
Partner selection in self-organised wireless sensor networks for
opportunistic energy negotiation: A multi-armed bandit based approach
Andre P. Ortegaa,b,∗, Sarvapali D. Ramchurna, Long Tran-Thanhc and Geoff V. Merretta
aSchool of Electronics and Computer Science, University of Southampton, University Road, Southampton SO17 1BJ, UK
bFacultad de Ingeniería en Electricidad y Computación, Escuela Superior Politécnica del Litoral, Campus Gustavo Galindo Km 30.5 Vía Perimetral,
Guayaquil, Ecuador
cDepartment of Computer Science, University of Warwick, 6 Lord Bhattacharyya Way, Coventry CV4 7EZ, UK

ART ICLE INFO
Keywords:
Wireless sensor networks
Agent-based sensor network
Energy management
Multi-armed bandit based learning
Reinforcement Learning
Automated negotiation

ABSTRACT
The proliferation of “Things” over a network creates the Internet of Things (IoT), where sensors inte-
grate to collect data from the environment over long periods of time. The growth of IoT applications
will inevitably involve co-locating multiple wireless sensor networks, each serving different applica-
tions with, possibly, different needs and constraints. Since energy is scarce in sensor nodes equipped
with non-rechargeable batteries, energy harvesting technologies have been the focus of research in
recent years. However, new problems arise as a result of their wide spatio-temporal variation. Such a
shortcoming can be avoided if co-located networks cooperate with each other and share their available
energy. Due to their unique characteristics and different owners, recently, we proposed a negotiation
approach to deal with conflict of preferences. Unfortunately, negotiation can be impractical with a
large number of participants, especially in an open environment. Given this, we introduce a new
partner selection technique based on multi-armed bandits (MAB), that enables each node to learn the
strategy that optimises its energy resources in the long term. Our results show that the proposed so-
lution allows networks to repeatedly learn the current best energy partner in a dynamic environment.
The performance of such a technique is evaluated through simulation and shows that a network can
achieve an efficiency of 72% against the optimal strategy in the most challenging scenario studied in
this work.

1. Introduction
In recent years, Wireless Sensor Networks (WSNs) have

become an important technology for real-world environmen-
tal monitoring. The current trend to adopt the standard
6LoWPAN/IPv6 for IP-based sensor networks enables the
integration of WSN applications into the Internet of Things
(IoT). As a result, the likelihood of multipleWSNs being de-
ployed in the same geographic area is expected to increase
even more in the near future. Fig. 1 shows an example of a
scenario with multiple sensor networks applications.

A typicalWSN is composed of low-power sensing nodes
with constrained power supply. Despite its potential as a
perpetual energy source, energy harvesting technologies are
sensitive to the intermittency inherent in some power sources
(e.g. solar, wind or heat). To address this issue, we intro-
duced a negotiation-based cooperation model for the energy
harvesting wireless sensor networks (EHWSNs) [1]. Our ap-
proach allows each node to adaptively satisfy its load while
it agrees to share its harvested energy at some points in time
in return for energy at other points in time.

The key goal for the cooperation between EHWSNs
is the efficient management of energy to enable the net-
works’ continuous operation, also known as energy neutral-
ity. Thus, when two or more WSNs are deployed in the
same location, this work envisages a long-term cooperation
between nodes. Such cooperation starts with energy agree-
ments over a period of time in order to satisfy as much as
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Figure 1: An IoT ecosystem with multiple co-located WSNs.

possible the nodes’ energy consumption profile.
Since we are dealing with different networks that have

unique characteristics and different owners, the networks can
be considered independent and self-interested. Therefore,
before cooperation can be decided, networks should be able
to exchange offers and find a mutually-acceptable energy
flow that maximises their own benefits. Accordingly, our
previous work proposed a novel cooperation model based
on heuristic negotiation to facilitate Opportunistic Energy
Negotiation between neighbouring nodes (OEN).

In OEN, a valid energy flow offer must include the en-
ergy values for the predetermined time of cooperation. Since
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Figure 2: The 5 phases of the methodology proposed in this
work to establish OEN between distinct networks.

the energy allocated on a given time slot is highly dependent
on the amount received or offered in the previous slot due to
the battery’s dynamics, the networks bargain over interde-
pendent issues. In the initial phase of our research, decision
functions that rely on acceptable ranges of energy amounts
were used to compute offers. However, the requirement of
valid energy intervals increases as the number of issues in
conflict increases. The approach described in this paper is
an extension to the case where multiple nodes aim to partic-
ipate in a negotiation and the process is an improvement of
our previous methodology.

Although the cooperation seeks to optimise a system-
wide goal, every single node has a limited view about the
state of the entire network. This bounded knowledge is ei-
ther caused by its location or constrained nature. Therefore,
to optimise the network operability, the nodes must coordi-
nate their actions with the nodes in close proximity. Amulti-
agent approach is a natural fit for this setting, where each sen-
sor is controlled by an agent. The agent engages in commu-
nication with others in order to achieve system-wide goals in
a distributed manner. In the same way, nodes need to adjust
to topology changes, varying environmental conditions and
multiple negotiation behaviours. To fully support OEN, an
agent foresees an insufficient energy allocation scheme and
starts the process towards cooperation with a neighbouring
network. It first discovers all available agents and selects a
negotiation partner from the set of co-located nodes to start
a bilateral negotiation. Fig. 2 gives a general overview of
our methodology.

In relatively small environments, a self-interested agent
can reach its most preferred deal by negotiating with all
agents that offer cooperation. The agent then chooses the
most suited option to satisfy its negotiation preferences
among a set of bargainers. In this situation, an agent supports
robust negotiating strategies that result in efficient agree-
ments even in dynamic environments. However, this mech-
anism may not be reasonable in domains with limited com-

putation or restricted communication bandwidth. In an open
dynamic domain, such as WSNs, a negotiation may lead to
a communication overhead when coordinated over a large
number of agents. Against this background, it is always
preferable to start a negotiation which is likely to succeed
and reach a better agreement. Therefore, for practical pur-
poses, an agent should be able to anticipate the best potential
negotiation partner to maximise its energy allocation.

To realise this approach, the agent seeking a partner first
needs to learn the performance of all the neighbouring agents
expected to cooperate. Then, the decision of the negotiation
partner involves a trade-off: the negotiation with an oppo-
nent provides feedback about its effectiveness (exploration),
but the collection of that feedback ignores the immediate
benefit of selecting a partner already known as effective (ex-
ploitation). Within the partner selection problem, this work
focuses on finding an efficient learning method to balance
exploration with exploitation. Since agents have to negoti-
ate with incomplete knowledge about their opponents and
have no control of the environmental factors affecting the
outcomes of the negotiation, it is very difficult to estimate
the probability of the payoff structure for the partnership.

Accordingly, we suggest a light-weight learning method
to address the problem of partner selection. Specifically, the
partner selection can be naturally modelled as a multi-armed
bandit (MAB) problem. In MABs, an agent selects from a
group of known actions, the one that is most likely to yield
the highest reward. The goal of the agent is to maximise
the total rewards earned through a sequence of continuous
observations. Our interest lies in analysing the performance
of MABs algorithms when applied to WSNs. In this setting,
the reward corresponds to the negotiation outcomewhich not
only depends on the actions taken by the agent but also on the
adversaries behaviour. Given this reward, an agent is able
to characterise the performance of the selected opponent to
solve the partner selection problem.

Unlike classical stochastic bandits, whereby the rewards
are independently drawn following a fixed but unknown dis-
tribution, we study the implications of selecting an action
in an adversarial setting [2]. The applicability of our solu-
tion also depends on the type of adversary. If the adversary
chooses the reward ahead of the actual selection process, it is
known as an oblivious adversary. Whereas, if the opponent
simultaneously chooses the reward with the agent’s choice,
an adversary is called a non-oblivious adversary. The second
category describes our case.

The contributions of this work are summarised as fol-
lows:

• A negotiation-based methodology to enable oppor-
tunistic and direct cooperation between co-located
networks, where each node is able to reason if coop-
eration is beneficial in a decentralised manner.

• A partner selection technique based on MABs, which
satisfies the simplicity and computational efficiency
demanded in our domain. In particular, a comparison
of four state-of-the-art algorithms is presented.
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• Experimental evaluation of a generic framework for
automated multi-issue negotiation applied in the con-
text of opportunistic energy cooperation.

• An energy management method that provides a sensor
node with the ability to detect an insufficient energy
scheme.

• Extensive simulations to capture the energy cost of
discovering nearby cooperators. The overhead of the
discovery protocol is analysed in terms of the number
of agents participating in the process.

The remainder of this paper is organised as follows. Sec-
tion 2 gives an overview of relevant related work. Section
3 provides the system model, energy allocation algorithm
and negotiation results using OEN, and defines the problem
on partner selection. Section 4 demonstrates how decision-
making on partner selection can be done applying MAB al-
gorithms. Section 5 describes our experimental setting and
presents the simulation results with the comparison of the
MAB algorithms in every scenario. Section 6 details the
establishing of OEN and its energy cost. Finally, Section 7
presents concluding remarks along with directions for future
research.

2. Related work
Before presenting the related work in the problem of

partner selection, we first need to introduce a review that
synthesises the research on energy management, heuristic
negotiation strategies, and the most relevant work for the ap-
plication of reinforcement learning in the area of WSNs.
2.1. Energy management in EHWSNs

The work in energy management is studied here from
the perspective of optimisation regarding energy use in
rechargeable sensor networks. Previous efforts have concen-
trated on two different approaches of how to ensure energy-
neutral sensing systems.

In this respect, [3] considers the problem of optimal
power management and presents a linear programming al-
gorithm for the adaptation of duty cycles. Similarly, work in
[4] develops an energy allocation algorithm for the optimal
use of energy harvested inWSNs, but the objective is to min-
imise the variation in allocated energy over a period of time.
Both algorithms focus on the optimisation of power manage-
ment when nodes are harvesting-aware but differ greatly in
their design. The former solution adjusts a network parame-
ter as the duty cycle while the latter employs the maximum
energy consumed by an agent to budget the amounts of en-
ergy over a certain period.

Adaptive algorithms address the spatio-temporal varia-
tion of ambient energy sources by also optimising data sam-
pling and routing in order to deliver effective power manage-
ment. Efficient utilisation of energy scavenging by optimal
energy allocation and packet routing decision is proposed in
several works [5, 6]. Meanwhile, the adjustment of parame-
ters as the sampling rate is preferred in other solutions with

the same goal of modelling energy-neutral systems [7, 8].
While these approaches work well with the expected dy-
namic energy harvesting, they have the common feature that
their performance is limited to the boundary of one network
domain. Therefore, if the entire network is unable to harvest
energy (due to ambient conditions or obstacles in the envi-
ronment), no solution is enough. At the same time, the adap-
tive algorithms dynamically manage a node’s operation to
throttle its activity when energy supply is scarce and increase
it during periods of high availability. Thus, these techniques
may incur in the collection of undesirable data or in the loss
of collectable information.

The specific scenario of cooperation studied here is a
novel setup in the area of EHWSNs, where nodes require
to optimise their use of harvested energy in order to fulfil
as much as possible their energy requirements by collabora-
tion. From this perspective, the authors of [9] propose an
approach for efficient energy management that facilitates
the energy exchange between homes equipped with renew-
able energy technology and storage in remote communities.
Their linear programming framework for connecting agents
is used as a reference point in our work.
2.2. Heuristic negotiation strategies for multi-issue

negotiation
In this work, we aim to extend the standard form of op-

timisation to leverage an area beyond a network’s boundary.
To achieve this, the cooperation problem has been studied
extensively by researchers in the fields of WSN and Game
Theory [10, 11, 12]. In these works, a network is supposed
to be rational and self-interested. Thus, there is a risk that
each network aims to maximise its own benefit by utilising
the other’s network services but minimising its own cooper-
ative effort. Then the main focus of the proposed research is
to study the conflict situations that arise and look for possi-
ble equilibria under different network conditions. By mod-
elling the problem of cooperation as games, the behaviour
of each network and actions can be analysed to evaluate the
strategic interactions and the set of possible outcomes. De-
spite the relevance of game theory, this approach in practice
is usually highly complex and inefficient to implement [13].
The most obvious drawbacks are:

• An unbiased trustable mediator that acts to find the
agreement towards the Pareto-optimal line using com-
plete information of the players is implicit.

• The computational complexity of this search increases
significantly as the number of nodes involved grows.
The set of available actions for each node needs to be
fully defined as well as the possible states the system
can reach.

In the absence of a central device equipped with pow-
erful computing, a WSN would necessitate nodes making a
significant effort to calculate and store not only all their pos-
sible actions at each decision point but also the ones corre-
sponding to their counterpart. Thus, the use of game theory
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may demand storage and computational capacities that are
not held in this domain. Similarly, the assumption of com-
plete information is not accurate in opportunistic encounters
between nodes.

