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Abstract—With the current exponential growth in traffic and
service demands, device-to-device (D2D) cooperation is identified
as a major mechanism to enable 5G networks to effectively
and efficiently augment network resources. The effectiveness of
D2D cooperation depends on a wide range of decision making
processes that include cluster formation, resource allocation, in
addition to connection and mobility management. Irrespective
of the D2D cooperation scenario whether in sensor, ad hoc, or
cellular networks, the literature normally assumes that devices
selected as relays or data sources are reliable; this means that
they will maintain the connection till the communication session
ends. Yet, this assumption is challenged in practice since devices’
batteries can be depleted (e.g., sensors in an IoT network) and
devices can move leading to connection termination (e.g., mobile
users in a WiFi network or cars in a vehicular ad hoc network).
To this end, we address the problem of reliable D2D cooperation
in wireless networks by proposing a novel approach that is
proactive by utilizing reliability metrics in the decision making
process, and scalable by having low implementation complexity
suitable for dense networks. These differentiating factors are
shown to enhance the overall network reliability compared to
standard techniques and to facilitate dynamic operation which is
essential for practical implementation. Performance is evaluated
using extensive simulations in addition to test bed experimental
demonstration in order to quantify gains and extract insights on
a range of existing design tradeoffs.

Index Terms – Device-to-device cooperation, mobile-to-
mobile data sharing, traffic offloading, robust clustering,
wireless test bed design, reliable communications

I. INTRODUCTION

Device-to-device (D2D) communication is expected to play
a key role in 5G systems to provision ultra dense networks
with improved performance, reduced latency, and lower energy
consumption. Forming reliable D2D communications is yet
another challenge that is foreseen to realize ultra-reliable low
latency communications. Cooperation among devices has been
shown to be highly effective in enhancing the performance
of infrastructure-based wireless networks for a wide range of
use cases; devices in the context of this work can be sensor
nodes in an Internet of Things (IoT) network, mobile users
in a cellular or WiFi network, or cars in a vehicular ad hoc
network (VANET) [1], [2], [3], [4], [5]. Facilitating mobile-to-
mobile, sensor-to-sensor or car-to-car (all denoted as device-
to-device (D2D) in the sequel) cooperation can lead to traffic
offloading, throughput enhancement, energy consumption sav-
ings, coverage extension, and/or cost reduction, e.g., see [6],
[7], [8], [9] and the references therein.

A major challenge that hinders reaping the benefits of
cooperation in wireless networks is reliability and robustness

against device-level dynamics as channel conditions vary,
devices move, and devices’ data traffic and energy/processing
capabilities change over time. In infrastructure-based coopera-
tive wireless networks, an essential element is the grouping of
nodes into clusters whereby cluster head devices are selected
intelligently to act as relays between infrastructure nodes (e.g.,
cellular base stations or WiFi access points) and other devices;
the data communication within any cluster can be disrupted
upon the loss of its cluster head device, due to battery drain,
device mobility, device malfunctioning, or even a malicious
security attack. To this end, in this work we focus on the
design of a proactive scalable approach for reliable cluster
formation in cooperative wireless networks while achieving
target performance requirements and having low complexity
to be practically applicable to high dense scenarios.

A. Related Work

Even though there is rich literature on clustering techniques
and solutions for cooperative wireless networks (e.g., see
the surveys [10], [11] and the references therein), there is
relatively less progress on addressing challenges related to
fault tolerance and reliability. Failure recovery and surviv-
ability have been addressed in the context of wireless sensor
and ad hoc network scenarios (e.g., see [12], [13], [14]). In
sensor networks, failure recovery typically aims at maintaining
connectivity as sensor devices die due to energy depletion,
whereas in ad hoc networks a key aim is to adapt multihop
routing in order to maintain network level connectivity as
nodes move around. The related literature can in general
be divided into reactive (post clustering) and proactive (pre
clustering) reliability enhancement techniques.

Reactive techniques aim at either minimizing failures or
recovering from failure events in a dynamic fashion after
cluster formation. The authors in [15] present an RSSI (re-
ceived signal strength indicator) based approach for cluster
formation in sensor networks whereby cluster head selection
takes into account signal strength level and energy budget
among neighbor nodes with the option of dynamically replac-
ing cluster heads based on given performance metrics. The
authors in [16] present a mechanism for dynamic cluster head
re-election by executing an update algorithm on a periodic
basis using pre-configured parameters. The authors in [17]
address fault tolerance in wireless sensor network scenarios
using a distributed real-time recovery algorithm based on
periodic protocol exchange messages to identify failures and
deal with them. In [18], the authors presented several low
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complexity reactive algorithms to deal with mobility in content
distribution networks with D2D cooperation while taking into
account three classes of events: an existing device leaves
the network which is highly challenging when the device is
a cluster head, an existing device moves locally within the
network, and a new incoming device joins the network.

