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Abstract

Driven by the fourth industrial revolution (Industry 4.0), future and emerging In-
ternet of Things (IoT) technologies will be required to support unprecedented ser-
vices and demanding applications for massive machine-type connectivity, with
low latency, high reliability and distributed information processing capability. In
this article, distributed signal processing methodologies are highlighted as en-
ablers for next generation cloud-assisted IoT systems. The proposed distributed
algorithms run inside a wireless cloud network (WCN) platform and are exploited
for WCN self-organization, distributed synchronization, networking and sensing.
The WCN can lease augmented communication and sensing services to off-the-
shelf industrial wireless devices via a dense, self-organizing “cloud” of wireless
nodes. The paper introduces, at first, the WCN architecture and illustrates an
experimental case study inside a pilot industrial plant. Next, it proposes a re-
design of consensus-based algorithms for enabling a selected set of distributed
information processing functionalities within the WCN platform, with applica-
tion in practical IoT scenarios. In particular, cooperative communication algo-
rithms are adopted to support reliable communication services. Distributed tim-
ing and carrier frequency offset estimation methods are investigated to enable
low-latency services through accurate synchronization. Autonomous identifica-
tion of recurring interference patterns is proposed for multiple access coordination

*Corresponding author (stefano.savazzi @ieiit.cnr.it)

Preprint submitted to Elsevier February 5, 2019



in the shared 5G spectrum. Finally, localization and vision applications based on
distributed processing of wireless signals are investigated to support contact-free
human-machine interfaces.

1. Introduction

Next generation Internet of Things (IoT) is expected to be underpinned by 5G
wireless communication technologies. Considering the exponentially increasing
number of IoT devices [1], in the near future wireless IoT networks will become
topologically dense, with huge numbers of complex interactions taking place and
evolving towards self-organized architectures. For example, current industrial au-
tomation trends towards Industry 4.0 paradigms are driving the transformation of
factories into highly flexible and reconfigurable production systems. In this con-
text, radio technologies will play a crucial role only if paired with advanced so-
lutions to support massive machine-type communications (mMTC), ultra-reliable
low-latency (URLL) data publishing, as well as decentralized computing capabil-
ities for critical applications demanding for self-organization. Commercial-oft-
the-shelf (COTS) IoT technologies designed for industrial setups [2, 3], namely
Industrial Internet of Things (IIoT), support long-term deployments while com-
munication protocols are primarily designed to maximize battery lifetime [4, 5]
or optimized to handle periodic or non-critical traffic [6]. To stimulate a wider
adoption of wireless networks in an industrial context, substantial technology in-
novation is thus required in terms of new types of devices embedding a large set
of functions in a decentralized mode. Such functions include self-configuring
and learning protocols, communication and cloud-assisted computing strategies
to support delay/safety-critical applications.

In this paper, we propose distributed signal and information processing tech-
niques applied to a dense cooperative wireless cloud network (WCN) platform.
As shown in Fig. 1, the WCN enables augmented communication and sensing
services that can be transparently provided to COTS devices via a dense, self-
organizing “cloud” of wireless nodes. In this cloud, information is forwarded via
multiple relays to the intended destinations using cooperative communications
and distributed signal processing tools. Network organization, synchronization
and management (i.e., for multiple access to a shared interference-limited spec-
trum), as well as sensing tools are fully decentralized. COTS devices at the edge
are blind to the inner behavior of the cloud, they can access to cloud services
through cloud access nodes while the cloud is able to self-organize, providing
augmented services on-demand.



The WCN concept goes beyond theory, in fact it has been developed and
demonstrated by focusing on several industry-scale applications [7, 8]. To sup-
port WCN functions, distributed signal processing techniques are herein proposed
to let the nodes acquire network-state information to set up the cloud functionality
and self-organize without the support of any central coordinator. In fact, central-
ized algorithms require each node to broadcast raw data to a fusion center (FC),
which is responsible for processing and sending back the output to all nodes. Al-
though this guarantees optimal performances, these solutions are penalized by the
latency and the communication/computational overhead required for data aggre-
gation/processing at the FC, that badly scale with the network size. Furthermore,
they are vulnerable to device failure at the FC or closely located nodes. On the
contrary, distributed algorithms enable the devices to fuse their sensed data and
infer the desired information relying solely on local processing and interactions
with neighbors. Such interactions can be exploited to infer, or learn patterns of
interest that are hidden in the data sparsely observed by the devices (or agents),
make collective decisions, and reveal relationships or recognize behaviors of in-
terest. Even if each agent may not be capable of sophisticated behaviors on its
own, the combined action of all agents allows to solve complex tasks [24-33, 35].

The paper is organized as follows: first, in Sect. 2 we provide an overview of
the WCN architecture, as well as a description of the reference scenario and the
supported cloud functions, ranging from cooperative networking to distributed
synchronization and sensing. In line with the 5G evolution, a multi-RAT (Radio
Access Technology) architecture is discussed for critical process monitoring [10],
where the WCN nodes employ an [1oT wireless standard to interface with the pre-
existing field equipment. Cooperative networking functions are adopted in Sect. 3
to set up augmented intra-cloud communications and enable the implementation
of distributed processing functions. In Sect. 4, we summarize the theoretical un-
derpinnings of the distributed information processing functions supported by the
WCN. In particular, inference, learning, and decision tasks are solved by means of
sophisticated methodologies that are the result of a re-design of signal processing
architectures and algorithms for integration within the WCN platform [13-15].
These consensus methods combined with cooperative networking functions lay
the groundwork for the implementation of advanced services. In Sects. 5 and 6,
we evaluate the proposed algorithms for distributed synchronization and for au-
tonomous identification of recurring interference patterns, respectively. In Sect. 7,
device-free radio sensing of the environment through radio frequency (RF) signal
inspection is discussed. Finally, in Sect. 8, we draw some conclusions and sum-
marize open issues and future developments.
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Figure 1: Cloud-assisted IIoT architecture underlaid with a distributed and self-contained wireless
cloud network platform.

2. The WCN Architecture for IIoT

The WCN platform consists of wireless field devices underlaid with a dis-
tributed and self-contained network of cloud nodes (CNs) that can lease advanced
networking functions to standard devices upon request. Here, an industry compli-
ant set-up is considered where the field devices comply with the WirelessHART [4]
standard (IEC 62591). Cloud devices autonomously self-organize to meet specific
service requirements not supported by existing industrial systems. In particular,
the proposed WCN design points towards a disruption of the “host-centric” struc-
ture of current [oT standards in favor of a “device-centric” architecture that trans-
fers intelligence inside the field device, to support distributed services on demand.
Focusing on the industrial framework, this proposal is also in line with the current
trend of network level virtualization [16], where the peculiar characteristics of
wireless communications pose additional requests, which cannot be easily solved
using legacy technologies.

Fig. 2 illustrates the prototype devices of the CNs as well as the PHY/MAC
layer interface for device-to-device connectivity. Cloud radio modules are equipped
with dual RAT technology. The first radio guarantees the backward compatibil-
ity with the existing WirelessHART air-interface, as well as device authentication
with the Host station, which controls the industrial monitoring functions [10].
The second radio supports the new cloud functions and adopts a proprietary radio
interface. Cloud access (CA) nodes are special Gateway devices that provide an
interface to industrial field equipment requesting cloud services and seamless traf-
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Figure 2: WCN architecture and PHY/MAC interface: dual RAT implementation with battery-
powered CN prototypes (courtesy of Pepperl+Fuchs).

fic off-loading. Communication among CA nodes is implemented by cooperative
transmissions.

As depicted in the Fig. 2 (at bottom) the communication among the CNs in-
side the cloud network takes place over a series of contiguous, synchronized slots
of 10 ms each, organized in super-frames of 8 slots and hyper-frames collecting
a full communication session of 16 consecutive super-frames. Every CN has a
shared notion of timing and frequency offsets that can be initially provided by
the Host station and then maintained periodically by a re-synchronization algo-
rithm. During every super-frame, publishing, or transmission, of data among CNs
is implemented over 6 contiguous data publishing channels (DPCH). Two shared
broadcast channels (SBCH) are also configured inside each super-frame to propa-
gate CA control/configuration functions as well as to perform distributed sensing
tasks and synchronization functions.