To address the limitations of the game-theoretic analysis,
heuristic methods are used to provide a reasoning mecha-
nism that arises much less complexity. In this subsection,
we focus on existing heuristics for automated multi-issue
negotiation under incomplete information. Previous work
is presented by Faratin et al. [14]. Such heuristics have
been widely used in several areas and complement multiple
frameworks for multi-issue negotiation [15, 16].

Work in [17, 18] proposes an offer generation technique
for automated multi-issue negotiation with no information
about the opponent’s utility function using an alternating
projection strategy. In this regard, several works have em-
ployed this strategy to develop their offer generation mecha-
nism [19, 20]. The goal of this approach is to design strate-
gies for computing offers when there is no available informa-
tion about the participants and lead the negotiation process
to an acceptable agreement for all the agents involved.

Faratin et al. [21] introduced the idea of choosing an
offer similar to the opponent’s preferences based on the ex-
istence of a fuzzy similarity function. However, the solution
requires a similarity function that is defined for every issue
of the negotiation. Such a requirement makes the mecha-
nism domain-dependent and useful only with additive scor-
ing functions. In contrast, works in [22, 23, 24] design a
strategy, where an agent calculates offers close to the oppo-
nent’s bids that match its own utility level without any ad-
ditional similarity-based mechanism or information on the
opponent’s model. The orthogonal strategy proposed in [22]
is applied in our domain of energy negotiation to address
the possibility of finding an acceptable deal in finite time
convergence over an interdependent multi-issue negotiation.
The orthogonal strategy has proved to approximate Pareto-
efficient bargaining solutions.
2.3. Reinforcement learning in the WSN domain

Reinforcement learning is particularly suitable for dy-
namic environments such as WSNs, where the state of cur-
rent conditions can vary over time. By performing actions
and adapting future decision-making based on the observed
consequences of those actions, an agent can learn an optimal
policy to optimise a particular objective.

In [25], the authors apply the Least-Squares Policy Itera-
tion (LSPI) algorithm to manage cross-network optimisation
problems. LSPI is used as the reasoning method to find the
optimal set of network services in each WSN node. A cen-
tral and powerful negotiation engine is assumed to contin-
uously collect information about the system measurements
and environmental states. The engine computes the config-
urations for each participating network so that the activa-
tion of the corresponding services positively influences the
performance of each network. Along with the aid of a cen-
tralised decision maker, their paradigm referred to as Sym-
biotic Networking contemplates the integration of different

networks from their design and not opportunistically.
Most of the proposed reinforcement learning based ap-

proaches solely focus on solving the WSN routing problem.
Solving such a problem is found to be NP-hard. However,
similarly to our case, the application of reinforcement learn-
ing in routing seeks to predict the full path quality between
nodes by reducing the complexity considering only neigh-
bouring nodes’ information [26]. Each node independently
performs the routing procedures to decide the minimum cost
path, which leads to a near-optimal routing decision with a
very low computational complexity.

The use of LSPI is reproduced in [27] to enable a node to
learn an optimal routing scheme with multiple optimisation
goals among the maximisation of its network lifetime. Sim-
ilarly, work in [28] proposes a routing policy conditioned by
the message importance that includes the selection of paths
with the highest delivery rate learned over the previous rout-
ing experiences. The underlying approach is based on Q-
Learning. Although the space of options is simplified in the
routing domain, these techniques need to consider the set of
state-action pairs to find an optimal action-selection policy.
As a result, the computational complexity of the algorithms
increases as the dimensionality of the problem proportional
to the state representation grows.

The drawbacks of high computation complexity and
large memory requirement in comparison to more sophis-
ticated learning algorithms are reduced with MAB learning.
The space of options in MABs is characterised only by the
set of the agent’s actions. The MAB model is commonly
used in the online learning literature for solving resource al-
location problems. One solution in the context of WSNs is
multi-armed bandit based energy management (MAB/EM)
[29]. MAB/EM is a power management technique to adapt
the operation of nodes to the environmental changes while
maximising the total amount of information collected over
a period of time. In MAB/EM, the energy of an agent is
intelligently allocated to the tasks of sampling, reception,
and transmission of data, as the agent learns which combi-
nations optimise its performance in long-term information
collection. The allocation problem is also addressed in [30]
by using MAB algorithms to make efficient use of the ra-
dio spectrum and avoid collision between cognitive nodes.
In the model, the nodes are not aware of the medium condi-
tions, and they have to estimate the channel’s availability by
exploring and learning.

Other MAB techniques are found in the context of long-
range IoT networks. Radio connectivity for short range ap-
plications (e.g. WiFi, Zigbee and Bluetooth) is not suitable
for covering very large scenarios [31, 32]. Low-Power Wide
Area Network (LPWAN) technologies are a good choice for
these emerging applications and opportunities. In this re-
spect, the LoRaWAN (Long Range Wide Area Network)
specification is a promising solution due to its Adaptive Data
Rate (ADR) scheme. Recently, a MAB based approach has
been proposed to optimise the performance of LoRAWANs
as an alternative to the standard ADR algorithm [33]. In this
work, the authors use MAB algorithms to manage the trade-
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off between energy consumption and packet loss by adapt-
ing communication parameters such as spreading factor and
transmission power. The comparison between ADR and
multiple MAB algorithms shows a higher efficiency of the
proposed MAB approach in terms of energy consumption,
packet loss, and cumulative cost. Specifically, the Switch-
ing Thompson Sampling with Bayesian Aggregation policy
outperforms the rest of the techniques for the studied non-
stationary stochastic environment.

With a growing number of interconnected devices in IoT,
dynamic spectrum access can mitigate the expected connec-
tivity demand. Work in [34] applies MAB to support de-
centralised decision-making of RF channels allocation in a
non-stationary environment. Two approaches are selected
to compare the successful communication rate, the naive
or random selection approach, and the stochastic MAB-
learning based approach. The latter implemented using
UCB and Thompson Sampling, empirically determines an
efficiency proportional to the number of intelligent dynamic
nodes. The stochastic bandit algorithms have near-optimal
performance even when the number of smart objects in the
network increases, which suggests that the learning meth-
ods are applicable in this non-stochastic setting. Channel-
hopping is a spectrum access technique to improve the reli-
ability of wireless networks. In the case of failure, retrans-
mission occurs using a different channel. In this regard, the
work in [35] introduces the use of MAB algorithms to en-
hance the spectrum utilisation by learning the channels that
achieve the highest delivery ratio.

In a different context, the resource allocation problem is
studied under an adversarial bandit model in which the re-
ward or the environment dynamics cannot be attributed to
a distribution function. From this perspective, [36] formu-
lates a joint power control and channel selection strategies in
infrastructure-less wireless networks. These strategies can
be used to achieve the equilibrium for efficient resourceman-
agement and interference mitigation among selfish transmit-
ters. In this paper, we also pose our partner selection prob-
lem as an adversarial MAB problem, in order to optimise the
energy management of the network for long-term periods.
We evaluate the performance of several algorithms on part-
ner selection through practical scenarios in WSNs to have
an accurate online estimation method of whether a particu-
lar policy will work well in practice. In this regard, there
are no prior results for the reward maximisation on partner
selection.
2.4. Partner selection in automated negotiation

The problem of partner selection has been studied from
different perspectives. In [37], a motivation-based mecha-
nism maps goals and issues to motivations. The mechanism
uses the history of candidates’ performance to select those
that have the most beneficial effects in terms of current mo-
tivational needs. In other settings, the negotiation outcome
and its equilibrium are analysed in terms of the amount of
information that is known about the opponent’s parameters
[38]. The results reported are useful for decision making in

situations where an agent has the option to select a partner
on the basis of the information state about its opponents.

In [39] the authors propose a framework for automated
negotiation based on negotiation profiles. Each agent gath-
ers information during the negotiations and stores it in the
associated profile: the preference profile keeps the agent ne-
gotiation strategy, the partner cooperation profile records the
agent interaction with the other agents in the environment,
and the group-of-partners negotiation profile stores the pro-
files of several negotiation partners. The agent is then able
to construct a set of rules to anticipate both the outcome and
the best potential partner with which to start a negotiation.
A central facilitator is responsible for registering new agents
and informing others about it.

The problem of partner selection in [40] is analysed us-
ing a possibilistic case-based decision model. Their solution
provides the decision theoretical basis to predict the possi-
bility of successful negotiation with other agents using small
historical data about past negotiation behaviour and the de-
rived qualitative expected utility for a specific situation. Ac-
cordingly, they keep a record of past negotiations to model
the negotiation behaviour of the opponents and be able to
predict it in the future.

As shown by previous research, the record of past nego-
tiations or related information is essential for choosing the
negotiation partner among a set of candidates. This makes
sense in devices equipped with advanced processors and
large memory capacity. In fact, the design of automated ne-
gotiation is highly sensitive to the domain in which the inter-
actions take place. In our domain, the networks are resource
constrained systems that discover each other opportunisti-
cally and have no information about their neighbours. More-
over, the widespread use ofWSNs predicted in the future and
the increasing likelihood of different WSNs deployed in the
same place demand a proper policy to aid an agent on the
decision-making process of the most prospective partner. In
this environment, the most promising partner is evaluated in
terms of agreements on energy cooperation, where the posi-
tion of the nodes and the orientation of their energy sources
strongly impact the energy harvested. That is, even if two
nodes are geographically close, their harvesting rates may
vary significantly.

3. System models and problem formulation
The basic idea of OEN between multi-domain and co-

located sensor networks is to define an agreement on the en-
ergy flow that handles the spatio-temporal variation of the
participants’ energy sources and satisfy as much as possi-
ble their load through a collaborative effort. Thus, in multi-
agent negotiation, the main goal for an agent is to select the
best potential partner that would maximise its energy allo-
cation.

This section defines the network model and the assump-
tions considered in our work. The energy management
model, the strategic negotiation model and the partner selec-
tion problem for efficient energy allocation in the long term
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are also presented.
3.1. Network model

We consider a set N of m energy-harvesting wireless
sensor networks N = {N1, N2, ..., Nm} that are under the
administration of distinct authorities and deployed in the
same area. Each network involvedNi, 1 ≤ i ≤ m has distinc-
tive characteristics and is formed by a set of unique sensor
nodesNi = {1, ..., j, ..., |Ni|} and a sink.Our scenario consists of general WSN applications that
periodically collect data from the sensor nodes and report
thesemeasurements to the sink, usingmultiple hops to traffic
the packets. For the sake of simplicity, we assume that time
is divided into discrete time slots T = {1, ..., n} of equal
duration L, and each time slot t is long enough to deliver
all packets to the collector and take a decision about inter-
network cooperation.

We examine each network Ni as a cooperative multi-
agent system. Then, each node j in Ni is controlled by an
agent. The identity of an agent is indexed by i, j, 1 ≤ i ≤ m,
j ∈ ℕ. The agent has complete knowledge of all the rele-
vant node’s information, such as its neighbours, its energy
availability at each time slot t, including the availability in
the future, its load, its battery capacity and residual energy.
In general, a node is an autonomous agent with advanced
situational awareness of itself and its local neighbours (the
nodes in its own network).

Suppose that we define a neighbourhood of an agent i, j
as Ωi,j , such that Ωi,j ⊆ Ni, and that the agent i, j knows
about all other agents in its 1-hop neighbourhood. Thus, a
neighbourhood is a subset of agents in Ni that control sen-sors with overlapping radio range. Opportunistic Direct In-
terconnection (ODI) is possible between any pair of nodes
whose communication beams overlap [41]. Since the main
focus of the paper is on the partner selection of each agent
i, j, we make the following assumptions about the neigh-
bourhoods, the pre-negotiation communication phase and
the transmission properties:
(a) Neighbourhoods do not necessarily have the same num-

ber of members, and each agent i, j belongs to only one
neighbourhood Ωi,j .

(b) OEN is proactive: each agent i, j periodically broadcasts
HELLO messages that contain its energy status and the
list of its current neighbours along with their status. In
this way, each agent i, j can maintain a map of energy
conditions across its neighbourhood Ωi,j . To eliminate
OEN overhead, HELLO information is introduced onto
the broadcast updates required by the used routing pro-
tocol.

(c) If multiple agents discover a lack of energy at the same
time in the same neighbourhood, we assume that agents
are assigned a priority level and rotate with time. The
assignment mechanism is out of the scope of this work.

(d) No packet loss occurs during cross-network communi-
cation. This is relevant for the delivery performance of
offers during the negotiation process. It is a valid as-

sumption since no loss is observed under the introduc-
tion of ODI architectures [41].