On the other hand, proactive techniques take preventive
measures as part of the cluster formation process, either by
considering device reliability metrics when electing cluster
heads (also called group owners) or by identifying and as-
signing backup cluster heads to deal with failure events. For
example, the authors in [19] present an interesting approach
for group re-formation in WiFi-Direct D2D networks that
includes the election of an emergency group owner serving
as a backup cluster head and the configuration of dormant
backend links for fast group establishment after failure events.
The authors in [20], [21], [22], [23] present robust clustering
algorithms for different network scenarios based on backup
(also called secondary or redundant) cluster head selection
taking into account metrics such as node degree and energy
consumption. A hierarchical fuzzy logic based approach was
developed in [24] whereby cluster heads connect to a super
cluster head node acting as relay to a mobile base station.
Short range D2D wireless technologies such as WiFi-Direct
and Bluetooth do not include intelligence for group owner
(cluster head) election as part of their standards. This triggered
research to devise optimized mechanisms for cluster head
election, either based on rotation among devices to distribute
load over time such as the LEACH (low-energy adaptive
clustering hierarchy) protocol [25] or based on biased selection
taking into account performance metrics such as centrality of
location or availability of energy budget [26], [27], [15], [28].
For example, the LEACH protocol divides time into rounds
whereby in each round a new random sensor node is assigned
as cluster head to evenly distribute the energy load among all
sensors over time.

B. Contributions
In this paper, we present a novel proactive approach for

reliable cluster formation among devices in infrastructure-
based wireless network with D2D cooperation. The key differ-
entiating factors of the proposed approach are its flexibility and
scalability. The approach is flexible in proactively capturing
different reliability metrics as part of a generic cost function
and is flexible in its applicability to different wireless network
scenarios including sensors, IoT devices, and mobile users. On
the other hand, the approach is scalable to network scenarios
with high density of devices as it has a relatively fast execution
time. It is important to highlight that the proposed proactive
approach can complement a wide range of existing state-
of-the-art reactive techniques to further enhance the level of
reliability. Thus, our proactive approach runs before initiating a
given service to decide on cluster heads that will be managing
D2D communications. During service operation and in the
case of an unexpected cluster head failure, a complementary
reactive approach has to be implemented. The reader is re-
ferred to Section I-A for a list of existing reactive approaches
that can be incorporated.

In terms of solution methodology, we formulate the problem
as an integer linear program and generate optimal results for
small scale scenarios. For large scale scenarios, we utilize a
fast and effective algorithm based on the notion of electrostatic
forces; we demonstrate its effectiveness in achieving close-to-
optimal results and its scalability by generating results for high
dense environments with multiple access points. Finally, we
extend the contributions to experimental evaluation using test
bed implementation in order to demonstrate the algorithm’s
feasibility and effectiveness under realistic operational con-
ditions. It is important to note that very few studies in the
literature include practical test bed implementation due to the
challenges in integrating intelligence into devices especially
when dealing with off the shelf smartphones; for example,
see [29], [30] for WiFi-Direct ad hoc network formation
among Android phones, however, without dealing with intel-
ligence related to cluster head election. Moreover, the authors
in [16] present Android based implementation to demonstrate
the practical implementation of their group creation and inter-
communication approach using a network scenario composed
of five devices.

In brief, the contributions of this work are multi-fold and can
be summarized as follows: 1) A novel cluster formation mech-
anism in wireless networks with device-to-device cooperation
is proposed to optimize network reliability; 2) A heuristic ap-
proach with close-to-optimal performance and high efficiency
is proposed for networks with high density of devices such
as IoT and WSN scenarios; 3) An experimental testbed is
developed to demonstrate the practicality and effectiveness of
the proposed algorithms in real scenarios.

C. Organization

Section II presents the system model including key as-
sumptions and metrics. Section III includes the optimization
problem formulation with explanation of the objective func-
tion, constraints, and problem complexity. Section IV presents
the solution methodology including the details of the utilized
algorithm; results and analysis are then summarized in Sec-
tion V for a wide range of scenarios with various network and
design parameters, including experimental evaluation. Finally,
conclusions are drawn in Section VI.

II. SYSTEM MODEL

We consider a wireless network scenario composed of N
devices (sensors, IoT nodes, or mobile users) and M WiFi
access points (APs) or cellular base stations in a given geo-
graphic area. The devices are equipped with multiple wireless
interfaces supporting long range (LR) connectivity to the APs
and short range (SR) connectivity to other device over direct
D2D links (e.g., WiFi-Direct, LTE-Direct, or Bluetooth). It is
worth noting here that such setup may lead to notable energy
savings since communications within the cluster take place
over short range connections that are more energy efficient
than long range links [9], [31], [32]. Moreover, we assume
centralized intelligence in the network side to facilitate D2D
cooperation whereby the devices are divided into clusters with
one device per cluster selected as a cluster head. The cluster
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head acts then as a relay for data download between the
APs and other devices in its cluster. Even though this is a
standard system model, the novelty and differentiating factor
of our work is the focus on reliability in the cluster formation
process in order to minimize failure costs and enhance overall
network performance. Fig. 1 presents a general schematic of
the adopted system model and highlights that each device has
certain characteristics reflected via battery status, availability
of multiple interface, etc.

Fig. 1: Example system model.

