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Abstract

We study the problem of building a maximum lifetime data collection tree for periodic convergecast applications in wireless sensor

networks. We experimentally observe that if two nodes transmit the same number of data packets, the amount of energy consump-

tion of the nodes is approximately the same even if the payload lengths of the transmitted packets are different. This is because

the major energy consumption during a packet transmission arises from radio start-up and medium access control overhead. Our

formulated lifetime maximization problem captures the energy expenditure due to message transmissions/ receptions in terms of

the number of data packets transmitted/ received, in contrast to prior works, which consider the number of data units (amount of

sensor data generated by a node) transmitted/ received. Variable transmission power levels of the radio and accounting for the

sensor energy consumption are other factors that make our problem formulation different from those in prior work. We prove that

this problem is NP-complete by reducing the set cover problem to it and propose an algorithm to solve it. The performance of

the proposed algorithm is experimentally evaluated using Jain’s fairness index as a metric by implementing it on an actual testbed

consisting of 20 sensor nodes and compared with those of the widely used shortest path tree and random data collection tree algo-

rithms. The energy consumption of different nodes under the proposed algorithm are shown to be more balanced than under the

shortest path tree and random data collection tree algorithms. Also, the performance of the proposed algorithm in large networks

is studied through simulations and is compared with those of the state-of-the-art RaSMaLai algorithm, the shortest path tree, mini-

mum spanning tree, and random tree based data collection schemes. Our simulations show that the proposed algorithm provides a

significantly higher network lifetime compared to all the other considered data collection approaches.
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1. Introduction

Wireless sensor networks (WSN) are being extensively de-

ployed for numerous monitoring applications such as environ-

mental monitoring [1, 2, 3], structural monitoring [4] and agri-

cultural monitoring [5, 6, 7, 8]. In a WSN, a large number

of small, low-cost, resource-constrained devices called “sensor

nodes” collectively sense or monitor an area of interest. In most

WSN monitoring applications, each sensor node reports its col-

lected data to a decision center (also known as base station) in

a multi-hop fashion, often via wireless transmissions along the

edges of a tree. This process of collecting data from all the

sensors at the base station is known as convergecast [9]. Sen-

sor nodes are powered using small batteries and recharging of

these batteries is difficult since often, sensor nodes are deployed

in harsh, inaccessible areas and they are expected to operate for

a long time with minimal human intervention. So minimiza-

tion of the energy consumed by sensor nodes is an important

objective.

Network lifetime of a WSN can be defined in different

ways [10]. The time until the first node dies due to battery de-
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pletion and the time until a certain fraction of nodes get depleted

are two commonly used notions for the network lifetime [10].

In our work, by “lifetime” of the network, we mean the time

until the first node in the network fails due to battery deple-

tion. The wireless communication strategies in a WSN need

to be selected in such a way that the lifetime of the WSN is

maximized. Different approaches are used for energy conser-

vation of the nodes. Efficient duty cycling [11], data aggrega-

tion/ compression schemes [12, 13], load balancing among the

nodes [14, 15, 16], clustering techniques [17, 18] and energy ef-

ficient routing protocols [19] are some of them. Also, the data

collection or convergecast operation in sensor networks needs

to be carried out in an energy efficient manner in order to max-

imize the lifetime of the network.

Various approaches have been proposed in the literature

for performing the convergecast operation so as to maximize

the lifetime of the sensor network. These studies can be

broadly classified into tree-based approaches, integer program-

ming approaches, time allocation approaches and flow based

schemes [20]. In tree-based data collection approaches [21, 22,

23], a data collection tree constructed in an energy efficient

manner is used for the convergecast. The integer program-

ming approach formulates the lifetime maximization problem

as an integer 0-1 programming problem [24]. A non-integer

solution obtained using the linear programming relaxation ap-
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proach is converted to an integer solution. Time allocation

schemes maximize the network lifetime by using different pre-

calculated trees for data collection in a time-multiplexed man-

ner [25, 26, 27]. Flow based approaches consider the data

sent by the sensor nodes as a network flow and the lifetime

maximization problem is formulated as a network flow prob-

lem [28, 29].

