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Abstract

In scenarios where there is a lack of reliable infrastructures to support car-
to-car communications, Unmanned Aerial Vehicles (UAVs) can be deployed as
mobile infrastructures. However, the UAVs should be deployed at adequate
location and heights to maintain the coverage throughout time as the irregu-
larities of the terrain may have a significant impact on the radio signals sent
to distribute information. So, flight altitude and location should be constantly
adjusted in order to avoid hilly or mountainous terrains that might hinder the
Line-of-Sight (LOS). In this paper, we propose a three-dimensional mobility
model to define the movement of the UAV so as to maintain good coverage
levels in terms of communications with moving ground vehicles by taking into
account the elevation information of the Earth’s surface and the signal power
towards the different vehicles. The results showed that our proposed model is
able to extend the times with connectivity between the UAV and the cars com-
pared to a simpler two-dimensional model, which never considers the altitude,
and a static model, which maintains the same UAV position from the beginning
to the end of the experiment.

Keywords: UAV; Simulation; Mobility; Vehicular Communications.

1. Introduction

Due to their flexibility in terms of deployment to create a networked envi-
ronment, UAVs can be used as instant communication relays, especially in the
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case of emergencies. Since UAVs can fly at high altitudes, they can have a bet-
ter LOS than communication nodes on the ground, such as fixed infrastructures5

[1]. This flexibility, in turn, allows the UAVs to offer more advantages as data
relays and, thanks to their mobile capabilities, UAVs can be deployed as mobile
infrastructure elements to provide service to vehicles. In the scope of Intelligent
Transport Systems (ITS), some of the use cases where UAVs can be deployed
include remote sensing [2] and disaster assistance operations [3], among others.10

Within the vehicular communication scenarios, there can be some cases
where direct multi-hop car-to-car communications are not reliable at ground
level. To tackle this problem, a possible solution is to deploy the UAVs to
forward the information related to car-to-car communications, acting as infor-
mation relays [4]. Thanks to the flexible movements in the three-dimensional15

space, UAVs can follow certain trajectories or routes with complete freedom,
which contrasts with vehicles on the ground, which typically have to move
within road boundaries. Having the ability to explore space while respecting
maximum altitude values, a UAV may move freely and avoid obstacles that can
cause Non Line-of-Sight (NLOS) conditions, e.g. mountains, high buildings, etc20

[5]. Compared to the fixed infrastructures on the ground that support car-to-car
communications, UAVs are mobile. Hence, UAVs can work as mobile Road Side
Units (RSUs) [6].

By making use of their freedom to explore the three-dimensional space, UAVs
can adjust their position dynamically if they want to offer the best signal cov-25

erage to ground vehicles. In order to determine their path or trajectory, UAVs
can make use of different mobility models, which can be tested either in real
testbeds or simulation [7]. There are mobility models intended specifically for
UAVs which are mostly mission-based mobility patterns [8]. However, if we aim
at using UAVs to relay information from the moving nodes on the ground, the30

movement should be determined by taking into account the dynamic position
of ground nodes.

This paper extends the results of our previous work presented in [9], where
we propose a mobility model specifically for UAV movements to provide reliable
communications to ground vehicles in the scope of car-to-car communications35

by relaying information from one car to another. Compared to the previous
work, which only considers the mobility in two-dimensional space, this work
focuses more on how the mobility of the UAV conforms to the altitude. In other
words, the UAV’s position should change depending on the altitude.

The movement of the UAV must aim at maintaining the connection between40

the cars on the ground throughout time, as depicted in Figure 1, illustrating the
car connectivity assisted by a UAV in an area that has irregular terrains. Hence,
the UAVs’ movement is determined by their next position, which depends on
the position of the cars on the ground, which in turn is also varying throughout
time. In this case, the parameter to optimize is the signal power on each of the45

links between the UAV and the different ground vehicles. This is related to the
quality of the signal received by the cars when the UAV is acting as a transmit-
ter. The quality of the signal is thus defined by a path loss model developed in
our previous work [10]. The aforementioned model is determined by the eleva-
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Figure 1: UAV Supporting Car Connectivity in a Hilly Area.

