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Solution of network localization problem with

noisy distances and its convergence

Ananya Saha Buddhadeb Sau

Abstract

The network localization problem with convex and non-convex distance constraints may be
modeled as a nonlinear optimization problem. The existing localization techniques are mainly
based on convex optimization. In those techniques, the non-convex distance constraints are
either ignored or relaxed into convex constraints for using the convex optimization methods like
SDP, least square approximation, etc.. We propose a method to solve the nonlinear non-convex
network localization problem with noisy distance measurements without any modification of
constraints in the general model. We use the nonlinear Lagrangian technique for non-convex
optimization to convert the problem to a root finding problem of a single variable continuous
function. This problem is then solved using an iterative method. However, in each step of the
iteration the computation of the functional value involves a finite mini-max problem (FMX).
We use smoothing gradient method to fix the FMX problem. We also prove that the solution
obtained from the proposed iterative method converges to the actual solution of the general
localization problem. The proposed method obtains the solutions with a desired label of accuracy
in real time.

Keyword Network localization technique, Localization with non-convex distances constraints, Lo-
calization with noisy distances, Applications of Lagrange optimization in localization, Mini-max
optimization problem, Non-convex optimization.

1 Introduction

In recent technological advances, sensor networks are being adopted for collecting data from different
hostile environments and monitoring them (Figure 1). A network may consists of sensor nodes,
RFID readers, or members in a rescue team in a disaster management system, etc. Air pollution

Figure 1: How does a network works

monitoring [20], forest fire detection [17], landslide detection [23], water quality detection [3], natural
disasters prevention are some familiar field of applications in which sensor networks are useful.
When a network is deployed in some region, the sensor nodes identify the events within their sensing
ranges and transmit the collected information to the nodes within their communication ranges (a
node within communication range of another node is called a neighbor). The location of an event
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can naively be estimated by the positions of the nodes identifying the event. Thus knowing the
locations of the nodes are essential for properly monitoring the events. The objective of the network
localization is to determine the node locations of a network using available distance information.

The GPS (Global Positioning System) [9] installation with each node of a network for finding
its location is costly. Therefore the localization technique without using GPS needs research fo-
cus. Many researchers have proposed novel algorithms so far, for finding node positions using the
information available from neighboring nodes. Distance measurements among neighboring nodes
are popularly used for computing the node positions. These distances are measured by instruments
embedded inside the nodes. It is practically difficult to exactly measure the distances among nodes
even with existing sophisticated hard-wares. Thus the network localization with noisy distance
measurements demands rigorous research. In the literature, there are several algorithms based on
exact [29, 7] as well as noisy distances [12, 8]. Graph rigidity theory [29] and optimization theory
are popularly used by researchers for developing localization algorithms [12, 8].

Any network may be represented by a distance graph (a graph with edge weights equal to the
distances between the end points of the edge). The network localization problem with the graph
model of the network is equivalent to the graph realization problem. In 1979, Saxe [29] proved
that the problem of embedding graphs in the one dimensional space is NP-complete and in higher
dimensional spaces it is NP-hard. Later Aspnes, Goldenberg and Yang [7] proved that the problem
of finding a realization of a graph is an NP-hard problem even if it is known that the graph has
unique realization.

During the last few decades, some variants of the general network localization problem have
been solved. In [27, 26, 28] the localization problem with exact node distances has been discussed
for wireless sensor networks; they used the ordering of nodes of the underlying network and graph
rigidity property for localization. In distance-based network localization, the number of solutions of
the network localization problem may be unique, finite or infinite (up to congruence). Testing the
unique localizability of networks having exact distances among nodes has been discussed in [18, 6].
If a network is not uniquely localizable then it must have some nodes which may either be freely
rotated with respect to some other nodes or reflected with respect to some edges. If some nodes of
the network may be rotated then the number of solutions of the associated localization problem is
infinite. If in the underlying graph of a network, a vertex (or a few vertices) may be reflected with
respect to a set of neighbors that are almost co-linear then it is called a flip vertex of the network
and this phenomenon in network localization is called a flip ambiguity. Analysis of flip ambiguity
in network localization has been discussed in [19]. To find unique localization of networks removing
the flip ambiguity of nodes is essential.

In real field of applications, collecting the exact distances among adjacent pair of nodes is almost
impossible. Doherty et al. [12] formulated the localization problem with noisy distance as a non-
convex optimization problem. They excluded the non-convex constraints from the general problem
to obtain a convex version of it and solved the problem using semi-definite programming (SDP) [12].
Biswas et al. [8] converted the same non-convex network localization problem to convex localization
problem by using the relaxation technique and solved by SDP. To the best of our knowledge, solving
the general problem is still a challenge. In this work we sort the challenge by solving the general
nonlinear non-convex network localization problem using Lagrangian optimization. As far as we
know this is the first approach for solving the network localization problem without any modification
of constraints.

In our previous works [24, 25] (published in the proceedings of international conferences), we con-
verted the nonlinear non-convex network localization problem to a root finding problem of a single
variable continuous function φ(c0), c0 ∈ R (where φ(c0) = ψ(c0)−1). We choose the standard bisec-
tion method for solving this root finding problem since the iterations in this method are guaranteed
to converge to a root. The root finding problem inherently includes the finite mini-max problem
which is NP-hard [11]. We used the sequential quadratic programming [16, 31, 22] method to solve
the finite mini-max problem. Using the sequential quadratic programming method, an approximate
finite mini-max value of the function φ(c0) was computed at c0. Therefore in the iterative method,
the sign of the function φ(c0) was determined incorrectly due to the approximation. For instance,
suppose at an iterative step, an approximate value of φ(c0) is .0055. But the actual value of the
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function is −.0000025. In this case, the bisection method will consider the sign of the function posi-
tive though it is actually negative. Thus the correct interval containing the root was not determined
in the bisection method due to approximation. This is a drawback of using the bisection method
which is rectified in this paper.

A network localization problem may have different congruent solutions in the Euclidean space
even if the distance information are collected from some practical field of application of WSN. The
Euclidean space is unbounded. Therefore the congruent solutions of the localization problem may
be anywhere in the Euclidean space. In our work, we constructed the root finding problem [24, 25]
such that the estimated node positions of the network will be closer to the origin of the Euclidean
Space with respect to some rectangular axis. We established that, we may always identify a compact
region (i.e., a closed and bounded region) in the two dimensional Euclidean space containing the
origin within which the localization problem must have a solution [24, 25].

In this paper, the construction of the root finding problem from the network localization problem
is revised thoroughly. We develop an iterative method in light of the bisection method for finding
a root of φ(c0), (c0 ∈ R). In each step of the iterative method it is required to determine whether
the function φ(c0) has values with opposite signs at the end points of a sub-interval of the interval
identified in the previous iteration. We compute a tight bound for the function φ(c0) at c0 which
depends on its approximately computed value in the iteration. Using these bounds and the monotonic
non-increasing property of φ(c0) we determine the required sub-interval in our method. In this way
without computing the exact value of φ(c0) we proceed for finding a solution of φ(c0). We establish
that the method converges to a solution of the network localization problem and the solutions of
root finding problem may be achieved up to a desired label of accuracy within an acceptable number
of iterations.