We denote the reliability of a given device i as Γi, where Γi
is a value between 0 and 1 and is a function of multiple factors
including battery life denoted as Ei and device rating denoted
as γi. For the energy metric, we define a percentage threshold
β below which the device cannot cooperate due to limited
budget and, thus, is marked non-reliable. On the other hand,
for the device rating γi, we assume it is a value between 0
and 1 based on learning from historical data on the device’s
performance with respect to reliable cooperation, for example,
based on the device’s mobility patterns or D2D data sharing
success rate. Connection failure due to mobility is a minor
concern in limited mobility environments such as static WSN
or IoT. In the case of more dynamic environments, devices
with unexpected mobility pattern that disturbs existing links
among neighboring devices would receive a lower γi to avoid
selecting them as cluster heads in future D2D communica-
tions. We use the following expression to model the device’s
reliability, which gets non-zero value as long as γi is non-zero
and the actual battery level is above the threshold βE where
E represents the full battery capacity; the E−βE factor in the
denominator is used for normalization purposes to constrain
Γi between 0 and 1:

Γi = γi min

(
Ei − βE
E − βE

, 0

)
(1)

Let D = {d1, d2, · · · , dN} denote the set of devices and
S = {s1, s2, · · · , sM} denote the set of available access
points. The system can then be modeled as a graph G =
(V,W ), where V = D∪S and W the set of edges containing
edge (u, v) if and only if two nodes u and v are within radio
range with respect to each other. Moreover, we define the set
C ⊂ D composed of cluster head devices selected to relay
downloaded data to other devices in the set D − C using SR

TABLE I: Notations used in problem formulation

Notation Description
N Number of devices
M Number of WiFi access points or cellular base stations
A N×N association matrix that indicates D2D connections

among devices over SR
aij binary variable that indicates if device i has device j as

cluster head
B M×N association matrix between APs and devices over

LR
bmi binary variable that indicates if device i is associated to

AP m
Ci Cost function that models damage caused to network upon

the failure of device i being assigned as cluster head
Pl,mi Power received by device i from AP m over LR
Ps,ij Power received by device j from device i over SR D2D
σ2 Total noise level over any connection
Γi Reliability metric of a given device i
ρ Tradeoff between network reliability and performance
∆LR Maximum number of devices connected to one AP
∆SR Maximum number of devices connected to one cluster

head
θ Outage probability set by network operator
SNRLR minimum SNR threshold on LR
SNRSR minimum SNR threshold on SR

communications links. Thus, data can be received either over
a LR link directly from the AP or SR link from a neighboring
node in C.

III. PROBLEM FORMULATION

We formulate the problem of reliable cluster formation
with performance constraints as an integer linear programming
problem. We define N×N association matrix A such that aij
is a binary value that determines if device i is sharing data
with device j over a SR connection. Moreover, we define an
M ×N association matrix B such that bmi is a binary value
that determines if AP m is transmitting data directly to device i
over a LR connection. We denote by Pl,mi the power received
by device i from AP m over a LR connection and by Ps,ij the
power received by device j from neighboring device i over a
SR D2D connection.

The goal is to select intelligently a set of devices C as
cluster heads while jointly optimizing network reliability and
performance. We optimize performance by maximizing the
received power level at all devices irrespective if over LR
connections from an AP or over SR connection from another
nearby device. The received power level can then be mapped to
data rate using R = W log2(1+SNR) where W is bandwidth,
SNR = Preceived/σ

2, Preceived is received power level either
on SR or LR connection, and σ2 represents total noise level.
In addition to improving performance in terms of increased
bit rate, the clustering approach also leads to energy savings
while transmitting data among devices. As the received power
level is maximized, devices within a cluster are selected in
close proximity to each other and can transmit their data with
reduced power leading to major energy reduction gains.

In order to model network reliability, we define a generic
cost function Ci that models the damage caused to the network
when device i acting as cluster head fails while sharing content
with other nearby devices in its cluster. We model the failure
cost of device i as a function of its individual reliability metric
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Γi defined in (1) in addition to the number of devices it serves
on the SR, i.e., number of devices in its cluster. Devices
with relatively lower battery levels are allocated a reduced
reliability metric and, thus, the solution opts to eliminate them
from being selected as cluster heads. In addition, when the
number of devices served by a cluster head increases, its
failure cost grows as it impacts a larger pool of devices. The
failure cost Ci can be expressed as follows:

Ci = (1− Γi)×
N∑

j=1,j 6=i

aij (2)

The optimization problem can then be formulated as fol-
lows:

minimize ρ
N∑
i=1

Ci −
M∑
m=1

N∑
i=1

bmiPl,mi −
N∑
i=1

N∑
j=1,j 6=i

aijPs,ij

(3)

subject to

aij ≤
M∑
m=1

bmi i, j = 1, ..., N (4)

M∑
m=1

bmi +

N∑
j=1,j 6=i

aji ≤ 1 i = 1, ..., N (5)

N∑
i=1

bmi ≤ ∆LR m = 1, ...,M (6)

N∑
j=1

aij ≤ ∆SR i = 1, ..., N (7)

M∑
m=1

N∑
i=1

bmi +

N∑
i=1

N∑
j=1

aij ≥ (1− θ)N (8)

Pl,mi
σ2

≥ bmiSNRLR ∀m, i (9)

Ps,ij
σ2
≥ aijSNRSR ∀i, j

(10)

The objective function in (3) balances a trade-off between
maximizing the overall received power levels over all LR and
SR connections and minimizing the failure cost for each clus-
ter head device in C. The parameter ρ is introduced to balance
the tradeoff between network reliability and performance; for
instance, if ρ is large, then the solution would favor producing
a more reliable network at the cost of overall performance and
vice-versa.