tion condition or height of the terrain in three-dimensional environments, where50

communication obstacles can derive from terrains having higher elevation com-
pared to the position of transmitter and receiver. Hence, the proposed mobility
model also accounts for the flight height of the drone. This way, the UAV has
to move according to adequate heights to avoid crashing and, more important,
by making sure the link towards each car remains stable, and not blocked by55

hills or mountains. Extending the previous work with the same scenario, the
proposed model can determine the mobility of the UAV by not only adjusting
its position relative to the real position of the cars on the ground in terms of
latitude and longitude but also finding its ideal position in terms of height by
making use of its greater freedom to explore the three-dimension space.60

The remainder of this paper is organized by first presenting some related
research works in Section 2. Our proposed mobility model that is impacted
by the path loss model, will be discussed in Section 3, along with the problem
formulation. The implementation of the mobility model in simulation will be
explained in Section 4, along with how the scenario is defined and how to set up65

the simulation. The results of the simulation will be presented and discussed in
Section 5. Finally, the paper’s conclusion and future works will be presented in
Section 6.

2. Related Works

Several research efforts have been conducted by linking UAVs and cars in70

simulation, such as the work by Sliwa et al. [11], where the researchers proposed
a simulation framework for aerial and ground-based vehicular communication
networks. The work by Jia et al. [12] investigates the case where UAVs are
deployed as flying base stations to improve connectivity to the cars in areas
affected with disaster. Vehicle-to-drone communications were also studied in75

terms of delay by Seliem et al. [13]. In an effort of combining the UAVs and
cars in a networked environment, Shilin et al. [14], conducted a study on how
the UAVs can act as information relays for disconnected groups of cars.

Related to UAV-to-car communication simulations, we have previously worked
on the optimal placement of the UAV to support car-to-car communications80
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[15, 16]. The placement method aims to find the best position of the UAV that
can maintain the connectivity towards the cars on the ground using optimiza-
tion algorithms. The placement technique attempts to dynamically find the
best position of the UAV at every second accounting for the movements of the
cars on the ground. However, the approach remains theoretical, and cannot be85

used as the basis for a UAV mobility model since it has to have full knowledge
of the area before deployment. Hence, it cannot be used in any type of unknown
environments.

In order to determine the movement of a node that experiences both location
and velocity changes, a mobility model is proposed in [17]. For instance, the90

random mobility model can be used for determining the movement of a UAV by
randomly exploring the area, e.g. Random Waypoint Mobility (RWM) model
[18]. The movement can also be defined based on time, through the time-
dependent mobility model in which the movement is defined by the previous
speed and direction. An example is the Gauss-Markov mobility model [19].95

Another movement pattern relies on predefining the selected path scheme. In
this case, the UAV’s mobility is planned beforehand. An example that follows
this approach is the Paparazzi Mobility Model [20], in which the node using this
model travels according to a specific pattern.

Besides the general mobility models for ad-hoc networks, several research100

efforts have been conducted to propose mobility models specifically for UAVs.
Kuiper et al. [21] proposed a UAV model for reconnaissance scenarios. Wang
et al. [22], proposed a model that considered the UAV movement based on a
semi-random circular movement, which is an enhanced model compared to the
Random Waypoint. The work by Sanchez-Garcia et al. [23] emphasizes on the105

mobility model for UAVs in disaster scenarios. With the proposed model, UAVs
can offer maximum coverage to the people on the ground while still maintaining
the connectivity with other UAVs at the air.

In contrast to general mobility models mentioned, which mostly focus on
2D movements, the mobility models used for UAVs can also target the three-110

dimensional space. One of the existing mobility models is the 3D Gauss-Markov
Mobility model [24], where the authors modified the Gauss-Markov mobility
model so as to explore the 3D space. Other works include the improved 3D
Gauss-Markov model for dynamic and uncertain environments [25], namely 3D-
DUMM. On the other hand, the author in [26] improved the random mobility115

model specifically for three-dimensional scenarios, where the model depends on
the z axis direction (vertical movement).

Something missing from the existing works presented above is a mobility
model that specifically addresses the UAV movement to support car-to-car com-
munications in a three-dimensional environment. Hence, our contribution in120

this paper is how to determine the best mobility pattern for a UAV so as to
dynamically find the best position to support UAV-to-car communications. The
position should optimally conform the best link towards the cars on the ground
that remain moving at all times. Hence, the UAV mobility pattern should be
constantly and timely adjusted with respect to the mobility of the cars on the125

ground. Our mobility model considers the three-dimensional space, meaning
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that the mobility will not only define the movement to variations in terms of
latitude and longitude but also vertically in terms of altitude. The performance
of the mobility model is assessed using a realistic path loss model, which con-
siders the signal propagation effects in the presence of irregular terrains.130

3. Optimum UAV Mobility

3.1. Problem Formulation

Our proposed mobility model is intended for a case study in which a rural
area has irregular terrains that makes up mountains and hills. Hence, the roads
can have different elevation levels. This, in turn, causes the links between the135

cars on the ground to suffer from NLOS conditions. Also, one of our assumptions
is that infrastructures are quite limited since the location is quite remote. Hence,
car-to-car communications cannot be supported by any existing information
relay in the area.