Organization of the paper : In Section 2, we present the general network localization problem
with the convex and non-convex distance constraints. The construction of Lagrangian form of the
network localization problem is given in Section 3. In Section 4, we discuss the technique for solving
the Lagrangian network localization problem. Convergence of the solution technique is analyzed in
Section 5 along with some instances of networks for which we implement the root finding method for
finding a localization. We sketch an error analysis of the proposed method in Section 6 and conclude
in Section 7.

2 Network localization problem

Let ℵ be an ad-hoc network; V is the set of nodes (|V | = ν) and E is the set of communication links.
The underlying graph Gℵ(V,E) is the grounded graph of ℵ. A realization of Gℵ(V,E) in d-space is a
1-1 mapping f from the vertex set V to R

d. Two different realizations f and g of Gℵ are equivalent if
for each edge {u, v} in E, ||f(u)− f(v)|| = ||g(u)− g(v)|| where, ||.|| is the standard Euclidean norm
in R

d. f and g are congruent if the equality ||f(u)− f(v)|| = ||g(u) − g(v)|| holds for each pair of
vertices in V . A realization f of Gℵ(V,E) in d-space is unique up to congruence if every realization g
equivalent to f is congruent to f . If f and g are congruent to each other then g can be obtained from
f by a suitable transformation of the coordinate system in d-space and recomputing f according to
the new coordinate system. To fix a coordinate system in a d-space, d + 1 independent points are
required with known positions. Therefore a uniquely realizable framework can be uniquely located
in a d-dimensional space if we can fix d + 1 points in the space. On the other hand, if Gℵ has two
or more equivalent realizations which are non-congruent in a d-space then Gℵ is called ambiguously
d-realizable.

A distance based localization algorithm determines the locations of nodes in a network by using
known positions of anchors, if any, and a given set of inter-node distance measurements. Let A =
{u1, u2, · · · , um} be the the set of anchor nodes with known positions {a1, a2, · · · , am} and B =
{b1, b2, · · · , bn} be the nodes with unknown positions {x1, x2, · · · , xn}. In this work, we find the
positions of the nodes in B assuming m = 0, i.e., the network has no anchor node. The technique
is equally applicable for networks with anchor vertices. Let N be the set of all edges joining xi’s.
Upper and lower bound on the exact length of an edge in N joining xi and xj are denoted by dij
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and dij . Let D = (dij)n×n and D = (dij)n×n be the matrices with ij-th entries (dij) and (dij)
respectively. If two nodes xi and xj are not adjacent in the grounded graph Gℵ(V,E) then both
the matrices have ij-th entry zero. Under the anchor free setting, the network localization problem
may also be formulated as a nonlinear problem. The problem may formally be described as follows.

Problem 1. Given the edge set N and the matrices D = (dij)n×n, D = (dij)n×n, of the grounded
graph Gℵ(V,E) of a network ℵ with a set B of n nodes with unknown positions,

Find X = (x1, x2, · · · , xn)
such that d2ij ≤ ||xi − xj ||2 ≤ d

2

ij, {bi, bj} ∈ N

If X ′ is an estimation for the unknown positions of nodes in B obtained by solving Problem 1,
every realization congruent to X ′ obtained by translating the coordinate system is also a solu-
tion to Problem 1. The re-computations of such solutions can be avoided by including a function
min

∑n
i=1 ||xi||2 in the Problem 1 as the objective function. A solution to this optimization problem

will minimize the sum of square distances of unknown nodes from the origin.
Let each xi ∈ R

d then x = (x1,x2,· · · ,xn) is a point in R
dn. Suppose |N | = n0. For each edge

ek ∈ N , let fk : Rdn → R be the function

fk(x) = ||xi − xj ||2, 1 ≤ k ≤ n0

where ek = {bi, bj}. Let dk = dij and dk = dij . Using these notations, Problem 1 can be rewritten
as Problem 2.

Problem 2. Given the matrices D = (dk)n×n, D = (dk)n×n of the network ℵ with a set X of n
nodes with unknown positions. Find solutions of the nonlinear optimization problem

Minimize f0(x) =
∑n

i=1 ||xi||2

such that d2k ≤ fk(x) ≤ d
2

k, ∀ 1 ≤ k ≤ n0

In Problem 2, each constraint d2k ≤ fk(x) ≤ d
2

k can be broken into two parts, namely, fk(x) ≤ d
2

k

and d2k ≤ fk(x). For each k(1 ≤ k ≤ n0), if y1, y2 ∈ R
dn satisfy fk(x) ≤ d

2

k then ∀t ∈ [0, 1]

fk(ty1 + (1 − t)y2) ≤ tfk(y1) + (1− t)fk(y2) ≤ d
2

k.

Therefore, each fk(x) ≤ d
2

k is a convex constraint []. It can be shown that the constraints d2k ≤ fk(x)
are not convex. Thus the constraints in Problem 2 can be classified into two types based on the
convexity,

Convex constraints: fk(x) ≤ d
2

k, (1)

Non-convex constraints: d2k ≤ fk(x). (2)

This work is focused on solving the network localization problem keeping the non-convex dis-
tance constraints unaltered. Though Doherty, et al. [12] formulated the localization problem as
non-convex optimization problem [12] they exclude the non-convex distance constraints to solve the
problem using semi-definite programming (SDP). Biswas, et al. [8] converted the non-convex network
localization problem into a convex optimization problem by relaxing the non-convex inequality con-
straints and solved the relaxed problem [13, 14] using SDP [30]. A reason behind using SDP method
is that the SDP is approximately solvable in polynomial time [5]. Yet none of these approaches
solved the general network localization problem.

In this paper, using the Lagrangian theory, the anchor free network localization problem with
noisy distance measurements is converted into a root finding problem without any modification of
the nonlinear non-convex distance constraints. We solve the root finding problem using an iterative
method and prove the convergence of the method to a solution of the localization problem. The
method gives an estimation for node positions up to a desired level of accuracy within a real time
period.
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3 Root finding problem construction using Lagrangian func-

tion

The network localization problem is inherently a non-convex optimization problem. In this section,
we describe the Lagrangian function with the help of which we transform the general localization
problem into a root finding problem. In Problem 2, each non-convex constraint d2k ≤ fk(x) can be
written as fn0+k(x) ≤ d2k where, 2d2k − fk(x) = fn0+k(x). These modifications convert Problem 2
into a non-convex optimization problem as described in Problem 3.

Problem 3. Given the matrices D = (dij)n×n, D = (dij)n×n of the network ℵ consisting of n nodes
with unknown positions x = (x1, x2, · · · , xn), solve the nonlinear optimization problem:

Minimize f0(x)
such that fk(x) ≤ ck, 1 ≤ k ≤ 2n0 = r(say)

where, ck = d
2

k, 1 ≤ k ≤ n0 and ck = d2k−n0
, n0 + 1 ≤ k ≤ r.