The first constraint in (4) specifies that device i can transmit
data to device j over a SR connection only when it is receiving
its content from an AP over a LR connection. We limit
the level of cooperation to two hops for practical feasibility
reasons, especially in use cases where devices are low end IoT
sensors. The second constraint in (5) limits the active reception
data links of any device to one; it is satisfied if and only if a
device is receiving data over either a LR link or SR link but
not both simultaneously. Constraints represented in (6) and (7)

limit the number of devices connected to the AP and to a
cluster head to ∆LR and ∆SR, respectively; these constraints
are added to capture the limit on the number of transmission
channels per AP or device. The constraint in (8) bounds
the outage probability in the network; the number of served
devices is set to a minimum of (1− θ)N where θ represents
the outage probability set by the network operator. Finally, the
constraints in (9) and (10) require the received SNR per device
to be above a minimum threshold on both LR (SNRLR) and
SR (SNRSR) connections in order to maintain a target level of
performance guarantee. The values of the various thresholds
and parameters can be configured depending on the application
scenario and requirements.

The formulated problem is an integer linear program-
ming (ILP) problem and can be mapped to the K-medoids
problem, which is NP-hard [33], [34]. The K-medoids prob-
lem entails selecting K centroids among devices such that
the aggregated distance between the centroids and devices
is minimized. Our problem can actually be reduced to K-
medoids by relaxing problem constraints. For instance, in the
case of a single AP, we set the reliability of all devices to
1 and set system parameters ρ, θ, ∆LR, ∆SR to 0, 0, K,
and N , respectively. Consequently, we are only looking for
centroids that minimize the distance between them and other
nodes, which maps to the K-medoids problem. In addition,
our problem becomes harder with multiple APs since centroid
selection is also affected by the deployed position of the APs,
as we attempt to also minimize the distance between each AP
and the centroids (cluster heads) that it serves. To this end,
we generate in the results section optimal solutions only for
relatively small scale scenarios. In addition, we propose in the
following section an efficient proactive heuristic algorithm for
reliable cluster formation that is scalable to large scenarios
with close-to-optimal performance.

IV. SOLUTION METHODOLOGY AND ALGORITHMS

The problem formulation in (3) can be solved for relatively
small scale network scenarios to generate optimal reliable clus-
tering results. For large scale network scenarios, we propose
the utilization of a clustering algorithm based on the notion
of electrostatic forces [35]. The authors in [35], [36] demon-
strated the validity and effectiveness of an approach based
on electrostatic forces for applications that include general
data clustering and tumor detection in images. In our work,
we capitalize on this approach and extend it to address the
problem of reliable cluster formation in cooperative wireless
networks.

The algorithm starts by randomly scattering K virtual
centroids on the given area and then iteratively utilizes the
law of electrostatics to determine optimized positions for
the centroids; we describe these centroids as “virtual” since
their locations need not overlap with existing devices in the
network which requires an extension phase of the algorithm
implementation to map each “virtual” centroid to one of the
existing devices that would serve as a cluster head. In the
algorithm, each device is assigned a negative fixed charge
while virtual centroids are assigned dynamic positive charges;
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hence, the force among centroids is repulsive, while the force
between centroids and devices is attractive. In the context of
our problem, we let the charge of each device be a function
of its own reliability function as follows:

Qi = −Γi. (11)

This allows devices to be clustered based on their reliability
and relative positions. As for identifying the best centroid
locations, we set the charge of a given centroid k to be
inversely proportional to the number of devices Nk associated
to it. Thus, the charge of centroid k changes in every iteration
as follows:

Qk =
λ

Nk + 1
. (12)

where λ is a pre-set parameter with value between 0 and 1; it
can be configured to control the distance between the virtual
centroid locations in the final solution.

In the network, there exist two main types of forces, namely,
repulsion and attraction. Virtual centroids repel each other
because they carry like charges while a centroid and a device
attract each other because they carry unlike charges. Based
on Coulomb’s law, the force experienced by centroid k in the
vicinity of centroid j can be calculated as follows using a unit
vector to determine the force direction:

~Fjk = κ
QkQj
d2k,j

× ~ck − ~cj
‖~ck − ~cj‖

, (13)

where κ is Coulomb’s constant, dk,j is the Euclidean distance
between k and j, and ~ck and ~cj represent the centroid
coordinate vectors, respectively.