(e) Each agent addresses the communication cost of the it-
erative exchange of offers before the negotiation. We as-
sume that this cost is negligible compared to the energy
aimed by a node to win after negotiation. This assump-
tion is reasonable in negotiations with pre-established
short deadlines [42]. Moreover, the experimental results
found in [43] shows that the energy cost to maintain ODI
functionality is also insignificant.
The nodes in Ni usually operate unattended in a collab-

orative manner to perform some tasks. Such tasks include
sampling, reception, processing and transmission. Although
the execution of these tasks consumes a measurable amount
of energy, we ignore the power used up in processing and
sampling since the communication energy for reception and
transmission is a dominant factor in most sensor platforms.
Given this, the total energy consumed by an agent is in terms
of its radio transceiver’s duty cycle. Furthermore, each agent
i, j consists of an energy harvester unit and a rechargeable
battery. The energy management model used to derive an
agent’s energy profile is described in the next subsection.
3.2. Energy management model

In this work, we refer to a simplified model of average
power consumption as it is used in [44]. Let Eci,j(t) denotethe energy consumed by radio communication of agent i, j
in time slot t. Then we have:

Eci,j(t) = V ⋅
[

D ⋅ Iactive + (1 −D) ⋅ Isleep
]

⋅ L (1)
The maximum energy an agent can spend at each t for

some durationL depends on the duty cycleD, supplied volt-
age V , active mode current Iactive, and sleep mode current
Isleep. D is set by the node’s application, while Iactive,Isleep
and V can be known in advance using datasheet information.

The energy consumption along with the agent’s energy
availability is used to compute the energy allocation of a
WSN. The energy management model is built on the pro-
posals made by [3] and [9]. We take the power management
characterisation from [3] and model a linear function as [9]
to design the utility function of each agent i, j.

Let Eℎrvi,j (t) and Eci,j(t) denote the energy profile vari-
ables for each time period, where the former is the amount
of energy that can be generated by the harvesting source in
slot t. We consider that the agent can forecast Eℎrvi,j (t) fromhistorical information with high accuracy. Let Bi,j(t) denotethe residual energy of the battery at the beginning of slot t in
agent i, j. Then, the battery energy left after the last slot of
the energy harvesting period is defined as Bi,j(n + 1). Thecycle of the battery is represented by Bi,j(n + 1) = Bi,j(1).The battery is characterised by a limited energy capacity
Bmaxi,j and charging efficiency e. When Eℎrvi,j (t) is lower than
Eci,j(t), some of the energy used by the sensor node is dis-
charged from the battery. We use d(t) to represent this en-
ergy amount. When Eℎrvi,j (t) is higher than Eci,j(t), all the
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energy used in the node is provided by the harvested source
and the battery is charged with the excess as required, up to
its maximum capacity Bmaxi,j . We use c(t) to denote this en-
ergy amount. Based on this, the energy used from the battery
in any slot t can be calculated as:

Bi,j(t) − Bi,j(t + 1) = d(t) − e ⋅ c(t) (2)
An agent can use its battery to save and spend energy

over the entire period of n slots, which allows the agent to
compute an energy allocation for each t. The energy alloca-
tion at time slot t is denoted as Ealloci,j (t). The energy that the
agent is unable to use or store at time slot t represented by
wi,j(t) is wasted. An opportunistic energy negotiation pro-
cess is initiated when an agent’s estimated energy level is not
enough to maintain the next period. Thus, the initial battery
status Bi,j(1) is equal to e ⋅ b where b is the energy level at
t = 1.

During the negotiation, agent i, j considers the amount
of energy to receive/give from the cooperation effort at each
time t, which is defined by o = (o(1), ..., o(n)) ∶ o ∈ ℝn

+.
o represents the offer of energy at each time slot, i.e., the
issues of our negotiation domain. We call these offers energy
flow offers. A valid proposal must include the energy values
along with the corresponding sign (if positive, the amount is
an offer of energy from the agent to its opponent, otherwise,
it represents the energy to be received from the opponent.)
for the predetermined time of cooperation, e.g. If networks
expect to cooperate for 6 hours, then the energy flow must
include 6 values when L=1 h.

Since the current battery status only depends on the
amount of energy harvested and consumed during previous
slots, as represented in equation (2), the energy allocation
problem can be formulated as a linear program. The ob-
jective function of this program is to maximise the agent’s
utility. The agent’s utility corresponds to the total energy al-
located to power a load over the time interval [1, n], given
as:

ui,j =
n
∑

t=1
Ealloci,j (t), (3)

where the utility of agent i, j is represented by ui,j anddescribes the total amount of energy consumption that can
be satisfied at period T .

An optimal allocation of energy can thus be obtained by
solving the following linear programming problem:

Ojective maximise ui,j (4)
Subjected to the following constraints:

• The allocated energy at time slot t, Ealloci,j (t), is defined by
the harvested energy, the charged and discharged energy
from the battery, the energy flow offer and waste:

Ealloci,j (t) = Eℎrvi,j (t) − c(t) + d(t) + o(t) (5)

• The following represents the energy balancing condition,
which determines that the allocated energy Ealloci,j (t)must
not exceed the maximum amount of energy Eci,j(t) that anagent can consume at slot t:
Ealloci,j (t) ≤ Eci,j(t) (6)

• The energy used from the battery at any time t depends
on the discharged d(t) and charged c(t) energy plus its ef-
ficiency e:
Bi,j(t) − Bi,j(t + 1) = d(t) − e ⋅ c(t) (7)

• The battery level at time slot t = 1 is equal to an initial
residual energy b:
Bi,j(1) = e ⋅ b (8)

• The cycle of the battery is represented as:
Bi,j(n + 1) = Bi,j(1) (9)

• The energy stored into the battery at each time t, c(t), can-
not be negative and must not exceed the maximum battery
capacity:
0 ≤ c(t) ≤ Bmaxi,j (10)

• The energy drawn from the battery at each time t, d(t),
when Eℎrvi,j (t) < E

c
i,j(t) starts from Eci,j(t) − E

ℎrv
i,j (t). Thisamount must also not exceed the residual energy of the

battery:
Eci,j(t) − E

ℎrv
i,j (t) ≤ d(t) ≤ Bi,j(t) (11)

• At each time t, the batterymust not store more energy than
its capacity, also it cannot have negative values:
0 ≤ Bi,j(t) ≤ Bmaxi,j (12)

• Any wasted energy in t is positive and cannot exceed the
energy harvested Eℎrvi,j (t):
0 ≤ wi,j(t) ≤ Eℎrvi,j (t) (13)
When o is null, given the node’s detailed energy pro-

file describing its maximum load Eci,j and energy harvested
Eℎrvi,j on interval [1, n], initial battery status Bi,j(1), battery
efficiency e and battery capacity Bmaxk,i , an agent can easily
compute the node’s utility over T around Ealloci,j , c, d, Bi,jand wi,j as outlined in Algorithm 1. This energy manage-
ment method forms the basic scheme for energy allocation
and gives the sensor network self-organising ability to antic-
ipate an insufficient energy provision.

The algorithm meets the conditions listed in Subsec-
tion 3.2 to optimise the objective function of energy allo-
cation. Our work focuses on simple solutions for resource
constrained sensor nodes. Algorithm 1 defines the energy
allocation steps a node follows to compute an energy alloca-
tion scheme without adapting its network parameters. The
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Algorithm 1: Agent’s utility without OEN
Input : Eℎrvi,j ∈ ℝn

+, Eci,j ∈ ℝn
+, Bi,j(1) ∈ ℝ+,

e ∈ [0, 1], Bmaxi,j ∈ ℝ+, n ∈ ℤ+;
Output: Ealloci,j ∈ ℝn

+, c ∈ ℝn
+, d ∈ ℝn

+, Bi,j ∈ ℝn
+,

wi,j ∈ ℝn
+

1 Initialisation: Ealloci,j (t) = 0, c(t) = 0, d(t) =
0, Bi,j(t) = 0, wi,j(t) = 0 for t = 1, 2, ..., n ;

2 first = True ;
3 for t ← 1 to n − 1 do
4 if first then
5 Bi,j(t) = Bi,j(1) ;
6 first = False;
7 end
8 if Eℎrvi,j (t) ≥ Eci,j(t) then
9 Ealloci,j (t) = Eci,j(t) ;

10 if Eℎrvi,j (t) − E
c
i,j(t) >

1
e ⋅ (B

max
i,j − Bi,j(t))

then
11 c(t) = 1

e ⋅ (B
max
i,j − Bi,j(t)) ;

12 wi,j(t) = Eℎrvi,j (t) − E
c
i,j(t) − c(t);

13 else
14 c(t) = Eℎrvi,j (t) − E

c
i,j(t);

15 end
16 else
17 if Eci,j(t) > E

ℎrv
i,j (t) + Bi,j(t) then

18 Ealloci,j (t) = Eℎrvi,j (t) + Bi,j(t) ;
19 d(t) = Bi,j(t);
20 else
21 Ealloci,j (t) = Eci,j(t) ;
22 d(t) = Eci,j(t) − E

ℎrv
i,j (t);

23 end
24 end
25 Bi,j(t + 1) = Bi,j(t) − d(t) + c(t);
26 end
27 if Eℎrvi,j (n) ≥ Eci,j(n) then
28 Ealloci,j (n) = Eci,j(n) ;
29 if Eℎrvi,j (n) − E

c
i,j(n) > Bi,j(1) then

30 c(n) = Bi,j(1) ;
31 wi,j(n) = Eℎrvi,j (n) − E

c
i,j(n) − c(n);

32 else
33 c(n) = Eℎrvi,j (n) − E

c
i,j(n);

34 end
35 else
36 if Eci,j(n) > E

ℎrv
i,j (n) + Bi,j(n) then

37 Ealloci,j (n) = Eℎrvi,j (n) + Bi,j(n) ;
38 d(t) = Bi,j(1);
39 else
40 Ealloci,j (n) = Eci,j(n) ;
41 d(t) = Eci,j(n) − E

ℎrv
i,j (n);

42 end
43 end

algorithm is optimal since it uses all the energy harvested to
power the agent’s load. The initial battery status is used as
a sign of insufficient energy allocation. Such an event can
occur when the energy availability is affected either due to
obstructions of power source, damaged batteries or ineffi-
cient energy sources.

In every time slot t, the algorithm evaluates two cases
depending on the data ofEℎrv andEc : when there is enough
energy harvested to complete a load (Step 8) and the second
case when the energy availability is attempt to be supplied
with the help of the battery (Step 16). Ealloc , B, c, d and w
are derived from Subsection 3.2 given the data of Eℎrv, Ec ,
B(1), e and Bmax. Then, the problem can be solved for any
t if B(t − 1) is known.

In more detail, when there is excess energy and it goes
above the battery capacity (Step 10), the battery is charged
with the excess as required taking into account its greatest
capacity and the rest is discarded. Otherwise (Step 13), the
battery is only charged with the excess. Step 16 depicts the
scenario when there is not enough ambient energy to power a
load. There are two cases to evaluate in this statement: when
the battery cannot supply the missing energy (Step 17), and
the opposite (Step 20). In every case, the values for energy
allocation and discharge are depicted.

At the end of the algorithm run, the resulting energy al-
location scheme describes the situations that can be consid-
ered by agent i, j to decide if an OEN with a co-located net-
work must be performed, i.e when an agent can not harvest
enough energy for its consumption, and the difference can
not be covered with the residual capacity of its battery. The
statement in Step 27 describes the conditions for the last slot
in the window and cycle of the battery.

Algorithm 1 can be used to automatically alert the agent
if a deficient energy allocation scheme is envisaged. When
o is not null and we include offers, a centralised mechanism
to compute the optimal energy flow that benefits both agents
is the Nash Bargaining Solution (NBS) [45]. However, NBS
requires complete information, a trusted neutral third party,
and high computation capabilities since the set of all possible
agreements is exponential in the number of time slots. NBS
is used as a benchmark for the performance evaluation of
our approach. The next subsection describes the negotiation
model used for the bargaining process.
3.3. Energy negotiation model

We focus on bilateral negotiations, i.e. negotiations be-
tween two neighbouring rechargeable agents that belong to
distinct WSNs. In bilateral negotiation, negotiation strate-
gies are critical. This subsection describes the protocol and
strategies used following a generic framework for automated
multi-issue negotiation [23]. The model is empirically eval-
uated at the end of the subsection to show how effective the
mechanism is in comparison to a cooperative game theoretic
approach, based on the Nash bargaining solution.

In a bilateral negotiation, both agents are willing to co-
operate but have conflicting interests regarding their prefer-
ences (in this domain due to distinct batteries, power con-
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sumption and energy harvesting profiles). To that end,
agents have to negotiate and determine the most benefi-
cial setup before cooperation. Specifically, Rubinstein’s
alternating-offers protocol [46] is adopted for the interaction
between agents. At each round, an agent can either accept
an offer from the opponent, reject it, propose counter-offers,
or opt out of the negotiation, usually once the negotiation
deadline is reached.

