=0As). Under

20

ideal assumptions about homogeneity of propagation conditions, transmitting

ranges and sensing areas among the UAVs, the optimal SC can be determined

by placing the UAV in regular patterns [50]. However, in a real world scenario,

the assumption of homogeneity might not hold since the wireless links can likely

experience different propagation conditions caused by multipath fading and by

the attenuation due to obstacles. Moreover, in some applications like disaster

recovery, the UAVs might not know the characteristics of the environment in

advance, hence they should be able to self-place in order to maximize the cover-

age of the aerial network, while still keeping the connectivity with at least one

other node. To address such goals, several distributed mobility schemes have

been proposed, including also communication-aware approaches [9][10]. In this

paper, we focus on the STEM-NET algorithm [22][21], which has been imple-

mented within the CUSCUS framework; the evaluation results are presented in

Section 5. The STEM-NET algorithm extends the virtual spring approach in

[51], by considering emergency scenarios where the aerial network is used as a

backup communication infrastructure connecting isolated users’ devices on the

ground. Each wireless link between two UAVs (e.g. UAV i and j) is modeled

as a virtual spring force, acting according to the Hooke’s law:

~Fi,j = −K · (~x− l0) (10)

Here, ~x denotes the spring displacement, l0 its natural length and K the stiffness

constant. On each UAV i, multiple forces ~Fi,1, ~Fi,2 ... ~Fi,d might apply at

each instant, based on the current degree of the node, denoted as d. At fixed

intervals, UAV i computes the resultant force ~Fi =
∑d

j=1 Fi,j +
∑d

j=k F
R
i,Oj

,

and moves accordingly toward the direction of ~Fi, with constant speed. In

the Equation above, FR(i, Oj) are purely repulsive forces modeling the path

clearance, and acting between each UAV i and obstacle Oj . Without loss of

generality, we assume that the intensity of FR(i, Oj) is made proportional to

the current distance between the UAV and the obstacle, i.e. FR(i, Oj) = ε ·

dist(i, Oj), and applies only for the obstacles in the visibility range (i.e. only if

d(i, Oj) > κ, where κ is the visibility threshold).

21

 0

 0.5

 1

 1.5

 2

 2.5

 3

 5 10 15 20 25 30 35 40 45 50

δ

LB(i,j)

α = 2 α = 3 α = 4

Figure 5: The virtual spring displacement as a function of LB(i, j), with LBreq=20 dbm.

Differently from other virtual spring approaches, STEM-NET achieves com-

munication-awareness by relating the formulation of the spring parameters (i.e.

~x, l0 and K) to the current propagation conditions of each link. More specif-

ically, we assume that every TB seconds, each UAV transmits a BEACON

message containing its identifier. Based on the Received Signal Strength (RSS),

each UAV computes the Link Budget of the link i↔ j (i.e. LB(i, j)) as follows:

LB(i, j) = Prij −RSi
thr (11)

where RSi
thr is the reception threshold. The LB metric, depending on the fading

margin set in the design phase, can be considered a proxy of the communica-

tion reliability (i.e. it tells when the link is going to break), as well as of the

the maximum achievable rate. The requested link budget (LBreq) models the

Quality of Service (QoS) which must be guaranteed on each link of the aerial

network. Based on it, the spring displacement δ = (~x− l0) is formulated as the

current error between the requested and current LB on the i− j link, i.e.:

δ = α

√
max(LB(i, j), LBreq)

min(LB(i, j), LBreq)
− 1 (12)

22

Here, α is the propagation decay exponent; more details about the Equation

above can be found in [22]. Figure 5 shows the δ values, as a function of LB(i, j)

and for different values of α; LBreq is set to 20dBm. It is easy to notice that: (i)

δ is 0 when LB(i, j) is equal to LBreq, (ii) δ increases when LB(i, j) > LBreq,

reflecting that the two spring end-points are too close, (iii) δ increases more

quickly when LB(i, j) << LBreq, since the two nodes are moving out of the

communication range. The second component of Equation 10, i.e. the stiffness

constant K, defines how quickly the UAVs should react to an increase/decrease

of the current displacement. In [22][21], the value of K is made parametric

based on the link type (e.g. air-to-ground link vs air-to-air). Here, we consider

a simplified formulation where the value of K is assumed constant; the impact

of such parameter is explored in Section 5.

5. Performance Evaluation

We performed a four-folded simulation campaign in order to display the

features of CUSCUS and evaluate the feasibility of its deployment. The first

campaign aims at showing the impact of CUSCUS on its host system. The sec-

ond campaign aims at evaluating the simulator’s ability in integrating accurate

control models. The capability to incorporate real-world UAV parameters into

network-oriented simulations is the object of the third simulation campaign.

The last campaign summarizes the simulator capabilities by providing the max-

imum level of simulative integration between networking, control and physical

scenario rendering.