In our proposal, cars can communicate with a UAV acting as a mobile relay140

to enhance connectivity between them. The UAV can forward the information
from one car to another, working as mobile infrastructure. The cars are following
specific routes, and hence the UAV should adapt its position by considering the
mobility of the cars along their routes.

In order to adapt its position, the UAV has to take into account the signal145

quality received by the cars on the ground. The UAV should be moving towards
a new position where it can still offer adequate signal levels towards the cars at
the time the cars are moving. The signal quality is calculated with respect to
NLOS conditions from the transmitter to the receiver caused by the irregular
terrains, such as hills or mountains, that can hinder the transmitted signal150

from the UAV to the cars. Hence, to adapt its position (as the environment is
three-dimensional), the UAV should care about the height when flying, and also
account for the elevation level associated with ground vehicle positions.

To calculate the value of the Received Signal Strength Indicator (RSSI),
which is the main parameter affecting the mobility model, we use a specific155

path loss model. The path loss model is based on our previous work [10]. In
particular, the RSSI is obtained by calculating the transmitted signal that is
affected by the terrain height that might be the obstacles. The height of the
terrain is determined by the elevation information retrieved from the Digital
Elevation Model (DEM) [27]. With the DEM, it can be determined whether160

the terrain is high enough so as to become an obstacle to the transmitted signal.
If that is the case, then there is an NLOS condition between the nodes. The
obstacle that creates an NLOS condition is treated as knife-edge, as shown in
Figure 2. The loss is calculated as multiple knife-edge diffraction that is included
as a factor in the Bullington model [28], which is the base of our path loss model.165

In order to calculate the height of the knife, the position of the UAV and the
position of the cars towards the elevation level of the terrain should be taken
into account. A knife is spotted when the LOS line between the sender and
the receiver is lower than the elevation of the terrain. The signal attenuation
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is obtained by defining the diffraction from the Fresnel-Kirchoff diffraction [29],170

which is included in the developed model we have mentioned above.

Figure 2: Detecting hills as obstacles to communication [10]

3.2. Proposed Mobility Model

The proposed mobility model is mostly based on following the ground nodes.
The UAV will be attracted by the node, i.e., car in this case, from which it
receives the weakest RSSI. The main goal is to maintain the connectivity from175

the UAV towards the cars on the ground so as to guarantee successful delivery
of packets. Hence, when the UAV realizes that the RSSI towards a specific car
must be improved, it starts moving towards it.

Our proposed mobility model can be represented by Algorithm 1. Firstly, the
RSSI received by each car (RSSI1, RSSI2, RSSI3, ..RSSIn) must be obtained.180

Following that, those values that belong to each specific cars, are compared with
each other. The lowest value should be pointed out, along with the car which
is associated with it (RSSImin). Once that car has been identified, its location
should be retrieved (Posmin). With this information, the UAV movement is de-
termined, and it uses the current location of the car as the target direction. The185

new position is changed into Posi+1, determined as (Lati+1, Loni+1, Alti+1). A
new calculation is made after one second. At this point, the UAV will recal-
culate whether it should continue moving towards the same car, or switch to
another car experiencing a lower RSSI value. For the implementation of the
model, the Lat and Lon coordinates, in this case, should be translated from190

Global Positioning System (GPS) coordinates, which uses degrees, into scenario
Coordinates, which use meters. This way, the Lat, Lon, and Alt values can
have the same measurement unit.

4. Simulation Setup and Scenario

4.1. Implementation of the Mobility Model in Simulation195

In order to test the mobility model in simulation, we have extended the
existing simulation tools by developing a new extension module. The simulation
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Algorithm 1 3D Mobility Model Algorithm

Input:
Initial UAV Position, Posi (Lati, Loni, Alti),
Speed of the UAV (speed),
Simulation Update Interval (updateInterval),
RSSI of cars (RSSI1, RSSI2, RSSI3, ..RSSIn).