The problem of building the data collection tree, in the tree-

based data collection approach, so as to maximize the network

lifetime is a well studied problem in the literature [20, 21, 30,

31, 32]. Maximum lifetime tree construction has been shown

to be an NP-complete problem under the aggregated/ non ag-

gregated convergecast models considered in [21]. There are

several works which propose both approximation algorithms

as well as heuristic approaches for the construction of a max-

imum lifetime data collection tree. Various cross-layer opti-

mization techniques are reviewed in [33] which try to jointly

optimize the routing, power allocation, and node scheduling

schemes. A maximum lifetime tree construction approach for

the fully aggregated data collection model is proposed and the

NP-completeness of the problem is proved in [34]. In the pro-

posed algorithm, the authors start from an arbitrary tree and

iteratively try to reduce the load on the bottleneck nodes (the

nodes which are expected to die fast). Load balancing/ load

switching is one of the dominant approaches used for building

the maximum lifetime data collection tree [35, 16]. An algo-

rithm for maximum lifetime tree construction under the data

collection without aggregation model is considered in [15]. The

authors formulate the maximum lifetime tree construction prob-

lem as a min-max spanning tree construction problem. The al-

gorithm starts with an arbitrary tree and iteratively transfers de-

scendant nodes from nodes having high weights to those having

low weights. The weight of a node in a data collection tree is

a function of its remaining battery energy and the number of

its descendant nodes in the considered tree. In [16], the au-

thors describe a randomized switching algorithm for load bal-

ancing among the nodes to construct a maximum lifetime data

collection tree. Most of the maximum lifetime tree construc-

tion approaches in the literature assume that all the nodes in

the network transmit at a fixed transmission power [34, 35].

In [20], the authors consider variable transmission power lev-

els and propose an approximation algorithm for the maximum

lifetime data collection tree construction problem.

Our work differs from prior work in the following respects.

We formulate the problem of building a maximum lifetime data

collection tree for periodic convergecast applications by consid-

ering the energy needed for the transmission/ reception of data

packets in the problem formulation; in contrast, in formulations

in prior literature, the energy needed for the transmission/ re-

ception of data units is considered. Several data units can be

combined to form a data packet. The experimental observations

described in Section 3 reveal that the energy drainage of a node

is mainly dependent on the number of transmissions/ receptions

of data packets and not the number of transmissions/ receptions

of data units. Our work also takes into account the energy ex-

penditure of sensors in addition to different transmission power

levels for the radio. In contrast, most of the prior works ignore

the sensor energy consumption and assume that the radio trans-

mission power is fixed. In our paper, the performance of the

proposed algorithm for building the maximum lifetime data col-

lection tree is evaluated through an actual testbed implementa-

tion, whereas a majority of the proposed lifetime maximization

approaches in the literature are evaluated only via simulations.

The major contributions of this paper are as follows:

• We formulate the maximum lifetime data collection tree

construction problem by considering the energy needed for

the transmission/ reception of data packets instead of data

units.

• Variable transmission power levels of the wireless radio

and the energy expenditure for generating sensor data are

taken into account in our problem formulation.

• We prove that the above problem is NP-complete and pro-

pose an algorithm for solving it.

• The proposed algorithm is implemented in an actual WSN

testbed having 20 sensor nodes (TelosB [36] motes pro-

grammed using TinyOS 2.1.2 [37]) and its performance is

compared with those of the widely used shortest path tree

(SPT) based and random tree (RDCT) based data collec-

tion approaches.

• Our experimental evaluation demonstrates that a more bal-

anced discharge of batteries among the nodes occurs when

the proposed algorithm is used for building the maximum

lifetime data collection tree as compared to the discharge

under the SPT based and RDCT based approaches. Hence,

our proposed algorithm results in an improved network

lifetime.

• The performance of the proposed algorithm in large net-

works is evaluated through simulation studies. Our sim-

ulations show that the proposed algorithm provides sig-

nificantly higher network lifetime when compared with

the state-of-the-art Randomized Switching for Maximiz-

ing Lifetime (RaSMaLai) algorithm [16] as well as the

SPT, minimum spanning tree (MST), and RDCT based

data collection schemes.

The rest of the paper is organized as follows. In Section 2, the

considered network model and the problem formulation are de-

scribed. Section 3 discusses the unique aspects of the problem

and the motivating factors. The hardness of the problem is char-

acterized and the proposed algorithm is described in Section 4.

Section 5 presents a performance evaluation of the proposed

algorithm and the paper is concluded in Section 6.

2. Network model and problem formulation

2.1. Network Model

In sensor networks which are deployed for any periodic data

collection application such as agricultural farm monitoring,

convergecast is the most common operation [9]. That is, data

from all the individual sensor nodes are collected at a sink node

2



via transmissions along the edges of a tree. The sink node is

connected to a powerful data logging device called base station

(e.g., a laptop) and is assumed to have strong data processing

capabilities and infinite energy resources.

