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Mobile Edge Computing (MEC) is usually deployed in energy and delay constrained networks, such as in- 

ternet of things networks and transportation systems to address the issues of energy consumption, com- 

putation capacity and network delay. In this work, we focus on a special case, which is Unmanned Aerial

Vehicle Edge Computing (UEC) network. Addressing the security issues in UAV-Edge Computing network

is mandatory due to the criticality of UEC services, such as network traffic monitoring, or search and res- 

cue operations. However, cyber defense and protection of UEC network have not yet received sufficient

research attention. Thereby, we propose and develop a cyber-defense solution based on a non-cooperative

game to protect the UEC from network and offloading attacks, while taking into account nodes’ energy

constraints and computation overhead. Simulation results show that, the deployment of our cyber de- 

fense system in UEC network requires low energy consumption and low computation overhead to obtain

a high protection rate.

1. Introduction

An Unmanned Aerial Vehicle (UAV) is a mobile aerial node that 

relies on two mobility modes: controlled or autonomous. In the 

controlled mode, a human pilot controls remotely the mobility of 

the UAV. When the quality of the link between a controller and the 

UAV is degraded due to signal loss for instance, the UAV switches 

from the controlled mode to an autopilot or autonomous mode 

[1,2] . In the autonomous mode, the UAV relies on a GPS module 

to determine the optimal path to reach the requested destination. 

UAV networks, formed by a fleet of drones, are mainly deployed 

in hostile and inaccessible areas, where classical and wired infras- 

tructures cannot be deployed [3] . These networks serve to moni- 

tor, explore, collect and analyze information about these areas and 

report them to a remote infrastructure for further analysis. UAVs 

networks have mainly civilian and military applications. For exam- 

ple, drone networks can serve for parcel delivery, traffic monitor- 

ing, target tracking, etc. 

One of the main challenges of UAVs are their energy con- 

sumption and computation overhead [4,5] . Indeed, collecting and 

analyzing a huge amount of data is an energy-consuming task 
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for drones. Fortunately, the Mobile Edge Computing (MEC) is an 

emerging solution for mitigating energy and computation issues 

for mobile nodes and in particular drones. MEC appeared in 2014 

as an alternative technology for cloud computing [6] . When a mo- 

bile node (e.g., UAV) notices that the local processing of the col- 

lected data increases its energy consumption or computation over- 

head, it delegates the data processing to an edge computing server. 

Data processing delegation is known as offloading. The main ad- 

vantage of computation offloading to a MEC server is reducing the 

network latency [7] . The network architecture combining UAV net- 

work and MEC technology is defined as an UAV-Edge Computing 

(UEC) network [4,8] . 

Cybersecurity of UEC network has not yet received consider- 

able research attention. However, a cyber-attack on this system 

could significantly degrade its performance and effectiveness. In 

this work, we investigate the detection of two major attacks on 

UEC: the offloading attack [9] and the Denial of Service attack 

(DoS). The offloading attack targets the quality of the link between 

an UAV node and an edge node. It aims at increasing the network 

latency by dropping the offloading data, and then forcing legiti- 

mate UAVs to retransmit their packets. Attackers may carry out an 

offloading attack just by spoofing or jamming the communication. 

DoS attacks [10] targets the energy resources and alters the critical 

information collected by UAVs. 
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In this work, we propose a cybersecurity game based on a 

Stackelberg approach to protect the UEC network from the afore- 

mentioned attacks. We model the problem as a Stackelberg game 

since this strategic game is used in a scenario where the players 

are competitors as in the cyber security context (attacker and de- 

fender). The proposed Stackelberg game has two kinds of players: 

a security agent and an attacker. They play the role of a leader and 

a follower, respectively. The security agent is installed at each UAV. 

Each player has a set of pure and mixed strategies (i.e., possible 

actions). The mixed strategies represent a probability distribution 

over pure strategies [11] . The interaction between the competi- 

tor players leverages players’ payoffs, which increase and decrease 

with respect to the executed strategies. The followers monitor the 

leaders’ optimal strategy and they replicate by executing their best 

strategies while taking into account the actions envisaged by the 

security agents. The objective of the leader and of the follower 

players is to increase their payoffs and to decrease the payoffs of 

their opponents. The decision of the security agents for the moni- 

toring, the detection and the reaction to the suspected attacks on 

offloading links and to the suspected UAVs depends mainly on the 

energy constraints of UAVs and on the computation overhead. The 

optimal decision corresponds to the Stackelberg Equilibrium (SE). 

To the best of our knowledge, our proposed solution is the first 

intrusion detection framework adapted to UEC networks. It takes 

into account the energy consumption and the computation over- 

head during the detection and the decision-making operation by 

the security agents. 

The remainder of this paper is organized as follows. In 

Section 2 , we describe the considered network architecture. In 

Section 3 , we summarize the most notable research works by high- 

lighting their advantages and shortcomings. Section 4 presents the 

proposed hierarchical security framework for UEC network by de- 

tailing the game mathematical model. Simulation results and per- 

formance analysis are provided in Section 5 . Finally, in Section 6 , 

we present our conclusion and some future works. 

2. UAV-Edge computing network model

We consider a UAV network in which each UAV has a set of 

missions to accomplish. For instance, a UAV may collect informa- 

tion about its environment and send them to a server in the cloud 

via a communication infrastructure. We consider a heterogonous 

architecture formed by UAVs and a wireless infrastructure network 

composed by Road Side Unit (RSU), eNodeB and MEC server as 

show in Fig. 1 . 