Output:
Position of the Car with the lowest RSSI (Posmin).
Next UAV Position (Lati+1, Loni+1, Alti+1).

1: RSSImin = min(RSSI1, RSSI2, RSSI3, ..RSSIn)
2: Posmin = (Latmin, Lonmin, Altmin)
3: disti =

√
(((Latmin − Lati)

2) + ((Latmin − Lati)
2) + ((Latmin − Lati)

2))
4: RatioTraveled = updateInterval/(disti/speed)
5: Lati+1 = Lati · (1 −RatioTraveled) + Latmin ·RatioTraveled
6: Loni+1 = Loni · (1 −RatioTraveled) + Lonmin · PercentageTraveled
7: Alti+1 = Alti · (1 −RatioTraveled) + Altmin ·RatioTraveled

tools used in our work are the following: OMNeT++[30], which is a network
simulator; SUMO [31] for simulating the movements of cars; and Veins [32], used
to simulate a more realistic vehicular communications environment. The UAV200

mobility is determined by the RSSI. In this case, the UAV would move towards
the car that is receiving the lowest RSSI value. To obtain this RSSI value,
we have to execute all simulation tools combined, whether it be the network
simulator and the traffic simulator, along with the vehicular network simulation
framework.205

Although the cars’ movements are determined by the SUMO tool and impact
the UAV’s mobility, the UAV movement is, on the other hand, directly computed
in OMNeT++. The RSSI or the signal strength is affected by the elevation
obtained from the DEM. This is due to the fact that the signal transmitted
must take into account the presence of hills in addition to the altitude of the210

transmitter and the receiver. The simulator can then determine if there is a
signal blockage that can cause a knife-edge effect. The knife-edge effect can be
spotted by calculating from the path loss model, according to [10]. This will in
turn determine the signal strength, or the RSSI as depicted in Figure 3.

4.2. Simulation Setup and Scenario215

A scenario is defined for the simulation in order to test the proposed mobility
model. In this scenario, the location chosen was Pont de Suert, Spain. The
location is adequate for our evaluation since it is a rural area with lots of hills,
hence becoming an ideal place to test our model by introducing NLOS conditions
due to the irregular terrain levels in that area. In order to have a more realistic220

simulation scenario, we have imported the map from Open Street Map (OSM)
[33]. The actual layout of the roads is outlined in this map. In addition, we
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Figure 3: Mobility Model Configuration in Veins [9].

Table 1: Simulation parameters.

Parameter Value

Transmission Power 200 mW
Antenna 5 dBi
Packet Size 1.4 kB
Message Type Basic Safety Messages (BSM)
MAx. UAV Speed 72 km/h
Packet Transmission Rate 10 Hz

also imported the Shuttle Radar Topography Mission Digital Elevation Model
(SRTM DEM) [27] to add information about the terrain heights.

In order to achieve compatibility with OMNeT++, the map imported from225

OSM that contains the information in GPS coordinates is translated into Carte-
sian coordinates, having an area of 5000×5000 meters. Three cars are deployed
in the scenario, in which each has its predefined route crossing each other at
some point, as we can see in Figure 4. The scenario is centered at the inter-
section of three roads where the cars are located. The location of each car is230

recorded throughout time as the cars are moving. These locations are used
to determine the mobility model, so that it gets the maximum coverage while
maintaining the connectivity towards the cars on the ground in this scenario.
The cars’ movements are generated by the SUMO traffic simulator. The sce-
nario is limited to a duration of 280 seconds, since the cars reach the boundaries235

of the downloaded map at the end of the simulation time.
In the simulation, the UAV generates User Datagram Protocol (UDP) pack-

ets that are transmitted in a broadcast manner as BSM) at a rate of 10 packets
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Figure 4: Trajectories for ground vehicles in our experiments [9].

per second. The communication between the cars and the UAV are in ad-hoc
mode using the IEEE 802.11p technology. In more detail, the parameters con-240

sidered for simulation are listed in Table 1.
To evaluate the performance of our model, and to prove that it offers a better

mobility pattern, we have compared the three-dimensional mobility model with
other three models. The models to be compared include the static model, where
the UAV never leaves its initial position. The second model is the 2D model.245

In this mobility model, the UAV moves around the space, but it never moves
vertically (with no altitude changes). Finally, the third model is the adjusted
2D model. This model varies its altitude according to terrain features, but never
varies its flight height, always maintaining a same distance towards the ground,
which in this case is 78 meters in altitude for the whole simulation1.250

5. Simulation results

By conducting the simulations, it can be determined the best mobility pat-
tern for the UAV with respect to the movement of the cars on the ground.
The UAV’s location can be traced through its trajectory in terms of latitude,
longitude, as well as its altitude at every second. The receiver’s average RSSI255

values obtained will determine the location of the UAV where it achieves the
best coverage.
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Figure 5: UAV Mobility in a 2D Map.