For the experiments, we have used a Dell XPS 8500 workstation with an

Intel® Core™i7-3770 CPU @ 3.40 GHz and 16 GB of RAM memory. The entire

CUSCUS, comprised of NS-3 and FL-AIR runs on this host machine. From

the NS-3 perspective, we imagine the UAVs being equipped with a single IEEE

802.11 interface. We make it render, for each node, IEEE 802.11g Physical and

MAC layers. We use the stock NS-3 simulated devices with the radio parameters

taken from the market [52]. As we suppose the nodes being equipped with a

23

single WiFi interface, we have chosen to employ a Ricean fading model, as for

UAVs the signal on the LOS path is much stronger than the one on indirect

paths. We assume that there is no packet fragmentation and that the nodes

stay always in each others’ connection range.

To ease the prototyping of the simulated scenarios we decided to use the non-

real-time version of FL-AIR.

5.1. Scalability analysis

First, we performed a set of preliminary experiments in order to evaluate

the feasibility of CUSCUS deployment and to have a glimpse on its scalability.

In order to verify its scalability as well as the impact of the delays introduced

by the simulator architecture on the control systems, we have designed a simu-

lation scenario that can highlight the potentialities of both FL-AIR and NS-3.

Concerning the FL-AIR perspective, the scenario consists in a set of UAVs that

start from fixed positions and circle around a fixed point located at the center of

the scenario. The distributed control system employed at each UAV is fed with

the UAV position and orientation from a simulated Optitrack system, and tries

to maintain the same distance between all the UAVs while they circle. As the

number of UAVs increases, the UAVs will arrange themselves at the vertexes of

a polygon with an increasing number of sides. The UAVs keep a fixed altitude

of 10 m for the whole simulation.

In our experiments the robots sample their position and broadcast it peri-

odically, each Tb seconds. When the broadcasted information is received at the

other nodes, it is relayed to FL-AIR and stored. In our results we distinguish

between two definitions of delay: the architectural delay and the network de-

lay. The former is the delay that the packets experience when they are routed

through the CUSCUS architectural components. The latter is due instead to

the simulated network behavior.

A first index that can be used to evaluate the performances of CUSCUS is

represented by the physical resource used by the host during the simulation.

24

Figure 6 shows the percentages of CPU and RAM usage, when the number of

UAVs increases. We can notice that the CPU utilization increases linearly with

the number of simulated entities, and sub-linearly when considering the memory

allocation; this constitutes an interesting property for a simulation tool. Hence,

this result shows the scalability of CUSCUS, which is able to efficiently exploit

the available resources. Although no bottleneck could be observed in the Figure,

it is worth remarking that the system performance is bound by the hardware

characteristics of the host machine. A straightforward approach in order to

achieve scalability regardless of the number of simulated nodes and of the com-

plexity of the scenario is to increase the number of available hosts, balancing

the simulation load within the cluster (vertical scalability). The NS-3 simulator

already provides the capability to execute a simulation on multiple processors,

by splitting the simulation entities on multiple Logical Processes (LPs). Each

LP can then be executed on a different CPU. Hence, the support for distributed

simulation can be implemented in a straightforward way in CUSCUS, since each

LP could correspond to a simulated UAV. We plan to further investigate such

issue as future work. The second test that we have done in order to characterize

our architecture is the analysis of the architectural delay introduced by CUS-

CUS in the TAP-bridge-LXC chain (see Section 3.2). This measure is important

as it can estimate the fixed time delays introduced by the CUSCUS framework.

The extension and stability of these overheads assume a high importance when

CUSCUS is used to simulate control systems for UAVs. In Figure 7, we see the

delay [µs] the packets experience in the path from FL-AIR to NS-3. The broad-

cast time Tb is set to 50ms for this experiment. We can notice from the Figure

7 that the architectural delay introduced is constant and it stands around 70µs.

This result shows that the delay introduced solely by CUSCUS is negligible and

stable with respect to the UAVs number, i.e. the traffic generated by the simu-

lation scenario does not influence the variation of the architectural delay. With

the last experiment, we want to show the proposed architecture suitability for

the study and analysis of distributed networked control system. We executed

a series of tests, modifying the number of UAVs and the Tb value, in order to

25

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 5 10 15 20 25 30

P
e
r
c
e
n
t
a
g
e

o
f

u
s
e
d

r
e
s
o
u
r
c
e
s

Number of UAVs

CPU RAM

Figure 6: Resource Usage at the host varying the number of UAVs.

 0

 20

 40

 60

 80

 100

 5 10 15 20 25 30

A
r
c
h
i
t
e
c
t
u
r
a
l

d
e
l
a
y

[
µ
s
]

Number of UAVs

Architectural delay
Architectural delay (average)

Figure 7: Architectural delay of CUSCUS varying the number of UAVs.