The UAV sends the collected information to the server when- 

ever an infrastructure network is available i.e., in case a UAV has 

a connectivity with an eNodeB or a RSU. The UAV monitors con- 

tinuously the network and once it detects a suspicious behavior, 

it transmits the information to its neighbors. All UAVs maintain a 

reputation metric regarding their neighbors. Each UAV can increase 

or decrease the reputation metric of its monitored neighbors with 

respect to their behaviors (normal or bad). 

As a UAV has limited computation and energy resources, it may 

not be able to process its neighbor’s data to detect suspicious 

nodes in the network. Fortunately, it can entrust the detection task 

either to other UAVs with no energy shortage or to an edge server 

with abundant computation resources. 

A group of UAVs is connected through wireless media. Each 

UAV broadcasts beacons to inform its neighbors about its presence 

in the network. Each drone stores a set of information about its 

neighbors such as their position, their velocity, the remaining en- 

ergy and the computation power. Each drone monitors the network 

by performing attack detection locally. If the drone does not have 

enough resources or suspects an attack, it has to offload the com- 

putation (detection) either to the UEC node or to the edge server. 

Fig. 1. UEC architecture.

The latter will be in charge of attacks detection as presented in 

Fig. 1 . Sections 4.1 and 4.3 provide more details about the local and 

the offloading detections. The selection of an UAV as an UEC node, 

which can perform the detection task on behalf of other nodes, de- 

pends on its remaining energy, its distance to the edge server and 

its reputation. The UAV node that exhibits a good balance between 

energy, distance and reputation is selected as UEC node. The pro- 

cess of UEC node selection is repeated periodically during the net- 

work lifetime. UAVs have limited calculation resources. To decide 

whether to offload (to an UEC node or an edge server) a calculation 

for suspicious nodes detection, an UAV estimates the amount of 

the consumed energy and the computation overhead as explained 

in Section 4 . Notice that when the UEC is not in the coverage of 

the eNodeB or the RSU, it has to store the packet until getting a 

connection to the edge server. 

3. Related work

MEC technology improves the quality of service by reducing the 

latency in mobile networks [12] . Cyber security of MEC architec- 

ture is vital due to the critical data that mobile nodes offload to 

the edge servers. In [9] , the authors aimed to secure the MEC ar- 

chitecture from the attackers that target the offloading link be- 

tween the user equipment and the edge server. They relied on a 

non-cooperative game to study the interaction between the mon- 

itoring agents, the attackers and the user equipment. The equilib- 

rium is reached when the monitoring agents detect the attackers 

with a high accuracy and when the user equipment ensures effi- 

cient offloading. The authors in [13] proposed a reconfigurable se- 

curity framework for low resources Internet of Things (IoT) devices 

based on MEC architecture. The proposed security solution is based 

on a lightweight cryptography technique to ensure the privacy of 

the communication and the mobile node authentication. Their se- 

curity solution exhibits a low computation overhead and is suitable 

to any heterogeneous IoT network. However, the major drawbacks 

of works [9] and [13] are their inability to detect the internal at- 

tacks that aware of the cryptography keys. 

In [8,14–18] , the authors tried to protect the intelligent trans- 

portation systems based on MEC architecture from offloading at- 

tacks resulting from jamming, GPS spoofing and DoS attacks tar- 

geting the edge links. In particular, the authors in [8] secured 

the information leakage of UAV-aided vehicular network. They de- 

signed a hierarchical edge computing architecture to address the 

UAV’s energy consumption and computation overhead issues. Then, 

they developed a cyber-threat detection solution based on bloom 

filter to protect the information leakage from hackers that drop 
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packets or inject fake data (sent from vehicle to UAV and from UAV 

to edge server). In their simulation, they proved that the authen- 

tication, encryption and decryption require less computation over- 

head and storage to thwart the external threats. However, they did 

not take into account internal threats coming from malicious insid- 

ers, i.e. UAVs and vehicles. A cooperative cybersecurity framework 

for vehicular cloud computing is proposed in [14] . The authors pre- 

sented a survey of vehicular cloud computing and the related ap- 

plications, by highlighting the cyber security issues that this net- 

work encounters. They developed a cooperative security game to 

protect the heterogeneous and dynamic vehicles from the lethal 

attacks that target the cloud infrastructure (e.g., attacks targeting 

road safety and traffic management). However, the authors did not 

share key indicators about their simulated framework such as de- 

tection and false positive rates. In [15] , a distributed reputation ap- 

proach is proposed to protect the vehicular edge computing net- 

work against malicious behaviors. To obtain an accurate reputation 

history of each monitored vehicle, the authors run locally the repu- 

tation management at each edge-computing server. This approach 

can detect the misbehaving vehicles with a high accuracy. How- 

ever, it does not allow detecting the other threats that target the 

vehicular edge computing such as DoS and offloading attacks. In 

[16] , the authors developed an efficient and lightweight messages 

authentication scheme for vehicular edge computing network. To 

reduce the latency, the roadside unit plays the role of edge server 

and authenticates the messages transmitted by vehicles within its 

radio range, then disseminates the identities of the authenticated 

vehicles to other legitimate nodes (vehicles and roadside units). 