3.1 Lagrangian function

Let c = [c0, c1, c2, · · · , cr], where c0 is a positive real number independent of x and ck(1 ≤ k ≤ r)
are defined in Problem 3. Note that, ck > 0 ∀k, because the distance information for each pair of
nodes is collected from a network where no two sensors are in the same position.

Definition 1. The Lagrangian function for Problem 3 is defined as,

L(x, c0) = max
0≤k≤r

fk(x)

ck
.

Lagrangian function may be defined in many ways [8] for an optimization problem among which
we consider the above form for the Lagrangian function in this paper. Shortly we prove that the
Lagrangian function always attains its infimum within the field of interest. With the help of L(x, c0)
the problem defined in Problem 4 is later proved to be equivalent to 3 under certain restrictions
which are acceptable in any real situations.

Problem 4. Let the function L(x, c0) attains its infimum at some point z over the domain of
definition, i.e.,

L(z, c0) = inf
x∈Rdn

max
0≤k≤r

fk(x)

ck
.

We have to find the z.

Below we describe a result from [15] which says that, x is an optimal solution of Problem 3 if
and only if it is a solution of Problem 4. Thus if we can find a solution x of Problem 4 then x may
easily be mapped to an optimal solution of Problem 3 using this result. It may also be noted that
this technique does not need the convexity of the constraint functions, i.e. we do not ignore the
non-convex constraints from the general problem.

Result 1 ([15]). Let x ∈ R
dn be an optimal solution of the network localization problem as defined

by Problem 3 and c0 = f0(x) > 0. A different x0 ∈ R
dn is an optimal solution of Problem 3 if and

only if x0 is a solution of the unconstrained problem defined in Problem 4.

In the rest of this section, using Lagrangian theory for non-convex optimization problem [15], we
convert Problem 3 into a root finding problem involving single variable.
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3.2 Lagrange’s optimization problem

The network models under consideration are picked up from networks already embedded in the field
of interest. For such an already embedded network, Problem 3 satisfies the following conditions:

1. The problem always has at least one feasible solution, since the graph underlying the network
is constructed from a network already embedded in the field of interest.

2. In Problem 3, lim
||x||→∞

f0(x) = ∞. Since in practical applications, the field of interest is

always bounded, the feasible region of Problem 3 is also bounded. Since the objective function
f0(x) =

∑n

i=1 ||xi||2 is everywhere continuous, there always exists some real constant M such
that 0 < f0(x) ≤M for all feasible x.

3. Since f0(x) ≤M in the feasible region and Problem 3 has feasible solution,

Problem 3 always possesses an optimal solution, say x, in R
dn. At x = x, f0(x) ≥ 0. It may

be noted that f0(x) = 0 only when all the points are at origin.

4. In Problem 3 the feasible region X0 = {x ∈ R
dn/fk(x) ≤ ck, 1 ≤ k ≤ r} is compact. It is

shortly proved in Lemma 1.

5. Since f0 is polynomial, it is uniformly continuous on the feasible region X0.

6. For c0 ≥ f0(x), there always exists some x ∈ R
dn such that f0(x) ≤ f0(x) ≤ c0 since f0 is

continuous.

Under the above assumptions, we develop the following result which is used for developing the
proposed localization problem.

Lemma 1. In Problem 3 the feasible region

X0 = {x = (x1, x2, . . . , xn) ∈ R
dn
∣

∣

∣
fk(x) ≤ ck, 1 ≤ k ≤ r}

is compact.

Proof. Without lose of generality we restrict X0 in R
dn
+ . Otherwise the origin may be shifted so that

the feasible region is included in R
dn
+ .

A set is compact in R
dn if and only if it is both bounded and closed [4]. We give an explicit

proof of the compactness by showing that the above defined set is both bounded and closed in R
dn.

In view of the condition (2), X0 is bounded.
Closed-ness of X0: Let for an arbitrarily chosen k, Xk = {x ∈ R

dn/fk(x) ≤ ck} and {yl}l [where
yl = (yl1, y

l
2, . . . , y

l
n)] be a Cauchy sequence in Xk with limit x. Let k-th edge of the grounded

graph joins the nodes i, j of the network. For 1 ≤ k ≤ n0, fk(y
l) ≤ ck ⇒ ||yli − ylj||2 ≤ ck and if

n0 + 1 ≤ k ≤ 2n0, fk(y
l) ≤ ck ⇒ 2ck − ||yli − ylj||2 ≤ ck. Let us first consider the case 1 ≤ k ≤ n0.

Since yl → x therefore for given any ε > 0 there exists some m ∈ N where for all l ≥ m

||yl − x|| < ε.

This gives for all l ≥ m,
||ylu − xu|| < ε for each 1 ≤ u ≤ n.

Thus for l ≥ m,

||xi − xj ||
= ||xi − yli + yli − ylj + ylj − xj ||
≤ ||xi − yli||+ ||yli − ylj ||+ ||ylj − xj ||
< 2ε+ |√ck|.
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Since the above relation holds for arbitrarily chosen ε we get ||xi−xj || ≤ |
√
ck|, i.e., ||xi−xj ||2 ≤

ck. Thus if fk(y
l) = ||yli − ylj ||2 then Xk is a compact set. For n0 + 1 ≤ k ≤ 2n0, the proof for

closed-ness is similar as before. Hence for each k, Xk is closed. X0 is the intersection of finite number
of closed sets and it is closed. Therefore X0 is compact.

The optimum solution of inf
x∈Rdn

max
0≤k≤r

fk(x)/ck varies for different values of c0 (for 1 ≤ k ≤ r, each
ck is given in the problem as constants). We define a scalar function ψ of parameter c0 ∈ R+ − {0}
as follows,

ψ(c0) = inf
x∈Rdn

max
0≤k≤r

{fk(x)/ck}. (3)

To construct the Lagrangian optimization problem we here present some results from [15] involv-
ing function ψ(c0).

Result 2 ([15]). Let {fk : (0 ≤ k ≤ r)} be a finite set of continuously differentiable functions defined
on an unbounded set X, ck > 0. Consider the optimization problem

min f0(x)
subject to fk(x) ≤ ck (1 ≤ k ≤ r)

under the following assumptions:

1. The feasible region is compact.

2. lim
||x||→∞

f0(x) =∞.

3. If x is an optimal solution and for any arbitrary constant c0 > f0(x)

Then there exists some x ∈ X such that f0(x) ≤ f0(x) < c0. Also the following conditions hold.

1. c0 < f0(x)⇒ ψ(c0) > 1.

2. With addition to the above conditions if f0(x) is uniformly continuous then c0 ≥ f0(x) ⇒
ψ(c0) ≤ 1.

3. ψ is a monotone non-increasing continuous function.

4. c0 = f0(x) if and only if ψ(c0) = 1.

Theorem 1. Let x be an optimal solution of Problem 3. Then ψ(c0) has the following properties:

1. If c0 < f0(x) then ψ(c0) > 1.

2. If c0 ≥ f0(x) then ψ(c0) ≤ 1.

3. ψ is a non-increasing continuous function of c0.

4. c0 = f0(x) if and only if ψ(c0) = 1.