1

2 3

4 5 6 7

(a) Packet relay model

1

2 3

4 5 6 7

(b) Complete aggre-

gation model

1

2 3

4 5 6 7

(c) Piggyback aggregation

model

Figure 1: Data collection along a convergecast tree

There are mainly three approaches which are widely used for

data collection in WSN applications, as shown in Fig. 1. In the

first approach (Fig. 1a), each sensor node sends its data unit

(the generated sensor data) as a data packet to its parent and

each parent node relays the received packets from each of its

children as separate packets towards the sink node along the

data collection tree. Also, the sensor data generated by the

parent node itself is forwarded as a separate data packet along

the tree. We call this network model as “packet relay model”

(PRM). The other two approaches employ aggregation methods

to reduce the number of message transmissions occurring in the

network. In the second approach (Fig. 1b), each node receives

data (e.g., 1 byte) from all of its children and applies an aggre-

gation technique like taking average, minimum, maximum etc.

on the collected dataset (received data as well as its own gener-

ated data) and forwards the aggregated result (also 1 byte in the

considered example) to its parent node. We call this network

model as “complete aggregation model” (CAM). This method

is used mainly in dense deployments to sense parameters which

have a high spatial correlation. In the third approach, each node

collects the sensor data from its children and concatenates them

along with its own sensed data to form a single data packet and

forwards it to its parent node as shown in Fig. 1c. We call this

network model as “piggyback aggregation model” (PAM). We

consider a sensor network of nodes that are sparsely deployed in

an area– such a sensor network is often deployed for covering a

large area with a small number of nodes for cost-effectiveness.

Hence we consider that all the sensor readings are equally im-

portant and each reading needs to be transmitted in its entirety

to the sink node. So the data collection in our network model is

of the type PAM as shown in Fig. 1c. Note that the PAM has a

lower packet header overhead than the PRM.

Data collection
tree formation

Data collection
tree formation

Sleep and wake up
periods

Neighbour
discovery

Flooding nbr
details to sink

Tree
construction

Time
sync

Wake up
period

Wake up
period

Sleep
period

Sleep
period

FrameFrame

Figure 2: Sequence of operations occurring in the network

For data collection in sensor networks, a backbone structure

(tree) to route the sensed data from each node to the sink node

needs to be constructed. The various operations occurring in

the network are shown in Fig. 2 (for details see [8]). Time is

divided into frames and each frame consists of the “data col-

lection tree formation phase” followed by periodic data collec-

tion through the constructed tree as shown in Fig. 2. The “data

collection tree formation” phase constructs the data collection

tree through which each node reports its sensed data to the sink

node. Once the data collection tree is built, each node follows

a synchronized periodic sleep wake-up scheme for data collec-

tion. This helps to improve the lifetime of the network since

during each “sleep period”, the wireless transceiver and sensors

in all nodes remain in the “OFF” state to save energy. During

each “wake-up period” of a frame, data collection is performed

using the tree constructed in the “data collection tree formation”

phase of the frame. Each “data collection tree formation” phase

includes various stages like neighbour discovery, flooding the

neighbour details to the sink, running the tree construction al-

gorithm at the sink node and synchronizing all the nodes in the

network to the sink node. In the “neighbour discovery” phase,

each node in the network finds its neighbours, along with the re-

quired transmission power levels to reliably communicate with

them. Each node assigns “edge costs” to all the communica-

tion links connecting it to its neighbours which are functions

of the minimum transmission power levels required to deliver

packets reliably to them. After neighbor discovery, the list of

neighbours and edge weights of each node are sent to the sink

node through “flooding”. The sink node builds the maximum

lifetime data collection tree from the collected information and

synchronizes the clocks of all the nodes along the edges of the

tree. Then, each node periodically reports its data to the sink

node.

As stated earlier, to increase the lifetime of the network,

nodes follow a periodic sleep and wake-up schedule (see

Fig. 2). Nodes are in energy saving sleep mode for a large frac-

tion of the time. During each wake-up period, each node senses

parameters using its sensors, receives data from its child nodes,

sends the data to its parent node and goes to the sleep stage.

2.2. Problem Formulation

Consider a sensor network consisting of n sensor nodes

{v1, v2, ..., vn} and a sink node v0 which are deployed for any

data monitoring application. After the “data collection tree for-

mation phase” (see Section 2.1), each sensor node reports its

sensed data (one data unit, which consists of l bytes) to the sink

node in each wake-up period along the data collection tree. Let

G = (V, E) be the undirected connectivity graph representing

the sensor network, where V = {v0, v1, v2, ..., vn} and E repre-

sents all the communication links present in the network. Be-

tween every pair of neighbouring nodes u and v, there exists

an edge eu−v ∈ E with cost ceu−v
, which represents the transmis-

sion energy required for sending one data packet along the edge

eu−v (see Section 2.1). Each sensor node u is equipped with a

Lithium-Ion battery which has a remaining energy Bu at the be-

ginning of the frame under consideration. The sink node v0 is

assumed to have unlimited energy, i.e., B0 = ∞.
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v0

u

(a) Graph G

v0

u

(b) Tree T1

v0

u

(c) Tree T2

Figure 3: An example of a connectivity graph and two possible data collection

trees

Fig. 3 shows an instance of a connectivity graph G and two

of its possible data collection trees T1 and T2. Our objective is

to find a data collection tree in each frame such that the life-

time of the network is maximized. Henceforth, we focus on a

single frame and study the problem of finding the best tree, say

T ∗, from the point of view of maximizing the network lifetime.