The electrostatic force of attraction exerted by device j on
centroid k is similarly calculated as follows:

~Fjk = κ
QkQj
d2k,j

× ~ck − ~pj
‖~ck − ~pj‖

. (14)

where ~pj is the device coordinate vector.
Consequently, an electric field is formed among the nodes

causing centroids to repel from each other and attract to
devices. Hence, centroids move until electrostatic equilibrium
is reached where the sum of forces is balanced and centroids
are fixed. We denote the total force exerted on centroid k
as ~Fk and calculate it as the summation of all repulsion and
attraction forces as follows:

~Fk =
∑
j 6=k

~Fjk

=
∑

j 6=k,j∈C

κ
QkQj
d2k,j

× ~ck − ~cj
‖~ck − ~cj‖

+
∑
j∈D

κ
QkQj
d2k,j

× ~ck − ~pj
‖~ck − ~pj‖

.

(15)

The direction in which centroids move is determined accord-
ing to the sum of forces exerted on each centroid with a pre-
configured step size η. Fixing the step size, we can calculate
the centroid’s new position as follows:

~ck
τ+1 = ~ck

τ + η
~Fk∥∥∥ ~Fk∥∥∥ , (16)

where τ represents the iteration number reflecting the algo-
rithm’s execution over time. The algorithm runs over multiple
iterations till it reaches a stable state, whereby the virtual
centroids positions vary only locally within a circle of small
radius. Therefore, the algorithm’s implementation keeps track
of the position variation increments per centroid to decide
when to stop and generate a solution.

The presented solution approach is denoted as RForce and
is divided into three main phases: Phase 1, summarized in
Algorithm 1 and Algorithm 2, optimizes the locations of vir-
tual centroids using proposed approach based on electrostatic
forces; Phase 2, summarized in Algorithm 3, maps the virtual
centroids to existing devices that will act as cluster heads; and
Phase 3, summarized in Algorithm 4, associates cluster heads
with APs in an optimized way that enhances the download bit
rate while satisfying the given constraints.

Algorithm 1 is called with two main inputs, a vector of
randomly generated centroids and a vector of devices with
given locations; the devices are the set of sensors or users
deployed in the area of interest. The algorithm then goes
into a loop that only halts when the centroids reach a stable
state whereby their positions are nearly no longer varying.
Inside the loop, the algorithm initially starts by resetting all
associations between centroids and devices that have been
done in the previous iteration by setting the centroids degree to
zero and finding the best set of devices for each centroid. To do
this, the algorithm utilizes ASSOCIATE CENTROIDS method
which loops through the devices and finds for each device the
nearest centroid using the BEST CENTROID method taking
into account the constraint on degree bound. After finding
the best centroid for each device, each centroid ck gets its
own vector of associated devices which form the set Ak;
hence, Ak with ck form an initial cluster. After obtaining the
corresponding centroid of each device, we can now calculate
the forces exerted on each centroid by the set of devices within
its cluster and by the other centroids, using (15). Then the
centroid is moved according to (16).

In Phase 2 of the algorithm, the virtual centroids with
optimized locations are mapped to existing devices that will
act as cluster heads using the intelligence summarized in
Algorithm 3. It starts by defining a set M that stores the
indices of the cluster head node for each device di. Initially,
di is set to -1 which means that this set does not belong to
any group. We then start by looping on the set of centroids
and finding for each virtual centroid a corresponding device
that is not connected to a cluster and is within minimal
distance to achieve high communications quality, using the
BEST DEVICE method. Finally, after mapping each virtual
centroid to a cluster head device, we shift all the virtual
centroid’s associated devices to the corresponding cluster head
device to form a cluster.

In Phase 3 of the algorithm, all cluster heads need to be
connected to the available set of APs as our system model
assumes an infrastructure based network scenario. The allo-
cation should maximize performance quality while respecting
the constraint on the number of LR connections per AP. One
can address this using a standard MST (Minimum Spanning
Tree) algorithm such as Prim or Kruskal in order to ensure
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Algorithm 1 RFORCE - PHASE 1

1: procedure RFORCE(C, D)
2: INPUT: Set of centroids C and set of devices D
3: OUTPUT: Association matrix A and optimized location of

all centroids
4: while NOT STABLE(C) do
5: for each centroid ck ∈ C do
6: ck.degree ← 0
7: end for
8: A ← ASSOCIATE CENTROIDS(C,D)
9: F ← ∅

10: for each centroid ck ∈ C do
11: for each node v ∈ C ∪ Ak do
12: Fk ← Fk + FORCE(ck, v)
13: end for
14: end for
15: MOVE CENTROIDS(C,F)
16: end while
17: end procedure
18:
19: procedure NOT STABLE(C)
20: INPUT: Set of centroids C
21: OUTPUT: TRUE if at least one centroid ck changed its

position, FALSE otherwise
22: for each centroid ck ∈ C do
23: if ck.x 6= ck.x

′ OR ck.y 6= ck.y
′ then

24: return TRUE
25: end if
26: end for
27: return FALSE
28: end procedure
29:
30: procedure MOVE CENTROID(C, F)
31: INPUT: Set of centroids C, and corresponding force F

exerted on them
32: OUTPUT: Updated coordinates of each centroid
33: for each centroid ck ∈ C do
34: ck.x

′ = ck.x
35: ck.y

′ = ck.y
36: ck.x

′ = ck.x+ η Fk.x
‖Fk‖

37: ck.y
′ = ck.y + η Fk.y

‖Fk‖
38: end for
39: end procedure

that one cluster head receives its content from only one of the
available APs. However, since the APs have a degree bound
of ∆LR, this problem reduces to MBDST (Minimum Bounded
Degree Spanning Tree) which is known to be NP-hard [37].
Thus, we resort to a modified version of Kruskal’s algorithm
to associate cluster heads to APs without violating the degree
constraint of the APs and the tree property (see Algorithm 4
for the details).

