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Abstract

The optimal allocation of time and energy resources is characterized in a
Wireless Powered Communication Network (WPCN) with Non-Orthogonal
Multiple Access (NOMA). We consider two different formulations; in the
first one (max-sum), the sum-throughput of all users is maximized. In the
second one (max-min), and targeting fairness among users, we consider max-
imizing the min-throughput of all users. Under the above two formulations,
two NOMA decoding schemes are studied, namely, low complexity decod-
ing (LCD) and successive interference cancellation decoding (SICD). Due to
the non-convexity of three of the studied optimization problems, we consider
an approximation approach, in which the non-convex optimization problem
is approximated by a convex optimization problem, which satisfies all the
constraints of the original problem. The approximated convex optimization
problem can then be solved iteratively. The results show a trade-off between
maximizing the sum throughout and achieving fairness through maximizing
the minimum throughput.

Keywords: Energy Harvesting, Non-Orthogonal Multiple Access,
Successive Interference Cancellation, Wireless Powered Communication
Networks, Optimization

Preprint submitted to Ad Hoc Networks June 11, 2018



1. Introduction
There has been a growing interest, recently, in studying new technologies

for prolonging the lifetime of mobile devices [1]. RF Energy Harvesting (EH)
is considered as a promising solution towards an unlimited power supply for
wireless networks. However, it adds more complexity to system design and
optimization [2], [3]. The main goal of this paper is to study an energy har-
vesting wireless network and characterize the optimal strategies to maximize
the network throughput and ensure fairness among nodes.

There are two main paradigms in RF EH [4]; Simultaneous Wireless
Information and Power Transfer (SWIPT) and Wireless Powered Commu-
nication Networks (WPCN).

In SWIPT, Wireless Energy Transfer (WET) and Wireless Information
Transmission (WIT) occur simultaneously, in which energy and information
are transmitted in the same signal [5]. In [6], Boshkovska designs a resource
allocation algorithm for SWIPT systems. The algorithm design is formu-
lated as a non-convex optimization problem for the maximization of the total
harvested power at the EH receivers subject to quality of service (QoS) con-
straints. In [7], Ng and Schober study a resource allocation algorithm design
for secure information and energy transfer to mobile receivers. In [8], mul-
tiple source-destination pairs communicate through their dedicated energy
harvesting relays. A power splitting framework using game theory was de-
veloped to derive a profile of relays’ power splitting ratios. Additionally,
to overcome the problem that energy harvesting circuits are unable to har-
vest energy and decode information simultaneously, there are two proposed
receiver designs in [9]: time switching and power splitting. By using the
time switching setting, the receiving antenna periodically switches between
energy harvesting and information decoding phases. On the other hand, un-
der the power splitting, the received signal is split into two streams; one for
the energy harvesting circuitry and the other is for information decoding.
The application of SWIPT to Non-Orthogonal Multiple Access (NOMA)
networks is investigated in [10], where Liu, et al. propose a new cooperative
SWIPT-NOMA protocol in which users close to the source act as relays for
far users’ transmission.

In WPCN, the users harvest wireless energy from a dedicated Energy
Rich (ER) source in the Downlink (DL), and then use it in the Uplink (UL)
to send data to the Access Point (AP) [11]. In [12], it is assumed that the
ER and the AP coincide. The optimal time allocations were characterized
to achieve the max-sum throughput and the max-min throughput. A co-
operative technique was studied in [13] and [14] to overcome the doubly
near-far phenomenon. A WPCN with heterogeneous nodes (nodes with and
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without energy harvesting capabilities) was studied in [15] and it was shown
how the presence of non-harvesting nodes can enhance the sum-throughput.
[16] departed from the strong assumption adopted in [11] - [15], where the
energy harvested in a slot is used completely in that slot, and, hence, em-
braces a long-term optimization framework. Additionally, [17] extended the
long-term maximization of the half-duplex case in [16] to the full-duplex
scenario. Conventional TDMA wireless networks were generalized in [18] to
a new type of wireless networks: generalized-WPCNs (g-WPCNs), where
nodes are equipped with RF energy harvesting circuitries along with energy
supplies. It was shown that both conventional TDMA wireless networks
and WPCNs with only RF energy harvesting nodes constitute lower bounds
on the performance of g-WPCNs in terms of the max-sum throughput and
max-min throughput.