Table 1 lists the various notations used in this paper.

Recall that after a data collection tree, say T , is constructed,

each node sends its sensed data to the sink node v0 via the edges

of T in each wake-up period. In particular, during each wake-

up period, each node u , v0 receives all the data coming from

its children in the tree T and sends the concatenated data packet

which contains the received data along with its own generated

sensor data to its parent node, say pu(T ), in the data collection

tree T . For any node u , v0 in the tree T , let nr
u(T ) be the

number of data packets node u receives from its children in the

tree T in a wake-up period. Let nt
u(T ) be the number of data

packets node u transmits to its parent pu(T ) in a wake-up period.

Let er be the energy spent by node u for receiving a data packet

from one of its children and ku be the energy required by node u

to generate data from its own sensors; recall that node u requires

energy ceu−pu(T )
to transmit one data packet to pu(T ). Hence,

the total energy consumed by node u in a wake-up period is

nr
u(T ) . er+nt

u(T ) . ceu−pu (T )
+ku. The number of wake-up periods

for which node u can work before its battery gets depleted, if

tree T is used in each wake-up period, is given by:

LT
u =

Bu

nr
u(T ) . er + nt

u(T ) . ceu−pu (T )
+ ku

(1)

We define the lifetime of the network, say L(T ), under tree T

as the number of wake-up periods until a node u ∈ V depletes

its energy if tree T is used for data collection. So:

L(T ) = min
u∈V
{LT

u }

= min
u∈V

{

Bu

nr
u(T ) . er + nt

u(T ) . ceu−pu(T )
+ ku

}

. (2)

The optimal data collection tree, say T ∗, is one that has the

maximum lifetime among the set of all possible spanning trees,

say Ω, and its lifetime is given by:

Lmax = L(T ∗) = max
T∈Ω

L(T ). (3)

Table 1: Notations used in this paper

Notation Meaning

n The number of sensor nodes in the network

G =

(V, E)

Undirected connectivity graph representing the

sensor network with V = {v0, v1, v2, ..., vn} being

the set of nodes in the network and E being the

set of edges connecting them

eu−v Edge connecting the nodes u and v

ceu−v
Cost of the edge eu−v and it represents the amount

of energy required to transmit one data packet

along the edge eu−v

Bu Remaining energy of the node u

nr
u(T ) Number of data packets received by node u from

its children in a wake-up period when tree T used

nt
u(T ) Number of data packets transmitted by node u to

its parent in a wake-up period when tree T used

pu(T ) Parent of node u in the tree T

ku Energy consumed by node u for generating data

from its sensors

LT
u Lifetime of node u when data collection tree T

used

Lmax Maximum lifetime of the network

T ∗ The optimal data collection tree

Ω The set all possible data collection spanning trees

of the connectivity graph G = (V, E)

er Amount of energy required for receiving one data

packet

Cavg Average packet transmission energy (considering

different possible transmission power levels)

αu Current load of node u

l Number of bytes in one data unit

β Maximum number of bytes that can be included

in one data packet

hu Hop distance of node u from the sink node

By (2) and (3):

Lmax = L(T ∗) = max
T∈Ω

min
u∈V

{

Bu

nr
u(T ) . er + nt

u(T ) . ceu−pu (T )
+ ku

}

.

(4)

Our objective is to design an algorithm that finds the tree, T ∗,

with the maximum lifetime.

Problem 1. Find the optimal data collection tree, T ∗, which

provides the maximum lifetime Lmax in (4).

3. Motivating factors and unique aspects of the lifetime

maximization problem

In this section, we explain the motivations behind studying

the specific problem formulated in Section 2.2 and the unique

aspects of the considered problem.
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3.1. Effect of payload length and number of packet transmis-

sions on the energy consumption

To better understand the variation of the energy expendi-

ture of the nodes with variations in the data payload size as

well as the number of packet transmissions, we conducted a set

of experiments in our testbed. Our sensor nodes use TelosB

motes [36] programmed using TinyOS 2.1.2 [37]. TelosB uses

CC2420 as the wireless transceiver and it supports different

transmission power levels [38]. Fig. 4 shows the current con-

sumption during the transmission of a single data packet for dif-

ferent payload sizes and transmission power levels. The maxi-

mum limit for the data payload length in a single packet is 114

bytes. From Fig. 4a, it is clear that the change in current con-

sumption for a payload length of 114 bytes due to the adjust-

ment in transmission power level from its minimum to maxi-

mum level is approximately 10 mA for a period of 5 ms. This

time reduces to approximately 2 ms (Fig. 4b) if the data payload

reduces to 10 bytes. The difference in energy consumption due

to a change in the data payload size from 114 bytes to 10 bytes

when data is transmitted with the maximum power is approxi-

mately 100 µJ. This is negligible when compared with the total

energy consumption of a data packet transmission. For exam-

ple, a data packet with payload size 114 bytes consumes 1.2 mJ

when transmitted with maximum transmission power.