2.1. Dual Radio Architecture for Implementation

The CN is implemented by a dual-processor that handles the dual-radio de-
vices and the related RAT interfaces. One radio is dedicated to the support of
cloud functions, namely, networking, synchronization and sensing, while the sec-
ond one ensures the compatibility with an IEEE 802.15.4 compliant industrial
network. Here, the WirelessHART protocol is adopted as the current de-facto so-
lution for industrial process-control applications, also influencing IEEE 802.15.4e
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standardization [11]. The usage of two independent RF radios is crucial to comply
with the WCN architecture designed to work in parallel with an existing industrial
network, to augment its basic networking and sensing functions. Parallel network
operation is implemented by first identifying the channels/bands unused by the
industrial network (by spectrum sensing). Then, these resources are assigned to
the WCN, so that it could operate simultaneously when needed.

The dual-layer model enables the coexistence of IEEE 802.15.4 based protocol
stacks and the “cloud-oriented” layer that integrates the cloud functions. Notice
that, in an industrial environment, the product lifetime is usually considerably long
for CAPEX reasons. Therefore, any SG-compliant solution should be designed
not only to augment/extend the functionality of the system, but also to guarantee
compatibility with existing field-deployed products.

2.2. Supported Cloud Functions: Networking and Sensing

Current industrial wireless solutions [2] support few critical applications, with
limited scheduling options, due to an optimized design for energy consumption
and deterministic traffic management. In addition, unlike wired solutions (i.e.,
CAN, Fieldbus), the radio link quality is typically impaired by harsh propaga-
tion conditions. Building blockage, metallic obstructions, and co-channel inter-
ference often impose a certification of the communication reliability through net-
work planning optimization tools as well as post-layout verification [9]. In the
following sections, we detail the supported advanced WCN functions to enable
relevant mission-critical workloads required in specific industrial applications.

1. Cooperative networking functions. In Sect. 3, we address the cooperative
networking functions of the WCN platform to support critical data publish-
ing. Data publishing happens when a field device detects some relevant
conditions that generally require either a low-latency reaction, or a highly
reliable, or a high-throughput data transfer. In the example of Fig. 3-(b),
a low-latency data publishing task is leased to the WCN: the CA nodes
handle asynchronous events taking place either at a remote wireless field
device or at the Host station (or both) so that suitable corrective actions
can be applied. The availability of a low-latency “upstream” (i.e., field de-
vice to Host) and “downstream” (i.e., Host to field device) data forwarding
mechanism also enables the fast exchange of request-response messages,
typically consisting of few datagrams. Validation of fast request-response
transactions is also addressed in the same Sect. 3.

2. Distributed signal and information processing functions. Processing tasks
through industrial wireless networks are typically performed centrally by
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the Host station, either by applying decisions (i.e., synchronization, multi-
ple access scheduling) based on local procedures, or by collecting observa-
tions from all field devices. In Sect. 4- 7, the use of the WCN platform is
investigated to support decentralized estimation/monitoring functions. All
these functionalities rely on consensus-based decision making policies, as
discussed in Sect. 4. Distributed processing techniques enable the CNs to
implement complex functions in a fully distributed way, without the sup-
port of any central coordinator. A distributed synchronization policy lets
the CNs to autonomously (with respect to the Host station) synchronize to
a common/shared beacon signature. Distributed synchronization methods
and tools are discussed in Sect. 5. They enable the implementation of sev-
eral decentralized processing functions, and particularly the following ones:

(a) Spectrum sensing: to address (in Sect. 6) the self-learning of interfer-
ence patterns in the time-frequency (TF) domain. This, in turn, can be
used by the WCN to identify the unused portion of the spectrum and
to optimally schedule the transmission resources.

(b) Radio sensing for localization and vision: to develop (in Sect. 7) body
motion sensing capabilities derived from the WCN platform by using
distributed signal processing functionalities. Motion sensing is based
on the real-time analysis of radio signals that encode a view of all
moving/fixed objects traversed by their propagation [12]. Such tech-
niques are “device-free” as they do not require dedicated radio tags,
which are unfit in most industrial environments. Radio sensing is also
considered an enabling technology for the development of contact-free
human-machine interfaces.

3. Cooperative Networking for Low-Latency Data Publishing

In this section, we focus on data publishing functions for throughput- and
latency-critical end-to-end communication among CA nodes. As depicted in Fig. 3-
(a), a sequence of cooperative transmissions is implemented to connect a source
and a destination CA node, while the CNs act as intermediate decode and for-
ward relays [17]. The cooperative link abstraction consists here of separate radios
encoding/transmitting or decoding/receiving messages in coordination [18, 19].
Experimental validations in controlled laboratory environments (e.g., see [20])
showed that such systems could achieve enhanced reliability compared to standard
multi-hop solutions thus mimicking the performance of a wired system. Despite
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Figure 3: (a): Cooperative multi-hop message passing, chain-start, chain-end and ACK super-
frames. (b) Latency and throughput comparisons with COTS IIoT designs: a standard Wire-
lessHART network (IEC 62591) is used as benchmark.

some recent attempts to develop cooperative relaying features tailored to wire-
less IoT networks [19, 21], practical methods to integrate such schemes into an
industrial standard are still missing [10]. In the proposed setup, validated in the
next section by experiments, the communication among the CNs takes place over
consecutive DPCH slots. Within each slot, a single cloud node can thus transmit,
while the selected CNs along the route path can receive in “multicast” mode. The
cooperative algorithm allows an “implicit-retry” capability resulting from its mul-
tiple packet propagation and receive opportunities. In more details, the CA source
node tunnels the input datagrams through the cloud section: each CN here handles
data forwarding by “duo-cast” mode (e.g., transmitting the same datagram/packet
towards the two following nodes in the route path), until reaching the CA destina-
tion node. Thus, each packet always has two propagation opportunities; likewise,
the destination node has always two packet receive opportunities, corresponding
to a “cooperative diversity” order [19] equal to 2. In what follows, the perfor-
mance indicator adopted for performance assessment is the latency (e.g., 95-th
percentile), measured with respect to the first successful datagram reception.



3.1. Experimental Validation

In Fig. 3-(b) (on the right), latency and throughput results are discussed by col-
lecting measurements obtained in different sites within a testing industrial plant
described in [10]. For all cases, the proposed distributed system handles the deliv-
ery of data acting as a “hardware as a service” (HaaS) provider and implementing
the cooperative forwarding scheme previously described. The goal is to exper-
imentally verify (i.e., in a real-world test-bed) the performance of data publish-
ing, that is specifically tailored as a complement to regular IIoT designs. The
PHY layer of the CN transceiver complies with the IEEE 802.15.4e [4] and op-
erates over the 2.4 GHz band. However, it is configured to double the data-rate
(500kb/s) to ensure a substantial publishing rate increase. Reduced noise immu-
nity level (due to scaling down of the direct-sequence spread spectrum - DSSS -
factor) is counter-balanced by the cooperative transmission chain, as well as by
the adoption of a slow frequency hopping policy [10]. System validation shows
substantial improvements compared with standard single-path source routing (IEC
62591 compliant) solutions. An order of magnitude increase of throughput was
made possible by the cloud (in the range 2-4 Kbyte/s), while a twofold increase
in packet delivery rate has been observed in most of the investigated settings.
The table of Fig. 3-(b) provides a summary of the achievable figures, focusing on
high-throughput datagram transfer (kb/s), reliable throughput for request-response
messages (kb/s) and corresponding 95-th percentile latency (ms). For each case,
the cloud platform performance is compared with current COTS implementation
(WirelessHART), for typical 3 to 6-hop topologies.

The use of the cooperative multi-hop transmission chain provides a sufficiently
high level of immunity to multi-path fading and interference: it thus guarantees
high reliability and a reasonable level of communication determinism, being this
a crucial requirement for real-time control applications. As depicted in the corre-
sponding histograms shown in Fig. 3-(b), the 95-th percentile latency is below 180
ms in all cases, considering relatively short (3 hops) to long hopping sequences (6
hops). Notice that, for proper actuation/configuration actions, the desirable com-
munication latency should be 250ms or below [10]. The maximum publishing
latency can be scaled down from 6 up to 10 times compared to current industrial
solutions.