According to the simulation results, the proposed security scheme 

identifies promptly the valid and fake messages when the vehicu- 

lar network is under attack. However, this solution is not scalable 

as it incurs a high communication overhead in a large scale net- 

work. In [17] , the authors protect the UAVs network against jam- 

ming and spoofing attacks. These cyber-attacks aim mainly to hack 

transmission and offloading links. To protect the network from 

these attacks, the authors develop a deep reinforcement learning 

approach that uses a UAV power location as a main feature during 

the learning and detection process. The main issue of this work 

is that the energy constraint is not considered during the learn- 

ing and the detection process. A cyber security framework based 

on cooperative and non-cooperative games is developed in [18] to 

protect the vehicular edge computing network from offloading at- 

tacks. The main idea of this work is to maximize the attack de- 

tection rate and minimize the latency when cyber-attacks occur. 

The security framework is based on a behavior game to study the 

interaction between three kinds of players: detection agents, vehi- 

cles and attackers. Then, it determines the optimal payoffs of each 

player. The simulation exhibits interesting results in terms of clas- 

sification rate and delays. 

Recently, other intrusion detection and prediction frameworks 

dedicated to secure the UAVs network were developed in [1,19–

21] . These security frameworks present an interesting rate of at- 

tacks detection when taking into account the constraints related to 

network and drones. However, they all fail to detect the offloading 

attacks. 

In this research work, we address the weakness mentioned 

above and propose a new cyber defense framework for UAV-Edge 

computing network for offloading and DoS attacks detection and 

prevention, while taking into account the energy consumption and 

the computation overhead of UAVs. 

4. Hierarchical cyber security framework for UAV-Edge

computing 

In this section, we present an overview of the proposed cyber 

security game of UEC network. Afterward, we describe the con- 

Fig. 2. Illustration of attack detection process in UEC network.

sidered attack model and finally we present the security solution 

based on a Stackelberg approach. 

4.1. Cyber security game overview 

The proposed security game involves two kinds of players, se- 

curity agents (i.e., UAVs) and attackers. Security agents will protect 

the UAV-Edge computing network from attackers. Meanwhile, at- 

tackers will target energy resources, vital information of UAVs and 

the edge links of the network. 

Security agents are installed at each UAV. They monitor the 

edge links and neighboring UAVs. When an attack is suspected, 

the security agent performs either a local or an offloading detec- 

tion as shown in Fig. 2 . During this monitoring process, we rely 

on rule-based detection, which is a lightweight detection approach 

since it generates a low energy consumption and low computa- 

tion overhead. The local and offloaded detection (either to other 

UAVs or to Edge nodes) rely on a machine learning detection tech- 

nique such as reinforcement learning or supervised learning algo- 

rithms [22,17] . This technique is accurate for attack detection, but 

it is heavy with respect to energy consumption and computation 

overhead. Thereby, the local or offloading detection approaches is 

launched only when the offloading links or/and UAV nodes are sus- 

pected to be attacked. For more details about rule-based detection 

and machine learning detection techniques applied for UAV net- 

works, we refer the readers to [17,19,21,23] . 

We propose a zero-sum game based on a Stackelberg method- 

ology to model the behavior game between the security agents 

that are installed at UAVs and the attackers that target the UEC 

network. In the Stackelberg game, we have two types of non- 

cooperative players: the leaders that are the security agents, and 

the followers that are the attackers. In this non-cooperative game, 

the security agents aim to protect the UAVs and all the commu- 

nication links from attackers, namely UAV-to-UAV communications 

(U2U) and UAV-to Infrastructure communication (U2I). 

During the monitoring, the security agents analyze the energy 

constraints of UAVs and the computation overhead of the network, 

and fetch the security breaches of UEC network. The followers 

probe the actions of the leader agents and perform malicious at- 

tacks with the goal of being undetected by the security agents. 

Here, the attackers will try to put out of service the UAVs network 

by flooding them with malicious messages. They can also target 

the link quality by dropping the packets orjamming and spoofing 

the communication. 

The leader agents cooperate to protect the UAVs-Edge comput- 

ing network. Meanwhile attackers are organized into groups to 

carry out massive cyber-attacks. The result of this behavior game 

is to achieve equilibrium, defined as a Stackelberg Equilibrium (SE). 

The equilibrium corresponds exactly to the strategy that the leader 

wishes, i.e., attack and monitor (detect) the same link and UAV 

node. 
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4.2. Attack model 

In this work, we consider a Dolev and Yao attacker model 

[24] where the attacker is able to Read, Drop and Send valid mes- 

sages. A Read action refers to receiving or intercepting messages. 

Meanwhile, a Send action refers to forging, injecting and replay- 

ing messages. A Drop action refers to message filtering or com- 

ponents isolation. The attacker can assail the UAV-Edge network 

either by targeting communication protocols, or by attacking the 

system hardware and software components. In this work, we are 

interested in the following class of attacks: 

• Offloading refers to attacks that target the link between an

UAV and an Edge server. These attacks are carried out by ac- 

tive hackers that will read and drop valid messages in the

edge link. The attacker can also attempt jamming the radio

link between the targeted UAV and the Edge server. In [9] ,

the authors studied the security against the offloading at- 

tacks via eavesdropping or jamming,

• DoS refers to the class of attack aiming at putting an UAV

node and the network out of service. An attacker can flood

a targeted UAV with false information to exhaust its com- 

putation resources and power. It can run a GPS jamming

attack against an UAV in autonomous mode and make the

UAV waste its computation and power resources in find- 

ing a new path with noisy GPS data. Indeed, the attacker

spam GPS signals when the Coarse/Acquisition codes are

broadcasted from satellites [23] . DoS attacks against drones

have been investigated in practice. In [25] , authors showed

how they compromised the AR.drone 2.0 using tools such

as HPing. They reduced drastically the frame analysis rate of

the attacked drone performance. In [26] , authors studied de- 

authentication flood attacks impact on a UAV network.