26

study the impact of using a simulated communication network for the exchange

of control system messages. By using a modified version of the scenario used

in the previous experiments, we measure the error introduced in the formation

control inside FL-AIR due to network delays. In this case, the nodes will not re-

trieve the information about the position of the other UAVs from the Optitrack

system; instead, they will use the positions their neighbors have broadcasted

through the simulated NS-3 channel. This error [m] is defined as the distance

between the actual position for the simulated UAVs and their reference position

in the formation. The reference position is the position that nodes should be

at, when their control system does not use the network for exchanging position

data, but only the Optitrack system. In this last case (Tb = 0ms in the figures),

the error is reduced to a minimum and it is due only to the control system

itself. Instead, when the simulated UAVs receive the information concerning

the position from their neighbors, there is a delay introduced by the network.

Figure 8 shows this error, as the result of these tests. From these experiments,

we can infer the following conclusions: (i) an increase of the Tb value strongly

impacts the formation error, whereas (ii) the number of UAVs does not affect

this error. The former conclusion comes from the fact that we are running a

distributed control system that has to work with outdated information about

the neighboring nodes’ positions. The latter comes from the fact that, in this

particular case, communications issues such as packets collisions and, hence,

packet retransmissions, have a negligible impact on the wireless communication

network. It is to remark that the collision probability is very small since the

exchanged packets are also very small. They are composed by only the sender

node’s position and orientation. In conclusion we can state that the CUSCUS

framework is able to execute reliable distributed networked control system simu-

lations by keeping time overheads constant when the number of simulated UAVs

varies. Hence, it enables the user to study and analyze practical instances of

this kind of control systems.

27

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

4 6 8 10 12 15 20 25

F
o
r
m
a
t
i
o
n

e
r
r
o
r

[
m
]

Number of UAVs

Tb = 0ms
Tb = 10ms

Tb = 100ms
Tb = 500ms

Figure 8: Formation Error varying the number of simulated UAVs and Tb.

5.2. Dynamic Formation Control scenario analysis

To demonstrate the capability of CUSCUS to integrate accurate control

models, we replicated the simulation campaign of [46]. We have implemented

the Corrective Consensus described in the paper as a CUSCUS application for

UAVs, and we have set the simulator suite to replicate the network conditions

proposed in the cited work. In this experiment, a fleet of 10 drones have to keep

a circular formation of 20 meters radius and, at the same time, have to follow a

leader UAV, whose autopilot is set to visit a set of predefined way-points. The

formation is kept by using Corrective Consensus: the algorithm of the reference

paper is implemented as a working application and the packets produced by the

robotic nodes are handled by the simulated NS-3 network. We have used the

same LOS propagation model and the same periodic reductions of connectivity

to simulate jamming. In the original paper, independently of the propagation

model, the connectivity was periodically reduced according to the concept of

Network Disruption: the percentage of time, over a reference interval, where

the communications were completely jammed. In this paper, we have called

28

this parameter γ and we have tried to replicate the results by using the highest

reported values, as, according to the authors, for undisturbed communications

there were negligible performance variations.

In Figures 9 and 10 is displayed the evolution of the positioning error be-

tween the UAVs simulated position and their reference one, according to the

Consensus algorithm and averaged among all the drones. We have varied the

control algorithm parameters according to the reference paper. We have set up

the Corrective Action periodicity of eq (9) as the parameter ρ: 500, 1000 and

2000 ms.

The Figures reflect the reference behavior.

For low level of γ, there is a negligible difference in performance between

the non-corrected and the corrected version of Consensus. In Figure 9, it is

shown the same behavior of the reference, with all the cases converging to the

same error value. Interesting details can be reported: a faster application of

the corrective iteration increases the convergence time, as it can be seen in the

figure from the curve with ρ = 500ms. This result is in accordance with the

literature, as the Corrective Consensus applies always a strong input, even when

the robots approach their target position.

Even if we focus on large values of γ, the resulting behavior is corresponding

to the literature. A fast application of consensus improves the performance,

as it can be seen from Figure 10. In the figure, a more frequent application

of the corrective action yields an improvement of performance. For a value of

ρ = 500ms, the overall formation error is reduced and, as the value increases,

the difference in positioning decreases, up to the case of ρ = 2000ms, where the

error is almost the same as the uncorrected version.

These results give already an interesting insight about the Corrective Con-

sensus. The gap between the non-corrected version and the corrected one is

smaller using a more complex and accurate flight model for the drones and our

results could be used by the original authors to refine their approach.