3.2. Considerations on Energy and Spectrum Efficiency

All devices (CAs and CNs) deployed for the tests previously described are bat-
tery powered (see the CN prototype in Fig. 2). In our scenarios, the availability of



20 Ah battery has been assumed and, according to available data, the expected bat-
tery life is primarily ruled by the more energy-hungry CA functions. Clearly, the
cloud network lifetime depends on how frequent the use of the cloud is solicited
by the industrial network to handle critical tasks.

According to the experimental results, the cloud node transceiver in the “active-
state” consumes roughly 13 mA (transmit or receive mode). Likewise, for the core
processor, an energy consumption of about 5 mA at 8 MHz applies. However, the
processor does support many low-power operating modes while the average en-
ergy consumption will much depend on the programmed duty cycle: in fact, the
developed cloud algorithms can be either throughput driven, considering the net-
working functions, or event-driven, considering the distributed consensus tools
(Sect. 4). As far as the core processor is concerned, some non-negligible baseline
energy consumption is observed. This is required to support the core MAC layer
operations, including distributed consensus-based estimation and spectrum sens-
ing functions. It could be roughly estimated to be in the range 100-500 pA. How-
ever, distributed synchronization, validated in Sect. 5 on more flexible software-
defined radio hardware, would require advanced PHY layer operations resulting
in larger consumption.

Energy consumption tests showed that, as far as the networking functions
are concerned, the implementation of the WCN can reduce the consumption of
the existing off-the-shelf WirelessHART network as managing off-loaded traf-
fic/services. Clearly, this comes in exchange for additional cloud devices to be
installed.

As regards spectrum usage, the WCN operates over the crowded 2.4GHz band
that is impaired by co-channel interference originated from the shared use of the
spectrum (e.g., WiFi, IPv6/Thread, ZigBee, Bluetooth LE/mesh). Distributed
spectrum sensing (Sect. 6) is thus applied and validated to estimate the unused
portion of bandwidth where to deploy and implement the WCN functions.

4. Distributed Signal and Information Processing

Distributed techniques have been used for solving inference problems in vari-
ous IoT contexts. Typical applications are environmental monitoring [22], indus-
trial control [10], vehicle positioning and traffic monitoring for intelligent trans-
portation systems [23, 24], network synchronization [25-27], and localization
for self-organizing IoT networks [28-31], as well as spectrum sensing [32—34]
and resource scheduling [35]. Inference is accomplished by incremental algo-
rithms [36], diffusion strategies [37], alternating direction methods of multipliers
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Figure 4: (a) Self-organizing IoT network; (b) Example of distributed consensus for the estimation
of parameters 6.

(ADMM) [38], belief propagation (BP) [39] or consensus methods [28, 40, 41].

We focus here on consensus methods where estimation is obtained iteratively
by successive refinements of local estimates maintained at individual nodes. In the
following parts, we briefly review the consensus-based methodology and then, in
next sections, we present the implementation within the WCN of Fig. 2 for the
solution of specific [oT problems. The analysis shows that this methodology can
be designed to closely attain the centralized inference performance, with minimal
information exchange and computational burden at each node, adapting also to
dynamic conditions with node or link birth/death (e.g., due to device failure).

Let us consider a set of /' CNs, distributed over a given area, as depicted in
Fig. 4-(a), which have to cooperatively estimate p unknown real-valued parame-
ters, @ = [0, --- 6,]". In consensus-based algorithms, the estimate of the param-
eters of interest @ is computed at each node k, with k = 1,..., K, by successive
refinements of the local estimate ék(q) based on data exchange with neighbors
through iterations ¢ = 1,2, ..., until a consensus is reached within the network,
ie., ék(oo) — @, as shown in Fig. 4-(b). A weighted-consensus approach is
considered, where the estimate at node k is updated at iteration ¢ as [28]:

A~

Bula+1) = Bu(a) +eWi Y (0i(a) ~ Bu(a) ) M

i€EN}

being N}, the set of neighbors for node k, W, a positive-definite weighting matrix
and ¢ a step-size parameter. The estimate (1) is known to converge to the weighted

~ -1 ~
average 0 (oc0) = (Z]K:1 WJ’1> S W 16,(0) of the initial estimates, pro-
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vided that ¢ is selected to guarantee convergence [28]. In the conventional av-
erage consensus method [40], the weighting matrix is set, V&, to W = L,
with I, being the p-dimensional identity matrix. In this case, the estimate con-
verges to the arithmetic average of the local estimates, 8)(c0) = = SE L 6,(0).
On the other hand, if the weighting matrix is selected as W = I'Cy, being
Cj, the covariance of ék(()) and I' a scaling matrix, the estimate convergences
to the optimal 1(in the minimum-variance sense) centralized solution ék(oo) =
<ZJK:1 Cj_1> SO% | C;'6,(0), with minimal inter-node signaling (see [28] for
details). Note that the conventional approach is sub-optimal with respect to the
weighted consensus method as it does not account for the different accuracy of
the local estimates at different nodes.

Consensus methodologies are used in the following sections as basis to de-
velop distributed algorithms for self-organization of WCN. Network synchroniza-

tion (Sect. 5), spectrum sensing (Sect. 6), as well as passive radio sensing (Sect. 7)
are considered as special cases.

5. Distributed Synchronization

Distributed synchronization is a consensus-type method tailored for dense
cloud networks to let the CN's to asymptotically reach a global convergence jointly
on time-frequency offset. According to the WCN setting introduced in Sect. 2,
each CN node is equipped with oscillators that run autonomously. Although time-
frequency offset compensation can be initially triggered by the Host station (at
the WCN formation), a periodic re-synchronization is needed to keep carrier fre-
quency and timing mutually locked among all CNs to enable the WCN function-
ality. The method is herein based on the exchange of a common beacon signature
(i.e., the same beacon is assigned to all CNs) purposely designed to guarantee the
convergence. Beacons are exchanged periodically and can use the available SBCH
super-frames illustrated in Fig. 2. In an environment where the closeness and the
density of CNs make them prone to collision of transmitted beacon signals, there
has been an intense research to reduce (or avoid) the collision of beacons [42—44].

Unlike conventional methods, here beacon collisions are induced and exploited
for synchronization. Beacon signatures are designed to overlap one another but
still enable the control by each device of the timing (TO) and carrier frequency
(CFO) offsets errors to employ a distributed phase locked loop (D-PLL) algo-
rithm [26]. The CNs cooperate with each other by making the beacons collide
until a global network synchronization is reached without any external coordina-
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tion, or external TO/CFO reference. Distributed synchronization based on col-
lision of pulse-like signatures were largely investigated for timing or frequency
synchronization [25, 45, 58]. However, usage of pulse waveforms is not practical
for WCN integration and this leaves the problem of joint TO and CFO synchro-
nization as an open issue. Here, the beacon synchronization is designed based
on chirp-like signatures arranged to solve the TO/CFO ambiguity and to enable
joint TO-CFO synchronization [27]. The proposed periodic re-synchronization is
designed to keep each node with carrier frequency and timing locked to the en-
semble of carrier frequency and timings of the WCN network. Once the network
has reached a consensus, the defined frames in Fig. 3-(a) can be kept aligned,
giving to all nodes the same start of time-slot up to the propagation delay. Syn-
chronization functions have been herein validated using a testing laboratory-scale
hardware based on software-defined radio devices. In Sect. 5.4 we will discuss
possible solutions for practical WCN system integration.