Proof. Under the network model, we have seen that fis in Problem 3 are continuously differentiable
and ci > 0. The above mentioned condition (4) of the underlying network model shows that the
feasible region of Problem 3 is compact. The condition (3) shows that the Problem 3 has an optimal
solution, say x. By the condition (6), there always exists some x ∈ R

dn such that f0(x) ≤ f0(x) ≤ c0
when c0 ≥ f0(x). The proof of this theorem then follows from Problem 2.

In the following paragraph, we present the network localization problem as a root finding problem
which may be obtained from Problem 2 using Theorem 1.

Problem 5. Given the matrices D = (dij)n×n, D = (dij)n×n of the network ℵ with a set X of n
nodes with unknown positions. Let ψ(c0) = inf

x∈Rdn
max
0≤k≤r

{fk(x)/ck}.

Find c0 such that ψ(c0) = 1.

To get a good estimation for the node positions in the network, we need to search for some
positive real number c for which there exists some x ∈ R

dn such that the value of the function ψ is
equal or very close to 1. In the rest of this paper, we will concentrate for finding or estimating the
roots of ψ(c0) = 1.
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4 Solving the root finding problem

In the previous section, we have seen that solving the network localization problem is equivalent to
solving Problem 5. Here we prove that if we can find a root c0 = c∗0 of the equation ψ(c0) = 1,
node positions of the network will be obtained from the corresponding x at which L(x, c0) (=
max
0≤k≤r

{fk(x)/ck}) exactly equals 1.

Theorem 2. Let c∗0 is a root of the equation ψ(c0) = 1. Then there exists an optimizing x = x∗

such that,
ψ(c∗0) = L(x∗, c∗0) = 1.

Proof. Since the feasible region of the network localization problem is compact the optimal solution
of the problem lies within a compact set. Therefore instead of searching the minimizing x of the
function max

0≤k≤r,c0=c∗
0

{fk(x)/ck} all over R
dn we may restrict our search on a compact subset, say

K ⊂ R
nd, containing the feasible region of the network localization problem. Such a compact set

for Problem 5 may be constructed as follows:
Consider the field of interest, F , for localizing the network in R

d. If x is a feasible solution of the
general network localization problem somewhere in R

d then by using the translation and rotation
operations we may get a congruent realization of the network in F . Since F is bounded we will get
some upper bound as well as lower bound for each coordinate of any point lying in the region. If we
get any localization of the network obtained by solving Problem 5 then it will lie within the field of
interest.

LetM ′ and m′ be the maximum and minimum for all of the d coordinates in the field of interest.
Consider a dn-dimensional box

K = {(y1, y2, . . . , yi, . . . , ydn)| m′ ≤ yi ≤M ′, ∀i}

in R
dn. K is always compact. Let x = (x1, . . . , xn) be a realization of the network within the field

of interest. For each i, if xi = (xi1, xi2, . . . , xid) then m′ ≤ xij ≤ M ′. Therefore corresponding to
each solution of the network localization problem there is a point in the dn-dimensional box.

The function L(x, c∗0) is a continuous function of the variable x on this compact set K. The proof
of the theorem will be followed if we can show that the continuous function L(x, c∗0) defined on K
attains its minimum at some point in K.

Since K is a compact set and the function L is continuous, L(K, c∗0) is a compact set (i.e., closed
and bounded). Also the infimum of any set is either a limit point or an element of the set. In both
cases, the infimum of L(K, c∗0) lies inside L(K, c∗0) since, L(K, c

∗
0) is closed. Therefore, we get some

x∗ such that L(x∗, c∗0) = inf
x∈K

L(x, c∗0) i.e., ψ(c
∗
0) = L(x∗, c∗0) = 1.

We develop an iterative method in light of the bisection method for finding a root of ψ(c0) = 1,
(c0 ∈ R). The method is guaranteed to converge to a root of the continuous function ψ(c0) − 1 on
an interval [c01, c02], if (ψ(c01)− 1) and (ψ(c02)− 1) have opposite signs. At the initial stage of the
iterative method we search for an interval containing c0 within which ψ(c0) − 1 must have a root.
The searching process may progress as follows:

Consider a real number c0 = c01 > 0. For computing ψ(c01)−1 it is required to solve a finite mini-
max problem which is an NP-hard problem [11]. We use smoothing gradient technique (Section 4.1)
for computing an approximate value of ψ(c01)− 1. In this smoothing technique, ψ(c01)− 1 may be
approximated such that depending on the approximated value of the function we will get an interval
within which the actual functional value lies. Using these bounds and the monotonic non-increasing
property of the function we determine the sign of ψ(c01) − 1 (Theorem 3). If c01 is not a root of
ψ(c0)− 1 then one of the following cases may occur.

case 1. (ψ(c01) − 1 is positive): Choose a point c0 = c02 (= c01 + α, α is an arbitrary positive
number). Since ψ(c0) − 1 is a non-increasing continuous function of c0 (Theorem 1), then for
sufficiently large constant α either ψ(c02)− 1 = 0 or ψ(c02)− 1 < 0. If ψ(c02)− 1 = 0 then c02 is a
root of the equation ψ(c0) = 1 and we are done. Otherwise the required interval is [c01, c02].
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case 2. (ψ(c01) − 1 is negative at c01): Choose a point c0 = c02 (0 < c02 < c01). With similar
reason as in case 1, either ψ(c02) − 1 = 0 or ψ(c02) − 1 > 0. If ψ(c02) − 1 = 0 then we are done,
otherwise the required interval is [c02, c01].

In this way without computing the exact value of ψ(c0) − 1 we obtain an interval [c01, c02] at
the end points of which ψ(c0)− 1 take values with opposite signs and proceed for finding a solution
of ψ(c0) − 1. In the following section we describe the smoothing gradient technique which we
implemented for approximately computing ψ(c0)− 1.

4.1 Smoothing Gradient Technique for solving finite mini-max

In the literature there are several smoothing techniques which may be used for solving a finite mini-
max problem. Among those techniques we choose one for solving our finite mini-max optimization
problem in which the function ψ(c0) − 1 remains bounded for each c0 ∈ R. The technique uses
a smoothing function (given in (4)) to approximate the underlying non-smooth objective function
L(x, c0). A smoothing function for a given non-smooth continuous function may be defined as
follows.

Definition 2. [22] Let, f : Rn → R be a continuous non-smooth function. We call f̃ : Rn × R+ → R

a smoothing function of f if f̃(., µ) is continuously differntiable in R
n for every µ ∈ R

+ and

lim
z→x,µ↓0

f̃(z, µ) = f(x)

for any x ∈ R
n.

To solve the root finding problem we require an estimation for min
x
L(x, c0) = min

x
max

k

{

fk(x)

ck

}

(c0 ∈ [c01, c02]), where L(x, c0) is a non-smooth continuous function. We consider the smoothing
function for L(x, c0) as follows:

L̃(x, µ, c0) = µ log
r

∑

k=1

exp

{

1

µ
× fk(x)

ck

}

. (4)

The function L̃(x, µ, c0) provides a good estimation for L(x, c0) since the following inequality holds.

Theorem 3. L(x, c0) ≤ L̃(x, µ, c0) ≤ L(x, c0) + µ log r, for µ > 0.