29

 0.4

 0.42

 0.44

 0.46

 0.48

 0.5

 0.52

 0.54

 0.56

 0.58

 0.6

 100 120 140 160 180 200

E
r
r
o
r

[
m
]

Simulation time [s]

No Corrective
ρ: 500 ms

ρ: 1000 ms
ρ: 2000 ms

Figure 9: Evolution of the average formation error with a varying ρ and γ = 40

 1.3

 1.35

 1.4

 1.45

 1.5

 1.55

 100 120 140 160 180 200

E
r
r
o
r

[
m
]

Simulation time [s]

No Corrective
ρ: 500 ms

ρ: 1000 ms
ρ: 2000 ms

Figure 10: Evolution of the average formation error with a varying ρ and γ = 70

30

5.3. The UAV weight as a parameter

As stated beforehand, the peculiarity of CUSCUS is the capability to take

into account, at the same time, specific networking and control aspects. To

show this feature, we executed a set of experiments that took into consideration

the weight of the single UAV in the same scenario of the previous Consensus

campaign.

Specifically, we simulated the same Corrective Consensus-driven leader-follower

behavior and we analyzed the evolution of the formation error according to the

physical weight of the single drone.

In this simulation scenario, we have fixed the ρ at 500 ms and we have varied

the value of γ between 0 (no jamming), 40 and 80. The drone weight, DW in the

Figures, has been varied between 1, 1.5 and 2 kg.

Figures 11, 12 and 13 present the results of our campaign, by showing the

evolution of the formation error averaged over all the follower UAVs.

In all of them, it is possible to see the same behavior: a fleet of heavier drones

is faster to reach formation and display reduced, albeit slightly, positioning

errors. This behavior is due to the fact that the positional instability produced

by the constant application of a control input by the Corrective Consensus is

mitigated by the physical inertia of the drone.

Figure 11 shows the results with a scenario where no jamming is applied.

In this case the flight model of a lighter drone, having less inertia, is subject

to constant movements that postpone the time where the fleet reaches forma-

tion. On the contrary, heavier drones are less influenced by the instability of

Corrective Consensus.

By increasing the value of γ we have the behaviors of Figures 12 and 13. We

continue to observe the same behavior: a fleet of heavier robots is faster in reach-

ing formation. The same consideration applies if the value of the steady-state

(i.e. the formation error obtained where the value does not decrease anymore)

value is analyzed. In accord to the literature, other important differences are

absent, except for the steady-state value for the error, if the value of γ is in-

creased.

31

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 50 100 150 200 250

E
r
r
o
r

[
m
]

Simulation time [sec]

DW: 1kg DW: 1.5kg DW: 2kg

Figure 11: Evolution of the average formation error with a varying drone weight and γ = 0

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 50 100 150 200 250

E
r
r
o
r

[
m
]

Simulation time [sec]

DW: 1kg DW: 1.5kg DW: 2kg

Figure 12: Evolution of the average formation error with a varying drone weight and γ = 40

32

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 50 100 150 200 250

E
r
r
o
r

[
m
]

Simulation time [sec]

DW: 1kg DW: 1.5kg DW: 2kg

Figure 13: Evolution of the average formation error with a varying drone weight and γ = 80

5.4. Coverage scenario analysis

We now analyse the problem of Static Coverage (SC) by using the distributed

method described in Section 4.2. For this case-study, we used two different

metrics to evaluate the algorithm, i.e.:

• Coverage: defined as the total area covered by at least one UAV.

• Stability Index (SI): defined as the average velocity held by the fleet of

UAVs. This index is a proxy for the system stability, since the SC problem

-by definition- requires a static placement of the UAVs within the scenario.

We used the OpenStreetMap import function that allows CUSCUS to import

a real map inside the Scenario Module. More specifically, we used two different

maps: (i) the historical center of Bologna (Italy) that is characterized by narrow

streets with small and irregular buildings and (ii) a slice of the Manhattan

borough (New York) that is characterized by large streets with huge and regular

buildings. We simulated a fleet of 10 UAVs having the radius of the sensing area

As equal to 40m. The requested link budget (LBreq of Equation 12) is set to

40dBm.

33

 0

 1

 2

 3

 4

 5

 6

 50 100 150 200

S
t
a
b
i
l
i
t
y

I
n
d
e
x

(
S
I
)

[
m
/
s
]

Simulation time [s]

K=1 K=3 K=5

Figure 14: The Stability Index for different values of K.

First, we show the capabilities of the virtual spring force algorithm for the

Static Coverage problem. For this reason we initially set the flight altitude above

the rooftop of the buildings. As in the previous Section, we want to show the

CUSCUS ability to model in detail the characteristics of a UAV, as for example

the weight of the vehicle, and the impact on the application performance.

Figure 14 shows the SI metric varying the virtual spring stiffness K, defined in

Equation 10. The stiffness defines how strong the virtual force is, i.e. the amount

of force that the spring generates if it is elongated more than its natural length

l0 = LBref (see Section 4.2). We can notice that, for a low value of stiffness, the

system becomes unstable. This is because the low responsiveness of the virtual

spring does not allow the UAVs to stop at fixed locations. We can also notice

that a too high value of stiffness (K = 5 in Figure 14) results in a bigger error

with respect to a medium stiffness value (K = 3 in Figure 14).