InOEN, the negotiation proceeds in a sequence of rounds
R = {1, 2, 3, ..., rmax} for a predefined short-term deadline
rmax. As defined in 3.2, o = (o(1), ..., o(n)) represents the
vector of issues to be negotiated in each negotiation round
r. The agents in our domain only propose one offer in each
round. Thus, or1,1→2,1 is a vector of values proposed by
agent 1_1 to agent 2_1 at round r, where or1,1→2,1(t) is thevalue of energy offered from 1_1 to 2_1 for time slot t. The
issues in this domain maintain interdependencies between
each other due to the use of the battery. For a time slot t,
the energy flow (energy going out/into the agent) depends
on how much energy an agent harvest or how much energy
had been stored/withdrawn in previous time slots. We as-
sume the negotiation context (issues, deadline and initial ne-
gotiating agent) is known by both agents beforehand, and it
remains unchanged during the whole encounter.

In our work, agents adopt time-dependent strategies [14]
to determine the amount of concession required for each of-
fer. At the first round, the agents propose deals that give the
highest utility to themselves. Afterwards, different agents
may have different attitudes towards deadlines. Rounds con-
duct the values of the negotiation issues, themore rounds has
passed the more pressure is induced and faster concessions
are possible. The agent can adopt two behaviours: it may be
impatient to reach a deal, so it concedes quickly and the offer
rapidly changes to the reservation value (Conceder agent),
or it may adopt a tougher strategy and maintain its initial
proposal until it almost approaches the deadline (Boulware
agent). In our experiments, the following time-dependent
function is employed as the concession strategy to model the
target utility value (the amount of energy allocation desired
for the period T ) of an agent i, j at each round r of the nego-
tiation:

uri,j = mini,j + (1 − �
r) ⋅ (

n
∑

t=1
Eci,j(t) − mini,j) (14)

wheremini,j denotes the reserved value of agent i, j over
T i.e., the minimal amount of energy an agent i, j can al-
locate for its consumption when o is null, found by Algo-
rithm 1. The sum ∑n

t=1 E
c
i,j(t) is the maximum amount of

energy an agent can allocate to power its load over T . Then,
the target utility at each round is within the range [mini,j ,
∑n
t=1 E

c
i,j(t)]. Function �r is parameterised by the scaled
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Figure 3: Polynomial function for the computation of uri,j . Ne-
gotiation round is presented as relative to rmax.

round and concession rate � as follows:

�r =

⎧

⎪

⎨

⎪

⎩

(

1−r
1−rmax

)�
, if � < 1

(

1−r
1−rmax

)
1
2−� , if 1 ≤ � < 2.

(15)

Following this strategy, the shape of the concession
curve represents a human’s negotiation behaviour. If � <
1, agent i, j adopts a Conceder behaviour; if 1 < � < 2, the
agent uses a Boulware tactic (see Fig. 3).

Given an agent’s utility function at round r, an agent can
define its response for an opponent’s offer. Thus, if agent 1_1
receives an offer or2,1→1,1 from agent 2_1 at round r < r′, the
interpretation of agent 1_1 defined as H at round r′ for the
opponent’s offer is given by:

Hr′
1,1(o

r
2,1→1,1) =

{

accept, if ur1,1(or2,1→1,1) ≥ ur′1,1(o
r′
1,1→2,1)

reject, otherwise.
(16)

If the offer is rejected, the agent in turn proposes a new
agreement, which again the opponent may accept or reject in
the next round. The negotiation will continue until an offer is
accepted, a final negotiation round is reached, or the process
is terminated by any of the participants (ending it with no
deal possible).

Agents’ strategy of generating offers is implemented us-
ing the orthogonal strategy [22]. The main idea behind the
orthogonal strategy is to always select the point which is
the closest (measured in the Euclidean distance) to its op-
ponent’s last offer on its indifference curve (i.e., the points
that give the same utility for the agent). Let or−12,1→1,1 be thelast offer from agent 2_1 to agent 1_1 at round r − 1. If
agent 1_1 needs to generate a counter proposal that lies on
the indifference curve C according to its target utility ur1,1,
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then agent 1_1’s offer at round r with the shortest distance
to or−12,1→1,1 can be calculated by:

or1,1→2,1 = argmino∈C
‖o − or−12,1→1,1‖ (17)

where ‖.‖ denotes Euclidean distance and the offer is
subjected to the constraints listed in 3.2. Since energy is
logically transferred between networks by accepting energy-
consuming tasks like data processing or packet forwarding,
a change is required in constraint (10) when there are offers
involved:

0 ≤ c(t) ≤ Eℎrvk,i (t) (18)
The result is that the battery will be charged immediately

with the energy harvested by the agent while the energy sup-
ply received from the opponent’s offer will be used to satisfy
the agent’s load.

In summary, the mechanism presented in this subsection
allows an agent to represent its preferences and determine the
desired utility level to generate a counter-offer accordingly.
Our system makes use of the described negotiation model
in order to fulfil the network objective of long-term energy
allocation.
3.3.1. Performance Evaluation of OEN

These experiments were conducted with different agent’s
profiles and negotiation parameters. Two distinct types of
ambient energy sources (solar and wind) were considered to
evaluate our approach experimentally: Agent a controls a
sensor node with a solar panel while agent b manipulates a
sensor node with a wind turbine.

We acquire hourly wind speed collected at Weather Un-
derground [47] and solar radiation from PVGIS [48] for
a period of one year (2017) corresponding to the area of
Southampton to compute the energy generated by solar pan-
els and wind turbines. The computation of solar energy con-
siders a panel of dimension 3.3 cm × 6.35 cm with a max-
imum efficiency of 10%. Then, the estimated hourly power
output is proportional to the solar radiation obtained from
PVGIS, the panel dimension, and its efficiency [49]. For the
wind source, the power is calculated using the wind speed
and swept area of 5 cm × 5 cm as in [50]. Then, the values
are scaled to get the hourly power output of a highly efficient
micro-turbine.

In order to obtain the following results and compare
OEN to NBS, a feasible space of energy flow agreements
must exist between the agents. Thus, energy harvesting val-
ues from the same day, same period, are selected to meet
the requirement of feasible intersection points. Regarding
the power consumption profile, agent a and b are modelled
with a supply voltage of 3 V, sleep current of 5 µA, active
current of 20 mA and duty cycle drawn from the discrete
uniform distribution on the interval [1%, 5%]. These values
are used to determine the regular energy consumed by each
agent at every hour. The parameter values for the agents’
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Figure 4: Average utility of agents a and b in the following
situations: without cooperation between them, with negotia-
tion using OEN, and the theoretical optimum NBS. The error
bars denote the standard error to the mean. The graph also
displays the comparison between energy neutrality agreements
found with each solution.

storage are a maximum capacity of 600 mAh and efficiency
of 70%, which is typical for NiMH batteries.

In terms of the negotiation parameters, the concession
rates for each agent and the number of rounds at each simu-
lation are chosen randomly from 0.5 to 1.5 and 5 to 15, re-
spectively. The number of issues is fixed at 6, which means
that at every encounter, the agents negotiate for a coopera-
tion period of 6 hours.

With the aim to optimise its power management, the first
step for each agent is to identify its own efficiency. In OEN,
it corresponds to the energy allocation scheme that an agent
can employ to power its load. Thus, each agent first invokes
the optimal energy allocation algorithm (Algorithm 1) to
make optimal use of its harvested energy. This power man-
agement technique is tested during every simulation. Such
algorithm enables self-organised agents that can anticipate
insufficient energy allocation schemes and the opportunity
to start an OEN. The main goal of the simulations is to com-
pare the performance of the agents in the following situa-
tions: without cooperation, with optimal energy allocation
after negotiation incorporating the OEN model, and finally
using the Nash bargaining solution.

Fig. 4 shows the average utility value obtained over 1000
bilateral negotiations for agents: a and b. As observed, on
average, the energy harvested from solar and wind power
sources is insufficient to satisfy the total load of each agent
independently. On the other hand, the energy allocation with
OEN is improved on average up to 59% and 4% as a result of
agreements obtained by the agents on energy cooperation, in
agent a and b, respectively. This amount of energy can be up
to 50% of the energy that is reallocated using the Nash bar-
gaining solution. From these cases, 107 energy flow agree-
ments meet the energy-neutrality condition when applying
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OEN, while 310 are achieved by the centralised solution.
The percentage of energy neutrality deals with OEN are 35%
of the optimal solution. Although energy neutrality is not
imposed in the offers proposed using OEN, the mechanism
is capable to reach this most desirable outcome. Moreover,
the introduction of weather data positively correlated in our
simulations can make cooperation even more successful and
increase the possibility of reaching better results. The com-
bination of sun and wind energy may ensure every agent to
exploit its source to the fullest.

The performance of OEN can be increased by exploiting
co-located nodes that allow better energy allocation agree-
ments to the agent. Therefore, an agent should be able to an-
ticipate the best potential partner with which to start the ne-
gotiation process at every opportunistic encounter. Instead
of choosing randomly an opponent between the co-located
nodes, an agent should implement a better decision making
policy for the selection of the most suitable opponent.
3.4. Partner selection problem for long-term

energy allocation
Given the agent utility function defined in equation (3),

the utility function for the whole networkNi is:

ui =
∑

j∈Ni

ui,j (19)

Thus, the global objective is to maximise the total energy
allocation in the WSNs over a period of cooperation T . In
other words, the network utility function is maximised when
the sum of all agent’s utility functions for the energy allo-
cation is maximised, which may imply that the communica-
tion between all agents in the network is required. However,
this is not the case for OEN, which considers the suboptimal
approach where interactions between agents are performed
only with the agents in the same neighbourhood Ω. Each
agent i, j can maintain a map of energy conditions across
its neighbourhood Ωi,j employing broadcast messages used
by the routing protocol and avoiding the possible communi-
cation overhead. Consensus via local communication with
their neighbours is only required when more than one agent
discover a lack of energy at the same time in the same neigh-
bourhood. In that case, agents must decide the order in
which negotiations take place.

OEN presents a different proposal from other related
works, where agents adjust their duty cycle according to the
energy availability in the environment and are limited by the
bounds of one domain. In contrast, our model allows the
agents to set a desire energy consumption for the next time
slots and extend their power management strategies to an
inter-network approach in order to satisfy their energy allo-
cation through cooperation with a neighbour network. The
networks that we are studying attempt to maintain an energy-
neutral operation, i.e., the energy harvested is sufficient to
satisfy the energy used during the same time. Energy neu-

trality can be supported by the following condition:

Bi,j(t) ≥ Eci,j(t) (20)
The constraint (20) enforces that the residual Bi,j(t) ateach slot must be bigger than the energy consumptionEci,j(t)of any agent i, j in the network at any time slot. However, the

assigned energy budget Bi,j(t) depends on the energy avail-
ability and negotiation strategy of each negotiator involved.
We then relax this requirement and measure the utility of an
agent given the power management strategy of OEN. The
aim is to study the effects and potential of cross-boundary
energy transfer, where the most prominent outcome in this
scenario is the achievement of energy neutrality for all par-
ticipants. Ultimately, the goal of an agent is to decide and
choose an opponent/partner so as to maximise its energy al-
location in the long term.

The domain studied in our work consists of multiple
overlapping networks constructed in the same area. In such
a situation, there are a number of co-located agents that be-
long to different networks with different behaviours and net-
work goals. The energy allocation is expected to be opti-
mised through negotiation and cross-network optimisations.
It means that at each opportunistic encounter, an agent needs
to select one or more agents in the neighbour networks as the
most prospective negotiation partners with whom the expec-
tation of successful negotiation and the achievement of the
best agreement are the highest.

The selection method of an appropriate partner must be
able to learn the dynamism of the environment and adver-
sarial setting introduced by the negotiation behaviour of the
opponents. To solve the partner selection problem, we pro-
posed a MAB based partner selection model for each agent
within the network. In probability theory, MAB learning
provides a theoretical framework for sequential learning and
decision-making to address the trade-offs between explo-
ration and exploitation under uncertainty. Unlike traditional
partner selection methods, which require historical data to
calculate the outcomes of negotiation and predict the possi-
bility of successful negotiation, we use MAB to estimate the
profitability of each agent and develop an online (or adap-
tive) scheme able to tolerate dynamically changing environ-
ments and adversarial conditions without prior knowledge.

Unlike traditional partner selection methods, which re-
quire historical data to calculate the outcomes of negotiation
and predict the possibility of successful negotiation, we use
MAB to estimate the profitability of each agent. Specifically,
we develop an online (or adaptive) scheme able to tolerate
dynamically changing environments and adversarial condi-
tions without prior knowledge.