V. PERFORMANCE RESULTS AND ANALYSIS

In this section, we demonstrate the effectiveness of the
proposed proactive and scalable approach for reliable cluster

Algorithm 2 RFORCE - PHASE 1 cont’d
ASSOCIATE CENTROIDS AND BEST CENTROID METHODS

40: procedure ASSOCIATE CENTROIDS(C, D)
41: INPUT: Set of centroids C and set of devices D
42: OUTPUT: Association matrix A that indicates devices

mapped to each centroid
43: A ← ∅
44: for each device d ∈ D do
45: ck ← BEST CENTROID(C, d)
46: ck.degree ← ck.degree + 1;
47: Ak ← Ak ∪ d
48: end for
49: return A
50: end procedure
51:
52: procedure BEST CENTROID(C, d)
53: INPUT: Set of centroids C and certain device d
54: OUTPUT: Best centroid for device d
55: best centroid ← ∅
56: min distance ←∞
57: for each centroid ck ∈ C do
58: distance ← DISTANCE(ck.x, ck.y, d.x, d.y)
59: if ck.degree < ∆SR AND distance < min distance

then
60: min distance ← distance
61: best centroid ← ck
62: end if
63: end for
64: return best centroid
65: end procedure

formation in cooperative wireless networks using a combi-
nation of optimization problem solutions for relatively small
scale network scenarios, Monte-Carlo simulation results based
on the presented low complexity algorithms in Section IV,
and experimental test bed results to demonstrate feasibility
under realistic operational conditions. For the optimization
problem solution, we use the intlinprog mixed integer linear
programming function in Matlab (denoted as ROptimal in the
sequel). We also compare the RForce algorithm to the standard
kMeans clustering algorithm in terms of reliability, download
bit rates, and execution complexity. For kMeans clustering,
we use Lloyd’s algorithm [38] with slight modification to
capture our problem constraints. We consider several network
scenarios and vary system parameters to produce a wide range
of results that allow for extracting insights and capturing
tradeoffs. For the Monte-Carlo simulation results, we average
over 25 runs for each set of network scenario and system
parameters and plot average performance metrics. Table II
summarizes the values used in the results for key network
and algorithm parameters.

Fig. 2 compares the running time in msec on a standard
PC for the different approaches assuming a network scenario
with one AP and number of devices ranging from 50 to
250. This clearly demonstrates the gap in complexity between
generating the optimal solution and generating solutions using
our proposed RForce algorithm and the standard kMeans
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Algorithm 3 RFORCE - PHASE 2

1: procedure MAP CENTROIDS(C, D, A)
2: INPUT: Set of centroids C, set of devices D, and associa-

tion matrix A
3: OUTPUT: Cluster head mapping vector M that denotes

the index of the device that acts as cluster head of each
device

4: M← ∅
5: for each device di ∈ D do
6: Mi ← −1
7: end for
8: for each centroid ck ∈ C do
9: dj ← BEST DEVICE(D,M, ck)

10: ASSOCIATE DEVICES(A,M, dj)
11: end for
12: end procedure
13:
14: procedure BEST DEVICE(D, M, c)
15: INPUT: Set of devices D, cluster head mapping vectorM,

and specific centroid c
16: OUTPUT: Best device that can play the role of the input

virtual centroid c
17: best device ← ∅
18: min distance ←∞
19: for each device di ∈ D do
20: distance ← DISTANCE(c.x, c.y, di.x, di.y)
21: if Mi == −1 AND distance < min distance then
22: min distance ← distance
23: best device ← di
24: end if
25: end for
26: return best device
27: end procedure
28:
29: procedure ASSOCIATE DEVICES(A,M, dj)
30: INPUT: Association matrixA, cluster head mapping vector
M, and device dj

31: OUTPUT: Updated cluster head mapping vector M to
indicate dj as the cluster head of all devices assigned to
the corresponding virtual centroid, where dj is output by
BEST DEVICE

32: Mj ← j
33: for each device di ∈ Aj do
34: Mi ← j
35: end for
36: end procedure
37:

algorithm; the computational complexity of the optimal so-
lution increases exponentially with feasible outcome only for
network scenarios having up to 100 devices. On the other hand,
RForce and kMeans are shown to have similar low complexity
and fast execution time which makes both of them applicable
to ultra dense network scenarios with dynamic adaptation over
time.