Proof.

L̃(x, µ, c0)− L(x, c0) = µ log

r
∑

k=1

exp

{

1

µ
× fk(x)

ck

}

− µ×
(

1
µ
× L(x, c0)

)

= µ log
r

∑

k=1

exp

{

1

µ
× fk(x)

ck

}

− µ log exp
(

1
µ
× L(x, c0)

)

= µ log

{

r
∑

k=1

exp

{

1

µ
× fk(x)

ck

}

/ exp
( 1

µ
× L(x, c0)

)

}

= µ log

{

r
∑

k=1

exp

{

1

µ
× fk(x)

ck
− 1

µ
× L(x, c0)

}

}

= µ log

{

r
∑

k=1

exp
( 1

µ
×
{

fk(x)

ck
− L(x, c0)

}

)

}

Since fk(x)
ck
≤ L(x, c0) = max

0≤k≤r

fk(x)

ck
, at any point x ∈ R

nd,

exp
( 1

µ
×
{

fk(x)

ck
− L(x, c0)

}

)

≤ 1

9



for each k. This gives,
r

∑

k=0

exp
( 1

µ
×
{

fk(x)

ck
− L(x, c0)

}

)

≤ r.

Hence,
L̃(x, µ, c0)− L(x, c0) ≤ µ log r ⇒ L̃(x, µ, c0) ≤ L(x, c0) + µ log r. (5)

Also for each x ∈ R
nd there is some k = m for which

fm(x)

cm
= L(x, c0) = max

0≤k≤r

fk(x)

ck
.

Thus we get,

exp
( 1

µ
×
{

fm(x)

cm
− L(x, c0)

}

)

= 1

which gives
r

∑

k=0

exp
( 1

µ
×
{

fk(x)

ck
− L(x, c0)

}

)

≥ 1

or,

µ log
(

r
∑

k=0

exp
( 1

µ
×
{

fk(x)

ck
− L(x, c0)

}

))

≥ 0

i.e.,
L̃(x, µ, c0) ≥ L(x, c0). (6)

Combining Equation 5 and Equation 6 we get the given inequality.

We describe the smoothing gradient algorithm below which will produce a clarkr stationary point
(Appendix A) x0 for min

x
L(x, c0).

Algorithm 1

1: procedure SmoothingGradientAlgorithm [22]:
2: Choose σ1 ∈ (0, 0.5);σ2 ∈ (σ1, 1); γ > 0; γ1 ∈ (0, 1); x0 ∈ R

nd;
3: Let i = 0; µ0 ← A positive number chosen arbitrarily; ǫ← 10−4;
4: while µi ≥ ǫ do
5: gi ← ▽L̃(xi, µi, c0);
6: di ← (−gi);
7: α←WolfLineSearchAlgorithm(xi, di, µi, σ1, σ2)
8: xi+1 ← xi + α ∗ di;
9: if ||▽L̃(xi+1, µi, c0)|| ≥ γ ∗ µi then

10: µi+1 ← µi;
11: else

12: µi+1 ← γ1 ∗ µi;

13: i = i+ 1;

In each step of the Smoothing Gradient Algorithm we use WolfLineSearchAlgo-
rithm [1] for finding α for the next iteration. The algorithm searches for finding the maximum
value of the constant α satisfying the following two conditions.

1. L̃(xi + αdi, µi, c0) ≤ L̃(xi, µi, c0) + σ1αg
T
i di

2. ▽L̃(xi + αdi, µi, c0)
T di ≥ σ2gTi di

10



where xi, di, µi, σ1, σ2 are from the smoothing gradient algorithm. The first condition ensures that
at the i+1-th step of the iteration the functional value L̃(xi+αdi, µi, c0) is smaller than L̃(xi, µi, c0)
(since σ1αg

T
i di = −σ1α||gi||2 is negative). Here we show that an α satisfying this condition always

exists. From the Taylor theorem for multivariate functions [4] of L̃(xi + αdi, µi, c0) we get

L̃(xi + αdi, µi, c0) = L̃(xi, µi, c0) + αgTi di +O(α2) [22]

Therefore

L̃(xi, µi, c0) + αgTi di +O(α2) ≤ L̃(xi, µi, c0) + σ1αg
T
i di

if, αgTi di +O(α2) ≤ σ1αgTi di
i.e. if, −(1− σ1)α||gi||2 +O(α2) ≤ 0, or, (1−σ1)α||gi||2 ≥ O(α2).

Using the Taylor’s theorem it may be concluded that such an α always exists. Condition (2) of
WolfLineSearchAlgorithm has been inserted to keep α sufficiently large as such the slope of
L̃(xi + αdi, µi, c0) remains at least σ2 (σ1 < σ2 < 1) times larger than the slope of L̃(xi, µi, c0) [1].

Algorithm 2

1: procedure WolfLineSearchAlgorithm(xi, di, µi, σ1, σ2) [1]:
2: Let α← 0; t← 1; β ←∞;
3: Repeat

4: if L̃(xi + tdi, µi, c0) > L̃(xi, µi, c0) + σ1tg
T
i di then

5: Set β ← t; t← 1
2 (α+ β);

6: else if ▽L̃(xi + tdi, µi, c0)
T di < σ2g

T
i di then

7: α← t;
8: if β =∞ then

9: t← 2α;
10: else

11: t = 1
2 (α+ β);

12: else

13: return α;

14: End Repeat

5 Convergence analysis of the root finding method

The convergence of the root finding method inherently depends on the convergence of the Smooth-
ingGradientAlgorithm.

5.1 Convergence of SmoothingGradientAlgorithm

Let {xi} and {µi} are the sequences generated by the smoothing gradient algorithm. Towards
proving the convergence of the method let us first consider the set

S = {i | µi+1 = γ1µi}

in the smoothing gradient algorithm.

Lemma 2. The set S can not be finite.

Proof. If S is a finite set then from the smoothing gradient algorithm we get, there exists an integer
i′ such that for all i > i′,

||▽L̃(xi+1, µi, c0)|| ≥ γ ∗ µi, (7)

and µi = µi′ = µ (say). If this is true then our claim is that,

lim inf
i→∞

||▽L̃(xi+1, µ, c0)|| = 0. (8)

11



Suppose that (8) does not hold. Then there exists a sub-sequence of {gi} (gi = ▽L̃(xi+1, µ, c0)), say
{gj}, for which

||gj || ≥ ǫ for some ǫ > 0 and ∀ j. (9)

But in Wolfe Line Search Algorithm di (= −gi) is always a decent direction for the gradient [1]. Thus

the sequence
{

L̃(xj , µ, c0)
}

generated by the algorithm is a monotonically decreasing sequence.

Also xj ∈ K (∀ j) whereK is the compact set (we have chosen in our paper). Therefore the sequence
{

L̃(xj , µ, c0)
}

will be bounded below and convergent in K. Hence we get,

L̃(xj , µ, c0)− L̃(xj+1, µ, c0)→ 0, as j →∞.

Using this and the condition (1) of wolfe line search we obtain,

−gTj αjdj ≤
1

σ1

(

L̃(xj , µ, c0)− L̃(xj+1, µ, c0)
)

→ 0 as j →∞.