In Figure 15 we show the impact of the weight of the UAVs (DW) on the

stability of the virtual spring algorithm. Here we used K = 5, and hence an

high responsiveness to the position error, since heavier UAVs need more time to

update their positions, and hence experiment less oscillations. We can see from

34

 0.5

 1

 1.5

 50 100 150 200

S
t
a
b
i
l
i
t
y

I
n
d
e
x

(
S
I
)

[
m
/
s
]

Simulation time [s]

DW: 1kg DW: 1.5kg DW: 2kg

Figure 15: The Stability Index for different values of weight.

Figure 15 that increasing the drone weight leads to improvements in terms of

fleet stability.

Next, we start analysing the 3D map modelling capability of CUSCUS. We

need to remark that the OpenStreetMap maps do not contain the full description

of the buildings and, in general, the height of the buildings is missing. For this

reason we define the buildings height in this way: for the map of Bologna, we

set the height with uniform random values on the range [10..15]m, while for the

Manhattan map we set the height with uniform random values on the range

[50..150]m. We modelled in NS-3 the communication path loss according to the

model described in Section 3.1.2. For the experiments, we set stone block walls

(12dB of signal attenuation) for the map of Bologna and concrete walls (15dB

of signal attenuation) for the map of Manhattan.

The next experiment studies the impact of the flight height on the coverage

ability of the virtual springs algorithm. We made the experiments considering

three different heights: low (5m), medium (13m) and high (20m), always using

the map of Bologna. Figure 16 shows the results about scenario coverage for the

three configurations. We can notice a huge difference when deploying the UAV

35

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 50 100 150 200

C
o
v
e
r
a
g
e

[
m
2
]

Simulation time [s]

h=5m h=13m h=20m

Figure 16: The aria covered by the fleet of UAVs at different heights.

fleet above or below the rooftop. At h = 20m, in fact, the UAVs can freely move

without obstacles and their communications are always in line-of-sight. When

the flight height is below the rooftop, the mobility of the UAVs is constrained

by the presence of buildings. Furthermore, the communication links are no

more in line-of-sight, hence the received link budged is drastically reduced. To

cope with the presence of obstacles, the virtual spring algorithm reduces the

relative distance between the UAVs in order to satisfy the requested LBref ; as

a result, the total coverage area is also reduced. These intuitive results validate

the ability of the CUSCUS framework to model the urban environment and the

issues related to it.

The possibility of loading a real map inside the simulator brings many ad-

vantages for the realism of the simulation analysis and for the prospect of a real

deployment. In the next set of experiments, we show the SI metric for different

values of K with the flight height h = 5m, i.e. below the rooftops, consider-

ing both the Manhattan (Figure 17) and the Bologna (Figure 18) scenarios. It

is straightforward to notice that the behavior of the stiffness parameter K is

very different from the previous experiments, when the UAVs were above the

36

 0

 0.5

 1

 1.5

 2

 2.5

 3

 50 100 150 200

S
t
a
b
i
l
i
t
y

I
n
d
e
x

(
S
I
)

[
m
/
s
]

Simulation time [s]

K=0.1 K=1 K=3 K=5

Figure 17: The Stability Index at low altitude for the Manhattan scenario.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 50 100 150 200

S
t
a
b
i
l
i
t
y

I
n
d
e
x

(
S
I
)

[
m
/
s
]

Simulation time [s]

K=0.1 K=1 K=3 K=5

Figure 18: The Stability Index at low altitude for the Bologna scenario.

37

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 12000

 50 100 150 200

C
o
v
e
r
a
g
e

[
m
2
]

Simulation time [s]

K=0.1 K=1 K=3 K=5

Figure 19: The area covered by the UAVs at low altitude in the center of Bologna.

rooftops. At low altitude, in fact, the system is quite unstable since it is too re-

sponsive to the position errors due to the the presence of buildings that impact

the communication link budget between the UAVs.

We can observe that the virtual spring algorithm behaves very differently

over the two scenarios. When considering the map of Bologna, in fact, the pres-

ence of narrow streets and of irregular buildings makes the UAVs movement

highly constrained. As a result, stability is achieved only for very small values

of the stiffness parameter K (see K = 0.1 in Figure 18). When instead consid-

ering the Manhattan map, characterized by the presence of large streets and of

regular buildings, the system achieves stability even with greater values of K

(see K = 0.1 and K = 1 in Figure 17). However the use of small values of K

can impact the time required for system convergence. This is demonstrated in

Figure 19, showing the Coverage Index (CI) for the Bologna scenario. We can

see that for K = 0.1 the system is stable (Figure 18) but the coverage conver-

gence is very slow (Figure 19). On the other side, using greater values of K,

the system is largely unstable (Figure 18) but experiences a fast coverage con-

vergence (Figure 19). These results further demonstrate the need of integrated

38

communication/control simulation tools like CUSCUS for determining the best

trade-off between fleet stability and overall scenario coverage.