In the following, we describe the attacks detection with respect 

to the consumed energy, E , and the computation overhead, T. E and 

T will be used for the attacker and security agent payoffs compu- 

tation. The number of considered attackers will not exceed 30% of 

UAVs number. 

4.3. Stackelberg game-based security framework 

The game is divided into I stages and t denotes the time that 

the players spend during the interaction game at each stage. The 

Stackelberg security state at stage i is modeled as ϕ i,t = { ϕ 1 i, t , ϕ 2 i, t , 

1 ≤ i ≤ I }, where ϕ1 
i, t refers to the UEC network as monitored by 

the leader (i.e. security agent) and ϕ2 
i, t refers to the UEC network 

as monitored by the follower (i.e. attacker). We model ϕ1 
i, t by 

({ L 1 k ( t ), 1 ≤ k ≤ K }, { N 1 d ( t ), 1 ≤ d ≤ D }), where L 1 k ( t ) represents 

the offloading links that a security agent can monitor. Meanwhile, 

N 1 d ( t ) counts the neighbors of the considered security agent. K and 

D are the maximum number of offloading links and UAVs that se- 

curity agent can monitor, respectively. 

In addition, we set ϕ2 
i, t = ({ L 2 k ( t ), 1 ≤ k ≤ K }, { N 2 d ( t ), 1 ≤ d ≤

D }), where L 2 k ( t ) and N 2 d ( t ) are the offloading links and UAVs that 

could be targeted by attackers. 

The pure strategies of a leader and a follower at stage i, S 1 i, t 
and S 2 i, t are expressed as S 

1 
i, t ( ϕ

1 
i, t ) = ({ a 1 k, i ∈ L 1 k ( t )} ∪ { a 1 d, i ∈ 

N 1 d ( t )}) and S 
2 
i, t ( ϕ

2 
i, t ) = ({ a 2 k, i ∈ L 2 k ( t )} ∪ { a 2 d, i ∈ N 2 d ( t )}). Action 

a 1 k, i corresponds to protecting k suspected offloading links, while 

action a 1 d, i corresponds to protecting d suspected UAVs. In addi- 

tion, actions a 2 k, i and a 
2 
d, i corresponds to attacking k offloading 

links and d UAVs, respectively. Let, p 1 k and p 
1 
d be the probabil- 

ities of the leader to adopt respectively the strategies a 1 k, i and 

a 1 d, i . p 
2 
k and p 

2 
d are the probability of the follower to adopt re- 

spectively the strategies a 2 k, i and a 
2 
d, i . Here, we have 

∑ K 
k =1 p 

1 
k = 1, 

∑ D 
d=1 p 

1 
d = 1, 

∑ K 
k =1 p 

2 
k = 1 and 

∑ D 
d=1 p 

2 
d = 1. 

4.3.1. Payoff

The payoffs of a leader and a follower are expressed in terms 

of reward and cost, i.e., payoff is equal to reward-cost. The leader’s 

reward at each stage i depends on the number of offloading links 

and suspected UAVs that are monitored and protected by the secu- 

rity agent when attackers target them. That is, it depends on the 

detection rate. The leader’s cost depends on the required compu- 

tation overhead and energy consumption at UAV node to achieve 

a high correct detection rate. The follower’s reward at each stage 

i depends on the number of infected offloading links and legit- 

imate UAVs within attacker’s neighborhood. Meanwhile, the fol- 

lower’s cost is the unsuccessful attack rate due to the correct de- 

tection of security agents. 

4.3.1.1. Leader’s payoff. As indicated in Section 4.1 , during the de- 

tection process, the security agent performs either local computing 

or offloads the detection task to the remote UEC node or to the in- 

frastructure. Each detection task j is represented by ( M j ,T j ), where 

1 ≤ j ≤ J. M j is the size of message delivered by rules based de- 

tection during the monitoring process, which contains a set of fea- 

tures related to a monitored target. T j is the computation overhead 

or the required time for the machine learning algorithm to classify 

the suspected UAV or communication link as infected. T j is required 

time for a leader to react against the cyber-attack. 

The security agent estimates the energy consumption and T j 
during the local and offloading detection and then takes its op- 

timal choice. Inspired by the work [27] , the energy consumption 

and required detection time during the local and offloading detec- 

tion process, ( T Local j , E 
Local 

j ) and ( T 
Offload 

j , E 
Offload 

j ) are expressed as 

follows: 

T Local j = D 
Local 

j / F 
Local 

j (1) 

E Local j = D 
Local 

j ∗ e Local j (2) 

Where, D Local j is the number of detection cycles required by UAV to 

identify an attack, F Local j is the local CPU frequency and e Local j cor- 

responds to a local energy consumed per CPU cycle at UAV level. 

T O f f load 
j = D 

O f f load 
j / F 

of f load 
j + T link j (3) 

Where, D Offload 
j is the number of detection cycles required by an 

UEC node (or infrastructure) to categorize the suspected target as 

malicious or normal. Meanwhile, F offload 
j is the frequency of infras- 

tructure CPU or UEC node CPU, T link j is the time elapsed between 

the task transmission time to the infrastructure (or UEC node) and 

the time of the reception of the decision result (i.e., monitored tar- 

get is normal or malicious) at the UAV. 