Fig. 3 and Fig. 4 compare the performance of the different
algorithms in terms of communications quality and reliability

Algorithm 4 RFORCE - PHASE 3

1: procedure RFORCE - MST(S, H)
2: INPUT: Set of access points S , and set of cluster heads H
3: OUTPUT: Association matrix B that maps each cluster

head to one access point
4: Q← ∅
5: B ← ∅
6: for each s ∈ S do
7: for each h ∈ H do
8: Q.push(s, h)
9: end for

10: end for
11: while Q is not empty do
12: s, h = Q.pop()
13: if s.degree < ∆LR then
14: Bh ← s
15: s.degree ← s.degree +1
16: end if
17: end while
18: return B
19: end procedure
20:

TABLE II: Network and algorithm parameters

Parameter Value
Area size 100m by 100m
AP transmit power 10 Watts
Device transmit power 0.22 Watts
β 0.3
σ2 1× 10−9 Watts
ρ 20
θ 0.05
∆LR 30 connections per AP
∆SR 10 connections per cluster head
SNRLR 1
SNRSR 1
λ 0.8
η 0.4
γi ∀i 1

for network scenarios with one AP and four APs, respectively,
assuming the number of devices to be served is between
50 and 250. The results demonstrate the effectiveness of the
proposed RForce approach in achieving network reliability
close to the optimal solution and much higher than the kMeans
approach; this is reflected in the plots showing the failure
cost metric, defined in (2), as a function of the number of
devices. The results also demonstrate that this effectiveness
in reliability is not negatively impacting communications bit
rate or download speed, as the average bit rate on the SR
links is shown to be close between RForce and kMeans, with
both worse than the optimal reliable clustering solution. For
example, assuming 200 devices in a given area with one AP,
clusters formed by kMeans lead to around triple the failure
cost compared to the solution produced by RForce, at the
expense of around 0.5 Mbps reduction in average SR bit rate
(around 10% reduction only); this is expected since kMeans
aims at maximizing network throughput without accounting
for reliability. When compared to the optimal solution, RForce
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Fig. 2: Average execution time of various approaches assuming
a network scenario with one AP.

is shown to have relatively close performance for both bit rate
and reliability, yet with much higher execution speed as shown
in Figure 2.

The same trends and insights on the effectiveness of RForce
are also demonstrated in Fig. 4 with four APs; compared to
the results with one AP, the bit rates become higher since
more devices are served by the four APs on LR connections
with closer proximity, whereas the failure cost also increases
since more devices are chosen as cluster heads due to their
proximity to the APs and some of these chosen cluster heads
do not have high reliability metrics. These observations are
consistent with the tradeoff between bit rate and reliability as
captured in the objective function of the optimization problem
formulation in (3).

We have also compared the various algorithms in terms of
average network LR bit rate with results shown in Fig. 5
assuming network scenarios with one and four APs having
between 50 and 250 devices. Similar to the SR bit rates, the
results produced by RForce are almost equivalent to kMeans
and both are not far from ROptimal. These results demon-
strate the effectiveness of Algorithm 4 in associating cluster
heads with APs with high bit rates on the LR connections.

Next, we present sample snapshot network scenarios with
results generated using RForce to provide additional insights
on number of clusters, their locations, and selection of cluster
heads. Fig. 6a presents one sample netwrok scenario with 200
devices uniformly distributed in a 100m × 100m area. We
represent APs as red squares, cluster heads as orange triangles,
connected devices as blue circles, and unconnected devices
in outage as gray circles. We also designate the reliability
factor of each device by its opacity level. The figure shows that
highly reliable devices (darker colors) are selected as cluster
heads and they are also well positioned among the devices they
serve in their cluster. Fig. 6b shows another example scenario
with four APs and 200 devices. We notice that RForce tends
to select more cluster heads when the number of APs increases
as the algorithm tends to choose more devices as cluster heads
to be served directly by the APs due to their proximity. It is
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Fig. 3: Top: Average network SR bit rate in Mbps versus
number of devices assuming one AP; Bottom: Average failure
cost versus number of devices assuming one AP.

shown also that there are clusters composed of a single device
served by in its own by the AP in order to avoid an increase
in outage rate. Fig. 7 compares the resulting clusters between
RForce and kMeans approaches; these plots show clearly the
relative limitations of kMeans as devices with low reliability
are chosen as cluster heads and outage rate is higher with more
devices not served.

A. Energy Efficiency and Scalability

In order to provide a more tangible quantification of the
impact of the failure cost metric, we estimate the lifetime of
each selected cluster head based on a given set of assumptions
taking into account available battery budget. We consider
devices powered with batteries of 2000 mAh capacity and use
the battery consumption model presented in [39]; to this end,
we assume that devices are downloading data continuously
with power consumption 1.27 W . We then derive the current
in Ampere to be 0.34 A assuming a nominal voltage of 3.7 V.
Battery lifetime is then calculated as E ∗ 2000 mAh/0.34 A,
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Fig. 4: Top: Average network SR bit rate in Mbps versus
number of devices assuming four APs; Bottom: Average
failure cost versus number of devices assuming four APs.

where E is the actual battery indicator in percentage. In our
simulations, we assigned to the devices arbitrary values of
E ranging from 10% to 90% to mimic a realistic network
scenario.

Fig. 8 plots the resulting average lifetime of all cluster heads
selected by each algorithm. RForce outperforms kMeans
as the number of devices varies with close performance to
ROptimal. We note that the average cluster head lifetime of
both RForce and ROptimal increase as the number of devices
increases within the given area due to the fact that they tend
to select the most reliable cluster heads and more of these
become available as the number of devices increases in the
given area of interest. The performance of kMeans, however,
is almost constant with limited variability as the number of
devices increases since the algorithm does not account for
reliability during the clustering process.