6. Conclusion and Future Works

In this paper, we have presented CUSCUS, a novel framework for modeling

and simulation distributed Networked Control Systems, and more specifically

fleets of Unmanned Aerial Vehicles (UAVs). Differently from the existing tools,

our software is able to take into account both realistic UAV micro-mobility,

drone dynamics and wireless communications, via the integration of the FL-

AIR suite with the mainstream network simulator NS-3. Furthermore, CUS-

CUS enables realistic 3D simulations by importing the scenario description from

the OpenStreetMaps, and by modeling the impact of obstacles on the wireless

propagation as well as on the UAV mobility and path planning. The CUSCUS

framework supports two usage modes: (i) as a benchmarking tool, it allows

analyzing the performance of cross-layer algorithms (i.e.. mobilty-aware net-

work protocols, or network-aware mobility algorithms), which constitute the

main approaches in the literature of UAV systems; (ii) as a pre-deployment

tool, it allows testing the operations of UAV applications in highly realistic sim-

ulated scenarios before their utilization in the real world, by using the same

code. In this journal version, we have investigated the modeling in CUSCUS

of two well-known research issues of distributed fleet management, i.e. UAV

dynamic formation control and Static Coverage. With plenty of simulation re-

sults, we have demonstrated that the characteristics of the flying nodes (e.g.

the weight), of the simulation scenario (e.g. position of the obstacles), and

of the aerial control parameters (e.g. the PID parameters), might have a sig-

nificant impact on the application performance, hence justifying the need of

integrated control/networking tools for the accurate modeling of distributed

Networked Control Systems. The current extension includes the comparison of

the CUSCUS framework against test-beds in order to validate the realism of the

software integration of the NS-3 and FL-AIR tools. Other future works pertain

39

to: the design and implementation of a library of cross-layer algorithms for the

CUSCUS framework, the support for natural obstacles on rural scenarios (e.g.

trees and hills), the implementation of load-balancing techniques for distributed

simulation.

Acknowledgements

This work has been carried out in the framework of the DIVINA Chal-

lenge Team, which is funded by the Labex MS2T program. Labex MS2T is

supported by the French Government, through the program “Investments for

the future”, managed by the French National Agency for Research (Reference

ANR-11-IDEX-0004-02).

Bibliography

[1] L. Gupta, R. Jain, G. Vaszkun, Survey of important issues in uav commu-

nication networks, IEEE Communications Surveys Tutorials 18 (2) (2016)

1123–1152.

[2] M. Erdelj, E. Natalizio, Uav-assisted disaster management: Applications

and open issues, in: 2016 International Conference on Computing, Net-

working and Communications (ICNC), 2016, pp. 1–5.

[3] S. Hayat, E. Yanmaz, R. Muzaffar, Survey on unmanned aerial vehicle

networks for civil applications: A communications viewpoint, IEEE Com-

munications Surveys Tutorials 18 (4) (2016) 2624–2661.

[4] M. Erdelj, E. Natalizio, K. R. Chowdhury, I. F. Akyildiz, Help from the

sky: Leveraging uavs for disaster management, IEEE Pervasive Computing

16 (1) (2017) 24–32.

[5] S. Rao, D. Ghose, Sliding mode control-based autopilots for leaderless con-

sensus of unmanned aerial vehicles, IEEE Transactions on Control Systems

Technology 22 (5) (2014) 1964–1972.

40

[6] M. Yajnik, S. Moon, J. Kurose, D. Towsley, Measurement and modelling

of the temporal dependence in packet loss, in: INFOCOM ’99. Eighteenth

Annual Joint Conference of the IEEE Computer and Communications So-

cieties. Proceedings. IEEE, Vol. 1, 1999, pp. 345–352 vol.1.

[7] Y. Zeng, R. Zhang, T. J. Lim, Wireless communications with unmanned

aerial vehicles: opportunities and challenges, IEEE Communications Mag-

azine 54 (5) (2016) 36–42.

[8] T. T. Mac, C. Copot, T. T. Duc, R. D. Keyser, AR.Drone uav control

parameters tuning based on particle swarm optimization algorithm, in:

2016 IEEE International Conference on Automation, Quality and Testing,

Robotics (AQTR), 2016, pp. 1–6.

[9] K. Daniel, S. Rohde, N. Goddemeier, C. Wietfeld, Cognitive agent mobility

for aerial sensor networks, IEEE Sensors Journal 11 (11) (2011) 2671–2682.

[10] S. Morgenthaler, T. Braun, Z. Zhao, T. Staub, M. Anwander, UAVNet:

A mobile wireless mesh network using unmanned aerial vehicles, in: 2012

IEEE Globecom Workshops, 2012, pp. 1603–1608.