This gives −gTj αjdj → 0 as j → ∞. But −gTj αjdj = ||gj ||.||αjdj || cos θ where θ = π is the angle
in between gj and dj . Thus we get

||αjdj || → 0 since ||gj || ≥ ǫ. (10)

Since xj+1 = xj +αjdj and ▽L̃ differntiable on K, the Taylor’s Theorem [4] on ▽L̃(xj+1, µ, c0) gives
that,

▽L̃(xj + αjdj , µ, c0)
Tαjdj = ▽L̃(xj , µ, c0)

Tαjdj + αjdj▽
2
L̃(xj , µ, c0)

Tαjdj + o(||αjdj ||)

or,
▽L̃(xj + αjdj , µ, c0)

Tαjdj = ▽L̃(xj , µ, c0)
Tαjdj + o(||αjdj ||).

This gives,

lim
j→∞

▽L̃(xj+1, µ, c0)
Tαjdj

▽L̃(xj , µ, c0)Tαjdj
= 1, (11)

since from (10) o(||αjdj ||) ≈ 0 for j → ∞. But (11) gives a contradiction since from the second
condition of wolfe line search algorithm we get the following

▽L̃(xj+1, µ, c0)
Tdj ≥ σ2g

T
j dj

or, −g(xj+1)
T g(xj) ≥ −σ2g(xj)T g(xj)

or, g(xj+1)
T g(xj) ≤ σ2g(xj)

T g(xj)

i.e.,
g(xj+1)

T g(xj)
g(xj)T g(xj)

≤ σ2 < 1

or,
▽L̃(xj+1,µ,c0)

Tαjdj

▽L̃(xj,µ,c0)Tαjdj
≤ σ2 < 1

Therefore lim
j→∞

▽L̃(xj+1, µ, c0)
Tαjdj

▽L̃(xj , µ, c0)Tαjdj
6= 1 and ||gj || ≥ ǫ does not hold and we get,

lim inf
i→∞

||▽L̃(xi+1, µ, c0)|| = 0. (12)

But Equation (12) contradicts Equation (7) since γµ is a constant. Thus S can not be a finite
set.

Lemma 3. For the sequence {xi} and {µi} generated by the smoothing gradient algorithm the
following conditions hold,

12



1. lim
i→∞

µi = 0.

2. lim
i→∞

||▽L̃(xi+1, µi, c0)|| = 0.

Proof. We use Lemma 2 to prove both these results.

1. Since S is an infinite set µi+1 = µiγ1 (γ1 < 1) for infinitely many i-s in the smoothing gradient
algorithm. Therefore lim

i→∞
µi = 0.

2. lim
i→∞

||▽L̃(xi+1, µi, c0)|| ≤ γ lim
i→∞

µi = 0.

Since in Lemma 3, lim
i→∞

µi = 0 therefore lim
µi↓0

L̃(xi+1, µi, c0) = L(xi+1, c0) at each xi+1. The

following theorem can be proved by using Lemma 3.

Theorem 4. [10, 31] Any point x0 generated by the smoothing gradient algorithm is a clarkr
stationary point of L at c0 ∈ R.

A clarkr stationary point is a solution of min
x

L(x, c0) [10]. Hence the smoothing gradient algo-

rithm converges to a solution of min
x

L(x, c0).

5.2 Convergence of the Root Finding Method:

Theorem 5. Let {yi}, {µi} and {ci} be the sequences generated by the root finding iterative method.
As {ci} converges to a root c∗0 of the equation ψ(c0) = 1 the following two conditions will hold,

1. lim
i→∞

µi = 0 and

2. lim
i→∞

||▽L̃(yi+1, µi, c0)|| = 0.

Proof. We use Lemmma 3 to prove this theorem.

1. Let at the i-th step of the root finding iterative method we choose µi0 = 1
i
as initial guess for

µ0 to start the smoothing gradient algorithm. At the end of the iteration let we obtain µi as
the final value of µ. Then µi ≤ µi0 = 1

i
. Hence lim

i→∞
µi = 0 follows since lim

i→∞
µi0 = 0.

2. From condition (2) of Lemma 3 we get, at the i-th step of the root finding method ||▽L̃
(yi+1, µi, c0)|| can be made less than 1

i
by increasing the number of iteration in the smoothing

gradient algorithm. Hence the proof follows similarly as (1).

Using Theorem 4 we immediately get the following theorem.

Theorem 6. As {ci} converges to a root c∗0 of the equation ψ(c0) = 1 the iterative root finding
method converges to a clarkr stationary point of the non-smooth function L(x, c0).
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5.3 Some Instances showing the performance of the proposed method

In our work we consider different networks with noisy distances having noise up to 15% over the
exact distances between adjacent pair of nodes. We choose a 10 × 10 square region as the field of
interest (we don’t specify any unit for this distances since units can be chosen as required in the
relevant field). We randomly deploy the networks having within this region and select a random set
of vertex pairs as the edge set. The exact distances between adjacent pairs of nodes are measured and
recorded. The maximum distance possible between such pairs of nodes is called diameter (= 10

√
2)

of the square region. To maintain a 15% noise in the distance measurement, we choose a random
number from [−10

√
2 × 0.15, 10

√
2 × 0.15] ≈ [−2, 2] corresponding to each edge and add it to its

exact distance as error. Under this setting, the estimated positions of nodes for different networks
obtained from our algorithm is compared with their original positions.

Example 1. We consider a network consisting of 10 nodes and 28 communication links with weights
of the links as the noisy distances. The original and estimated positions of node in the network
obtained from our algorithm are recorded in Table 1.

Vertices (x, y)(original) (x, y)(estimated)
1 (0, 0) (0, 0)
2 (4.0122,−0.0000) (4.1359, 0.0000)
3 (3.8810,−2.4025) (4.0522,−2.3175)
4 (6.1459,−1.8400) (6.3297,−1.6593)
5 (7.9481,−0.3167) (7.9421, 0.1764)
6 (2.1969,−0.5585) (2.3947,−0.6566)
7 (6.1260, 5.7528) (0.0901, 2.5287)
8 (6.8309, 6.0573) (6.6231, 6.2059)
9 (3.9878, 4.2560) (3.7412, 4.3045)
10 (4.2515, 2.2306) (4.0891, 2.3111)

Table 1: The original and estimated node positions of an arbitrary network

The Figure 2(a) and Figure 2(b) represents two different realizations of the network among which
Figure 2(a) corresponds to the node positions given in Table 1. The network is not uniquely localizable
since the node 7 has degree 2. As shown in Figure 2 the node 7 may be assigned at least two different
positions in any particular assignment of positions for the other nodes of the network in the plane.
The Figure 3 represents the estimated node positions for the network using root finding method. The
estimated node positions of the network (Figure 3) are within small neighborhood of the realization
of the network given in Figure 2(b).
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Figure 2: (a) (b)
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Figure 3: The estimated node positions in the network in Figure 2

If a network is not uniquely localizable the associated localization problem has multiple solutions
satisfying the distance constraints. The above measurement leads an intuition that the proposed
method gives good estimation for node positions.