5.1. Distributed Synchronization Algorithm

Let us consider a dense WCN of K connected and uncoordinated nodes stati-
cally deployed and mutually connected without any external synchronization ref-
erence. All CNs are deployed in a small geographic area, such as that the one
proposed in Fig. 2: each signal transmitted can be received by almost all other
nodes and propagation delay is negligible compared to inverse of its bandwidth.
The network can be assumed to be strongly connected and each CN is half-duplex
constrained (i.e., CN can either transmit or receive, but not both). Each node is
equipped with independent oscillators that run autonomously and TO/CFO are
locally re-synchronized to the ensemble of all the others by interactions. This re-
tuning can be based on programmable frequency dividers of the local free-running
oscillators. As discussed in Sect. 2, the time is discretized into frames (and super-
frames), while nodes are aware of the nominal frame period 7 (this assumption
can be relaxed as shown in [45]). In network systems, the node timings are nomi-
nally the same and oscillators of each (say k-th) node are affected by independent
frequency fluctuations of local oscillators that change the frame-time 7 [n| evalu-
ated at n-th frame, and carrier angular frequency €2 (t) = , + wy (t) where €2,
is the nominal carrier frequency. The transmitted synchronization signature x ()
is the same for all CNs and it is free to collide (or superimpose) when confined
inside the SBCH. All frames can be considered as mutually misaligned to one
another, and delayed by the (absolute) time 7; [n].

In half-duplex systems, each node is not-coordinated with the others and it
chooses autonomously whether to transmit or receive. This generates a network
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topology that varies over time and connectivity can be modeled by a random topol-
ogy without any guarantee to have balanced graphs at every duplex time n. The
signal received by the k-th node over the n-th frame interval 7' is the superposi-
tion of TO asynchronous transmitted signatures x (¢) by all the active neighboring
nodes N}, [n] arbitrarily varying frame-to-frame:

v (tn) = D hii () x 2 (t = 7 [n]) exp (7 (1) £) + wy (t[n) . 2)
i€Ng[n]

Here signals are referred to the absolute time-reference just for the reasoning, but
recall that this is not available to the nodes and this is replaced by the ensemble
mean instead. hy; (¢) is the channel response for the link ¢ — & that accounts for
multi-path fading and small node-to-node propagation delays, while wy, (t|n) is
the noise modeled as white Gaussian. The channel response is defined as hy;(t) =
gri(t)/r},, where rg; = 7, is the distance between node & and node 7, and gy;(t)
accounts for the fading process with gx;(t) # gir(t). The path-loss exponent - is
typically in the range of 2 to 4.

The TOs and CFOs of the nodes belonging to Ny [n] are {7; [n]};c ;) and
{wi (1) }ienr, n)> respectively. These terms should be estimated by the k-th receiver
in term of synchronization error with respect to the local reference: TO error is
ATy [n] = 7; [n] — 73 [n] and CFO error is Awy, (t) = w; (t) — wy (t). Even if the
synchronization method is consensus-based, the final solution does not converge
to the average of the initial condition as in Sect. 4, due to the random topology
[57], but, under mild conditions, the mutual TO and CFO synchronization is con-
sidered as achieved when |7; [n] — 7% [n]| < o070 and |w; (1) — wi () | < ocro,
for any pair (i, k), where upper TO/CFO limits (670,0cr0) depend on the data-
communication protocols. Usually, convergence conditions for TO and CFO are
evaluated by the dispersion with respect to the mean TO or CFO over the entire
cloud, and this is the mean square dispersion (MSD) metric detailed below.

The distributed synchronization algorithm is sequential as sketched in Fig. 5-
(a) where TO synchronization first reaches the steady state and this drives the
convergence of the TO network. During frame alignment (TO acquisition, in
Fig. 5-(b)), the CFO has a random behavior due to the large dispersion of TO
not allowing a proper estimation of the CFO error. When TO is close enough to
synchronization, the CFO correction takes place (CFO acquisition) by correcting
the CFO impairments and allowing the fine synchronization of the network. To
better illustrate the distributed performance, Fig. 5-(b) depicts the root MSD of TO
and CFO towards synchronization. The scenario is the device-to-device (D2D)
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Figure 5: (a) TO synchronization evolution. All nodes transmit the same beacon x (t) periodically
during T’s and on consecutive SBCH frames, i.e., under frame-period 7». Beacons are allowed to
collide among each other. At receiver node k, the relative TO error A7y, [n] = 7; [n] — 7% [n] is the
error from transmitted neighbor (i € N},) with respect to the local reference. The network reaches
a synchronization stage when all the frames are time-aligned given the start of the frame. (b) Root
mean-square deviation (MSD) of TO (left-axis) and CFO (right-axis) versus iteration for K = 50
nodes mutually coupled and fully connected (all-to-all), and filter loop gain ero = ecro = 0.5.

system [44] with carrier frequency of 2.4 GHz and N = 64 subcarriers (spacing
15 kHz). The maximum TO that can be tolerated is oo = 1 sample (sampling
rate 1/NN). Similarly, the maximum CFO that can be tolerated is ccro = 100 Hz.
The numerical results show that the TO and CFO degradation of the distributed
synchronization are lower than the maximum tolerated regardless of the density
of the WCN: here K = 50 nodes are considered. The distributed synchronization
method fits the requirements of dense WCN, allowing scalability and reducing the
algorithm complexity by using a single correlator filter at the receiver side.

5.2. Distributed Phase Locked Loop (D-PLL)

The D-PLL is an iterative control algorithm for synchronization that corrects
the local TO/CFO of k-th node based on the estimation of the relative synchro-
nization errors (A7 [n] and Awy(t)) with respect to the weighted average TO and
CFO of the ensemble |} [n]| signatures. Fig. 5-(a) depicts the evolution of TO
synchronization for the mutually misaligned frames.

Let 0y, [n] be the synchronization parameter that denotes here either CFO wy, [n]
or TO 73 [n] at the n-th iteration, the consensus-based synchronization is based
on the update (1) [26]. The method detailed herein estimates the relative TO
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or CFO Af[n] = 0[n] — Ox[n] from the superposition of the same synchro-
nization signatures z(t). The term 6[n] = Y, ~, Wi [n] 0i[n] is the weighted
average of the ensemble synchronization parameters estimated from superim-
posed (colliding) synchronization signatures z (¢) of N. The weighting term
is Wi [n] = |hgs [n]]*/ D i Nifn) |Pki [n]|* where w;; [n] = 0. The CFO is peri-
odically estimated during the synchronization period: it is Wi[n] = @i (t)],c,p,
constant within the frame. Both TOs and CFOs are periodically (every T») mea-
sured and corrected by comparing the local values with respect to the ensemble
Tr[n] or wi[n] to minimize the TO or CFO mismatch one another (Sect. 4).

In addition to the convergence speed expressed in terms of number of itera-
tions, the key metric used for performance evaluation of the synchronization algo-
rithm is the MSD of each synchronization parameter from the average: o2 [n] =
= SELE { (0 [n] — 6, [n])Q} The term 6 [n] = + S°K 01 [n], and the expec-
tation E {-} are computed with respect to the random topology arising from du-
plexing. Stochastic perturbation on synchronization are caused by estimation er-
ror and oscillator’s instability. These perturbations degrade the MSD at conver-
gence, calling for an analysis of convergence for MSD that is monotonic decreas-
ing o2[n + 1] < oZ[n] and asymptotically lim, -, c3[n] = o7[cc]. The MSD
o3[oo] can be minimized by choosing an optimum ¢, even if the effective trade-off
with convergence rate depends on the connectivity of the network.

5.3. Collision-based Synchronization Parameters Estimation

The estimation of the average TO 7x[n] = Cro{yx (t|n)} and CFO wy(t) =
Cero{yk (tIn)} from the superimposed beacons is framed as a joint estimation
of time delay and frequency of superimposed signature copies x(t): notice that
each signature is affected by different TOs and CFOs. Here, the severe noisy
environment due to payload signals, if present, makes the TO/CFO estimates even
more complex. The Maximum Likelihood Estimation (MLE) of TO/CFO for one
node (JN;| = 1) is part of the values (7,w) that maximizes the log-likelihood
function [46]. For multiple beacons (|\}| > 1) as for distributed synchronization,
the problem can be reduced to the selection of the TO and CFO centroids from
the superposition of several delayed x (t) as in (2).