[11] S. Rosati, K. Kruelecki, G. Heitz, D. Floreano, B. Rimoldi, Dynamic rout-

ing for flying ad hoc networks, IEEE Transactions on Vehicular Technology

65 (3) (2016) 1690–1700.

[12] Y. Cai, F. R. Yu, J. Li, Y. Zhou, L. Lamont, Medium access control for

unmanned aerial vehicle (uav) ad-hoc networks with full-duplex radios and

multipacket reception capability, IEEE Transactions on Vehicular Technol-

ogy 62 (1) (2013) 390–394.

[13] E. Yanmaz, R. Kuschnig, C. Bettstetter, Achieving air-ground communi-

cations in 802.11 networks with three-dimensional aerial mobility, in: 2013

Proceedings IEEE INFOCOM, 2013, pp. 120–124.

[14] Phoenix rc, http://www.phoenix-sim.com.

41

http://www.phoenix-sim.com

[15] Simdrone from h-sim, http://www.h-sim.com.

[16] A. Varga, Omnet++, in: Modeling and Tools for Network Simulation,

Springer, 2010, pp. 35–59.

[17] Network Simulator- ns (version 2), available from

http://www.isi.edu/nsnam/ns/.

[18] FL-AIR: Framework libre air, available from https://uav.hds.utc.fr/

software-flair/.

[19] P. Fuxjaeger, S. Ruehrup, Validation of the ns-3 interference model for

ieee802.11 networks, in: 2015 8th IFIP Wireless and Mobile Networking

Conference (WMNC), 2015, pp. 216–222.

[20] S. Manfredi, C. Pascariello, N. R. Zema, I. Fantoni, M. Krl, A cooperative

packet-loss-tolerant algorithm for wireless networked robots rendezvous, in:

2017 International Conference on Computing, Networking and Communi-

cations (ICNC), 2017, pp. 1058–1062.

[21] A. Trotta, M. D. Felice, L. Bedogni, L. Bononi, F. Panzieri, Connectivity

recovery in post-disaster scenarios through cognitive radio swarms, Com-

puter Networks (Elsevier) 91 (2015) 68 – 89.

[22] M. D. Felice, A. Trotta, L. Bedogni, K. R. Chowdhury, L. Bononi, Self-

organizing aerial mesh networks for emergency communication, in: 2014

IEEE 25th Annual International Symposium on Personal, Indoor, and Mo-

bile Radio Communication (PIMRC), 2014, pp. 1631–1636.

[23] C. Sommer, F. Dressler, Progressing toward realistic mobility models in

vanet simulations, IEEE Communications Magazine 46 (11) (2008) 132–

137.

[24] V. Kumar, L. Lin, D. Krajzewicz, F. Hrizi, O. Martinez, J. Gozalvez,

R. Bauza, iTETRIS: Adaptation of ITS technologies for large scale in-

tegrated simulation, in: 2010 IEEE 71st Vehicular Technology Conference,

2010, pp. 1–5.

42

http://www.h-sim.com
https://uav.hds.utc.fr/software-flair/
https://uav.hds.utc.fr/software-flair/

[25] C. Pinciroli, V. Trianni, R. O’Grady, G. Pini, A. Brutschy, M. Brambilla,

N. Mathews, E. Ferrante, G. Di Caro, F. Ducatelle, M. Birattari, L. M.

Gambardella, M. Dorigo, Argos: a modular, parallel, multi-engine simula-

tor for multi-robot systems, Swarm Intelligence 6 (4) (2012) 271–295.

[26] M. Kudelski, L. M. Gambardella, G. A. D. Caro, RoboNetSim: An inte-

grated framework for multi-robot and network simulation, Robotics and

Autonomous Systems 61 (5) (2013) 483 – 496.

[27] Realfight drone, http://www.realflight.com/drone.

[28] Gazebo, http://gazebosim.org.

[29] Morse, http://www.openrobots.org/morse/doc/stable/morse.html.

[30] Ros, http://www.ros.org.

[31] Pixhawk, https://pixhawk.org.

[32] Ardupilot mega, http://www.ardupilot.co.uk.

[33] H. Nawaz, H. M. Ali, G. Nabi, Simulation based analysis of reactive pro-

tocols metrics in manet using opnet, Sindh University Research Journal

(Science Series) 46 (4) (2014) 531–538.

[34] Q. N. Simulator, Scalable network technologies, Inc.[Online]. Available:

www. qualnet. com.

[35] X. Zeng, R. Bagrodia, M. Gerla, Glomosim: a library for parallel simulation

of large-scale wireless networks, in: Parallel and Distributed Simulation,

1998. PADS 98. Proceedings. Twelfth Workshop on, 1998, pp. 154–161.

[36] F. Kargl, E. Schoch, Simulation of MANETs: A qualitative comparison

between JiST/SWANS and Ns-2, in: Proceedings of the 1st International

Workshop on System Evaluation for Mobile Platforms, MobiEval ’07, ACM,

New York, NY, USA, 2007, pp. 41–46.