Example 2. In Table 2 we are showing the original and estimated node positions for an uniquely
localizable network. Figure 4 represents the associated networks along with their communication
links.

Vertices (x, y)(original) (x, y)(estimated)
1 (0, 0) (0, 0)
2 (3.6881, 0.0000) (3.7735, 0.0000)
3 (1.8213, 0.2799) (1.7589, 0.3499)
4 (3.6192, 2.4434) (3.4261, 2.5843)
5 (2.5173, 0.8943) (2.2052, 0.1595)
6 (3.4462, 2.4396) (3.3709, 2.2453)
7 (5.6695, 4.4681) (5.5768, 4.5106)
8 (0.6039, 5.6479) (0.6087, 5.6920)
9 (2.3696, 3.3278) (2.3902, 3.3853)
10 (3.4283, 0.1664) (3.7578, 0.0090)
11 (3.9853, 4.5081) (4.1825, 4.3951)
12 (3.8426, 1.3047) (3.8101, 1.2018)
13 (1.4380, 5.3479) (1.1181, 5.7930)
14 (2.3117, 1.9807) (2.2834, 2.0298)
15 (4.5512, 2.6738) (4.5605, 2.7180)

Table 2: The original and estimated node positions of an uniquely localizable network

We have seen that the estimated node positions are very close to the unique solution of the
localization problem.

Observations 1. Either a network is uniquely localizable or not the root finding method gives
a good estimation for the node positions. In case the localization problem has multiple solutions,
the method gives an estimation which is very close to one solution in the set of all solutions of the
problem.

If we increase the number of links in a random network keeping the number of nodes fixed then
the probability that the network become uniquely localizable increases. The accuracy in position
estimation may be better for networks having more edges. In the following we give some instances
which show that as the number of edges increases in networks the position estimations become more
accurate.
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Figure 4: The original and estimated node positions of an uniquely localizable network

5.4 Performance of the proposed method for increasing number of edges

in a network

Let ℵ be a network having n nodes and e communication links. We define the network-density ρ(ℵ)
as the ratio of e to the maximum possible number of edges n(n− 1)/2 (i.e., ρ(ℵ) = 2 ∗ e/n(n− 1)).
Any uniquely localizable network ℵ with n number of nodes lying in the plane has at least 2n− 2
edges [18] (e.g., a Laman graph with an additional edge [21], a cycle bridge [27]). Thus if ℵ is
uniquely localizable ρ(ℵ) ≥ 2(2n − 2)/n(n− 1) = 4/n. It may be noted that ρ(ℵ) ≥ 4/n does not
imply the unique localizability of a network. In the following examples we have shown that the
accuracy in position estimation increases with increasing network densities for randomly deployed
networks as well the uniquely localizable networks.

Some arbitrarily networks with different densities In Figure 5, Figure 6 and Figure 7 we
plot the original and estimated node positions for randomly deployed networks for three different
network-densities 0.30, 0.43 and 0.52. A small circle denotes the original position of a node and a
star-mark denotes the computed position of a node. The error offset between the exact and estimated
positions for individual nodes are indicated by lines. In these figures as the network-density increases
the estimations for node locations become more accurate. It may be noted that large fluctuations
occur due to flip ambiguities. Such fluctuations are also removed along with increasing densities.
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Figure 5: Random Network with density = 0.30
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Figure 6: Random Network with density = 0.43

Some uniquely localizable networks with different network densities Figure 8 and Fig-
ure 9 show scenarios of uniquely localizable networks with three network-densities 0.30, 0.43 and
0.52. For each network-density, the estimated node positions for the underlying network are very
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Figure 7: Random Network with density = 0.52

close to their respective original positions. Again this difference between the uniquely localizable
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Figure 8: Original and estimated node positions for uniquely localizable network with network
densities 0.30 and 0.43 from left to right

networks and randomly chosen networks occurs due to flip of vertices in randomly chosen networks.
However from Figure 8 and Figure 9 it is clear that the proposed algorithm works well.

Observation2. Either the network is uniquely localizable or not the amount of errors are
decreasing with increasing network densities.

Using an extensive number of networks, we shortly see that our claim is satisfied for a large
number of networks.

6 Error analysis of the root finding method

We have seen in Section 5 that for a root c0 = c∗0 of the function ψ(c0) − 1, the node positions for
the underlying network is given by x∗ corresponding to which ψ(c∗0) = L(x∗, c∗0) = 1. To analyze the
performance of the location estimation different researchers have considered different error metrics [8,
12]. In this work, we consider two different error metrics which are simple and standard. The
performance of the root finding method is characterized with respect to these metrics.

6.1 Error metrics

1. Mean Error : The average of the differences between the estimated node positions (say x′i) and
the original node position (say xi) for all nodes is the mean error of the position estimation,

17



x-axis
0 1 2 3 4 5 6 7 8

y-
ax

is

0

1

2

3

4

5

6

1 2

3

4

5

6

7

8

9

10

11
12

13

14

15

1 2

3

4

5

6

7

8

9

10

11
12

13

14

15

:  Original Position
:  Estimated Position

Figure 9: Original and estimated node positions for uniquely localizable network with network
density = 0.52

i.e., if a network has n nodes then

Mean Error =
1

n

∑

i

||xi − x′i||.

The mean error gives an overall idea about the accuracy of position estimations of the nodes
in a network. If for a network the mean error is small enough then it can be said that the
estimated node positions are very close to their original positions.

2. Maximum Error : This is the maximum difference among all the differences between the esti-
mated node locations and the general node locations of a network, i.e.,

Max Error = max
i
||xi − x′i||.

The worst fluctuation in node position estimation is measured by the maximum error in any
case.

We consider a large number of random networks for finding positions of nodes using the root
finding method. For each network we compute the mean and maximum errors in position estimation
not removing the flip ambiguities. The error analysis shows that for this large class of networks, both
the average mean and average maximum errors are decreasing with the growing network densities
and gradually diminish to zero.

6.2 Setting the Environment for executing our algorithm

We select a rectangular region (10 unit× 10 unit) in the plane as the field of interest. Networks are
randomly deployed within this region. We construct the graphs underlying to each network where
the vertices and edges of the graph are considered as the nodes and communication links in the
network respectively. The upper and lower bounds of the exact distance for each communication
link are decided with a random distance error chosen within 0% to 15%. The edge-weighted graph
G = (V,E, d) is constructed by setting the bounds as edge weights of the graph. The reconstruction
of the network (i.e., assigning positions to the nodes) is carried out as follows:

• A regionK in R
2n is considered (as described in Section 4). As discussed earlier all the feasible

solutions (up to congruence) of the network localization problem have to be included in K.

• In R
+ (set of all positive real numbers) an interval is identified (Section 4) within which the

function ψ(c0)− 1 must have a root.

• A point x0 is randomly chosen from K as the initial input for starting the SmoothingGra-
dientAlgorithm.

18



• The estimated node positions of each network is recorded and compared to the original node
positions to observe the accuracy of estimation.