4. Multi-armed bandits for partner selection
in WSNs
In this section, we define the K-armed bandit problem

formally and show how it can model the partner selection
in negotiation for an efficient long-term energy allocation in
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WSNs. In doing so, we discuss existing policies and later
report their comparison.
4.1. The multi-armed bandit problem

The Multi-Armed Bandit problem originally proposed
by Robbins [51] refers to the gambler’s dilemma. Corre-
spondingly, the goal of a gambler is to maximise the total
rewards earned through a sequence of lever pulls over a row
of slot machines. Specifically, a set ofK machines (arms) is
available to the decision maker. Each arm has a reward as-
sociated that is independently drawn from an unknown dis-
tribution when it is pulled. At each trial, a gambler must
choose which of these arms to play. To keep the terminol-
ogy ofMAS consistent, from here onwards the term gambler
is replaced by agent, and the lever pulling action of the gam-
bler is specified as an action of that particular agent.

Without any prior knowledge on the machines’ prof-
itability, the agent can still collect partial information while
it observes the reward of each chosen arm. Such information
can be used to estimate the revenue of the machines. It thus
becomes a dilemma, between exploiting themachine that has
the highest expected reward or exploring the set of different
machines to gain more information and learn about their re-
ward density. The fundamental challenge in bandit problems
is to define the pulling strategies (also referred to as policies)
for decision making in situations under uncertainty to trade-
off between exploration and exploitation. A MAB learning
model is particularly useful to model agents that learn a hid-
den reward distribution while maximising their gains.

Formally, let T r = {1, 2, ...,Tr} be a set of sequential
trials and tr denote a trial in T r. We define the action of
an agent i, j at trial tr as ai,j(tr), which raises the reward
rai,j (tr). An agent’s objective is to maximise the sum of its
observed rewards over a sequence of decisions as follows:

maximise
T r
∑

tr=1
rai,j (tr) (21)

As such, it is clear that the agent has to choose a pol-
icy (i.e. a sequence of actions ai,j(1), ..., ai,j(T r)) that max-
imises the total rewards earned through a sequence of trials.
Then, the agent has to choose at every trial tr the best single
action in order to maximize its reward in T r trials.

The performance of the policy applied by an agent at a
given trial is measured in terms of regret, defined as the ex-
pected loss of applying the policy with respect to the maxi-
mal expected reward by a policy assumed to be optimal. In
stochastic MAB problems, this notion of expected regret is
often considered. However, in our domain, a different con-
cept of regret is incorporated, suitable for the adversarial
MAB problem of our environment. This notion of regret
known as weak regret is described in the next subsection.

The perception of optimality and bandit policies vary
according to the environment. The following subsection
presents a description of our practical application of MAB
and the existing policies applied to our specific problem.

4.2. Multi-Armed bandits formulation for partner
selection in OEN

In our domain, the environment is adversarial. Unlike
classical stochastic MAB problems whereby the rewards are
independently drawn following a fixed but unknown distri-
bution, for the adversarial setting, there is no statistical as-
sumption about the generation of rewards. Instead, the re-
wards are chosen by an adversary.

An adversarial MAB formulation is a natural fit for mod-
elling our research problem, where an agent and opponent
interact to solve their conflicts and the opponent is adaptive.
More precisely, in this context, the outcome of a negotiation
between one agent and its opponent forms the reward value
that the MAB model gets by selecting a partner for oppor-
tunistic energy negotiation.

In OEN, an agent has an incentive to negotiate but may
adopt different behaviours based on its preferences and ob-
servations at any time. The preferences of the networks vary
according to their energy availability which is influenced by
the amount of energy harvested during each time slot. The
networks can then adopt a responsive attitude towards their
environment using conceding strategies during the negotia-
tion. Since agents have to negotiate with incomplete knowl-
edge of the opponents and have no control of the environ-
mental factors affecting the outcomes of the negotiation, it
is very difficult to estimate a distribution for the rewards.

In this paper, we focus on environmental changes such
as varying energy availability, which influences the different
patterns of the agent’s negotiation behaviour. Furthermore,
the topology of the networks is also intrinsically dynamic
as sensors may fail, move, or enter in sleep/active state. An
agent can also reject a negotiation encounter or be added op-
portunistically at any time. Thus, we consider this variant of
the MAB problems, where the stochastic assumption about
the processes of rewards is removed and their realisation rely
on the agents involved, their status, preferences and negoti-
ation behaviours.

We consider repeated bilateral negotiation encounters
over a finite number of trials T r where three or four WSNs
overlap within a geographical area. In each trial tr, there
are two or three agents that belong to different networks
in the immediate neighbourhood of the main agent. The
main agent needs to select one opponent between these two
or three agents, as the most preferred negotiation partner
to reach energy cooperation agreements that maximise its
energy allocation. The action is easy to identify then in
our domain, for each agent i, j in a wireless sensor net-
work Ni that needs to start an opportunistic energy nego-
tiation, an action of agent i, j at trial tr denoted as ai,j(tr),corresponds to the election of a negotiation partner (e.g.
a1,1(1) = {negotiation_partner ∶ 2_1}) among a set of K
opponents. This action is constant over time since our work
only contemplates bilateral negotiations (“one-to-one”) as a
decentralised decision-making process to not require a me-
diator. The negotiation also includes short-term deadlines to
avoid transmission overhead.

Given this, let rai,j (tr) be the linear reward function of
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agent i, j for each trial tr, defined as the amount of energy
allocation reached on agreement at the opportunistic energy
negotiation tr (Equation (3) in Subsection 3.2) with a se-
lected partner ai,j(tr) from a set of K opponents, the objec-
tive of network Ni to maximise the total energy allocation
over a number of trials T r, can be formulated as follows:

maximise
T r
∑

tr=1

∑

Ω∈Ni

∑

j∈Ω
rai,j (tr) (22)

Therefore, the network objective is to maximise the sum
of reward functions of all agents on each neighbourhood Ω
ofNi, from the OEN encounter 1 to the trial T r. Thus, each
agent i, j’s chosen action (i.e. the chosen negotiation part-
ner) will determine the value of the global network objective.

Once the action of an agent and the reward function as-
sociated with each action are defined, the partner selection
problem in OEN of each agent i, j can be reduced to a MAB
problem. The agent’s goal then is to efficiently maximise
the expected total rewards against the adaptive environment
and the adversarial opponent or equivalently, to minimise
the cumulated loss over time, i.e. the energy that an agent
doesn’t get when it misses the chance to cooperate with the
best partner.

In our setting where agents have no prior knowledge
about the preferences of their opponents, and the out-
comes are affected by unexpected environmental factors, the
achievement of low-regret bounds (i.e. high performance)
is not possible with any deterministic policy, especially for
our non-oblivious adversary case. Alternatively, we assess
state-of-the-art policies in an adversarial setting, which aim
to minimise a regret with respect to the best-fixed strategy in
hindsight, i.e., the best single action over all trials by having
access to the history of negotiation’s outcome against every
opponent at each trial. This weak regret is common in sim-
ilar situations in which it is impossible to learn the optimal
(adaptive) strategy, mostly because the payoffs are adversar-
ially decided by the opponent. Thus, although the optimal
strategy cannot be learned, the best-fixed strategy in hind-
sight becomes feasible to analyse from the history of pre-
vious negotiations. Consequently, the cumulative expected
regret over T r for agent i, j represented by Ri,j with respectto the optimal fixed strategy is:

Ri,j = max
ai,j∈K

T r
∑

tr=1
rai,j (tr) − E

[ T r
∑

tr=1
rai,j (tr)

]

(23)

Where the first term describes the cumulative reward by
the best-fixed strategy over T r trials and the second part cor-
responds to the total expected reward achieved by the policy
applied in our system.

We now describe four well-known policies for this prob-
lem, define the experiment scenarios and present the perfor-
mance results. We selected "-greedy, Exponential-weight
Algorithm for Exploration and Exploitation (EXP3), an
EXP3 variant: EXP3.S, and Follow the Perturbed Leader

with Uniform Exploration (FPL-UE) as the bandit strategies
for our experiments. These three bandit algorithms explic-
itly make use of an exploration parameter, they are widely
used in the MAB literature and have proven to obtain sub-
linear upper regret bounds with an appropriate choice of the
exploration factor.
4.2.1. "-Greedy

A well-known and low-complexity heuristic policy for
the bandit problem is the "-greedy action selection strategy
[52]. The "-greedy strategy is sketched in Algorithm 2. The
policy selects at each trial tr an action with uniform random
probability for a fraction " of the trials (exploration), and
choose the best arm (exploitation) with a probability 1 − "
(Steps 4 and 6 respectively). The specification of the explo-
ration factor " is made based on the experiment, i.e. there is
no standard value that fit-for-all scenarios.

Algorithm 2: Algorithm "-greedy for each
agent i, j
Input : " ∈ [0, 1], opponents 1, ..., K;
Output: Negotiation partner ai,j(tr)

1 Initialisation: r̂k = 1, pullsk = 0, rewardsk =
0 for k = 1, 2, ..., K;

2 for tr ← 1 to T r do
3 if ∼ U (0, 1) ≤ " then
4 ai,j(tr) ∼ U{1, K};
5 else
6 ai,j(tr) = argmaxk∈{1,...,K}{r̂k};
7 end
8 Receive reward rai,j (tr) as Ealloci,j (t) for all t in

negotiation against selected partner ai,j(tr);
9 pullsk = pullsk + 1 where k = ai,j(tr);

10 rewardsk = rewardsk + rai,j (tr) where
k = ai,j(tr);

11 r̂k =
rewardsk
pullsk

where k = ai,j(tr);
12 end

Given this, it can be seen that the estimated reward (r̂k)of a selected action is updated using its cumulative reward
(rewardsk) and the number of times the action k has been
executed (pullsk). "-Greedy adds some randomness when
deciding between negotiation partners: instead of relying al-
ways on the best partner, it randomly explores other oppo-
nents with a probability ".
4.2.2. FPL-UE

The policy considered here is based on the online pre-
diction scheme Following-the-Perturbed-Leader (FPL) [53].
FPL has efficient treatment of problems with a linear cost
function by following the perturbed leader. The original al-
gorithm only works for oblivious adversaries and focuses on
choosing the action of minimal cost by observing the loss
incurred of each selected action. Our goal, instead, is to
efficiently maximise the total rewards an agent can succes-
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sively achieve against an adaptive and adversarial opponent.
To address this problem, we employ a novel strategy for re-
peated interactions, called Follow the Perturbed Leader with
Uniform Exploration (FPL-UE) [54]. In this approach, the
learning algorithm proposed by Neu and Bartok [55] is ex-
tended introducing uniform random exploration for the re-
ward maximisation scenario (Algorithm 4). Similar to "-
Greedy, the selection of a probability (" in "-Greedy, � in
FPL-UE) determines the exploration rate of the pulling strat-
egy. That is, the agent will uniformly randomly choose a
negotiation partner with a probability � (Step 7) and select
the partner that reaches the maximum estimated reward per-
turbed by the noise factor zk (Step 5) every 1−� of the cases.We measure the efficiency of the mixed strategy FPL-UE on
finding the best partner from a set of opponents within the
repeated opportunistic encounters between networks.

FPL-UE makes use of Geometric Resampling (GR) (Al-
gorithm 3) in order to compute the estimated reward for the
chosen action at every trial (Algorithm 4, Steps 10-11). The
application of GR in our setting is shown in Algorithm 3.
Basically, GR measures the reoccurrence where simulated
a, denoted as ã, may appear. Thus, K_valk represents the
reciprocal of the probability of action k (p−1k ), i.e. K_val
provides a 1-in-M scale for probabilities, where M is a fi-
nite value that bounds the number of samples. For example,
the reciprocal of 0.01 is 100, so an event with probability
0.01 has a 1 in 100 chance of happening.