Non-Orthogonal Multiple Access (NOMA) exploits an approach of user
multiplexing in power domain [19], [20]. NOMA was introduced in WPCNs
in [21] to enhance the power-bandwidth efficiency. It was shown in [22]
that NOMA improves the spectral efficiency relative to orthogonal multi-
ple access schemes. In [21], optimizing the time allocations was the main
concern to maximize the sum-throughput of the slot-oriented case (all the
harvested energy in a slot is also consumed in the same slot). Hence, Dia-
mantoulakis, et al. introduced a sub-optimal policy for time allocations.
Yuan and Ding investigated, in [23], the application of NOMA for the up-
link (UL) of WPCNs. They maximize the sum rate by jointly designing the
time allocation, the downlink (DL) energy beamforming and the receiver
beamforming. In [24], two NOMA-based decoding schemes were introduced
to maximize the sum-throughput of the network. Due to the difficulty of
solving the optimization problem, an approximate iterative approach was
proposed to solve a sub-problem and reach a sub-optimal solution. Chin-
goska and Nikoloska tackled, in [25], the doubly near-far effect in WPCNs
by setting the decoding order signals received at the base station (BS) to be
the inverse of the distances between the users and the BS.

This work considers the ER and AP as separate entities to accommodate
a more general setting, in contrast to a large body of the literature where
they coincide. Unlike [21], we jointly optimize time and power allocations
over a finite horizon of T > 1 slots. In our system model, simultaneous
transmissions can be successful if the received Signal-to-Interference-and-
Noise Ratio (SINR) is higher than a pre-specified threshold, thus no accurate
synchronization is required. Unlike [24], instead of solving the problem given
one of the optimization decision variables, namely the allocated time for
wireless energy transfer, we solve the original problem iteratively to attain
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performance superior to [24].
The main contributions of this work can be summarized as follows:
• Two decoding schemes are studied, namely: Low Complexity Decoding
and Successive Interference Cancellation Decoding. The two schemes
aim at optimizing the performance of a WPCN with and without in-
terference cancellation.
• Maximizing the sum-throughput of the network is studied (max-sum).
Since LCD leads to a non-convex problem, an iterative approach is
introduced to solve two sub-problem in an alternating manner. On
the other hand, the convexity of the max-sum problem with SICD
is established and the problem is characterized to find the optimal
transmission durations and powers.
• The fairness aspect is also studied and the optimization problem to
maximize the minimum throughput of the network (for LCD and
SICD) is characterized (max-min). Again, the problem is shown to
be non-convex and an iterative algorithm is introduced to find an ap-
proximate solution that is close to the global optimum.

The rest of the paper is organized as follows. Section 2 presents the system
model. The max-sum problem formulation for both LCD and SICD is pre-
sented in Section 3. To address the fairness issues of max-sum, the max-min
problem formulation is presented in Sections 4. The numerical results are
shown and discussed for key insights and observations in Section 5. Finally,
Section 6 concludes the paper.

2. System Model
Consider a WPCN composed of one AP, one ER node and K users

Ui, i = 1, 2, ...,K (see Figure 1). All nodes in the network are equipped with
single antennas and operate over the same frequency. Only the ER node is
equipped with a constant energy supply. It broadcasts DL wireless energy to
the K users in the network. Users receive energy and use the accumulated
energy to send UL data to the AP.

Slotted time is considered and the slot duration is assumed to be nor-
malized to one. Each slot t = 1, 2, ..., T is divided into two phases: τ0,t
during which the ER broadcasts wireless energy on the DL to recharge the
batteries of the devices and 1− τ0,t during which all users transmit data to
the AP independently and simultaneously over the UL. Note that all radios
are half-duplex.
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Figure 1: System Model

Users are uniformly distributed in a circle around ER at a distance
dUi−ER, and dUi−AP is the distance between Ui and AP. Locations of all
nodes are assumed to be known a priori, and therefore their average channel
gains can be estimated. The DL channel power gain from ER to Ui and
the UL channel power gain from Ui to AP, during time slot t, are denoted
by hi,t and gi,t, respectively. Hence, the harvested energy by Ui in the DL
phase can be expressed as [24]:

Ei,t = ηihi,tPBτ0,t = γi,tτ0,t, (1)

where ηi denotes the energy harvesting circuitry efficiency [26], PB is the
average transmit power by ER within τ0,t and γi,t

def= ηihi,tPB.

3. Max-Sum Throughput Optimization
In this section, the time and power allocation constrained optimization

problem is formulated such that the sum UL throughput of the network is
maximized. Two NOMA decoding schemes are studied, namely, Low Com-
plexity Decoding (LCD) and Successive Interference Cancellation Decoding
(SICD). The main objective is to formulate the problem of maximizing the
achievable sum-throughput over a finite horizon of T time slots subject to a
number of constraints.
3.1. Max-Sum Problem Formulation with Low Complexity Decoding

Under the LCD scheme, the AP uses a single-user decoder to detect the
signals received from all users without performing interference cancellation.
Each signal suffers from interference from all other users. Thus, interference
from other users is treated essentially as noise.