E O f f load 
j = D 

O f f load 
j ∗ ( e O f f load 

j + e UEC 
j ) (4) 

Where, e Offload 
j is the required energy to send the message with 

size M j to infrastructure or UEC node through the cellular net- 

work or WIFI . The UAV is launched from some deployment ar- 

eas to perform a couple of missions. They return to these depar- 

ture points to recharge their batteries when their remaining energy 

is not sufficient to continue the mission. The energy of returning 

back to one of departure points is defined as e travel . Here, e Offload 
j 

is equal to the total energy of an UAV (before performing a mis- 

sion) minus e travel . e UEC j corresponds to a local energy consumed 

per CPU cycle at UEC level. Note that we assume the infrastructure 

has no energy constraints and hence e infrastructure j is equal to zero. 

The cost function of a leader player is computed as the com- 

bination between the UAV’s energy consumption and the leader’s 

required time to react against the cyber-attack. The costs of local 
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detection and offloading detection are expressed as: 

Cos t Local = 

∑ J 
j=1 ( α1 ∗T 

Local 
j + β1 ∗E 

Local 
j ) 

J

Cos t O f f load = 

∑ J 
j=1 ( α2 ∗T 

O f f load 
j + β2 ∗E 

O f f load 
j ) 

J

C os t 1 = C os t Local + C os t O f f load 

(5) 

Where, α1 , β1 , α2 , β2 ∈ [0,1] are weight parameters for compu- 

tation overhead and energy consumption. Their values are flexibles 

and depend on security and network requirements. For instance, 

when the energy consumption of an UAV is high, the values of 

β1 and β2 are increased. Whereas, when the lethal attacks against 

the UEC network are increased, α1 and α2 are decreased to react 

promptly against the attackers. In our mathematical model, Cost 1 

∈ [0,1] describes the probability cost that a leader agent require to 

achieve a high level of protection. 

The reward of security agent depends on the correct detection 

rate of infected edge links and attacked UAVs. The leader player’s 

reward is expressed as: 

Rewar d j 
1 

= α3 .

∑ K 
k =1 D k 

K 
+ β3 . 

∑ D
d=1 D d 

D 
,

Rewar d 1 = 

∑ J 
j=1

Rewar d j 
1

J 
(6) 

Where 
∑ K 

k =1 D k 
K and 

∑ D 
d=1 D d 
D are the correct detection rates of in- 

fected offloading links and malicious UAVs, respectively. Reward 1 ∈ 

[0,1] and α3 , β3 ∈ [0,1] are the weight parameters of the correct 

detection. The payoff function �1 
i,t of a leader agent is modeled by 

Eq. (7) . 

�1 
i,t 

(

S 1 i,t , S 
2 
i,t , φ

1 
i,t 

)

= Rewar d i,t 
1 
(

S 1 i,t , S 
2 
i,t , φ

1 
i,t 

)

−Cos t i,t 
1 
(

S 1 i,t , S 
2 
i,t , φ

1 
i,t 

)

(7) 

As shown in Eq. (8) , the purpose of a leader player is to find 

the probabilities p 1 k and p 
1 
d of the optimal pure strategies a 1 k, i 

and a 1 d, i that maximize its payoff. 

max 
p 1 k , p 1 d

K 
∑ 

k =1

D 
∑ 

d=1

p 1 k ∗p 
1 
d ∗�

1 
i,t 

(

S 1 i,t , S 
2 
i,t , φ

1 
i,t 

)

(8) 

4.3.1.2. Follower’s payoff. The main goal of attackers in UEC net- 

work is to maximize the number of attacked legitimate targets. 

They target the computation, communication and detection pro- 

cess by forcing the legitimate UAVs to exhaust their energies E j 
attack 

and so increase the computation overhead. The follower’s reward is 

expressed as: 

Rewar d 2 = α4 . 

(

K 
∑ 

k =1

T k 
attack 

+ 

D 
∑ 

d=1

T d 
attack 

)

+ β4 . 

K 
∑ 

k =1

E k 
attack (9) 

T k,d 
attack is the computation overhead that UAV node (i.e., security 

agent) requires to protect itself and its neighboring UAVs from the 

follower. E k 
attack is the energy consumption of an UAV targeted by a 

follower player. Where, α4 , β4 ∈ [0,1] are the weight parameters 

of computation overhead and energy consumption. 

The cost of the follower player represents the detection rates 

of infected edge links and malicious UAVs, i.e., Reward 1 . The fol- 

lower’s cost is expressed as: 

Cos t 2 = Rewar d 1 (10) 

The payoff function �2 
i,t

of a follower player is modeled by 

Eq. (11) . 