Finally, Fig. 9 presents results for ultra dense network
scenario with up to 4000 devices in order to demonstrate the
scalability of the proposed RForce approach and reconfirm its
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Fig. 5: Top: Average network LR bit rate in Mbps versus num-
ber of devices assuming one AP; Bottom: Average network LR
bit rate in Mbps versus number of devices assuming four APs.

superiority in terms of reliability compared to the standard
kMeans approach. It is important to note that it was not
feasible to generate optimal results for such high density
network scenarios due to high complexity.

B. Experimental Evaluation using Test Bed Measurements

In this section, we demonstrate the feasibility of implement-
ing the RForce algorithm in a real experimental test bed and
evaluate its operation under realistic network conditions. Our
test bed consists of a set of devices that are connected via a
WiFi access point to download content from a remote server.
The devices run software applications that facilitate formation
of clusters with coordination from a centralized management
server. In our implementation, we used Android smartphones
to mimic the devices as a proof of concept since smartphones
can be programmed to communicate over two interfaces and
serve as relays in cooperative networks, e.g., using WiFi or
cellular over LR with APs and WiFi-Direct or Bluetooth over
SR directly with neighboring devices. Similar implementation
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Fig. 6: Sample snapshot network scenarios generated by
RForce assuming one AP (upper plot) and four APs (lower
plot) with 200 devices.

can also be done on other types of devices such as sensors or
IoT nodes.

The software running at the device level starts with a
discovery phase where all devices scan the area and report
to the management server various information including their
IDs (e.g., MAC addresses), current battery capacity, list of dis-
covered neighboring devices, and the captured received signal
strength level from each neighboring device and AP. Fig. 10
presents a summary of the messages exchanged between a set
of devices and the management server.

The server uses the received information from the existing
devices to build an initial graph of the network as shown in
Fig. 11 from an example real experiment with 12 devices and
one AP. This graph is fully meshed because testing is done
in a lab where all devices can see each other; it also shows
the ID and battery indicator level as reported by each device
in addition to a measure of the channel quality between all
pairs of devices (the smaller the value on the lines connecting
devices, the better the channel quality). After discovering all
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Fig. 7: Sample snapshot network scenarios assuming one AP
and 200 devices with clustering using RForce (upper plot) and
kMeans (lower plot).

devices, the server runs the proposed RForce algorithm on
the graph to form reliable clusters of devices. The resulting
outcome is shown in Fig. 12 with the devices divided into
three clusters with cluster heads having relatively high battery
capacity and, thus, high reliability. Note that in the middle
cluster, the cluster head is not the best among the three nodes,
but it was selected due to its better channel quality with respect
to the AP and to the other devices; this demonstrates the
tradeoff characteristics of our approach balancing reliability
with communications bit rate.

To demonstrate how results vary between different network
scenarios, we present in Fig. 13 and Fig. 14 the initial network
graph and the resulting reliable clusters after running the
RForce algorithm, respectively, using another testbed experi-
ment with also 12 devices and one AP.

VI. CONCLUSIONS

In this work, we have proposed a proactive and scalable ap-
proach for reliable clustering in wireless networks with device-
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Fig. 8: Average cluster head lifetime in minutes as a function
of the number of devices assuming a network scenario with
one AP.
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Fig. 9: Average failure cost for ultra dense network scenarios
with up to 4000 devices.

to-device (D2D) offloading. Enhancing reliability in coopera-
tive wireless networks is essential for practical implementation
as devices (mobile users in a WiFi or cellular network, cars in a
vehicular ad hoc network, or sensors in an IoT network) are not
controlled by the network operator and, thus, can be dynamic
in their mobility, computing and energy resources, and will-
ingness to cooperate. Our proposed approach is characterized
as flexible by capturing reliability metrics as part of the clus-
tering process, generic by its application to different wireless
network scenarios, and scalable by having low complexity and
facilitating dynamic real time implementation. The solution
methodology combines integer linear optimization problem
formulation with heuristic algorithm design based on the
notion of electrostatic forces. We utilize both extensive Monte-
Carlo simulations and experimental test bed demonstrations in
order to evaluate performance gains with respect to standard
techniques and highlight interesting reliability-rate tradeoffs.

Fig. 10: Flowchart showing summary of message exchanges
between devices and the management server in our testbed
implementation.

Fig. 11: Snapshot from the test bed server showing the initial
graph with a total of 12 devices that need to stream content
from a remote server.

Fig. 12: Snapshot from the test bed server showing the clusters
formed after executing the RForce algorithm.

The results confirm that it is practically feasible to enhance
D2D cooperation reliability notably with a limited tradeoff
cost in communication bit rate using the proposed efficient
reliable clustering approach.
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Fig. 13: Snapshot from the test bed server showing the initial
graph with a total of 12 devices that need to stream content
from a remote server.

Fig. 14: Snapshot from the test bed server showing the clusters
formed after executing the RForce algorithm.
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