The choice of the signature x(¢) is critical for synchronization. The linear
frequency modulated pulse with sweep-rate jz has good capabilities for time and
frequency resolution [46]. The ambiguity function is smeared in the (7,w) plane
for joint TO/CFO estimation with benefit in term of noise reduction related to the
signature length 7'. Since the bi-dimensional peak-search over the (7,w) plane is
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too complex and time consuming for a real-time synchronization process the k-th
node can instead evaluate the matched filter output signal: r(7) = [y (¢)z*(t —

T)dt. The received signal yy (¢) is demodulated with the k- th local frequency
to search now for the delay corresponding to the peak in |r(¢)|. The TO/CFO
ambiguity is removed by employing two sequential pulses shown in Fig. 5-(a)
with sweep-rate =zi so that the correlator receiver for the up-sweep (¢ = 1) and
the down-sweep (¢ = 2) signatures are:

= [T i () exp (Fjat?) dt. (3)

Assuming that the multi-path of the channel response is negligible as hy;(t) =
hii x 6(t), the matched filter is

Te(t) = Zie/\/k hii X (t — (13 — 1), £ (wi — wi)) exp (§Q2) + Wy (), (4)

with W (t) = wy(t) * exp (jjat?) rect (t/T), while

X (7, Awy)| = (1 - g)

is the sinc (-) shaped ambiguity function with a main lobe of 27 /1T’ that becomes
broader for large CFO Awy errors [46]. The angular frequency is given by (2;
while the differential delays are 7; = 7; — 7% & (w; — w)/2f for the up/down-
sweep, respectively. In distributed synchronization, it is necessary to estimate the
mean value of the TO and CFO of the neighboring nodes, and thus the barycentric
delay value

sin[(Awg — 2a7)(T — |7]) /2]
(Awy, = 2p7)(T — [7])/2

Jor 7] < T (5)

. tlraO2dt Y sen il Thi . O — W
diq = f | |2d N hE (Tk —Tk) —( k2_ k) (6)
Jlra@Pdt 3 icn, [l fi

is an estimator of the mean delay weighted by the amplitudes |hy;|?. The fine
synchronization method refers to the estimation and correction of fractional CFO
errors. This takes place after the network has reached a coarse synchronization
when TO reaches a convergence and all frames are aligned up to a misalignment
below the interval of T'-samples. The fractional CFO is estimated based on con-
ventional methods as in [27] based on fractional interpolation for consecutive sig-
nature sequences.
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5.4. Practical Synchronization for Dense Network

The Zadoff-Chu (ZC) sequences are used as practical chirps that can be im-
plemented inside the WCN. These sequences are discrete-time linear frequency
modulated waveforms with constant amplitude [47]. The good periodic corre-
lation properties of the ZC sequences make them the preferred choice for both
synchronization and channel estimation [48]. The ZC sequences can be arranged
into a pair of up-sweep (& > 0) and down-sweep (14 < 0) as shown in Fig. 5-(a)
to resolve the TO/CFO ambiguity as for the continue-time chirp case.

In what follows, we consider the implementation of the distributed synchro-
nization policy based on the baseband equivalent model of an OFDM system. The
structure of the TO/CFO synchronization signature consists of two consecutive
ZC sequences with the second one being the complex conjugate of the first one to
get the up/down-sweeps. The discrete-time signature, see Fig. 5-(a), is composed
of ZC sequences having N-samples length with a cyclic prefix (CP) and suffix
(CS) each having N.-samples length. CP and CS are introduced to account for
selectivity of channel response by periodical shape:

x[m]:{exp(jﬁ(m—Nc)Q) 0<m< Np—1

- 2 Y (7)
eXp(—j,u(m—Nc—NT) ) Ny <m<2Nr -1

for a support N, = 2Ny = 2 (N + 2N.), where the sweep-rate for ZCis i = 3-4.
The root index « is relatively prime to /V, and it is « = 1 for convenience [27].
The m-th sample of the received signal is the superimposition of |N| transmitted

waveforms affected by their relative TO and CFO errors:

yr [m] = Z hiix [m — 7] exp (jwrim) + wg [m] . (8)

€Ny
The estimation of coarse TO and CFO deviations is based on the timing metric
that is obtained by two filters matched to the ZC sequence x [m/] and its conjugate
replica z* [m] as in (4) for up/down sweep. At the acquisition stage, the TO/CFO
are distant from each other, and coarse synchronization is based on the estimation
of relative TO/CFO from the centroid of the matched filters for up/down sweeps

(4) by:

Thg 1] = Y hiiXze (1= Thiy £wr) + g [1] 9)
iENg

where the ambiguity function Xz (7,w) is characterized by a periodic sinc (+)
which contains the same (but opposite in sign) time shift that solve for TO/CFO
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the ambiguity similar to [49] for |[N;| = 1. The received signal y;, [m] is filtered
for each up- and down-sweep portion of signature x [m]. Each signal 7 ,[l] has
a different ambiguity function Xz¢ (7,w). Furthermore, 7, [I] contains down-
sweep terms attenuated by ZC filtering, and similarly for ry o [I] with up-sweep
terms. This mutual interference affects the up- and down- sweep barycenter es-
timator (6) with an increased interference proportional to |[A|. This mutual in-
terference can be mitigated by increasing N, taking advance of the orthogonality
properties of ZC sequences [47], even if in OFDM system the length N is con-
strained by the number of sub-carriers.

Fine synchronization (i.e., tracking mode) for estimation and correction (1)
for fractional CFO with e ror takes place after the network has reached a coarse
TO synchronization and all frames are aligned up to a misalignment below the
resolution of ZC (N-samples). At this stage, small variations of CFO impair the
performance and a fine correction must be applied. Thus, the fractional CFO is
estimated based on a conventional MLE as the one proposed in [27] according to
fractional interpolation for consecutive signature sequences.

Distributed synchronization on programmable GNU radios [50] shows good
TO/CFO tracking and accuracy performance under a range of scenarios. The
hardware demonstrator proves that uncoordinated CNs are likely to adapt their
synchronization parameters to converge on a globally agreed timing and carrier
frequency, without any coordination from the Host, and employing the same ZC
sequences pair.

6. Distributed Spectrum Sensing

Self-learning of interference patterns is an essential task in the WCN. As ex-
emplified in Fig. 6, the CNs have to detect the time-frequency (TF) interference
patterns caused by the nodes (PN or Primary Nodes) of any pre-existing network
to identify the unused portion of the spectrum and schedule the resources so as to
avoid mutual interference [51]. Inferring the complete interference profile may not
be feasible at each single CN, due to the limited sensing range, the time-varying
conditions associated with node mobility or the shadowing/fading effects. For in-
stance, in Fig. 6 the TF resources of PN3 and PN, are hidden in the data locally
sensed by CNj. In this context, we propose to employ the consensus approach to
virtually extend the perception capability of each CN by a distributed fusion of
the data collected over the cloud network that relies on local interactions between
neighboring nodes.
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Figure 6: Cooperative spectrum sensing framework: PN; and PNy are sensed by CN; as they
both fall into its radio coverage area (yellow circle), whereas PN3 (shadowed) and PNy (out of
range) are hidden to CNj. In the right figure, an example of RSS measurements captured by CN;
is shown over the time-frequency grid. Cooperation among CNs through peer-to-peer links (blue
dashed lines) allows detection of the overall PN interference pattern, regardless of the limited
visibility at each CN.

The cooperative sensing problem is analyzed in an experimental [oT scenario
targeting the same 2.4 GHz spectrum where the WCN is operating (see Sect. 2).
Measurement campaigns have been carried out at Politecnico di Milano, with a
WCN of K = 6 CNs deployed in an area where three IEEE 802.15.4 (ZigBee)
nodes and three WiFi devices are active in the same spectrum region. The spec-
trum locally sensed by the CNs is shown in Fig. 7-(a), which clearly highlights
the poor visibility of the PN interferences at the CNs, particularly at devices CN3
or CN5. The CNs engage in a distributed procedure to cooperatively identify
the overall interference caused by the primary network (as shown in Fig. 7-(b)).
The ZigBee PNs are assumed to perform a periodic transmission over prede-
fined (but unknown to the CNs) channels (TF resources) with center frequen-
cies {2.45,2.46,2.47} GHz (standard-compliant with the channels {20, 22, 24}).
With respect to the CN prototypes shown in Fig. 2, for the purpose of accurate
spectrum sensing, the CNs are here connected with an external portable spectrum
analyzer (embedded PC) by using a serial interface. This measures the received
signal strength (RSS) over the band 2.4 — 2.485 GHz, with a configurable fre-
quency step, here set to Af = 333 kHz, resolution of 187.5 kHz and sampling
time (sweep time) At = 536 ms. The RSS measurement set collected by the k-
th CN is defined as X, = {xy(t, f)}, where (¢, ) ranges over the TF resources
of the spectrum. The RSS data-sets X}, are shown in Fig. 7-(a) for all the CNs
E=1,..., K.
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Figure 7: Distributed interference sensing in an IoT network, which consists of six IEEE 802.15.4
CNs and three IEEE 802.15.4 PNs performing periodic transmission tasks over the channels 20,
22 and 24. Three IEEE 802.11g devices are also interfering in the shared spectrum. (a) RSS
measurements collected by CNs over time and frequency. (b) Time-frequency spectrum detection
through the distributed sensing method.