5.1. UAV Path Trajectory

The path trajectory of the UAV along the simulation time can be obtained
from the GPS locations determined by each mobility model. The simulation is260

conducted using a real map from OSM, allowing us to have the path projected
on the map, as depicted in Figure 5. Each figure represents the position of
the UAV throughout the simulation for each mobility model: static model, 2D
model, adjusted 2D model, and our 3D model. For the static model, the UAV
remains still from the starting time until the end of the simulation, located at a265

strategic position near the center of the cars’ locations, as depicted in Figure 5a.
As for Figure 5b, it is based on the mobility trace from the 2D mobility model.
Notice how the UAV moves towards the north, which is the location of the car
that has the lowest signal quality received at the beginning, then going to the
south, towards the location where the other car was located, and finally going270

west. A similar pattern is shown when using the adjusted 2D mobility model,
as shown in Figure 5c. By using this model, the trend is similar, but the only
difference is that the UAV approaches the car by calculating the distance in 3D,
even though it maintains its flight height. The results with the 3D model are

1Please keep in mind that altitudes of more than 400 feet above ground are typically not
allowed (legal requirement).
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shown in Figure 5d; we can see a slight difference as it varies the flight height,275

thus having a pattern that is not similar to the previous two. In particular, the
UAV moved in the 3D space by approaching the car having the lowest signal
taking into account the elevation height towards the ground.
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Figure 6: UAV Mobility in 3D Space.

To have a better view of the results, we have also built a representation of
the UAV movement in a three-dimensional space. The UAV paths using the280

different models are presented in Figure 6. In these figures, we have presented
the trace of the UAV with the altitude information. For the static model,
as shown in Figure 6a, the UAV not only maintains its position in terms of
latitude and longitude, but it stays still in terms of altitude. When using the
2D model, however, it moves around varying its position in terms of latitude285

and longitude, although its altitude never changes. We can see the difference
when we use the adjusted 2D model. In this case, the altitude changes to adapt
to the terrain topology, even though, in terms of latitude and longitude, it has
the same pattern as the 2D model. A considerable change can be seen when
using the 3D model. In the latter, changes in terms of altitude are somehow290

not as rigid as the adjusted model. While in the adjusted 2D model the UAV
moves either horizontally or vertically, the 3D model allows the UAV to move
diagonally when attempting to approach the car experiencing lower signal levels,
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and also to freely adjust its altitude towards the ground.

5.2. Impact on Received Signal Strength295

To measure the performance of the proposed mobility model and its effec-
tiveness, we have chosen the RSSI as the key performance indicator. The RSSI
is measured according to the simulation time. The four tested models in our
work have been compared, and the values are plotted in Figure 7. The worst re-
sults are obtained with the 2D model. In this model, the altitude of the cars on300

the ground are not taken into account, which results in selecting worse position
adjustments. In particular, near the end of the simulation time, the results pro-
duced by the 2D mobility model are much worse than for the remaining models.
On the other hand, the best result is achieved by the adjusted 2D mobility. As
we can see in the figure, in the time range between t = 50s and t = 180s, the305

average RSSI perceived by the cars has been above -85 dBm, although from t
= 180s onwards the 3D mobility model performs the best.
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Figure 7: RSSI vs Time.