�2 
i,t 

(

S 2 i,t , S 
1 
i,t , φ

2 
i,t 

)

= Rewar d i,t 
2 
(

S 2 i,t , S 
1 
i,t , φ

2 
i,t 

)

−Cos t i,t 
2 
(

S 2 i,t , S 
1 
i,t , φ

2 
i,t 

)

(11) 

As shown in Eq. (12) , the follower agent aims at finding the 

optimal strategies a 2 k, i and a 
2 
d, i by computing the probabilities 

p 2 k and p 
2 
d that maximize its payoff �2 

i,t . 

max 
p 2 k , p 2 d

K 
∑ 

k =1

D 
∑ 

d=1

p 2 k ∗p 
2 
d ∗�

2 
i,t 

(

S 2 i,t , S 
1 
i,t , φ

2 
i,t 

)

(12) 

4.3.2. Optimal stackelberg security equilibrium solution 

The strategies of leader and follower players, S 1 i, t ( ϕ
1 
i, t , a 

1 
k, i , 

a 1 d, i ) and S 
2 
i, t ( ϕ

2 
i, t , a 

2 
k, i , a 

2 
d, i ) depend on the current and fu- 

ture Stackelberg security states ϕ 1 i, t and ϕ 2 i, t . That is, the leader 

player considers the strategy of the follower at each stage i as 

well as the strategies of the subsequent I stages and vice versa. 

Therefore, the Stackelberg Equilibrium (SE) solution is computed 

recursively as demonstrated in [28] . The optimal payoffs of the 

leader and follower players at SE point is defined as shown in 

Eqs. (13) and (14) . 

�∗1 
i,t 

(

S ∗1 i,t , S 
∗2 

i,t , φ
∗1 

i,t

)

= max 
p 1 k , p 1 d

min 
p 2 k , p 2 d

P ∗ �1 
i,t 

(

S 1 i,t , S 
2 
i,t , φ

1 
i,t 

)

(13) 

�∗2 
i,t 

(

S ∗2 i,t , S 
∗1 

i,t , phi ∗
2 
i,t

)

= max 
p 2 k , p 2 d

min 
p 1 k , p 1 d

P ∗ �2 
i,t 

(

S 2 i,t , S 
1 
i,t , φ

2 
i,t 

)

(14) 

Where P = 
∑ K 

k =1 

∑ D 
d=1 p 

1 
k ∗p 

1 
d ∗p 

2 
k ∗p 

2 
d ; 

The total payoffs of the leader and follower players in the Stack- 

elberg security states ϕ1 
i, t and ϕ

2 
i, t is the sum of their payoffs 

from stages i to I , which are computed as 

�1 
Total 

(

S 1 i,t , S 
2 
i,t , φ

1 
i,t 

)

= P ∗

[

I 
∑ 

i =1

�∗1 
i,t+1

(

S ∗1 i,t+1 , S 
∗2 

i,t+1 , φ
∗1 

i,t+1

)

+ 

I 
∑ 

i =1

�1 
i,t 

(

S 1 i,t , S 
2 
i,t , φ

1 
i,t 

)

]

(15) 

�2 
Total 

(

S 2 i,t , S 
1 
i,t , φ

2 
i,t 

)

= P ∗

[

I 
∑ 

i =1

�∗2 
i,t+1

(

S ∗2 i,t+1 , S 
∗1 

i,t+1 , φ
∗2 

i,t+1

)

+ 

I 
∑ 

i =1

�2 
i,t 

(

S 2 i,t , S 
1 
i,t , φ

2 
i,t 

)

]

(16) 

The leader and follower players aim at maximizing their respec- 

tive total payoffs by taking the best responses of their opponents 

as shown in Eqs. (17) and (18) . 

∀ S ′ 2 i,t , p 
′ 2 
k and p 

′ 2 
d

max 
p 1 k , p 1 d 

min 
p ′ 2 k , p ′ 2 d 

�1 
Total

(

S 1 i,t , S 
′ 2 
i,t , φ

1 
i,t

)

s.t. 

P ∗

[

I 
∑ 

i =1

�∗1 
i,t+1

(

S ∗1 i,t+1 , S 
∗2 

i,t+1 , φ
∗1 

i,t+1

)

+ 

I 
∑ 

i =1

�1 
i,t 

(

S 1 i,t , S 
2 
i,t , φ

1 
i,t 

)

]

< P ′ ∗

[

I 
∑ 

i =1

�∗1 
i,t+1

(

S ∗1 i,t+1 , S 
∗2 

i,t+1 , φ
∗1 

i,t+1

)

+ 

I 
∑ 

i =1

�1 
i,t 

(

S 1 i,t , S 
′ 2 

i,t , φ
1 
i,t

)

]

(17) 
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Where P ′ = 
∑ K 

k =1

∑ D 
d=1 p 

1 
k ∗p 

1 
d ∗p 

′ 2 
k ∗p 

′ 2 
d , p 

′ 2 
k > p 2 k and p ′ 2 d > 

p 2 d 

∀ S ′ 1 i,t , p 
′ 1 
k and p 

′ 1 
d

max 
p 2 k , p 2 d 

min 
p ′ 1 k , p ′ 1 d 

�2 
Total 

(

S 2 i,t , S 
1 
i,t , φ

2 
i,t 

)

s.t. 