For detection of the interference pattern, each RSS sample z(t, f), accord-
ing to the lognormal power model, is represented as a Gaussian random vari-
able with parameters depending on the absence (#) or presence () of any
PN signal in (¢, f). Under hypothesis Hg, with probability 1 — P, the RSS
zi(t, f) ~ N (uo,0?) models the background noise power with mean 1 and
variance o2. Under hypothesis H;, with probability P, z(t, f) ~ N (uy,0%)
models the PN signal power received at CN k, with mean j; > p and variance
0? > o2 (due to shadowing effects).

For known interference statistics, @ = [y, po, 07, 02, P]T, MAP (Maximum
A-Posteriori) Bayesian detection of the PN signal is computed by comparing
the RSS samples with the optimal threshold S = S(0) resulting from standard
likelihood-ratio test. However, the interference statistics @ are unknown at the
cloud. Moreover, to reconstruct the complete interference pattern from the incom-
plete local data-sets, the WCN needs to aggregate all RSS data X' = {z4(¢, f)}
from all CNs k£ = 1,..., K and TF resources (t, f). To this aim, we propose the
use of the consensus-based method [10] which enables the CNs to aggregate the
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information in a distributed manner, by the exchange of only partial belief met-
rics (using the available SBCH frames shown in Fig. 2) to minimize the inter-node
signaling. The method combines the weighted-consensus algorithm (1) with an it-
erative decision directed (DD) procedure [52] for joint estimation of the PN statis-
tics @ and detection of the interfered TF resources associated with H, (see details

in [34]). Starting from an initial set é(Q), at iteration ¢ = 0,1,2, ..., interfer-
ence detection is performed inside each CN £ using the threshold S@ =g (é(q)),
and the local data X, = {xx(t, f)}. Such data is partitioned into two subsets
associated to the hypotheses H; and H,, X,ffik ={r e x> S(q)} and

X?(ﬁ))k = X\ )(731) w» respectively. New interference parameters are obtained
(g+1) ~(g+1)

by computing the sample means (fi; *, [y, '), variances (01 qH), Ag(,fﬂ ) and
frequencies (P} @) — |x q)k| /|Xy|) for the subsets X?({)k, prfg,k. Consensus

iterations (1) are computed to aggregate the estimates at different CNs and to

obtain the new set of PN statistics é(qH) as virtually given by the fusion of
{X?(fo),k, Xéql),k}le over the whole cloud. The DD procedure is repeated till con-

vergence when P\? = pl7t!) — p(),

Fig. 7-(b) shows the binary mask obtained by the distributed detection of the
complete TF interference patterns caused by the three IEEE 802.15.4 PN devices.
It can be shown that the distributed method based on weighted-consensus is able
to reach the centralized detection performance [28].

7. Distributed Radio Sensing for Localization and Vision Reconstruction

Localization and vision technologies are expected to play a key role in next
generation of cyber-physical systems. In the specific field of IloT applications,
the tight integration of physical (e.g., robots, manipulators) and software compo-
nents (e.g., control, monitoring) is made more complex by the contact-free inter-
actions between machines, robots and human workers. Radio sensing technolo-
gies exploit RF signals exchanged between the CNs to sense, detect and monitor
alterations of the propagation environment that are induced by people or objects
(e.g., targets) moving inside the WCN coverage area. These methods in turn allow
device-free (also known as tag-free or passive) human body motion recognition,
by relying solely on acquisition and processing of the electromagnetic (EM) field
propagated for the CN connectivity. Body-induced alterations of the EM field, that
covers the monitored area, are measured and processed in real-time by the CNs
to extract information about the subject (e.g., presence, position, movements, or
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Figure 8: (a) Cloud-assisted distributed estimation of user location or occupancy based on RSS
features exchanged among CNss, (b) device-free occupancy estimation using a network of 14 CNs
(top) and RSS histograms from individual CNs (bottom), (c) device-free location estimation using
a network of 14 CNs (left) to compute the likelihood maps (right).

activities) [12] [53] or to compute an image of the environment that originated the
EM perturbation. These techniques have the advantage of not requiring any wear-
able device (e.g., radio tag), which, in most industrial environments, is largely
unfit; in addition, this technology can be used also in presence of fumes, vapors
and occluding materials. Last but not least, these methods are privacy preserving
as they extract only geometrical information about the target from the RF signals
(i.e., position, size, posture).

Device-free positioning is applied in industrial workplace to track and protect
operators, and to support safety, particularly in shared human-machine workplace
[54]. As shown in Fig. 8-(a), each CN collects channel quality information (CQI)
from the physical layer, such as the channel state information (CSI), or upper
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layers, such as the RSS, and sends this information to the CA nodes. Consid-
ering that the CN prototype (Sect. 2) does not support low-level CSI monitoring
functions, we focus here on distributed processing of RSS measurements that are
exchanged over the SBCH channels. The RSS power level (expressed in dBm),
that is measured by a CN, can be expressed as P(0) = Py — A7(0) + w. Fy is
the deterministic path-loss term that depends only on the geometry and the prop-
agation characteristics of the empty scenarios (i.e., the environment without any
target inside). The Gaussian random variable w includes the lognormal terms
due to both multi-path and measurement disturbances. The extra attenuation term
Ar(6) is due to the body-induced effects with respect to the empty scenario. Ac-
cording to [55], Ar(€) can be modeled in terms of monitored parameters 6 such
as the target position, the geometry and the small movements. Cloud devices thus
act as virtual sensors, as they communicate with neighbors to fuse, process CQI
data locally and perform low-level decisions on the sensed parameters 6. For
example, occupancy detection is a low level sensing task where 6 represents the
spatial density of parameters that is inferred by processing the RSS measured over
different sub-channels and links. CNs independently extract and evaluate features
from RSS data to highlight any anomalous alteration of the EM field as possibly
induced by body presence. These features can be defined in terms of extra at-
tenuation, mean, likelihood, and spatial/frequency correlations of the received RF
signals [56]. Detected features indicating potential anomalies in the RSS field are
then shared with neighbor CNs, via MAC-layer cooperative transmission func-
tions (Sect. 3). Finally, a consensus algorithm (Sect. 4) is used to reach a decision
about body presence. Information about body motions can be used by the cloud
for high-level sensing tasks such as device-free positioning (where @ represents
the targets’ locations), target counting (with 6 representing the number of targets)
or activity recognition (with 8 denoting the type of activity).

Fig. 8 shows the experimental layout for occupancy detection in an indoor en-
vironment with two targets. In Fig. 8-(b), the RSS histograms highlight the body-
induced perturbations of the radio signal strength observed by a CN, compared
with the empty environment, where no target is inside the monitored area. Targets
are moving along the line-of-sight (LOS) path. As shown in this figure, RSS val-
ues are sensitive to the presence of the subject in the surroundings of the CNs, thus
making detection of the occupied environment possible through RSS data inspec-
tion. In Fig. 8-(c), the localization of the subject is obtained by distributed fusion
of the RSS features computed by 14 CNs. Localization can be implemented based
on the consensus approach. Consensus is here based on distributed fusion of local
log-likelihood information obtained by individual CNs. The location likelihood
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map obtained by the consensus procedure is plotted in Fig. 8-(c) on the right,
where the target location 6 = [z, 15| is estimated according to the maximum
likelihood criterion [54].