Algorithm 3: Algorithm GR
Input : M ∈ ℤ+, ai,j(tr);
Output: K_valk ∈ ℤ+

1 for i ← 1 to M do
2 Repeat steps 3 ∼ 9 in Algorithm FPL-UE

once to sample ã;
3 if i <M and ã = ai,j(tr) then
4 K_valk = i;
5 else
6 K_valk =M ;
7 end
8 if K_valk > 0 then
9 break;

10 end
11 end

4.2.3. EXP3
Unlike FPL-UE, EXP3 employs the value of the prob-

abilities for each action more explicitly [56]. The partner
selection strategy using EXP3 is described in Algorithm 5.
At each trial, EXP3 chooses a partner ai,j(tr) according to
the distribution p (Step 4) learned from the iterations. EXP3
as FPL and "-Greedy is a mixed strategy that introduces uni-
form randomisation into the action selection process. Once
the action has been determined, the received reward is used
to update the weight value of the chosen action (Steps 5-7),
which affects proportionally to the probability of each action

Algorithm 4:Algorithm FPL-UE for each agent
i, j
Input : � ∈ [0, 1], � ∈ ℝ+,M ∈ ℤ+, opponents

1, ..., K;
Output: Negotiation partner ai,j(tr)

1 Initialisation: r̂k = 0 for k = 1, 2, ..., K;
2 for tr ← 1 to T r do
3 Set flag ∈ {0, 1} such that flag = 0 with

prob. �;
4 if flag then
5 ai,j(tr) = argmaxk∈{1,...,K}(r̂k + zk);where zk ∼ exp(�) independently for

k = 1, 2, ..., K;
6 else
7 ai,j(tr) ∼ U{1, K};
8 end
9 Receive reward rai,j (tr) as Ealloci,j (t) for all t in

negotiation against selected partner ai,j(tr);
10 Run GR(M,ai,j(tr)) to estimate p−1k as

K_valk;
11 r̂k = r̂k +K_valk ⋅ rai,j (tr) where k = ai,j(tr);
12 end

in the next trial (Step 3) (i.e. the higher the current estimate
is, the higher the probability an agent chooses that action).
Thus, at each trial, EXP3 updates the value of the distribu-
tion p, and it defines the action with higher probability and
vice versa.

Algorithm 5: Algorithm EXP3 for each agent
i, j
Input : 
 ∈ [0, 1], opponents 1, ..., K;
Output: Negotiation partner ai,j(tr)

1 Initialisation: wk = 1 for k = 1, 2, ..., K;
2 for tr ← 1 to T r do
3 Set

pk = (1−
) ⋅
wk

∑K
k=1 wk

+ 

K for k = 1, 2, ..., K;

4 Draw ai,j(tr) randomly according to the
probabilities p1, p2, ..., pK ;

5 Receive reward rai,j (tr) as Ealloci,j (t) for all t in
negotiation against selected partner ai,j(tr);

6 r̂k =
rai,j (tr)

pk
where k = ai,j(tr);

7 wk = wk ⋅ exp
(


⋅r̂k
K

)

where k = ai,j(tr);
8 end

Although EXP3 is classified under the category of MAB
algorithms with partial information, that is, only the reward
of the selected action can be observed, the update of its
weight affects proportionally the weights of each respective
arm. According to this, EXP3 selects at each trial the best-
estimated action and provides an updated probability as the
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learning process continues, i.e. it guarantees an agent can
efficiently adapt to different environmental situations. The
exploration rate, as in FPL-UE and "-Greedy is given para-
metrically and affects the efficiency of the algorithm as well
(
 in EXP3). It is important then, to analyse first the defini-
tion of this parameter before any comparison is executed.
4.2.4. EXP3.S

EXP3.S belongs to the family of exponential weight
methods. The difference with EXP3 is the boundary on its
expected regret. Instead of bounding the regret with respect
to the single best action, EXP3.S proves a bound for any se-
quence of actions. Information as the time horizon T r and
the value of “hardness” are used to determine the optimal
value of the parameters � and 
 in EXP3.S [56].

Algorithm 6: Algorithm EXP3.S for each agent
i, j
Input : 
 ∈ [0, 1], � = 1∕T r, opponents 1, ..., K;
Output: Negotiation partner ai,j(tr)

1 Initialisation: wk = 1 for k = 1, 2, ..., K;
2 for tr ← 1 to T r do
3 Set

pk = (1−
) ⋅
wk

∑K
k=1 wk

+ 

K for k = 1, 2, ..., K;

4 Draw ai,j(tr) randomly according to the
probabilities p1, p2, ..., pK ;

5 Receive reward rai,j (tr) as Ealloci,j (t) for all t in
negotiation against selected partner ai,j(tr);

6 r̂k =
rai,j (tr)

pk
where k = ai,j(tr);

7 wk = wk ⋅ exp
(


⋅r̂k
K

)

+ e⋅�
K ⋅

∑K
k=1wk for k =

1, 2, ..., K;
8 end

All the notations are reported in Appendix A.

5. Experimental validation
This section describes the goal of the experiments, and

the methodology followed to empirically evaluate the MAB
algorithms.
5.1. Goal of the experiments

The goals of the experiments described in this paper are:
• Apply MAB learning to our setting of partner selec-

tion between multiple sensor networks for an efficient
energy allocation in the long term.

• Compare four state-of-the-art strategies described
above for the adversarial MAB problem presented
here, using as a baseline the best-fixed strategy in
hindsight, the optimal policy and the uniform random
selection of a partner in each negotiation encounter.

• Evaluate through extensive simulations the perfor-
mance and validate the theoretical properties of the
online learning policies in a practical case study as
the partner selection problem during opportunistic en-
counters between wireless sensor nodes under differ-
ent circumstances.

5.2. Experiment scenarios
We assume four authorities that deploy their networks

in the same geographic area, in such a way that there may
be between three to four distinct agents within overlapping
radio coverage, i.e. for each agent, there is a pool of K
parties formed by 2 or 3 opponent agents from which an
agent can choose one partner to initiate a bilateral negoti-
ation. As already mentioned, in the context of partner se-
lection for opportunistic energy negotiation, we may view
agents in the pool as arms. An agent must decide between
these 2 or 3 agents which arm is expected to provide the best
payoff. This setup is suitable for our experiments; however,
the pool of arms can be formed with any number of nodes,
greater than two (depending on the memory limitations) to
evaluate the MAB algorithms. The following scenarios de-
fine the changes that characterise the dynamic and heteroge-
neous domain of WSNs. In this paper, we focus on environ-
mental changes such as varying energy availability, which
influences the different patterns of the agent’s negotiation
behaviour, and also instances of network topology variation.

Our scenarios consist of general WSN applications
that periodically report measurements to the sink. These
networks are typically deployed for long-term operation,
and their design constraints are application-dependent, also
based on the monitored environment. This implies that if
there is a pool of agents from which to select a negotiation’s
opponent, each arm will have unique characteristics that will
determine its reward. This reward will depend on the nego-
tiation outcome, which is directly affected by the negotia-
tion strategy used by each party and their mutual zone of
agreement. A mutual agreement relies on the energy avail-
ability of the arms and their ability to meet the current as-
pirational demand of the other agent. In addition, we are
aware of topology changes during the networks’ operation
time. We thus focus on the participant’s differences and their
dynamics. Regarding the dynamic nature of these networks,
besides taking into account the varying status (due to node
failures, time-delays, active/sleep modes) that define their
network topology, we consider changes in their attitude to-
wards negotiation (Conceder/Boulware tactics) and environ-
mental conditions that modify the energy availability of the
agents involved. Given this, we examine the following pos-
sible situations where the MAB model is applicable:

Cooperative scenario. All the agents are Conceder ne-
gotiators. In proposed approaches to enable cooperation in
multi-domain sensor networks, sensor nodes are assumed to
be spontaneously cooperative. The utility function in these
studies is characterised by the effective gain of minimising
the nodes’ energy consumption. The battery-powered net-
works represented in these works find that the equilibrium
state with the highest payoff (where the lifetime of the sen-
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sors is the highest) consists of cooperative strategies. Simi-
larly, this first scenario assumes the Conceder strategy for the
generation of offers, as a cooperative effort. Thus, the coop-
erative behaviour of an agent is represented here as conces-
sions quickly performed at the beginning of the negotiation.

Multiple behaviours. The opponents adapt their negoti-
ation behaviour according to their energy availability, which
is determined by the weather conditions. If the agent re-
quires more energy than the amount it can provide to its op-
ponent, it adopts a tough behaviour, otherwise, it employs a
Conceder strategy. The behaviour is modelled using the tac-
tic’s function (Equation (15)). In multi-authority WSNs, a
resource-constrained node may be reluctant to forward pack-
ets received from other network domain, or to do any other
task on behalf of an external network to save its own re-
sources. In other words, when an agent is aware of its power
level, it adapts its strategy to avoid being exploited by selfish
decisions.

Dynamic topology. The networks change their topol-
ogy. In this paper, we seek for an efficient learning method
that finds a trade-off between exploring and exploiting the
available options of opponents by jointly considering the dy-
namically changing environment and varying network topol-
ogy. Topology changes are frequent in a sensor network
and can be attributed either to node mobility, failure or node
state. The networks that we are studying are not mobile net-
works, however, dynamic topology is considered in terms of
node failures, the new addition of nodes, as well as its dif-
ferent states such as activeness and sleepiness.

In each scenario, the energy availability of an agent is
determined by its energy harvested. Each agent in the pool
of arms may have an associated reward, which corresponds
to the outcome of the negotiation. This reward, as we men-
tioned previously, does not follow a fixed distribution, in-
stead, it is chosen by the adversarial according to the nego-
tiation. The negotiation outcome is defined by the mutual
space of agreements and the agents’ behaviour. To show
the dynamism of the domain we divide the simulation time
period into intervals called epochs, and each epoch lasts a
number of trials T r. Each trial involves an opportunistic ne-
gotiation interaction between two agents.

The characteristics of each party are constant along with
a fixed number of trials, or epoch. At the end of an epoch,
the features amongst arms change to set a different optimal
partner (which is unknown by the agent during the selec-
tion). For us, a preferred opponent is one that has more en-
ergy availability and a Conceder behaviour. The feature of
energy availability changes per epoch in all situations and
the behaviour varies in the situations of multiple behaviours
and dynamic topology. All runs in all scenarios involve 5000
trials. Four cases are considered: long epochs or static envi-
ronment (T r= 5000 iterations), moderately dynamic epochs
(T r = 1000), dynamic epochs (T r = 500) and extremely dy-
namic epochs (T r = 200). The length of epochs is obviously
not known by the agents. The goal of an agent is to maximise
its total reward over these trials, by finding the partner with
the highest expected payoff. This determination is accom-

plished by observing the reward to know the efficiency of
the chosen opponent, and thus, learn which opponents are
the most efficient ones.
5.3. Design of experiments

Given the description of the three scenarios above, we
now formulate the conditions used to alter the environ-
ment. Furthermore, we define energy availability and the
behaviour of the agents in every situation. Then the topol-
ogy changes are also described. The performances of the al-
gorithms for the listed scenarios are compared and discussed
in the following subsection.

We evaluate our approach experimentally using the rep-
resentative scenarios described in Subsection 5.2, weather
data downloaded from Weather Underground and nodes
modelled to be Memsic MICAz motes. The weather infor-
mation used to compute the energy generation in every ex-
periment corresponds to the area of Southampton, UK over
the year 2017 [47, 48]. The selector agent uses a different
type of energy harvesting source (e.g. solar) from the agents
in the pool (e.g. wind) but the values of solar irradiance and
wind speed correspond to the same day, same time.

In all three scenarios, the energy harvested by the agents
in the pool is modified in order to simulate environmental
changes 1 that affect the performance of the energy source
and generate different energy availability for each agent in
the pool. These conditions determine a setting where one
opponent is the best choice in every possible negotiation.
Any setting with different conditions also shows the same
broad patterns in the result of the simulations. The informa-
tion about the characteristics of the opponents (how quickly
they change per epoch and how they differ) is unknown to
the agents. If there are three agents in the pool of arms, we
simulate three different environmental conditions:
• Condition 1. First opponent is the best option.

– First opponent: Eℎrvi,j is not affected.
– Second opponent: Eℎrvi,j is reduced to a 40%.
– Third opponent: Eℎrvi,j is reduced to a 10%.

• Condition 2. Third opponent is the best option.
– First opponent: Eℎrvi,j is reduced to a 10%.
– Second opponent: Eℎrvi,j is reduced to a 40%.
– Third opponent: Eℎrvi,j is not affected.

• Condition 3. Second opponent is the best option.
– First opponent: Eℎrvi,j is reduced to a 40%.
– Second opponent: Eℎrvi,j is not affected.
– Third opponent: Eℎrvi,j is reduced to a 10%.

We simulate agents with two or three opponents. The
agents that have two options in the set of arms will have only

1Energy harvested can be affected by multiple causes as obstruction of
power source, weather conditions, solar panel and wind turbine efficiency.

First Author et al.: Preprint submitted to Elsevier Page 16 of 25



Partner selection using MAB learning

two situations where the first or second opponent is the best
option, respectively.

The cooperative scenario simulate the three environ-
mental conditions described above. The strategic behaviour
of each agent in the set of opponents is not affected no mat-
ter how low is its energy availability. All the agents concede
more rapidly at the beginning of the negotiation with a 0.05
concession shape value.