Start up of 
tranceiver

Overhead due to
MAC protocol

Data payload 
transmission

(a) Payload length - 114 bytes

Start up of 
tranceiver

Overhead due to
MAC protocol

Data payload 
transmission

(b) Payload length - 10 bytes

Figure 4: TelosB’s current consumption at different payload sizes and transmis-

sion power levels

To capture the energy consumption of a node over a long term

for different data payload lengths, we programmed 3 TelosB

child motes (c1, c2, c3) which periodically transmit one data

packet (once in every 0.5 seconds) to their parents (p1, p2, p3)

as shown in Fig. 5a. During each wake-up period, each child

node turns ON its radio, sends one data packet, turns the radio

OFF and goes to the sleep stage. c1, c2 and c3 send data packets

with payload sizes of 10 bytes, 50 bytes and 100 bytes, respec-

tively. The reduction in the battery voltage levels as well as

the remaining battery energy level for each node after periodi-

cally transmitting data for 10 hours (Fig. 5a) reveal that all the

three child nodes have almost the same amount of energy con-

sumption irrespective of the payload length. This is because

as shown in Fig. 4, the current consumption for the data trans-

mission part is only for a short duration (approximately 5 ms

for a 114 byte data payload and 2 ms for a 10 byte data pay-

load) in comparison with the time required for a complete data

packet transmission. The major portion of the current consump-

tion (and hence energy) comes from various other activities like

radio startup, medium access control (MAC) etc.

battery energy level

(a) Effect of payload size

battery energy level

(b) Effect of number of message trans-

fers

Figure 5: Reduction in battery voltage and remaining battery energy level

To capture the energy consumption by a node for different

numbers of packet transmissions, we programmed 3 TelosB

child motes (c1, c2, c3) which periodically transmit a set of data

packets to their parents (p1, p2, p3) as shown in Fig. 5b. In each

wake-up period (once in every 0.5 seconds), c1 transmits 4 data

packets of payload length 25 bytes each, c2 transmits 2 data

packets of payload length 50 bytes each, and c3 transmits 1

data packet of payload length 100 bytes. Fig. 5b reveals that

the three child nodes differ substantially in the amount of re-

duction in the battery voltage levels as well as in the remaining

battery energy level after periodically transmitting data for 10

hours.

The experiments corresponding to Fig. 5a and Fig. 5b were

performed three times and the same trends were observed in

each set. From the above detailed experiments, we observe that

it is the number of data packet transmissions, and not the num-

ber of bytes of data transmitted, which really creates energy

imbalances among the nodes. If two nodes transmit the same

number of packets, then the amount of energy consumption of

the two nodes is approximately the same even if the payload

lengths of the transmitted data packets are different. This is be-

cause the amount of energy required for the transmission of a

data packet is approximately independent of the size of the data

payload in the packet (see Fig. 5a). There are several works in

the literature which address the lifetime maximization problem

for the convergecast operation in sensor networks [22, 15, 16].

These works consider the number of data units transmitted,

where a data unit is the amount of sensor data generated by

a node in a time slot, as the parameter which determines the en-

ergy consumption of a node in their formulation of the lifetime

maximization problem. However, the above experiments sug-
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Table 2: Energy consumption of various sensor node elements: an example

Element
Current Time Energy

(mA) (ms) (mJ)

TelosB during transmission 19.5 20 1.287

TelosB during reception 22 20 1.452

Soil moisture sensor module 80 5 1.32

Other sensors negligible - -

gest that, instead, the number of data packets transmitted needs

to be considered as the parameter that determines the energy

consumption of a node in the formulation. Hence, we formulate

and solve the problem by considering the energy expenditure of

a node in terms of the number of data packets it transmits (see

the term nt
u(T ) in (4)). Note that in the piggyback aggregation

model (PAM) (see Fig. 1), multiple data units can be concate-

nated to form a single data packet. Also, from Fig. 5, it is clear

that the PAM, which we use, is much more efficient than the

packet relay model (PRM).

3.2. Sensor energy consumption ku

During each wake-up period, a node mainly spends energy

for three different activities: receiving data packets from its

children, generating its own sensor data and transmitting data

packets to its parent. Most of the works in the literature ignore

the energy consumed by a node for generating data from its own

sensors since it is very small in their applications. However,

there can be scenarios where the sensor energy consumption

cannot be ignored. Table 2 gives an example of the energy con-

sumed by different modules of a sensor node which was used

in one of our earlier sensor network implementations targeted

for an agricultural monitoring application [8]. The nodes were

equipped with multiple sensors to measure soil temperature,

soil moisture, atmospheric temperature and relative humidity.

The term ku in (4) captures the energy consumption of a sensor

node due to activities like sensing and processing and Table 2

shows that it is not negligible.