P ∗

[

I 
∑ 

i =1

�∗2 
i,t+1

(

S ∗2 i,t+1 , S 
∗1 

i,t+1 , φ
∗2 

i,t+1

)

+ 

I 
∑ 

i =1

�2 
i,t 

(

S 2 i,t , S 
′ 1 

i,t , φ
2 
i,t

)

]

< P ′′ ∗

[

I 
∑ 

i =1

�∗2 
i,t+1

(

S ∗2 i,t+1 , S 
∗1 

i,t+1 , φ
∗2 

i,t+1

)

+ 

I 
∑ 

i =1

�2 
i,t 

(

S 2 i,t , S 
′ 1 

i,t , φ
2 
i,t

)

]

(18) 

Where P ′ ′ = 
∑ K 

k =1

∑ D 
d=1 p 

′ 1 
k ∗p 

′ 1 
d ∗p 

2 
k ∗p 

2 
d , p 

′ 1 
k > p 1 k and p 

′ 1 
d > p 1 d 

In this security game, each security agent determines the opti- 

mal strategy of the attacker by solving Eq. (17) for a given Stack- 

elberg security states ϕ 1 i, t and ϕ 2 i, t . As illustrated in Algorithm 1 , 

the leader and the follower players compute their respective pay- 

offs �1 
i , t 

and �2 
i , t 

at each Stackelberg security states ϕ 1 i, t and ϕ 2 i, t 

(during a period t) and attempt to predict the optimal strategies 

(S ∗1 i, t + 1 , S 
∗2 

i, t + 1 ) that could occur in the subsequent state, i.e.,

at time t + 1. These optimal players’ strategies correspond to the 

actions that the security agent and attacker wishes, i.e., attack and 

monitor (detect) the same link and UAV node. In this case the pay- 

off �1 
i , t of a leader agent reaches its optimal value (which corre- 

sponds to �∗1 
i , t ) since almost of attackers are detected by the leader

players. 

Algorithm 1 Attacks and cyber security process.

Begin:

Repeat:

For each stage i:

Leader L Computes �1 
i,t ( S 

1 
i,t , S 

2 
i,t , φ

1 
i,t ) , 

Follower F Computes �2 
i,t ( S 

2 
i,t , S 

1 
i,t , φ

2 
i,t ) , 

If �1 
i,t < max p 1 k , p 1 d 

∑ K 
k =1 

∑ D 
d=1 p 

1 
k 
∗p 1 d 

∗�1 
i,t Then

L Computes
∑ I 

i =1 �
1
i,t

and Estimates
∑ I 

i =1 �
∗1 
i,t+1 ,

L Computes �1
Total ,

If �1 
Total ≥ max p 1 k , p 1 d min p ′ 2 k ,p ′ 2 d �

1 
Total

Then

If p ′ 2 k > p 2 k Then 

Monitor and Protect the link k ,

If p ′ 2 d > p 2 d Then 

Monitor and Protect the UAV node d ,

If �2 
i,t < max p 2 k , p 2 d 

∑ K 
k =1

∑ D 
d=1 p 

2 
k 
∗p 2 d 

∗�2 
i,t Then

F Computes
∑ I 

i =1 �
2
i,t

and Estimates
∑ I 

i =1 �
∗2 
i,t+1 ,

F Computes �2
Total ,

If �2 
Total ≥ max p 2 k , p 2 d min p ′ 1 k ,p ′ 1 d �

2 
Total Then 

If p ′ 1 k > p 1 k Then 

Attacks the link k ,

If p ′ 1 d > p 1 d Then 

Attacks the UAV node d ,

Until: The stage I of Stackelberg security game.

For each stage i , the leader and follower agents respectively 

protects and attacks the link and UAV node, where the maxi- 

mum number of stages is equal to I . Hence, the complexity of the 

Algorithm 1 is equal to O (I ∗2). 

5. Simulation results

We evaluated the proposed cyber security framework for UAV- 

Edge computing with Network Simulator (NS3) [29] . First, we 

Fig. 3. Optimal protection probabilities where the number of attackers equal to (a)

5%, (b) 20% and (c) 30% of overall UAVs being attackers.

study the convergences of the optimal probabilities ( p 1 k , p 
1 
d ) that 

allow the leader player to detect the cyber-attacks while consider- 

ing the computation overhead and the energy consumption of UAV 

(where the security agent is activated). We vary d and k which are 

the number of UAVs and edge links that are within the radio range 

of the leader agent L l , where 1 ≤ l ≤ L and L is the maximum num- 

ber of security agents in UAV-Edge computing network. Afterward, 

we compare the performance of the proposed security framework 

with state of the art intrusion detection frameworks developed for 

UAV and vehicular networks [18,19] . The main metrics that are an- 

alyzed in the simulations are: 
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Fig. 4. Accuracy protection rate where the number of attackers equal to (a) 5%, (b)

20% and (c) 30% of overall UAVs (or vehicles) being attackers.

• The attacks detection rate (ADR) : Number of detected at- 

tacks over the total number of cyber-attacks against the

network (0 < ADR ≤ 1),

• The false alarms rate (FAR): Number of legitimate UAVs (and

links) that are detected by the security agents as infected

nodes (links) over the total number of UAVs and links (0 <

FAR ≤ 1),

• The Average energy consumption (EC): The sum of energy’s

percentage that each UAV consumes over the number of UAV

nodes.

In this simulation, the mobility model of UAVs and vehicles is a 

deterministic mobility model [30] , where the vehicles and the UAV 

Table 1

Simulation setup.