8. Concluding Remarks

In this paper, we first introduced a WCN platform, that can lease advanced
communication and sensing services to off-the-shelf IoT wireless devices via a
dense network of self-organizing wireless nodes. The WCN paradigm is under-
pinned by distributed signal processing and offers the potential for improved reli-
ability, connectivity and latency compared with current IoT solutions. Distributed
synchronization is the enabling technology for implementation of PHY layer co-
operative communication envisioned in future 5G standardization. An experimen-
tal case study inside a pilot industrial plant considered the problem of critical data
publishing (including monitoring and fast request-response datagram exchange).
An overview of distributed information processing methods was then provided
with focus on weighted consensus-based approaches. These algorithms have been
exploited to solve a number of specific inference problems, such as the estimation
of communication parameters (i.e., timing and carrier frequency offset), interfer-
ence sensing and device-free positioning.

The advantages of the wireless cloud networking solutions illustrated in this
paper are shown to be relevant for dense deployments characterized by poor radio
signal quality (due to harsh propagation conditions or severe building blockage).
The use of the cooperative multi-hop transmission chain strategy provides a suffi-
ciently high level of immunity to multi-path fading and interference. In addition,
the proposed distributed synchronization tool is expected to enable an efficient
scheduled access and determinism of communication. This is particularly crucial
in latency-critical real-time control (including process control and safety appli-
cations). Compared to current industry-standard networks, the WCN allows to
scale down the maximum latency from 6 up to 10 times. Future work will con-
sider the applicability of the proposed platform in emerging high-frequency radio
networks, ranging from the 60 GHz to the sub-THz bands (100-150 GHz).

Bibliography
References
[1] O. Vermesan and P. Friess, Internet of Things - from Research and Innova-

tion to Market Deployment. River Publishers Aalborg, 2014.

25



[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

M. R. Palattella, M. Dohler, A. Grieco, G. Rizzo, J. Torsner, T. Engerl, L.
Ladid, “Internet of Things in the 5G era: enablers, architecture, and business
models,” IEEE J. on Selected Areas in Communications, vol. 34, no. 3, Mar.
2016.

L. D. Xu, W. He and S. Li, “Internet of Things in Industries: a survey,” IEEE
Trans. in Industrial Informatics, vol. 10, no. 4, pp. 2233-2243, Nov. 2014.

T. Watteyne et al., “Industrial Wireless IP-Based Cyber-Physical Systems,”
Proc. of the IEEE, vol. 104, no. 5, pp. 1025-1038, May 2016.

T. Rault, A. Bouabdallah, Y. Challal, “Energy efficiency in wireless sensor
networks: a top-down survey,” Computer Networks, vol. 67, no. 4, pp. 104-
122, Jul. 2014, ISSN 1389-1286.

P. Suriyachai, U. Roedig, A. Scott, “A survey of MAC protocols for mission-
critical applications in wireless sensor networks,” IEEE Communications
Surveys & Tutorials, vol. 14, no. 2, 2012.

J. Sykora and H. Mark, “Dense Cooperative Wireless Cloud Network (DI-
WINE),” Proc of the Future Network and Mobile Summit (FuNeMS), pp.
3-5,2013.

H. Mark, P.H. Lin, J. Sykora, K. Ramantas, D. Boixade, S. Galimberti,
U. Spagnolini, M. Nicoli, D.E. Halls, and S. Savazzi, “Enhancing wireless
communications,” Pan European Networks: Science & Technology, No. 17,
pp- 106-108, Dec. 2015.

S. Savazzi, V. Rampa, U. Spagnolini, ‘Wireless Cloud Networks for the Fac-
tory of Things: Connectivity Modeling and Layout Design,” IEEE Internet
of Things Journal, vol. 1, no. 2, Apr. 2014.

L. Ascorti, S. Savazzi, G. Soatti, M. Nicoli, E. Sisinni, S. Galimberti, “A
wireless cloud network platform for industrial process automation: Critical
data publishing and distributed sensing,” IEEE Trans. on Instrumentation
and Measurement, vol. 66, no. 4, pp. 592-603, Apr. 2017.

H. Kurunathan, R. Severino, A. Koubaa, E. Tovar, “IEEE 802.15.4¢ in a Nut-
shell: Survey and Performance Evaluation,” IEEE Communications Surveys
& Tutorials, doi: 10.1109/COMST.2018.2800898, vol. 20, no. 3, pp. 1989-
2010, thirdquarter 2018.

26



[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

S. Savazzi, S. Sigg, M. Nicoli, V. Rampa, S. Kianoush and U. Spagnolini,
“Device-Free Radio Vision for Assisted Living: Leveraging wireless channel
quality information for human sensing,” IEEE Signal Processing Magazine,
vol. 33, no. 2, pp. 45-58, March 2016.

D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, P. Vandergheynst, “The
emerging field of signal processing on graphs: Extending high-dimensional
data analysis to networks and other irregular domains,” IEEE Signal Pro-
cessing Magazine, vol. 30, no. 3, pp. 83-98, May 2013.

A. Sandryhaila and J. M. F. Moura, “Big data analysis with signal processing
on graphs: Representation and processing of massive data sets with irregular
structure,” IEEE Signal Processing Magazine, vol. 31, no. 5, pp. 80-90,
Sep. 2014.

M. Tsitsvero, S. Barbarossa, and P. Di Lorenzo, “Signals on graphs: Uncer-
tainty principle and sampling,” IEEE Trans. on Signal Processing, vol. 64,
no. 18, pp. 4845-4860, Sep. 2016.

I. Khan, F. Belgasmi, R. Glitho, N. Crespi, M. Morrow and P. Polakos,
“Wireless sensor network virtualization: a survey,” IEEE Communications
Surveys & Tutorials, vol. 18, no. 1, pp. 553-576, 2016.

S. Ma, Y. Yang and H. Sharif, “Distributed MIMO technologies in cooper-
ative wireless networks,” IEEE Communications Magazine, vol. 49, no. 5,
pp- 78-82, May 2011.

X. Tao, X. Xu and Q. Cui, “An overview of cooperative communications,”
IEEE Communications Magazine, vol. 50, no. 6, pp. 65-71, Jun. 2012.

S. Savazzi, “Wireless virtual multiple antenna networks for critical pro-
cess control: protocol design and experiments,” International J. of Dis-
tributed Sensor Networks, vol. 2013, Article ID 973621, 15 pages,
2013.doi:10.1155/2013/973621.

P. Castiglione, S. Savazzi, M. Nicoli, T. Zemen, “Partner Selection in Indoor-
to-Outdoor Cooperative Networks: An Experimental Study,” IEEE Journal
on Selected Areas in Communications, vol. 31, no. 8, pp. 1559-1571, August
2013.

27



[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

N. Marchenko, T. Andre, G. Brandner, W. Masood, C. Bettstetter, “An exper-
imental study of selective cooperative relaying in industrial wireless sensor
networks,” IEEE Trans. on Industrial Informatics, vol. 10, no. 3, Aug. 2014.

P. Braca, S. Marano, and V. Matta, “Enforcing Consensus While Monitor-
ing the Environment in Wireless Sensor Networks,” IEEE Trans. on Signal
Processing, vol. 56, no. 7, pp. 3375-3380, Jul. 2008.

G. Soatti, M. Nicoli, N. Garcia, B. Denis, R. Raulefs, H. Wymeersch, “Im-
plicit Cooperative Positioning in Vehicular Networks,” IEEE Trans. on In-
telligent Transportation Systems, doi: 10.1109/TITS.2018.2794405, vol. 19,
no. 12, pp. 3964-3980, Dec. 2018.

A. Pascale, M. Nicoli, and U. Spagnolini, “Cooperative Bayesian Estimation
of Vehicular Traffic in Large-Scale Networks,” IEEE Trans. on Intelligent
Transportation Systems, vol. 15, no. 5, pp. 2074-2088, Oct. 2014.

Y.-W. Hong and A. Scaglione, “A Scalable Synchronization Protocol for
Large Scale Sensor Networks and its Applications,” IEEE J. on Selected
Areas in Communications, vol. 23, no. 5, pp. 1085-1099, 2005.

O. Simeone, U. Spagnolini, Y. Bar-Ness, and S. H. Strogatz, “Distributed
Synchronization in Wireless Networks,” IEEE Signal Processing Magazine,
vol. 25, no. 5, pp. 81-97, 2008.