Moreover, we can analyze the results from another perspective by presenting
the data distribution using box plots, as depicted in Figure 8. Results for the 3D
mobility model are clearly the best and the most stable, being that the majority310

of the values are above -89 dBm (the threshold for successful packet delivery).
On the other hand, the adjusted 2D mobility model provides 75% of the results
with a larger range, with most of the values up to -74 dBm, performing worse
than the static option. However, although during some periods the adjusted 2D
mobility model may offer the best signal levels, it cannot maintain good coverage315

on the long term, which will be further confirmed in the next subsection.
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5.3. Impact on Flight Height and Altitude

When considering how high the UAV has flown, we gathered the information
plotted in Figure 9 and Figure 10. If we consider the altitude of the nodes in
the simulation, as depicted in Figure 9, we have plotted the nodes’ altitude320

versus simulation time. In this figure, we have compared the UAV altitude
when using the four different models, and the altitude of the three cars on
the ground. Here the altitude of the UAV, when it is static or adopting 2D
mobility, was maintained throughout the entire simulation process. However,
the case with adjusted 2D mobility and 3D mobility have variations. In the325

case of 3D mobility, the altitude varies and somehow has a higher altitude when
compared to he adjusted 2D mobility. This shows that the 3D mobility model
has indeed searched for the best flight height in a way that it can still reach
the communication with the three cars on the ground. On the other hand, the
adjusted 2D mobility model only varies the altitude because it must maintain330

its flight height with respect to the elevation of the terrain regardless of the
altitude of the car on the ground.

A more detailed representation of how high the UAV has flown is depicted in
Figure 10. In this case, we can see that the UAV models following the adjusted
2D mobility and the static one have maintained the flight height. We can also335

see that the 3D mobility model has changed altitude throughout time, as well
as when using 2D mobility (which maintains its altitude, although varying its
flying height). The UAV that flew according to the 3D mobility model has
carefully taken care of how high it flies. This way, it is able to account for
the distance towards the cars on the ground. As we know, if we apply the free340

space path loss theory, the further the transmitting node is located towards the
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receiver, the lower the signal quality received. Here we can understand why,
when using 2D mobility, the UAV transmitted signals are low in terms of RSSI
when received by the cars.

5.4. Connected Time and Average RSSI in the Simulation345

Another metric that allows us to assess how optimal is each model in terms
of connectivity towards the cars on the ground is the duration of the coverage
continuity throughout the simulation time. The period during which the UAV
is connected to the cars is represented by the connected percentage time. Par-
ticularly, this metric shows a level of percentage towards the total simulation350

time, as defined in Table 2. The static model, which maintains the UAV posi-
tion throughout the simulation time, maintains the connection active for 67.142
% of the evaluated time. If we use the 2D model, the connected time is of only
63.928 %. This is due to the fact that, sometimes, the UAV has flown too far
away from the cars. As for the adjusted 2D mobility model, the value rises up to355

66.428 %. This is better as the UAV adjust its altitude, although it maintains
its flight height with respect to the ground. The best value obtained is when
we use the 3D mobility model. Using this model, the flight altitude is adapted
according to the distance towards the cars on the ground. In fact, it offers the
best overall connectivity when approaching the car measuring the lowest RSSI360

values, while maintaining an acceptable distance towards the remaining cars.
Hence, although in terms of the average RSSI obtained, the adjusted 2D model
may offer higher values, in terms of connected time, it does not perform as well.
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Table 2: Simulation Results.

Model
Connected Time
Percentage (%)

Average RSSI (dBm)

Static 67.142 -87.827
Two-dimension 63.928 -90.132
Adjusted 2D 66.428 -84.336
Three-dimension 73.214 -86.932

6. Conclusions

This paper analyzes the mobility pattern of a UAV as support for car-to-car365

communications on the ground in the scope of a three-dimensional environment.
A 3D mobility model was proposed in this paper that is specifically intended
for a UAV attempting to maximize coverage throughout time. The model is
defined by selecting the car that has the lowest signal quality received from
the UAV as the transmitter, which then acts as a target point for the UAV’s370

movement. This enables the UAV to transmit a balanced signal quality towards
the cars on the ground, which is affected by the physical environment (terrain
profile). The signal quality takes into account a special-purpose path loss model
calculated with elevation information. This way, the mobility model is not only
defined by the distance between the transmitter and the lowest receiver, but also375

considering the terrain blockages, which determines the optimal UAV location
in terms of altitude.

We have tested the model in comparison with other three mobility models:
a first model that only considers 2D space, a second model where the UAV
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maintains its flight height towards the ground, and a third model where the380

UAV remains static at a specific position. The results showed that, although
in terms of the average RSSI the adjusted 2D mobility offered slightly better
values, in terms of connection time, the 3D model outperforms the rest.

The work carried out can be extended by considering additional scenarios;
for example, in an urban area or with buildings acting as obstacles, or when385

having a swarm of UAVs that can cooperate to achieve greater coverage in the
presence of many ground vehicles.
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