Simulation parameters Value (s)

Simulation time 5 min

IEEE 802.11 802.11 b and 802.11 p

Bandwidth 10 MHz

Transmission power 33 dB

Number of mobile nodes From 50 to 250

Mobility model Deterministic mobility model [7]

Speed [30,…,90] Km/h

UDP flow rate 2 Mbps

Packet size 512 Bytes

UAV’s range 80 m

Vehicle’s range 300 m

Number of RSU and enodeB 20

nodes have their own mobility behavior and follow a deterministic 

path. We vary the number of nodes (UAV and vehicles) from 50 to 

250 and the attacker from 5% to 30% of overall nodes. The main 

purpose of the offloading attacks is to increase the end-to-end de- 

lay of the network by attacking the offloading tasks requested by 

the mobile nodes [9,17] . Meanwhile, the purpose of attacks that 

target the UAVs such as DoS attacks is to increase the energy con- 

sumption and to drop the critical information of UAVs. The attack- 

ers are aware of the paths that legitimate UAVs follow and they can 

easily launch cyber-attacks against the targeted UAVs. The purpose 

of our simulations is to detect the attackers in order to prevent 

critical damages, e.g., UAV crash and altering critical information 

of UEC network. Table 1 summarizes the simulation parameters. 

5.1. Optimal probabilities (p 1 k , p 
1 
d ) 

As shown in Fig. 3 , we vary the number of attackers from 5% to 

30% of overall UAVs nodes, set the number of UAVs to 250 nodes 

and analyze the protection probabilities p 1 k and p 
1 
d . The best pro- 

tection probabilities that allow us to get a high attacks detection 

rate are selected. It’s noted that, in our simulation, we compute the 

average values of the p 1 k and p 
1 
d , which are computed as: p ′ 1 k= 

∑ L 
l=1 p l 

1 
k 

L and p ′ 1 d = 

∑ L 
l=1 p l 

1 
d 

L . Fig. 3 (a)–(c) show that when the av- 

erage number of neighbors, d and offloading links, k increase the 

average protection probabilities p ′ 1 k and p 
′ 1 

d increase. This is due

to the fact that the security agents monitor all the links and the 

UAVs that are suspected to be an attractive target of attackers. 

Thus, the attack detection rate is higher than 0.85, even when d 

and k increase. We found that the detection rate decreases when 

the number of attackers is higher than 20% to save the energy con- 

sumption of UAVs. Indeed, the security agents are not activated si- 

multaneously at each UAV and hence a certain number of infected 

UAVs and links are not monitored. However, as illustrated in Fig. 3 , 

even in a worst case, i.e., when the number of attackers is above 

30% of overall nodes, the detection rate still acceptable, i.e. it is 

higher than 0.85. 

5.2. Accuracy protection 

The accuracy protection rate (APR) is equal to ADR-FAR. We an- 

alyze it by varying the number of attackers and the number of 

UAVs and vehicles. The proposed detection framework for UEC net- 

work and the security framework for UAVs network proposed in 

[19] are analyzed by varying the number of UAVs. The security 

framework for vehicular edge computing proposed in [18] is an- 

alyzed by varying the number of vehicles. It’s to be noted that, to 

allow the security frameworks [18,19] to detect the attacks that our 

framework is able to detect, we integrate in the security frame- 

works [18,19] the detection rules against the offloading and DoS 

attacks. As shown in Fig. 4 (a)–(c), the accuracy protection of a 
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Fig. 5. Average percentage of UAVs’ energy consumption.

detection framework for UEC is high and it overpasses the accuracy 

protection of the security framework [18] . This result is achieved 

even when the number of attackers reaches 30% of overall nodes. 

However, the accuracy protection of security framework [19] de- 

creases, specifically when the number of attackers increases. The 

proposed detection framework for UEC achieves a high accuracy 

protection due to the following reason: 

Cyber Stackelberg game: The proposed defense strategy exploits 

two phases of the attackers: thinking and learning. In the thinking 

phase, cyber game models how cyber-attacks are likely to attack, 

and in the learning phase, cyber game predict when and which 

legitimate UAVs and offloading links could be attacked. The Stack- 

elberg game theory is used as a mathematical tool to study the in- 

teraction of conflict between the non-cooperative players, security 

agents and attackers. The goal of this study is to define the opti- 

mal decision of security agents to detect and predict the attacks 

occurred in UEC network by taking into account the computation 

overhead and energy consumption. 

5.3. Energy consumption 

Fig. 5 illustrates the average percentage of UAVs’ consumption, 

which is defined as EC. In our analyses, we study the energy 

consumption of UAVs network when our detection framework for 

UEC and the security framework [19] are embedded. The percent- 

age of UAVs’ consumption is computed in a worst case scenario, 

i.e., the number of attackers is equal to 30% of overall nodes. As

shown in Fig. 5 , the proposed detection framework shows low en- 

ergy consumption as compared to security frameworks [19] . This 

is mainly due to the fact that, in [19] at each UAV node, the de- 

tection agent activates its detection module to protect its neigh- 

bors nodes, which leads an increase on the communication over- 

head and hence the average percentage of UAVs’ energy consump- 

tion will be increased. This is unlike our detection framework since 

the detection process is not activated simultaneously at each UAV 

node, where the detection process are launched only when a sus- 

pected links and UAVs are identified during the monitoring pro- 

cess. 

6. Conclusion

In this work, we have addressed the tradeoff issue between en- 

ergy consumption and computation overhead, and cyber defense in 

UEC network. This issue is formulated as a non-cooperative Stack- 

elberg game between security agents and attackers that target the 

offloading links and UAVs nodes. In the proposed mathematical 

model, we define the optimal Stackelberg strategies of the oppo- 

nent players, which correspond to scenario in which the security 

agent and attacker respectively protects and attacks the same of- 

floading link and UAV node. Simulation results show that almost 

of 55% of required energy are used by UAVs to achieve a high ac- 

curacy protection rate, over 94%. This result is obtained when the 

number of UAV and attackers is high. 
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