43

http://www.realflight.com/drone
http://gazebosim.org
http://www.openrobots.org/morse/doc/stable/morse.html
http://www.ros.org
https://pixhawk.org
http://www.ardupilot.co.uk

[37] E. Ben Hamida, G. Chelius, J. M. Gorce, Impact of the physical layer

modeling on the accuracy and scalability of wireless network simulation,

Simulation 85 (9) (2009) 574–588.

[38] WNS3 ’15: Proceedings of the 2015 Workshop on Ns-3, ACM, New York,

NY, USA, 2015.

[39] Udt: Breaking the data transfer bottleneck, available from http://

udt.sourceforge.net/.

[40] N. Point, Optitrack, Natural Point, Inc.,[Online]. Available: http://

www.naturalpoint.com/optitrack/. [Accessed 22 2 2014].

[41] R. L. P. Castillo, A. Dzul, Modelling and Control of Mini-Flying Machines,

Advances in Industrial Control, Springer-Verlag, London, 2005.

[42] Irrlicht 3d engine, available from http://irrlicht.sourceforge.net/.

[43] Xenomai, http://xenomai.org.

[44] A. Fouda, A. N. Ragab, A. Esswie, M. Marzban, A. Naser, M. Rehan,

A. S. Ibrahim, Real time video streaming over NS3-based emulated LTE

networks, Int. J. Electr. Commun. Comput. Technol.(IJECCT) 4 (3).

[45] M. Helsley, LXC: Linux container tools, IBM devloperWorks Technical Li-

brary.

[46] S. Manfredi, E. Natalizio, C. Pascariello, N. R. Zema, A packet loss tolerant

rendezvous algorithm for wireless networked robot systems, Asian Journal

of Control (2017).

[47] A. Eichler, H. Werner, Closed-form solution for optimal convergence speed

of multi-agent systems with discrete-time double-integrator dynamics for

fixed weight ratios, Systems & Control Letters 71 (2014) 7 – 13.

[48] W. Ren, Consensus strategies for cooperative control of vehicle formations,

IET Control & Theory Applications 1 (2) (2007) 505–512.

44

http://udt.sourceforge.net/
http://udt.sourceforge.net/
http://www. naturalpoint. com/optitrack/
http://www. naturalpoint. com/optitrack/
http://irrlicht.sourceforge.net/
http://xenomai.org

[49] Federal communication commission (fcc) report, deployable

aerial communications architecture in emergency communications,

https://www.fcc.gov/general/deployable-aerial-communications-

architecture-emergency-communications, 2011.

[50] B. Wang, H. B. Lim, D. Ma, A survey of movement strategies for improving

network coverage in wireless sensor networks, Computer Communications

32 (13 - 14) (2009) 1427 – 1436.

[51] K. Derr, M. Manic, Extended virtual spring mesh (evsm): The distributed

self-organizing mobile ad hoc network for area exploration, IEEE Transac-

tions on Industrial Electronics 58 (12) (2011) 5424–5437.

[52] Cisco Aironet 802.11a/b/g Wireless CardBus Adapter, Data Sheet avail-

able on line at. http://www.cisco.com/c/en/us/products/collateral/

wireless/aironet-802-11a-b-g-cardbus-wireless-lan-client-

adapter-cb21ag/product data sheet09186a00801ebc29.html.

45

https://www.fcc.gov/general/deployable-aerial-communications-architecture-emergency-communications
https://www.fcc.gov/general/deployable-aerial-communications-architecture-emergency-communications
http://www.cisco.com/c/en/us/products/collateral/wireless/aironet-802-11a-b-g-cardbus-wireless-lan-client-adapter-cb21ag/product_data_sheet09186a00801ebc29.html
http://www.cisco.com/c/en/us/products/collateral/wireless/aironet-802-11a-b-g-cardbus-wireless-lan-client-adapter-cb21ag/product_data_sheet09186a00801ebc29.html
http://www.cisco.com/c/en/us/products/collateral/wireless/aironet-802-11a-b-g-cardbus-wireless-lan-client-adapter-cb21ag/product_data_sheet09186a00801ebc29.html

	Copertina_postprint_IRIS_UNIBO
	AHN68-2018
	Introduction
	Related Works
	UAV Simulators
	Network Simulators

	The CUSCUS Platform
	The Logical Architecture
	FL-AIR
	Networking with NS-3

	Implementation/Interworking

	Use Cases
	Dynamic Formation Control
	Static Coverage

	Performance Evaluation
	Scalability analysis
	Dynamic Formation Control scenario analysis
	The UAV weight as a parameter
	Coverage scenario analysis

	Conclusion and Future Works