3.3. Adjusting transmission power levels of the radio

Recall that for a node u, ceu−pu(T )
represents the energy cost for

the transmission of one data packet to its parent pu(T ). In most

wireless radios the transmission power of the radio is adjustable

and hence, ceu−pu (T )
is a variable parameter. We use TelosB mod-

ules [36] which use CC2420 [39] as the wireless radio. In one

of our earlier works [40], we have studied the effect of transmis-

sion power on the wireless communication range. For CC2420,

when we increase the transmission power from the lowest level

(-25 dBm) to the highest level (0 dBm), the communication

range increases from 8.5 m to 56.5 m in an outdoor non-line

of sight scenario and the current consumption of the wireless

module almost doubles (10 mA to 18.33 mA) [40]. Hence, this

is an important factor which we take into account in our formu-

lation of the maximum lifetime tree construction problem. In

our network model, each node sets its transmission power to the

minimum value for which its data packet reaches the intended

neighbour node. This serves two purposes– it helps to save en-

ergy as well as reduces the interference caused to other nodes in

the network. In our formulation, the variable parameter ceu−pu(T )

in (4) represents the energy cost corresponding to the minimum

transmission power required to send a packet from node u to

its parent pu(T ). On the other hand, in most prior works on

the maximum lifetime tree construction problem, it is assumed

that the radio transmission power is fixed and a constant term

is used instead of the term ceu−pu (T )
in the formulation.

4. Complexity and Algorithm

4.1. Complexity

Theorem 1. The maximum lifetime data collection tree prob-

lem in Problem 1 is NP-complete.

Proof. The NP-completeness of Problem 1 is proved by reduc-

ing the set-cover problem [41] to it.

The decision version of Problem 1 can be stated as: given a

graph representing a WSN and a number τ, does there exist a

tree with lifetime at least τ? If we are given a solution (tree),

we can easily verify in polynomial time whether its lifetime is

≥ τ. This proves that Problem 1 is in class NP [41].

Next, we reduce the set cover problem, which is known to

be NP-complete [41], to Problem 1. An instance of the set

cover problem is as follows. Assume that there are n elements,

1, 2, 3, ..., n, in the set U. Let B1, B2...Bk be k given subsets of

U and p be a given number. The set cover problem is to find

whether there exists any collection of at most p of these subsets

whose union is U. We refer to a collection of p subsets whose

union is U as a “p set cover”.

We reduce the above instance of the set cover problem to the

special case of Problem 1 in which er = 0, l = β, ku = a ∀u, and

ceu−v
= 1 ∀eu−v ∈ E. β represents the maximum number of data

bytes in one data packet; so l = β implies that each data packet

can contain only one data unit. For the reduction, we construct

a connectivity graph as shown in Fig. 6.

Root Node

2k-p+1+a n+p+1+a

2+a 2+a 2+a 2+a 2+a

Set Nodes

Element Nodes1+a 1+a

Figure 6: Reduction from set cover to Problem 1

The root node (sink) has infinite energy and is connected to

two nodes having energies, 2k− p+1+a and n+ p+1+a. The

third row consists of k nodes each with energy 2 + a and each

node in this row is connected to the node with energy 2k − p +
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1+a. The fourth row consists of k nodes, each representing one

of the given subsets, and the i’th node in this row has energy

|Bi|+1+a. All the nodes of the fourth row have a connection to

the node with energy n+p+1+a. The last row contains n nodes,

each node corresponding to one of the n elements in the set U,

and each of these nodes has connections to the nodes in the

fourth row representing the subsets the corresponding element

is contained in.

We will show that the graph in Fig. 6 has a lifetime of one if

and only if there exists a p set cover in the above instance of the

set cover problem.

Assume that there exists a p set cover. The tree with lifetime

one can be constructed by the following steps.

• Connect the p nodes in the fourth row representing the p

subsets of the p set cover to the node with energy n + p +

1 + a (represented by dotted edges in Fig. 6).

• Ensure that each element node in the last row has a con-

nection to one of the p subset nodes.

• The remaining (k − p) subset representing nodes from the

fourth row are connected to the node with energy 2k − p+

1 + a through their corresponding nodes in the third row.

• Also, ensure that all the nodes in the third row have a con-

nection to the node with energy 2k − p + 1 + a.

• Connect the two nodes in the second row with the root.

It is easy to check that the above connections constitute a tree

with lifetime one.

Now assume that there is a tree with lifetime one. Since each

node in the third row only has energy 2 + a, it can route data

from only one node corresponding to a subset from the fourth

row to the root node and the node with energy 2k − p + 1 + a

limits the routing to (k−p) set equivalent nodes. So, the p nodes

remaining in the fourth row have to cover all the n elements in

the last row. This implies that there exists a p set cover.

The result follows.