For the multiple behaviours scenario, the tactic of an
agent is modelled using three concession shape values (�):
0.05 for a Conceder agent, while 1.4 and 1.9 model a Boul-
ware strategy. In this case, we follow the environmental con-
ditions described previously that alter the energy availabil-
ity but we also include varying tactics: the best option has a
Conceder behaviour 0.05, while the rest of the set will have
1.4 and 1.9 respectively.

The third scenario of dynamic topology exhibits the
conditions of the multiple behaviours scenario plus the as-
sumptions made on the networks’ topology. Every 20 tri-
als, this simulation assigns a probability of 0.4 to allow the
absence of any opponent chosen uniformly random. This
represents the dynamic behaviour of the network topology,
where the absence can be seen as an agent’s rejection of be-
ing part of an OEN, an agent’s failure, or an agent in the
sleep state. As a result, every 20 opportunistic encounters,
any node from the pool of opponents may be unavailable.

The duty cycle of each agent is set uniformly random
between 1% to 5%, which defines its load using the power
consumption model from equation (1). Finally, in order to
capture the dynamic nature of the environment, we simulate
the four cases described in Subsection 5.2: static charac-
teristics over time (1 epoch), moderately dynamic changes
(5 epochs), dynamic (10 epochs) and extremely dynamic
case (25 epochs). When the environment changes its epoch,
it uniformly randomly chooses one of the three conditions
specified above. If there are two agents in the pool, then
only two conditions are swapped.

The scenario setup includes a deployment area of 500
m × 500 m and randomly located sensor nodes, where each
node has up to 100 m communication range. For demonstra-
tion purposes, we show the results for one of the networks
involved, where 5 agents need to select a partner among a
set of opponents. All simulation results correspond to the
arithmetic mean of 10 simulation runs and 5000 trials each,
with differences in the agents’ load, number of opponents,
and environmental conditions. We use as a baseline the best-
fixed strategy, the optimal strategy, and random selection to
measure the performance of the MAB algorithms.
5.4. Comparison of the MAB algorithms

The algorithms used in our study condition their per-
formance on the election of an exploration rate. In order
to correctly tune this parameter in EXP3, the bound on the
reward (upper bound) of the best single action over all tri-
als needs to be considered. Similarly, the optimal value of
the exploration parameter for EXP3.S necessarily depends
on the scenario. In particular, the time horizon T r of per-

forming opportunistic encounters must be known, and the
same for FPL-UE. These parameters are chosen for optimis-
ing the regret bound of the policies. However, to implement
the partner selection algorithms truly independent from such
knowledge (e.g., one might not have T r in advance), we are
allowed to tune the exploration rate arbitrarily. Therefore,
in this work, we select low exploration rates. By choosing
these values, the algorithms can already achieve good re-
sults. Specifically, we set " = 0.1 in "-Greedy, � = 0.014
in FPL-UE and 
 = 0.3 in EXP3 and EXP3.S, and show by
simulations how the performance of the four policies is com-
pared to that of the optimal and best-fixed policy. Given this
selection of the exploration factor, we now detail the numer-
ical results obtained from each scenario.
5.4.1. Cooperative scenario

Fig. 5 illustrates how the agents perform using every pol-
icy described in this work in static, moderately dynamic, dy-
namic, and extremely dynamic environment when the topol-
ogy is fixed and agents behave in a cooperative way. Fig. 5a
shows "-Greedy as the best algorithm to select a negotiation
partner. During 5000 opportunistic encounters in constant
competitiveness between the opponents, the most appropri-
ate policy is a simple greedy approach. It enforces only 10%
of randomness in its strategy to explore sub-optimal options,
but also to consider environmental changes.

The second best choice in this configuration is FPL-UE
policy. FPL-UE selects the best partner as the one that gener-
ates the maximum estimated reward over time, which in this
case, is fixed for the entire duration of the particular experi-
ment. On the other hand, EXP3 and EXP3.S use the explo-
ration factor to maintain a list of weights for each of the op-
ponents. These weights support the mixed strategies on de-
ciding which action to take next. Both algorithms may ben-
efit from their methodology if the environment changes over
time, since they will use the weights to adapt to such condi-
tions. As seen from the figure, EXP3 and EXP3.S achieve
similar performance.

The selected algorithms learn to play actions that en-
hance the overall performance of the agents and need to be
applied in the specific domain to know which strategy is
the best against the corresponding problem. For instance,
in the context of adversarial online learning in defender-
attacker encounters, FPL-UE has proved to achieve efficient
results against the best-fixed strategy on hindsight [54]. Our
hypothesis, in fact, was that the negotiating agents using
FPL-UE policy can tackle better the adaptive behaviour of
the opponents. Although FPL-UE has certainly improved
the performance of the agents, in general, the EXP3 algo-
rithms have shown to efficiently deal with the partner selec-
tion problem in more dynamic settings (see Fig. 5b-d).

The non-learning approach or random selection of the
agents consistently shows poor performance. The random
selection is the worst of the benchmarks but it is implicitly
suggested in the existing literature on cooperative packet for-
warding. In this case, the random selection strategy in the
experiments achieves up to 63% of the energy that can be
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Figure 5: Cooperative scenario. Energy allocation in a 5-agent network with static network topology and Conceder agents (� =
0.05), in static, moderately dynamic, dynamic, and extremely dynamic environments.

allocated when the selection of a partner is performed in-
telligently in every interaction (optimal strategy). From the
scenario covered in Fig. 5a, "-Greedy is efficient with an
average efficiency of 93%, followed by FPL-UE with 91%,
EXP3 with 82% and EXP3.S with 81%, respectively. As a
result, a MAB policy as "-Greedy can improve up to 30% the
energy allocated by an agent relative to the random selection
of a partner in the static environment.

The performance of the action-selection strategies com-
pared to that of the optimal strategy is degraded when
changes appear in the environment. Their efficiency is af-
fected even more when environmental transitions take place
more frequently (see Fig. 5b-d). Temporal changes in the re-
ward distribution structure are an intrinsic characteristic of
our domain. These changes at every decision epoch vary the
expectation of the rewards andmotivate the agents to dismiss
information gathered about the opponents, which in turn en-
courages exploration. However, the less time the agents have
to adapt to these variations, the less they are able to charac-
terise the reward distributions. In contrast, the theoretical
properties of the online learning policies with respect to low
regret bounds against the best-fixed strategy on hindsight are
consistent. In fact, all the approaches have efficient theo-
retical performance guarantees. FPL-UE shows the worst

performance compared to other approaches, but even in the
most dynamic scenario, it achieves 94.77% of the energy that
can be allocated with the best-fixed strategy.

In comparison with the optimal strategy, EXP3 and
EXP3.S achieve the best results. In particular, EXP3 is
almost consistent with 82%, 81%, 81% and 80% of effi-
ciency among respective environments: static, moderately
dynamic, dynamic and extremely dynamic. In the same
manner, EXP3.S achieves 81%, 81%, 80% and 80%, re-
spectively. The sensitivity to disturbance is more notori-
ous in FPL-UE, where efficiency decreases up to 25% when
changes occur. Similarly, "-Greedy on average loses its abil-
ity to opportunistically select a negotiation partner up to
24%. Thus, the EXP3 algorithms are better in all three dy-
namic conditions. From these results, an agent can increase
its energy allocation up to 17% using EXP3 or EXP3.S as
partner selection strategy in the most dynamic environment
studied in this scenario where all agents make faster conces-
sions.

In conclusion, in this first scenario in a static environ-
ment, "-Greedy policy is enoughwhen temporal changes can
be avoided over time in a partner selection problem. EXP3
and EXP3.S, however, outperform the other two policies for
a broad range of temporal uncertainties in the environment.
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Figure 6: Multiple behaviours scenario. Energy allocation in a 5-agent network with static network topology and agents with �
between 0.05, 1.4 and 1.9 in static, moderately dynamic, dynamic, and extremely dynamic environments.

5.4.2. Multiple behaviours scenario
The second scenario where agents are simulated with

multiple negotiation behaviours is evaluated in Fig. 6. The
negotiation behaviours, in this case, determine the target en-
ergy allocation value an agent desires in each round of the
negotiation encounter. Similarly to Fig. 5, the results are
shown under four degrees of environmental dynamism with
respect to the energy availability that directly affects the ne-
gotiation behaviour of the agents: in static, moderately dy-
namic, dynamic, and extremely dynamic environments. As
it can be observed in the figure, the energy allocation in av-
erage has changed in comparison to the energy allocation
achieved when all the agents are Conceder. Following the
results from the random selection strategy, it is observable
a slight reduction. Specifically, the results obtained when
all agents behave “cooperatively” report 11% more than the
amount of energy allocated in this scenario (52%). In any
case, even if the agents offer concessions rapidly at the be-
ginning of the encounters, the selection of the most appro-
priate partner by intelligently choosing the opponent, makes
a difference in our model.

Now, we can see from Fig. 6a that the performance of
every approach is decreased, compared to that of the case
of cooperative networks. This is, however, due to the fact

that the average energy allocation amount achieved by the
agent’s optimal strategy has increased in the network. The
main reason behind this difference is that there are fewer con-
cessions among the agents and the desired utility levels are
higher. In the cases where there are agents with a Conceder
behaviour against an opponent with a Boulware behaviour, if
the first one has enough energy to power itself and share, or
requires a minimum amount of cooperation, the agent play-
ing a Boulware tactic gets a better agreement. This meets the
following statement: when Boulwares make deals, they re-
ceive a higher individual utility [14]. The second reason for
this variation in the policies’ performance is the dynamism
introduced by the multiple negotiation’s behaviours. In this
scenario, the set of opponents offer different amounts of en-
ergy values and the diversity of potential agreements is in-
creased between the agents. The environment is then more
dynamic from an agent’s perspective since the agent’s be-
haviours change according to the amount of energy they har-
vest. Consequently, the variability of the opponent’s negoti-
ation tactics directly impacts the learning curve of the agents.

The adaptation to these variations is best approached by
the EXP3 algorithms (EXP3 and EXP3.S). Specifically, in
the static environment, the EXP3 techniques achieve up to
79% on average, of the total energy that can be allocated with
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Figure 7: Dynamic topology scenario. Energy allocation in a 5-agent network with dynamic network topology and � between
0.05, 1.4 and 1.9 in static, moderately dynamic, dynamic, and extremely dynamic environments.

the optimal strategy. In comparison with the first scenario
(Fig. 5a), this is only 3% less of its original capacity. Such
level remains stable, as seen in Fig. 6b-d, where the effi-
ciency of EXP3 is of 78%, 78%, and 77% for the moderately
dynamic, dynamic and extremely dynamic environment, and
the exact same values for EXP3.S in every environment, re-
spectively. The other two policies reduce their performance
as more dynamicity is considered in the agent’s behaviours.
"-Greedy reduces its performance, on average, up to 9% in
the most dynamic environment with respect to the conceders
scenario (Fig. 5d), while FPL-UE policy reports a decre-
ment up to 8% of the amount obtained in the cooperative
scenario (Fig. 5d). This indicates that the EXP3 algorithms
are less sensitive to the negotiation strategy changes than the
rest of the policies. Most important, the EXP3 estimation
method is not affected by the introduction of negotiation in
the system. Overall, the learning approaches achieve better
results compared to the random selection of the negotiation
partner over time. Correspondingly, an agent can improve
up to 25% its energy allocation when it uses the EXP3 pol-
icy against the random selection strategy of a partner in the
most dynamic environment.

5.4.3. Dynamic topologies scenario
The results for the last scenario are depicted in Fig. 7.

The changes in the networks’ topology are taken into account
while the environmental changes on weather conditions are
also studied. In this regard, the energy availability affects
the negotiation strategy of the agents. Thus, the agents have
to deal with the challenges of environmental changes and
the varying operational status of the opponents. The fig-
ure shows how the performance of the policies is again de-
creased by the introduction of the agent’s movements (be-
cause of failure, rejection to be part of OEN, activity com-
mute between active/sleep status). For instance, the energy
amount allocated by the agent using EXP3 is reduced up to
9% in comparison to the amount allocated in the first sce-
nario and decreased up to 6% of the average energy amount
allocated when there are no topology changes but multiple
negotiation behaviours. The same occurs with the rest of the
policies on a different level.

For the FPL-UE policy and "-Greedy, the efficiency is
reduced up to 12% and 10% from the results obtained in the
cooperative scenario (Fig. 5). In reference to the multiple
behaviours scenario without topology changes (Fig. 6), the
allocation is discounted up to 9% using FPL-UE and 4%
using "-Greedy. These results show that the EXP3 algo-
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rithms represent again the best solution as the environmen-
tal changes become more frequent (see Fig. 7b-d, respec-
tively). In fact, an agent deciding a partner using the EXP3
algorithms achieves 71% - 72% efficiency while the use of
"-Greedy supplies 59% efficiency and FPL-UE learning ap-
proach obtains 54% in the most challenging case studied in
our work, i.e. in extremely dynamic environments with en-
vironmental and topology changes. The efficiency of 72%
achieved by EXP3 increases by up to 20% the energy allo-
cation achieved using a random selection strategy.