6.3 Performance of our algorithm

We choose some network densities such that the underlying networks may be sparse or may be dense
for these densities. For each network density, more than 500 networks are considered and positions of
nodes are estimated using the proposed technique. From the original and estimated node positions
of each network both the mean errors and maximum errors are computed. The average of all the
mean errors and the average maximum errors for the selected network densities are computed.

We give two different scenarios for both the average mean error and the average maximum error
on the basis of the amount of noise we allow in the input distance information. In the table 10
the average errors are recorded for random networks where we allow maximum 10% noise in the
distance information. The computed average errors are small in this case. The Figure 11 associated
to the table shows that, as the network density increases the average mean error as well the average
maximum error decrease. We observe for higher network densities that the average mean errors
are insignificant. Thus for randomly chosen networks having 10% noise in the distance information
our proposed method gives a satisfactory result. We reach to a similar conclusion for the networks
(Table 12 and the corresponding plot in Figure 13) where the average errors are computed for
networks having 15% noise in distance information.

ρ(ℵ) Mean error Maximum error
0.40 1.4863 4.3133
0.44 0.7368 2.3716
0.51 0.3380 0.9376
0.58 0.2856 0.8061
0.64 0.1570 0.3563
0.71 0.1301 0.3196
0.78 0.0919 0.2008
0.84 0.0820 0.1753
0.91 0.0781 0.1730

Figure 10: Errors computed for networks
having maximum 10% noise in distance con-
straints
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Figure 11: Polygon representing the values given
in Table 10

ρ(ℵ) Mean error Maximum error
0.47 0.8341 2.7959
0.51 0.5798 1.5613
0.56 0.3578 1.1638
0.60 0.2672 0.7396
0.64 0.2659 0.7014
0.69 0.1810 0.4455
0.73 0.1668 0.3875
0.78 0.1312 0.3182
0.82 0.1145 0.2588

Figure 12: Errors computed for networks
having maximum 15% noise in distance con-
straints
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Figure 13: Polygon representing the values in Ta-
ble 12
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6.4 The advantages of the proposed root finding method

In the literature, there are several network localization techniques which claim to solve the localiza-
tion problem. We have mentioned some of the popular localization techniques in Section 1 which
instead of solving the general network localization problem, have solved some modified version of
it. Such modifications of the general network localization problem were done for implementing
the existing convex optimization techniques like SDP, least square approximation etc. to solve the
problem. For instances, in [12] the non-convex distance constraints are eliminated and solved using
SDP. In [8], the non-convex constrains are relaxed such that the modified problem becomes convex
optimization problem. In our work, we solve the general network localization problem (Problem 1)
as the root finding problem (Problem 5). We enlist below some advantages of using the root finding
method for solving the network localization problem.

1. The root finding method uses nonlinear non-convex Lagrangian optimization technique to solve
the general network localization problem which considers both the convex and non-convex
distance constraints without any modification or relaxation.

2. The actual feasible region of the network localization problem was modified in [8] for imple-
menting the SDP. Therefore the errors in position estimation was due to incorrect constraints.
On the contrary, in the proposed method the constraints are used without any modification.
Therefore the errors in position estimation occur due to the inherent limitations of numerical
root finding technique. By increasing the number of iteration of the root computations, one
can achieve a desired level of accuracy in the position estimation.

3. The localization problems considered in [8] contains 0% to 10% noise over the actual distance
measurements. The localization technique in [8] requires further improvement if the noise
raises to 10% to 20% in distances. In reality, the distances constraints in localization problem
mostly involves larger errors than the 10%. In a test bed with 100 nodes we experience at
most 50% noise in distance measurements. Though the examples exhibited in this paper
contain maximum 20% noise in distance measurements, the proposed method may be used for
computing node positions if the percentage of noise increases.

4. The convergence of root finding method is guaranteed to the unique solution of the network
localization problem if the network is uniquely localizable. If the network is not uniquely
localizable the method converges to one of the possible solutions of it.

7 Conclusion

The growing functionality of wireless sensor networks (WSN) in different fields of real life applications
requires the actual node positions as an information for properly monitoring over the detected
events. The existing techniques for solving the network localization problem do not solve the network
localization problem. Instead, some variants of the problem have been solved so far. To the best
of our knowledge, this is the first approach for solving the general network localization problem in
noisy environment. We take the advantage of the nonlinear Lagrangian function for non-convex
constraints to transform the general network localization problem to a root finding problem and
use a simple iterative method for finding the roots. The method is guaranteed to converge to a
solution. The node positions of any network can be computed up to a desired level of accuracy
in this method. The examples show that for randomly deployed networks the root finding method
gives good estimations for node positions.

We have a plan to validate the method with a test bed consisting more than 100 Arduino nodes.
Our future target is to improve the root finding method in distributed techniques to enhance its
performance in WSN.
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A Clarkr stationary point

In non-smooth analysis F.H. Clarkr introduces the notion of generalized derivatives, normal and
tangent cones [10] to grapple the non-smoothness together with the absence of convexity. Let
f : B → R ∪∞ be a non-smooth locally Lipschitz function where B is a Banach Space. Let B∗ be
the dual space of X .
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Definition 3. [10] The generalized directional derivative of f at a point x̃ and in the direction
of the vector v is defined as

f0(x̃, v) = lim sup
y→x,t↓0

f(y + tv)− f(y)
t

.

Using theorems of functional analysis [] it may be said that there is a linear functional ζ : B → R

such that f0(x, v) ≥ ζ(v) for all v ∈ B. We adopt the convention of using 〈ζ, v〉 for ζ(v).

Definition 4. The generalized gradient at a point x̃ of f is defined as

∂f(x̃) := {ζ ∈ B∗ : f0(x̃, v) ≥ 〈ζ, v〉}

for all v ∈ B.

Remark: The function f is strictly differntiable at a point x̃ if ∂f(x̃) is a singleton set, i.e.,
∂f(x̃) = {▽f(x̃)}.

Theorem 7. ∂f(x̃) can be proved to be non-empty, convex and weak*-compact subset of B∗.

The norm ||ζ||∗ in B∗ is defined as

||ζ||∗ = sup
{

〈ζ, v〉
∣

∣

∣
v ∈ B, ||v|| ≤ 1

}

.

Definition 5. [2] A point x̃ is said to be a clarkr stationary point of f if 0 ∈ ∂f(x̃, v), i.e.,
f0(x̃, v) ≥ 0 for every direction vector v in the clarkr tangent cone.

Definition 6. [10] The clarkr tangent cone to a point x̃ ∈ U ⊂ X consists of all the vectors v
of X for which the following condition holds:

For every sequence {xi} in U converging to x̃ and sequence {ti} (ti > 0 ∀i) decreasing to 0, there
is a sequence {vi} in X converging to v such that xi + tivi ∈ U for all i.

The following theorems are useful for finding the clarkr stationary points of a non-smooth func-
tion.

Theorem 8. [10] ζ ∈ ∂f(x̃) if and only if f0(x̃, v) ≥ 〈ζ, v〉 for all directions v in the underlying
space.

Theorem 9. [10] Let ▽f(x̃) exist at a point x̃ near which f is Lipschitz continuous. Then ▽f(x̃) ∈
∂f(x̃)
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