The achievable throughput of user Ui, in time slot t, can be expressed
as: Ri,t = (1− τ0,t) log2(1 + xi,t), (2)

where xi,t is the average SINR at the AP for Ui in time slot t.
In LCD, xi,t is given by:
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xi,t = gi,tEi,t

σ2(1− τ0,t) +
∑K
j=1,j 6=i gj,tEj,t

, (3)

where Ei,t is the amount of energy used by Ui in time slot t and σ2 is the
noise power at the AP. It is worth noting that, under LCD, the interference
term (i.e. summation) in the denominator includes interference from all
users other than user Ui.

The sum throughput maximization problem can be formulated as:

P1LCD : max
τ0,E,x

T∑
t=1

K∑
i=1

Ri,t,

subject to: Eq.(3),
t∑

n=1
Ei,n ≤

t∑
n=1

γi,nτ0,n, ∀t (energy causality constraints),

xi,t ≥ Sthi , ∀i,∀t (decoding constraints),
0 ≤ τ0,t ≤ 1, ∀t,
Ei,t ≥ 0 ∀i,∀t,

where τ0, E and x are vectors whose elements are the harvesting time du-
ration, the consumed energy by each user and the average SINR at the AP
for each user over the finite horizon of T slots, respectively. The role of the
energy causality constraints are to guarantee that, in slot t, only the energy
harvested in slots ≤ t can be used. The decoding constraints highlight the
fact that if the SINR xi,t falls under a predefined threshold Sthi , decoding
will not be possible.

The objective function of P1LCD is non-convex. Hence, the problem
is a non-convex optimization problem. However, we exploit the problem
structure and propose an efficient approach for solving this rather com-
plex problem via splitting it into two separate subproblems, P1LCD(τ0) and
P1LCD(E), that can be solved iteratively. The first is for a given harvesting
slot duration τ0 and the later is for a given energy allocation vector E. The
proposed solution in this section is to solve these two sub-problems itera-
tively, alternating between a given (τ0) to get optimum energy allocation
vector for the first sub-problem and then, for the obtained energy allocation
vector, get the optimum harvesting slot duration in the second sub-problem,
and so on alternating back and forth between the two sub-problems until
convergence is attained.
3.1.1. The First Sub-problem for a Given τ0: P1LCD(τ0)

The first sub-problem given τ0 is formulated as:
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P1LCD(τ0) : min
E,x

1∏T
t=1
∏K
i=1(1 + xi,t)(1−τ0,t)

,

subject to: xi,t ×
σ2(1− τ0,t) +

∑K
j=1,j 6=i gj,tEj,t

gi,tEi,t
≤ 1, ∀i, ∀t,∑t

n=1 Ei,n∑t
n=1 γi,nτ0,n

≤ 1, ∀i,∀t,

Sthi x
−1
i,t ≤ 1, ∀i,∀t,

Ei,t ≥ 0 ∀i,∀t.

All constraints are expressed in the standard form for a Geometric Program
(GP). However, the objective function of P1LCD(τ0) is a ratio between
two posynomials, thus, P1LCD(τ0) is a nonconvex complementary GP [27].
Solving complementary GPs directly is NP-hard. Therefore, an approximate
approach is used [24]. The denominator of the objective function, denoted
f(x), is approximated with a monomial function f̃(x). In this case, the
new approximate optimization problem becomes a standard GP that can be
solved iteratively using standard techniques [28].

f̃(x) is chosen to be:

f̃(x) = c

T∏
t=1

K∏
i=1

(xi,t)yi,t(1−τ0,t), (4)

where,
c =

∏T
t=1
∏K
i=1(1 + xi,t)yi,t(1−τ0,t)∏T

t=1
∏K
i=1(xi,t)yi,t(1−τ0,t)

, (5)

x is the solution of the approximate GP in the previous iteration, and

yi,t = xi,t
1 + xi,t

, ∀i, ∀t. (6)

Starting with an initial x, we can obtain c and yi,t from (5) and (6), respec-
tively. With these values, we solve the approximate geometric program. The
obtained solution can be used to get new values of c and yi,t. The procedure
is repeated until the sum-throughput converges to a pre-specified accuracy.