An approach similar to that used in the above proof is used

in [21].

4.2. Proposed tree construction algorithm

Here we propose an algorithm for finding a data collection

tree, called Balanced energy consumption Data Collection Tree

(BDCT), which provides a high network lifetime. The tree con-

struction algorithm is outlined in Algorithm 1. The algorithm

is executed by the sink node which has complete information

about the network. As discussed in Section 2.1, the neighbour

details of a node consist of its neighbour node ids along with the

minimum transmission energy required for reliable communi-

cation with them. The tree building starts with the sink node

and during each iteration an edge is added to the partially built

tree (subtree) which connects a node which is not yet covered

in the current subtree. Let S T be a set of paired values where

each pair in S T represents a node id of a node that is already

added to the data collection tree, along with its hop distance

from the sink node. For example, if the pair (u, hu) belongs to

S T , then node u is hu hops away from the sink node in the cur-

rent data collection subtree. Let ET be the set of possible edges

which can be added next, to connect a node which is not yet

connected, to the current subtree.

Algorithm 1 Algorithm for BDCT construction

Input: G = (V, E), ceu−v
∀eu−v ∈ E, Bu∀u ∈ V

Output: A data collection tree, T

Initialisation : S T = {}, ET = {}, fET
(eu−v) = {}

1: Add sink node, (s, 0), to S T

2: Add eu−s to ET , ∀u ∈ V such that eu−s ∈ E

3: while (any uncovered node exists) do

4: For each edge, say eu−v, in ET , assign a real number

fET
(eu−v) using (5)

5: Select next edge, say enext, to be added to the subtree

using (6)

6: Update the subtree, S T , and ET

7: end while

8: return T

Initially, S T = { }, ET = { }. As a first step, the algorithm

adds the sink node s to S T and thus S T = {(s, 0)}. Now, ET

will contain all the edges which connect the sink node s to any

other node in the connectivity graph. During each iteration, the

algorithm uses a mapping fET
(eu−v) from each eu−v ∈ ET given

by (5), where u is an uncovered node and v is a covered node,

and using this mapping, selects an edge enext from ET (see (6)).

The edge enext is added to the current data collection subtree.

fET
(eu−v) = min

(

Bu

ceu−v
+ hv.Cavg + ku

,

Bv

hv.Cavg⌈
(αv+2).l

β
⌉ + (αv + 1).er + kv

)

∀eu−v ∈ ET (5)

enext = argmax
eu−v∈ET

{ fET
(eu−v)} (6)

Cavg is the average packet transmission energy (considering dif-

ferent possible transmission power levels) and αv is the current

load (number of children connected) of node v. If multiple

edges achieve the maximum in the term argmax
eu−v∈ET

{ fET
(eu−v)} in

(6), then the edge eu−v with the highest non-minimizing term in

the min in (5) is selected as enext. The mapping fET
(eu−v) out-

puts a real number, say neu−v
, for each eu−v which is an indicative

measure of how advisable it is, to connect the uncovered node

u to a covered node v as u’s parent using the edge eu−v.

The intuition behind the function fET
(eu−v) is as follows:

1. It takes a higher value if nodes u and v have higher battery

voltages, Bu and Bv, respectively. This means nodes with

higher battery voltages are preferred to be added first to

the data collection subtree and hence they are more likely

to act as parent nodes for uncovered nodes.

2. The term hv.Cavg in (5) is used to indirectly penalize long

hop paths to the sink from other nodes.
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3. Addition of a child node u to v will increase the current

load (number of child nodes) on v (αv) by one and hence

will increase the energy expenditure of node v. The new

energy expenditure of node v in packet reception and trans-

mission after the addition of the edge eu−v is addressed by

the term hv.Cavg⌈
(αv+2).l

β
⌉ + (αv + 1).er in fET

(eu−v).

We illustrate the construction of a tree using the proposed

algorithm using an example, which is shown in Fig. 7. Con-

sider the network graph shown in Fig. 7a. During the first

step, addition of the sink node s to S T results in S T = {(s, 0)},

ET = {eu1−s, eu2−s, eu3−s, eu4−s} and the corresponding mapping

fET
(eu−v) ∈ {neu1−s

, neu2−s
, neu3−s

, neu4−s
}. For the current ET ,

fET
(eu−v) ∈

{

min













Bu1

ceu1−s
+ 0 + ku1

,∞













,

min













Bu2

ceu2−s
+ 0 + ku2

,∞













,min













Bu3

ceu3−s
+ 0 + ku3

,∞













,

min













Bu4

ceu4−s
+ 0 + ku4

,∞













}

In the current iteration, let enext be eu2−s. u2 gets marked as a

covered node and its hop distance from the sink node is updated

by adding one hop to its parent’s hop count (hu2
= hs + 1 = 1).

The load of the parent node is also incremented by one; αs =

αs + 1 = 1.