M. A. Alvarez and U. Spagnolini, “Distributed Time and Carrier Frequency
Synchronization for Dense Wireless Networks,” IEEE Transactions on Sig-
nal and Information Processing over Networks, vol. 4, no. 4, pp. 683-696,
Dec. 2018.

G. Soatti, M. Nicoli, S. Savazzi, U. Spagnolini, “Consensus-based Algo-
rithms for Distributed Network-State Estimation and Localization,” IEEE
Trans. on Signal and Information Processing over Networks, vol. 3, no. 2,
pp- 430-444, Jun. 2017.

M. Z. Win, A. Conti, S. Mazuelas, Y. Shen, W. M. Gifford, D. Dardari, and
M. Chiani, “Network Localization and Navigation via Cooperation,” IEEE
Communications Magazine, vol. 49, no. 5, pp. 56-62, May 2011.

G. C. Calafiore, L. Carlone, and M. Wei, “A Distributed Technique for Lo-
calization of Agent Formations from Relative Range Measurements,” IEEE

28



[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

Trans. on Systems, Man, and Cybernetics-Part A: Systems and Humans,
vol. 42, no. 5, pp. 1065-1076, 2012.

U. A. Khan, S. Kar, and J. M. Moura, “Distributed Sensor Localization
in Random Environments using Minimal Number of Anchor Nodes,” IEEE
Trans. on Signal Processing, vol. 57, no. 5, pp. 2000-2016, 2009.

A. Ghasemi and E. S. Sousa, “Collaborative Spectrum Sensing for Oppor-
tunistic Access in Fading Environments,” in First IEEE International Sympo-
sium on New Frontiers in Dynamic Spectrum Access Networks (DySPAN),
2005, pp. 131-136.

P. Di Lorenzo, S. Barbarossa, and A. H. Sayed, “Distributed Spectrum Es-
timation for Small Cell Networks based on Sparse Diffusion Adaptation,”
IEEE Signal Processing Letters, vol. 20, no. 12, pp. 1261-1265, 2013.

G. Soatti, M. Nicoli, S. Savazzi, and U. Spagnolini, “Distributed Sensing of
Interference Pattern in Dense Cooperative Wireless Networks,” IEEE Inter-
national Conference on Communications (ICC), London, 8-12 June 2015,
pp- 961-966.

P. Di Lorenzo, S. Barbarossa, and A. H. Sayed, “Bio-Inspired Decentralized
Radio Access based on Swarming Mechanisms over Adaptive Networks,”
IEEE Trans. on Signal Processing, vol. 61, no. 12, pp. 3183-3197, 2013.

E. S. Cattivelli and A. H. Sayed, “Analysis of Spatial and Incremental LMS
Processing for Distributed Estimation,” IEEE Trans. on Signal Processing,
vol. 59, no. 4, pp. 1465-1480, Apr. 2011.

A. H. Sayed, S. Y. Tu, J. Chen, X. Zhao, Z. J. Towfic, “Diffusion Strategies
for Adaptation and Learning over Networks: An Examination of Distributed
Strategies and Network Behavior,” IEEE Signal Processing Magazine, vol.
30, no. 3, pp. 155-171, May 2013.

A. Simonetto and G. Leus, “Distributed Maximum Likelihood Sensor Net-

work Localization,” IEEE Trans. on Signal Processing, vol. 62, no. 6, pp.
1424-1437, Mar. 2014.

H. Wymeersch, J. Lien, and M. Z. Win, “Cooperative Localization in Wire-
less Networks,” Proceedings of the IEEE, vol. 97, no. 2, pp. 427-450, Feb.
20009.

29



[40] R. Olfati-Saber, J.A. Fax, and R.M. Murray, “Consensus and Cooperation in
Networked Multi-Agent Systems,” Proceedings of the IEEE, vol. 95, no. 1,
pp- 215-233, Jan. 2007.

[41] I. D. Schizas, A. Ribeiro, and G.B. Giannakis, “Consensus in Ad Hoc
WSNs with Noisy Links. Part I: Distributed Estimation of Deterministic Sig-
nals,” IEEE Trans. on Signal Processing, vol. 56, no. 1, pp. 350-364, Jan.
2008.

[42] Y. Xu, and A. Helal, “Scalable Cloud-Sensor Architecture for the Internet of
Things,” IEEE J. Internet of Things, vol. 3, no. 3, pp.285-298, Jun. 2016.

[43] K. J. Zou, and K. W. Yang, “Network Synchronization for Dense Small Cell
Networks,” IEEE Wireless Communications, vol. 22, no. 2, pp.108-117, Apr.
2015.

[44] N. Abedini and S. Tavildar and J. Li and T. Richardson, “Distributed Syn-
chronization for Device-to-Device Communications in an LTE Network,”
IEEE Trans. Wireless Communications, vol. 15, pp.1547-1561, Feb. 2016.

[45] O. Simeone and U. Spagnolini, “Distributed Time Synchronization in Wire-
less Sensor Networks with Coupled Discrete-Time Oscillators,” EURASIP J.
Wireless Communications and Networking, vol. 2, pp. 690-694, Sep. 2007.

[46] H. L. V. Trees, “Detection, Estimation, and Modulation Theory, Part III:
Radar Sonar Signal Processing and Gaussian Signals in Noise,” John Wiley
& Sons, INC., 2001.

[47] J. W. Kang, Y. Whang, B. H. Ko, and K. S. Kim, “Generalized Cross-
Correlation Properties of Chu Sequences,” IEEE Trans. Information Theory,
vol. 58, no. 1, pp. 438-444, Jan. 2012.

[48] “Technical specification group radio access network; Physical layer aspects
for evolved universal terrestrial radio access (UTRA) (Release 7),” Cedex,
Tech. Rep. 3GPP TR 25.814, V7.1.0, Sep. 2006.

[49] M. Gul, X. Ma, and S. Lee, “Timing and Frequency Synchronization
for OFDM Downlink Transmissions Using Zadoff-Chu Sequences,” IEEE
Trans. Wireless Communications, vol. 14, no. 3, pp. 1716-1729, Mar. 2015.

30



[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

M. A. Alvarez, W. Thompson and U. Spagnolini, “Distributed Time and
Frequency Synchronization: USRP Hardware Implementation,” IEEE Inter-
national Conference on Communication Workshop (ICCW), pp. 2157-2162,
Jun. 2015.

S. Mishra, A. Sahai, R. Brodersen, “Cooperative sensing among cogni-
tive radios,” IEEE International Conference on Communications (ICC), pp.
1658-1663, Jun. 2006.

P. N. Tan, M. Steinbach, and V. Kumar, Introduction to data mining. Pearson
Education, 2006.

S. Kianoush, S. Savazzi, and V. Rampa, “Leveraging MIMO-OFDM radio
signals for device-free occupancy inference: system design and experiments,
” EURASIP Journal on Advances in Signal Processing, Vol. 44, 2018.

S. Kianoush, S. Savazzi, F. Vicentini, V. Rampa, and M. Giussani, “Device-
Free RF Human Body Fall Detection and Localization in Industrial Work-
places, ” IEEE Internet of Things Journal, vol. 4, no. 2, pp. 351-362, 2017.

V. Rampa, G. G. Gentili, S. Savazzi, and M. D’ Amico, “EM Models for Pas-
sive Body Occupancy Inference,” IEEE Antennas and Wireless Propagation
Letters, vol. 16, pp. 2517-2520, 2017.

S. Kianoush, M. Raja, S. Savazzi and S. Sigg, “A Cloud-IoT Platform for
Passive Radio Sensing: Challenges and Application Case Studies,” IEEE
Internet of Things Journal, vol. 5, no. 5, pp. 3624-3636, Oct. 2018.

F. Fagnani, and S. Zampieri, “Randomized Consensus Algorithms over
Large Scale Networks,” Information Theory and Applications Workshop, pp.
50-159, Jan. 2007.

N. Varanese, U. Spagnolini, and Y. Bar-Ness, “Distributed Frequency-
Locked Loops for Wireless Networks,” IEEE Transactions on Communi-
cations, vol. 59, no. 12, pp. 3440-3451, December 2011.

31


https://www.researchgate.net/publication/331104943