3.1.2. The Second Sub-problem for a Given E: P1LCD(E)
The second sub-problem given E is formulated as:
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P1LCD(E) : max
τ0,x

T∑
t=1

K∑
i=1

(1− τ0,t) log2(1 + xi,t),

subject to: Eq.(3),
t∑

n=1
Ei,n ≤

t∑
n=1

γi,nτ0,n, ∀t (energy causality constraints),

xi,t ≥ Sthi , ∀i,∀t (decoding constraint),
0 ≤ τ0,t ≤ 1, ∀t.

Note that, by using (3), xi,t can be substituted and removed from the prob-
lem. All constraints are affine and it can be verified that the objective func-
tion has a Hessian matrix that is positive semidefinite (proof is omitted
due to space limitations). Therefore, the problem P1LCD(E) is convex and,
hence, it can be solved using standard convex optimization tools.

The algorithm to solve P1LCD iteratively, using the two sub-problems
discussed above, is given in Algorithm 1.

Algorithm 1 Solving P1LCD
1: repeat
2: procedure Solve P1(τ0)
3: Initialize x
4: Compute c and yi,t using (5) and (6)
5: repeat
6: Solve the approximate P1(τ0)
7: Update c and yi,t using (5) and (6)
8: until Sum throughput converges
9: Find sub-optimum Rsum and E.

10: end procedure
11: procedure Solve P1(E)
12: Use standard convex optimization tools.
13: Find sub-optimum Rsum and τ0.
14: end procedure
15: until The maximized sum converges to a pre-specified accuracy

3.2. Max-Sum Problem Formulation with Successive Interference Cancella-
tion Decoding

The LCD scheme, despite its highly complex computations (since it
yields a non-convex optimization problem), it has simple implementation
because interference is simply treated as noise. However, the performance is
modest due to ignoring the structure of interference. This leads to a lower
sum-throughput because each user suffers from interference from all other
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users. This motivates us to look at more sophisticated interference can-
cellation techniques to enhance the sum-throughput performance. In this
sub-section, a Successive Interference Cancellation Decoding (SICD) scheme
is introduced whereby interference can be partially cancelled out. The as-
sociated sum-throughput optimization problem is also formulated.

The SINR of Ui in time slot t, after interference cancellation, can be
expressed as:

xi,t = gi,tEi,t

σ2(1− τ0,t) +
∑K
j=i+1 gj,tEj,t

, ∀i. (7)

It is worth noting that the SICD hinges on the assumption that every de-
coded single user’s signal is removed from the interference term of all next
users’ signals to be decoded. Therefore, in (7), the interference term (i.e.
summation) in the denominator includes interference from all users that will
be decoded after the signal of user Ui. The achievable throughput for Ui can
be expressed as in (2) while substituting for the SINR xi,t, from (7). There-
fore, the achievable sum throughput over all K users under SICD, which
is independent of the users decoding order, can be expressed as (proof is
omitted due to space limitations):

R(t)
sum = (1− τ0) log2

(
1 +

∑K
j=1 giEi

σ2(1− τ0)

)
. (8)

The SICD sum-throughput optimization problem can then be formulated
as:

P1SICD : max
τ0,E,x

T∑
t=1

K∑
i=1

Ri,t,

subject to: Eq.(7),
t∑

n=1
Ei,n ≤

t∑
n=1

γi,nτ0,n, ∀t (energy causality constraints),

xi,t ≥ Sthi , ∀i,∀t (decoding constraint),
0 ≤ τ0,t ≤ 1, ∀t,
Ei,t ≥ 0 ∀i,∀t.

Recall that for a general function, f(x), which is concave, its perspective
function g(x, t) = tf(xt ) would also be concave [28]. By using t = 1 −
τ

(t)
0 , the sum-throughput R(t)

sum is the perspective function of the concave

function log2

(
1 +

∑K

i=1 g
(t)
i E

(t)
i

σ2

)
. Therefore, R(t)

sum is a concave function

in [τ (t)
0 , E

(t)
1 , ..., E

(t)
K ]. Note that a non-negative weighted sum of concave

functions is also concave, then the objective function of P1SICD which is
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the non-negative weighted summation of R(t)
sum, ∀t, is a concave function in

(τ0,E). In addition, all constraints of P1SICD are affine in (τ0,E). As a
result, P1SICD is a convex optimization problem, and, hence can be solved
efficiently using standard convex optimization tools.

An efficient, yet simple, way to solve a constrained optimization problem,
is to find its Lagrangian and solve the dual problem [28]. The Lagrangian
of P1SICD is given by:

L(E, τ0, λ, µ) =
T∑
t=1

K∑
i=1

Ri,t +
K∑
i=1

T∑
n=1

λi,n

(
n∑
t=1

(
γi,tτ0,t − Ei,t

))

+
K∑
i=1

T∑
t=1

µi,t
(
xi,t − Sthi

)
,

where λi,t and µi,t are the dual variables associated with the energy causality
and practical decoding constraints. Now, we need to solve the following
optimization problem (dual problem), namely DSICD:

DSICD : max
τ0,E

L(E, τ0, λ, µ),

subject to: 0 ≤ τ0,t ≤ 1, ∀t,
Ei,t ≥ 0 ∀i,∀t.