Despite the fact that the agents’ performance using EXP3
is affected by the topology changes, this policy achieves the
best results with respect to the optimal strategy, the best-
fixed strategy and the random selection. EXP3 approach is
consistent through the performance evaluation in each sce-
nario and its reward estimation method proved to handle
more realistic domains of complex and dynamic environ-
ments. This is supported by the results depicted in the va-
riety of scenarios studied here. Moreover, EXP3 is not sen-
sitive to the negotiation strategies incorporated in the deci-
sion process. Thus, the adaptive learning feature provided by
EXP3 is the most suitable solution for the problem of part-
ner selection in our domain. Furthermore, the EXP3 policy
can be applied in a broader range of negotiation agents in-
teractions where computationally-lightweight solutions are
required. The results of our research are quite useful for de-
signing agents in open environments that need to cope with
the uncertainty of the adversarial setting and network condi-
tions. In this case, the MAB learning model presented in our
work allows an agent to select the most prospective partner
from a set of opponents and reach efficient energy allocation
agreements in the long term.

In the next section, we discuss the cost of the establish-
ment of OEN when agents need to discover the set of oppo-
nents in their vicinity.

6. Establishing the OEN
Before the agents face the challenge of selecting a nego-

tiation partner, they need to discovery the negotiation agents
in the neighbourhood, i.e. the agents that want to cooperate
and establish an opportunistic energy negotiation. This sec-
tion evaluates the cost associated with the overhead of the
discovery protocol in the network’s performance. Results
show the average energy consumption of 50 simulation runs
with different network topologies.

OEN adopts a publish-subscribe approach in which the
agents conserve energy by sending a limited amount of mes-
sages. Three types of messages are exchanged between
agents: OEN_ADV, OEN_REQUEST and OEN_ACCEPT.
Initially, the agents are deployed with a cross-domain link-
layer protocol as OI-MAC [41] and a standard routing proto-
col. OEN is implemented between the link and network lay-
ers. In this way, it takes advantage of their functionalities:
the agents can communicate directly with co-located agents
using the capabilities of the link layer protocol, while still
are able to inform the network layer about the cooperative

 Agent 1,1

OEN_REQUEST

Evalua�on 

of OEN requests

Evalua�on of OEN 

adver�sements

OEN_ACCEPT

Broadcast OEN_ADV

Wait for

requests

 Agent 2,1

OEN message{

   message_type

   main_agent_addr 

   src_addr

   dest_addr

   local_neighbours_list[]

   ext_neighbours_list[]

}

Figure 8: Sequence diagram of OEN establishment.

agreements reached with the counterparts. In the WSNs co-
operation literature, the networks increase their performance
by cooperative packet forwarding. We use this specific type
of cooperation to guide the decision process of being part of
an opportunistic energy negotiation.

Once the agents are deployed, the first step in OEN for
a negotiator is to broadcast through its immediate neigh-
bours on all available radio frequencies, the desire to start
a negotiation by sending an OEN_ADVmessage. From that
moment, the agent becomes the main agent: the agent that
will choose a negotiation partner from a set of opponents.
OEN_ADV includes the list of agents in its range (from the
local and external network domain) and a query to find the
neighbours of the neighbouring agent contacted. Figure 8
illustrates the discovery protocol in a sequence diagram and
the OEN header format.

At this point, there are two possible situations per neigh-
bouring agent reached. The main agent (call this agent 1, 1)
with another agent (call this agent 2, 1) may have no inter-
action. The information provided about the nodes in range
by agent 1, 1 may not be ideal for agent 2, 1 and it can sim-
ply ignore the main agent’s request. Thus, agent 1, 1, after
waiting for a certain interval of time, drops the communi-
cation with agent 2, 1 and stays in the initial state while the
number of nodes discarded is different from the total num-
ber of its neighbours. On the other hand, agent 2, 1 may
accept the main agent’s proposal. In this situation, agent 2, 1
sends an OEN_REQUEST using the radio frequency that is
associated with the main agent 1, 1 to ask for participation
in OEN. In this message, agent 2, 1 informs agent 1, 1 about
the agents that are in its range.

Again, there are two possible scenarios. First, agent
1, 1 may ignore agent 2, 1’s request. This may happen for
two reasons: agent 1, 1 is already part of an OEN with an-
other set of agents or agent 1, 1 is now unreachable. Agent
2, 1 then waits for a grace period before discarding agent
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Figure 9: Average energy spent at the end of 6 seconds plotted
against the number of opponents reached.

1, 1’s proposal. The second possible scenario includes a re-
sponse. Agent 1, 1 may accept the agent’s request and send
an OEN_ACCEPT message to add agent 2, 1 to the pool of
opponents. This leads agent 1, 1 to a selection state if the
number of agents in the set of opponents is bigger than one,
if not, the agent moves to a final state, the state of negoti-
ation. In the state of negotiation, both agents can directly
establish a bilateral negotiation. Conversely, in the selection
state, agent 1, 1 employs an action-selection policy (EXP3 is
the best strategy according to our results) in order to select
one negotiation partner from the pool of agents and move to
the final state of negotiation.

The discovery protocol was tested using OMNeT++
[57]. The effects of the OEN discovery protocol are evalu-
ated on energy consumption. The simulation setup includes
5, 10, 15, 20 and 25 overlapped sensor nodes randomly de-
ployed in an area of 100 m × 100 m over 50 simulation runs
for each density. PHY and MAC layers are defined by the
IEEE 802.15.4 standard, while the rest of the parameters
used in these simulations are summarised in Table 1.

Table 1
Simulation parameters for nodes’ power usage in OM-
NeT++.

Parameter Definition

Standard IEEE 802.15.4
Simulation time 6 s
Tx current 17.4 mA
Idle listen current 0.02 mA
Rx current 18.8 mA
Rx-Tx current 0.02 mA
Voltage 3 V

Fig. 9 shows the average energy cost of transmission
of an agent against 2 to 7 opponents during the simulation
period. As can be seen, the OEN discovery protocol consis-
tently consumes more energy when the pool of opponents is
increased.

The discovery protocol, however, has an insignificant
impact on energy consumption (< 0.01 J), and is a result

of the continuous reception required for negotiation agents
discovery. Once the agent broadcasts an advertisement mes-
sage, it listens to recept the request messages of the neigh-
bouring networks. During this process, the agents share de-
tails to decide whether they should associate with a possibil-
ity of cooperation, depending on the contribution each could
give to the opponent network (by exchanging only context
information). This step aligns the goals of the individual
agents to find compatibility, thus ensuring that the networks
can self-organise into communities deciding how to cooper-
ate, through a negotiation mechanism. We propose that our
negotiation-based cooperation approach can facilitate the in-
teraction and collaborative management in a wide range of
applications and can lead to an efficient coexistence of mul-
tiple co-located networks. For instance, the relatively minor
increase in energy consumption is likely to be outweighed
by the 59% increase in energy allocation that an agent may
achieve when it reaches an agreement with a strategically
selected partner from a different network domain.

7. Conclusions and future work
In this work, we proposed a novel partner selection

model based on multi-armed bandit learning, that allows
each agent of a network to adaptively optimise its operation
by the selection of a partner that maximises its energy alloca-
tion. We have also applied a negotiation framework tomodel
the interaction between agents based on a time-dependent
tactic and orthogonal strategy in a resource-constrained do-
main with incomplete information. The negotiation tech-
niques employed in our work allows co-located devices to
decide a cooperation effort while handling the uncertainty of
the environment. Note that in such experiments, an agent’s
utility increases up to 59% with OEN.

In this paper, we extend the state-of-the-art in coopera-
tion between networks by reporting on a negotiation-based
mechanism to address the preferences conflict of highly het-
erogeneous agents. The 5 steps of the methodology that
guide the cooperation are adopted to accomplish a specific
goal: opportunistic energy negotiation, called OEN. Since
networks can have different or multiple optimisation goals,
the proposed phases can be custom-tailored towards a spe-
cific objective.

With the aim to optimise a network’s power management
using the suggested approach, the first step for an agent is to
identify its own efficiency. In the domain of OEN, it cor-
responds to the energy allocation scheme that a node can
employ to power its load. Thus, the optimal energy alloca-
tion algorithm described in Subsection 3.2 is proposed. This
energy allocation scheme is evaluated during every simula-
tion presented in this work. Such algorithm enables self-
organised agents that can anticipate insufficient energy allo-
cation schemes and the opportunity to start an OEN.

For the partner selection problem, we proposed a multi-
armed bandit based approach that reduces the complexity of
address reasoning to negotiate. For instance, instead of fo-
cusing on the selection of a partner based on the benefits

First Author et al.: Preprint submitted to Elsevier Page 22 of 25



Partner selection using MAB learning

associated with it (as approached in our model), the negoti-
ation might involve strategies to model the negotiation be-
haviour of the opponents. In particular, some strategies in-
clude regression techniques to estimate the concessions of
the adversaries and predict possible agreements. Since we
are interested in resource-constrained domains, we concen-
trate on low complexity solutions that don’t require complex
learning mechanisms. The predicting techniques use a suf-
ficient number of the opponent’s offers to apply the learning
approach and start the estimation of the counterpart’s infor-
mation (such as its deadline or reservation values) in order
to obtain better deals. In fact, the complexity of the utility
space increases with the interdependent issues and the num-
ber of time slots involved in the energy cooperation domain.

Against this background, we described state-of-the-art
MAB algorithms applied in the negotiation context, "-
greedy, EXP3, EXP3.S and FPL-UE, as the bandit strategies
for efficiently deal with the uncertainty regarding the pref-
erence of the opponents and the dynamism of the environ-
ment. Our results show that even in a cooperative scenario,
where agents offer concessions rapidly at the beginning of
the encounters, the agents improve their benefit by choos-
ing a partner strategically instead of select it randomly. In
average up to 17% more energy can be allocated in an ex-
tremely dynamic environment using the EXP3 policy. The
problem becomes even more challenging as we target setups
where agents employ tougher negotiation strategies and the
presence of the agents is unstable. In any case, the bandit
strategies achieve improved energy allocation agreements by
adjusting to dynamic environments against the random se-
lection of a negotiation partner. The results showed up to
25% more energy allocation over the random selection strat-
egy in the multiple behaviours scenario and up to 19% incre-
ment in the dynamic topologies scenario. In this direction,
the EXP3 policy produces better results at a large number
of unexpected events as the environment becomes more dy-
namic.

The establishment of OEN proved to have a minimum
impact on energy cost. Using a discrete event simulator
as OMNeT++, the discovery protocol to reach the negoti-
ation agents in a 1-hop neighbourhood is implemented as a
publish-subscribe protocol. The simulation included up to 7
opponents subscribed to the OEN process, where a negligi-
ble impact in the agent’s performance lower than 0.01 J was
found. Thus, the obtained results demonstrate that a node
can engage in OEN with a minimum cost even in the emer-
gence of seven co-located and distinct nodes.

As future work, the discovery of agents with a desire
for cooperation can be reduced by choosing reliable agents
found in previous interactions. In particular, we would like
to extend this work to reduce the system overhead of find-
ing compatible agents to negotiate by using previous experi-
ences and acting in consequence. In addition to this, the in-
troduction of multiple incentives (such as low delay, higher
coverage, better QoS guarantees) is expected to improve the
efficiency of the negotiation agreements. A tradeoff nego-
tiation approach can outperform a concession approach in

terms of utility but may incur a highest communication cost
and computational power. The analysis of the combination
of these models is also left as future work.

Appendix A. Notations
Symbol Measure Description
K – set of arms or actions
ui,j Wh utility function of agent

i, j
T r – total number of oppor-

tunistic negotiation en-
counters

tr – the tr-th encounter, tr =
1,2,...,Tr

a(tr) – action of an agent at trial
tr

ri,j Wh reward function of agent
i, j

RT r Wh weak regret over T r
" – exploration factor in "-

Greedy action selection
strategy

r̂k Wh estimated reward of ac-
tion k

pullsk – number of times action k
has been executed in "-
Greedy

rewardsk Wh cumulative reward of ac-
tion k in "-Greedy

� – exploration factor in
FPL-UE

� – mean parameter for ex-
ponential distribution in
FPL-UE

M – maximum number of
samples in FPL-UE

K_valk – reciprocal of probability
of action k in FPL-UE

zk – exponential random
number in FPL-UE


 – exploration factor in
EXP3 and EXP3.S

wk – weight value of action k
in EXP3 and EXP3.S

pk – probability of action k in
EXP3 and EXP3.S

� – learning parameter in
EXP3.S
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