Lemma: Given λ and µ, the optimal time and energy allocations of DSICD
are given by:

τ∗0,t = min

[(
1−

∑K
i=1 gi,tEi,t
z∗t σ

2

)+

, 1

]
. (9)

E∗i,t =

(
(1− τ0,t)(gi,t − σ2ai,t)

ai,tgi,t
− 1
gi,t

K∑
j≥i

gi,tEi,t

)+

. (10)

The variable ai,t is defined as:

ai,t
def= ln(2)

(
T∑
n=t

λi,n + gi,tχ{i ≥ 2}
i−1∑
j=1

µj,tS
th
j − µi,tgi,t

)
, (11)

where χ{.} is the indicator function and (.)+ def= max{0, .} and z∗t is the
unique solution of f(zt) = b(t), where f(z) and b(t) are given by:

f(zt) = ln(1 + zt)−
zt

1 + zt
. (12)

b(t) = ln(2)
(
σ2

K∑
i=1

µi,tS
th
i +

K∑
i=1

T∑
n=t

λi,nγi,t

)
. (13)
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Proof: It can be verified that there exists τ0 and E that strictly satisfy all
the constraints of DSICD. Hence, strong duality holds for this problem [28];
therefore, the KKT conditions given below are necessary and sufficient for
the global optimality:

δ

δτ0,t
L = ln

(
1 +

∑K
j=1 gj,tEj,t

σ2(1− τ0,t

)
−

∑K
j=1 gj,tEj,t

σ2(1− τ0,t) +
∑K
j=1 gj,tEj,t

− a(t) = 0. (14)

δ

δEi,t
L =

gi,t

σ2

1 +
∑K

i=1
gi,tEi,t

σ2(1−τ0,t)

− bi,t = 0, (15)

∀i and t, where ai,t and b(t) are given by (11) and (13), respectively.

By defining zt =
∑K

j=1 gi,tEj,t

σ2(1−τ0,t) , (14) can be reformulated as f(zt) = b(t),
where f(zt) is given in (12). Since f(zt) can be verified to be a monotonically
increasing function of zt ≥ 0, where f(0) = 0, then there exists a unique
solution z∗t that satisfies f(z∗t ) = b(t) and, hence, τ∗0,t can be expressed as in
(9) and by using (15), E∗i,t can be expressed as in (10).

4. Max-Min Throughput Optimization
In this section, we address the potential unfairness typically exhibited by

sum-throughput optimal policies. Under the max-sum throughput formula-
tion, some nodes are likely to be allocated very little, or no, resources (time
and power) in some scenarios, such that they achieve almost zero through-
put. This can be a serious problem for some applications. In wireless sensor
networks, for instance, in which all sensors need to periodically send their
sensing data to the AP with the same rate, fairness is a necessity. To ad-
dress fairness in our problem context, we adopt a widely accepted sense of
fairness in the communications and networks literature, that is, max-min
fairness [29], [30]. Next, the problem formulation and solution approach for
maximizing the minimum UL throughput in LCD and SICD is discussed in
details.
4.1. Max-Min Problem Formulation with Low Complexity Decoding

The max-min UL throughput problem, with low complexity decoding,
can be formulated as follows:

11



P2LCD : max
τ0,E,x,R

R,

subject to: Ri,t ≥ R,
Eq.(3),
t∑

n=1
Ei,n ≤

t∑
n=1

γi,nτ0,n, ∀t (energy causality constraints),

xi,t ≥ Sthi , ∀i,∀t (decoding constraint),
0 ≤ τ0,t ≤ 1, ∀t,
Ei,t ≥ 0 ∀i,∀t,

where R is the minimum throughput to be maximized, Ri,t is the achievable
UL throughput of Ui in time slot t and is expressed in (2) and xi,t is the
average SINR at the AP for Ui in time slot t.

This problem differs from the two max-sum problems, studied in Section
3, in the objective function and the first constraint. The objective function is
affine but the first constraint is not convex. Hence, P2LCD is a non-convex
problem.

In order to circumvent the non-convexity hurdle of P2LCD, we adopt an
iterative solution approach similar to the one followed in Section 3.1 to solve
P1LCD. To this end, we split P2LCD into two sub-problems P2LCD(τ0)
(given τ0) and P2LCD(E) (given E). The first sub-problem is still non-
convex and will be solved using an approximate iterative method. On the
other hand, the second sub-problem is convex and can be solved using stan-
dard convex optimization tools.
4.1.1. The First Sub-problem for a give τ0: P2LCD(τ0)

The first sub-problem given τ0 is formulated as follows:
max
E,x,R

R,

subject to: Ri,t ≥ R ∀i,∀t,
Eq.(3),
t∑

n=1
Ei,n ≤

t∑
n=1

γi,nτ0,n, ∀t (energy causality constraints),

xi,t ≥ Sthi , ∀i,∀t (decoding constraint),
Ei,t ≥ 0 ∀i,∀t.

The objective function and the constraints are affine, except for the first
constraint which is non-convex. To solve this problem, an approximate
iterative approach is adopted [31].
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The approach used to solve P2LCD(τ0) is based on solving a sequence of
strongly convex inner approximations of the problem until a stationary solu-
tion of P2LCD(τ0) is reached. This solution guarantees, based on the proof
and assumptions in [31], the feasibility of the solutions in every iteration.

The approach in [31] is based on replacing a non-convex objective func-
tion (say U(x)) by a strongly convex and simple function ( ˜U(x; y)) and con-
straints (gm(x), where m is the non-convex constraints index) with convex
upper estimates (g̃m(x; y)) to create a sub-problem Py. The sub-problem
Py is strongly convex and has a unique solution x̂(y) (a function of y). By
starting from a feasible point y(0), the proposed method, iteratively, com-
putes the solution of the sub-problem Py, which is x̂(y) and then takes a
step (ζn ∈ (0, 1], where n is the iteration index) from y towards x̂(y).

Note that the point y generated by the algorithm in every iteration is
always feasible for the original problem P2LCD(τ0). Convergence is guar-
anteed under mild assumptions that offer a lot of flexibility in the choice of
the approximation functions and free parameters.

The main problem that affects this approach is the affine objective func-
tion. To check stationarity of every iteration, we need the objective func-
tion to be a function of y to study its gradient until a stationary solution
is reached. To solve this problem, the objective function R is replaced by a
single user throughput (the one that had the minimum value at the initial
search point: Rl,t) and an equality constraint is added to attain the same
target. The objective function must be modified every iteration based on
the minimum achieved value at the new initials (the optimum point of the
previous iteration).

After this modification, problem P2LCD(τ0) can be formulated as fol-
lows:

max
E,x,R

Rl,t,

subject to: Rl,t = R ∀t,
Ri,t ≥ R ∀i = 1, 2, 3, ...,K, i 6= l,∀t,
Eq.(3),
t∑

n=1
Ei,n ≤

t∑
n=1

γi,nτ0,n, ∀t (energy causality constraints),

xi,t ≥ Sthi , ∀i,∀t (decoding constraint),
Ei,t ≥ 0 ∀i,∀t.

The chosen approximation is given by (16) [31]:

Ũ(x; y) = ∇xU(y)T (x− y) + 1
2 |x− y|

2. (16)
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This approximation mimics proximal gradient methods. It can be used if no
convexity whatsoever is present. It is also used for the first two constraints,
but we must check that the approximation g̃m(x; y) is an upper approximate
function if the non-convex constraint is gm(x) ≤ C, where C is a constant
and a lower approximate function if gm(x) ≥ C.
4.1.2. The Second Sub-problem for a given E: P2LCD(E)

The second sub-problem given E is formulated as follows:
max
τ0,x,R

R,

subject to: Ri,t ≥ R,
Eq.(3),
t∑

n=1
Ei,n ≤

t∑
n=1

γi,nτ0,n, ∀t (energy causality constraints),

xi,t ≥ Sthi , ∀i,∀t (decoding constraint),
0 ≤ τ0,t ≤ 1, ∀t.

The objective function in addition to all constraints are affine except for
the first constraint. It can be verified that the left hand side of the first
constraint has a Hessian matrix that is positive semidefinite, hence, it
is convex. Therefore, problem P2LCD(E) is convex and can be solved effi-
ciently using standard convex optimization tools.
4.2. Max-Min Problem Formulation with Successive Interference Cancella-

tion Decoding
The max-min optimization problem with SICD is formulated in a similar

manner as LCD except for minor differences:
P2SICD : max

τ0,E,x,R
R,

subject to: Ri,t ≥ R,
Eq.(7),
t∑

n=1
Ei,n ≤

t∑
n=1

γi,nτ0,n, ∀t (energy causality constraints),

xi,t ≥ Sthi , ∀i,∀t (decoding constraint),
0 ≤ τ0,t ≤ 1, ∀t,
Ei,t ≥ 0 ∀i,∀t.

Notice that the only difference between P2LCD and P2SICD is the definition
of the SINR which is denoted by x. As mentioned earlier, in LCD, the
interference term in (3) includes signals from all other users. On the other
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hand, in SICD, it includes only the signals which has not been decoded yet
and therefore are not cancelled from interference, as given in (7).

Under the SICD scheme, it is important to notice that although the
decoding order, that is, the order by which the users’ signals are decoded at
the AP, doesn’t affect the sum throughput of the network as shown in [32],
it will certainly affect the fairness aspect. To achieve the highest fairness, it
can be easily proven that the optimal decoding order w.r.t fairness is based
on the received signal strength that is directly affected by the channel gain;
from the strongest to the weakest signal [25].

The approach used to solve P2SICD is the same used to solve P2LCD. It
is worth mentioning that, for P2LCD and P2SICD, if the optimum solution
can be reached, the max-min throughput would have been the common
throughput achieved by all users. However, since an approximate approach
is used, the users do not reach a common throughput and some variations
can be noticed between the throughputs achieved by individual users.

The formal description of the approach to solve P2LCD and P2SICD is
given in Algorithm 2.

Algorithm 2 Solving P2LCD and P2SICD
1: repeat
2: procedure Solve P2(τ0)
3: Initialize n = 0, ζ(n) ∈ (0, 1], y(n) ∈ feasible set.
4: repeat
5: Choose the objective function to be the user throughput with min-

imum value at initial point.
6: Approximate non-convex function and constraints.
7: Compute y(n), the solution of the sub-problem Py.
8: Set y(n+1) = y(n) + ζ(n)(x̂(y(n))− y(n)).
9: n← n+ 1.

10: until Stationary solution of P2(τ0) is reached
11: Find sub-optimum Rmin and E.
12: end procedure
13: procedure Solve P2(E)
14: Use standard convex optimization tools.
15: Find sub-optimum Rmin and τ0.
16: end procedure
17: until The maximized throughput converges to a pre-specified accuracy
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5. Performance Evaluation
5.1. Simulation Setup

We consider K single-antenna nodes, where K ranges from 2 to 20.
Nodes are distributed randomly around the ER node in a circular area of
radius 10 meters. A horizon of T timeslots, ranging from 1 to 10, is studied.
Nodes receive DL power from the ER node and send UL data to the AP
which is located dER−AP meters from the ER. For the UL transmission, the
path loss model is gi,t = 10−3d−2

Ui−AP . For the DL, we use the parameters of
the P2110 device [26]. The system parameters, used to generate numerical
results, are listed in Table 1.

Table 1: Simulation Parameters

Parameters Definition Values
dER−AP Distance between ER and AP (meters) 0:20:120
σ2 Noise Power -155 dBm/Hz
BW Bandwidth 1 MHz
PB ER Node Transmission Power 3 W
fc Central Frequency 915 MHz
Gr Receiver Antenna Gain 6 dB
ηi Harvesting Efficiency 0.49
Sthi Decoding Threshold (dB) -10:1:0

5.2. Numerical Results
Simulations were carried out using the optimization toolbox in MAT-

LAB. The performance results presented next revolve around three main
thrusts, namely max-sum optimization, max-min optimization and the fun-
damental throughput-fairness trade-off within our problem context.
5.2.1. Max-Sum Performance Results

Recall that, under the max-sum problem formulation, the objective func-
tion to be maximized is the sum UL throughput. The performance of the
presented approaches, namely LCD and SICD, are presented next.

We compare three solutions for the max-sum problem under LCD (P1LCD):
i) Solving a sub-problem given τ0 as in [24], ii) Our proposed near-optimal
solution in Section 3.1 which solves P1LCD iteratively, given τ0 (Using the
approximation in [24]) and given E and iii) The same approach in Section
3.1 except for solving P1LCD(τ0) using the approximation in [31]. This is
shown in Figure 2 in which the max-sum throughput is plotted vs. the dis-
tance between the AP and ER (dER−AP ) for K = 5 and T = 2. The figure
shows the superior performance of our proposed near-optimal solution.
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In Figure 3, the max-sum throughput for different values of K at T = 2
is plotted vs. the distance between the AP and ER (dER−AP ). As noticed,
the sum-throughput decreases as the distance increases due to the path loss.
As the number of users increases, the sum-throughput increases as well due
to existence of more nodes contributing to the sum-throughput. The figure
shows that SICD outperforms LCD, which is expected due to the merits of
SICD successively decoding interfering signals and canceling them out from
the interference to other signals. On the other hand, SICD adds up more
computational complexity to the system.
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Figure 2: Max-sum at K = 5 and T = 2
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Figure 3: Max-sum at T = 2

Moreover, in Figure 4, the max-sum throughput for different values of T
at K = 5 is plotted vs. the distance between the AP and ER. An increase is
observed in the max-sum throughput, as the time horizon, T , is extended.

At a dER−AP of 100 meters, the effect of the decodability threshold,
Sthi is studied in Figure 5. P1LCD has a solution only for very low values
(i.e. low SINR requirements) of the decodability threshold; that’s why LCD
curves stop early in Figure 5. Moreover, the higher the number of users,
the sooner P1LCD becomes infeasible, due to elevated levels of interference.
On the other hand, P1SICD is not affected by the decodability threshold.
This is because, with SICD, the average SINR of every user is always greater
than the threshold due to interference cancellation.
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Figure 5: Max-sum at dER−AP = 100 m

5.2.2. Max-Min Performance Results
In an attempt to enhance fairness across users, the objective function

to be maximized, under max-min, is the minimum user’s throughput. The
performance of the presented approach and comparison to the optimum
using exhaustive search are presented next.

In Figure 6, the max-min throughput is plotted vs. dER−AP for both
LCD and SICD. The minimum throughput is noticed to decrease as the num-
ber of nodes increases. This is because the same resources are distributed
among a larger number of users. The performance of SICD is superior to
LCD due to higher SINRs as a result of interference cancellation.

To compare the performance of the presented schemes to the global opti-
mum, we resort to exhaustive search since solving for the global optimum is
prohibitively complex due to problem non-convexity. Carrying out exhaus-
tive search for a small network scenario (K = 2 and T = 1), the results are
shown in Figure 7.
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Figure 6: Max-min at T = 2
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Figure 7: Max-min at K = 2 and T = 1

5.2.3. Throughput-Fairness Trade-off
There is a fundamental trade-off between the max-sum and the max-min

problems. A network with max-sum throughput objective will allocate more
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resources to nodes with high channel gains (near nodes) to add up to the
sum-throughput. On the other hand, a network with max-min throughput
objective will balance the resource allocation to accommodate users with
low channel gains (far nodes) to enhance fairness.

To show this behavior, the sum throughput achieved by the optimal max-
min problem is compared to the sum throughput achieved by the max-sum
problem. Figure 8 confirms the expected behavior whereby the max-min
formulation enhances fairness (as shown in Figures 9 and 10) at the expense
of reduced sum-throughput, compared to the max-sum formulation. On
the other hand, and in order to complete the picture, the minimum user
throughput is compared, under both formulations, in Figure 9 showing that
the max-min formulation is superior to max-sum, due to its fairness merits.
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Figure 8: Sum throughput in max-min
and max-sum problems
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Figure 9: Minimum throughput in
max-min and max-sum problems

Moreover, Jain’s index (a measure of fairness between nodes) is plotted
for the max-sum and max-min optimal policies to show to what extent
fairness is accommodated in each formulation.

Jain’s index [33] is defined as:

(xi) =
(∑K

i=1 xi
)2

K ·
∑K
i=1 x

2
i

, (17)

where, xi is the throughput for user i, i ranges from 1 to K. Jain’s index
ranges from 1

K (worst fairness) to 1 (best fairness), and it is maximum when
all users receive the same allocation.

In Figure 10, Jain’s index is plotted vs. the number of users. It is noticed
how Jain’s index in the max-sum problem has actually the worst case value
( 1
K ), while it is better for max-min schemes.
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Figure 10: Jain’s index (SICD scheme)

Finally, it worth noting that Figures 8, 9 and 10 are plotted for SICD.
Similar results can be obtained for LCD.

6. Conclusion
In this paper, we investigate the problem of optimal resource (time and

power) allocation in WPCNs using non-orthogonal multiple access. Two dif-
ferent optimization problems formulations are considered; in the first one,
the sum-throughput (max-sum) of all users is maximized. In the second one,
the min-throughput (max-min) of all users is maximized. Under these two
formulations, two NOMA decoding schemes are studied, namely, low com-
plexity decoding (LCD) and successive interference cancellation decoding
(SICD). Due to the non-convex nature of the max-sum and max-min opti-
mization problems, we propose an approximate solution approach, in which
the non-convex optimization problem is approximated by a convex optimiza-
tion problem, which satisfies all the constraints of the original problem. The
approximate convex optimization problem can be then solved iteratively.
The results show a trade-off between maximizing the sum throughout and
achieving fairness via maximizing the minimum throughput.
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