In the next iteration, suppose enext = eu3−s gets connected to

the data collection subtree; after updation, we get hu3
= 1 and

αs = 2. The updated S T = {(s, 0), (u2, 1), (u3, 1)} and ET =

{eu1−s, eu4−s, eu1−u2
, eu5−u2

, eu6−u2
, eu6−u3

, eu7−u3
, eu4−u3

}. The cor-

responding mapping

fET
(eu−v) ∈

{

min













Bu1

ceu1−s
+ 0 + ku1

,∞













, ...

min

(

Bu1

ceu1−u2
+ hu2

.Cavg + ku1

,

Bu2

hu2
.Cavg⌈

(αu2
+2).l

β
⌉ + (αu2

+ 1).er + ku2

)

, ...

}

During this iteration, assume that all the nodes except u1 have

very high energy and therefore enext is decided by the terms
Bu1

ceu1−s
+ 0 + ku1

and
Bu1

ceu1−u2
+ hu2

.Cavg + ku1

. The first term cor-

responds to connection of u1 directly to s while the second

term corresponds to connection of u1 to s via u2. Assume

that the energy required for transmitting a data packet directly

from u1 to s (ceu1−s
) is greater than that of the multi-hop path

(ceu1−u2
+ hu2

.Cavg); then, edge eu1−u2
is added to the data collec-

tion subtree. The resulting subtree is shown in Fig. 7b.

Assume that during the next iteration, the edge eu4−s

gets added to the data collection subtree. The up-

dated S T = {(s, 0), (u2, 1), (u3, 1), (u1, 2), (u4, 1)} and ET =

{eu5−u2
, eu6−u2

, eu6−u3
, eu7−u3

, eu5−u1
, eu7−u4

, eu8−u4
}. The corre-

sponding mapping fET
(eu−v) ∈ {... , neu6−u2

, neu6−u3
, ... }. That

is,

fET
(eu−v) ∈

{

..., min

(

Bu6

ceu6−u2
+ hu2

.Cavg + ku6

,

Bu2

hu2
.Cavg⌈

(αu2
+2).l

β
⌉ + (αu2

+ 1).er + ku2

)

,

min

(

Bu6

ceu6−u2
+ hu2

.Cavg + ku6

,

Bu3

hu3
.Cavg⌈

(αu3
+2).l

β
⌉ + (αu3

+ 1).er + ku3

)

, ...

}

During this iteration, assume that two edges, eu6−u2
and eu6−u3

,

are both maximizers in the term max{ fET
(eu−v)}; so neu6−u2

and

neu6−u3
are equal. Hence, in this iteration there are two edges

which can be added next to the data collection subtree. In such

iterations, we propose to add the edge which has the higher

second term in the min in (5) among the short-listed edges

(eu6−u2
and eu6−u3

). This indirectly tries to connect a node to

a parent which has higher lifetime. Thus our algorithm selects

enext = eu6−u2
if:

Bu2

hu2
.Cavg⌈

(αu2
+2).l

β
⌉ + (αu2

+ 1).er + ku2

>

Bu3

hu3
.Cavg⌈

(αu3
+2).l

β
⌉ + (αu3

+ 1).er + ku3

In this way the algorithm proceeds and terminates once all the

nodes in the network are covered or added to the data collec-

tion subtree. The constructed data collection tree for the given

example is shown in Fig. 7c.

5. Performance Evaluation

First, in Section 5.1, we evaluate the performance of the

proposed algorithm via its actual implementation on a WSN

testbed. Then, in Section 5.2, we present a performance evalu-

ation of the proposed algorithm in large networks through sim-

ulations.

5.1. Testbed based performance evaluation of proposed algo-

rithm

5.1.1. Experimental procedure

The performance of the proposed lifetime maximization al-

gorithm was evaluated through its actual implementation on a

WSN testbed. The testbed consists of 20 sensor nodes which

are installed in an indoor environment as shown in Fig. 8. Each

sensor node consists of a TelosB mote and is powered using a

Li-Ion battery of capacity 2200 mAh. We use the piggyback

aggregation model (PAM) (see Section 2.1) for data collection.

In this section, the performance of the proposed lifetime

maximization approach, BDCT, is compared with those of the

shortest path tree (SPT) algorithm and random data collection
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(a) Connectivity graph
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(b) Data collection subtree after the ad-

dition of edge eu1−u2
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(c) Data collection tree after the algo-

rithm termination

Figure 7: An example, which illustrates the execution of the proposed BDCT construction algorithm
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Figure 8: The wireless sensor network testbed

tree (RDCT) algorithm. SPT is constructed by running Dijk-

stra’s algorithm [42] at the sink node once it has collected the

network connectivity graph with weights assigned to the edges

in the same manner as detailed in Section 2.1. The RDCT con-

struction approach starts with the sink node and randomly adds

an uncovered node as a child in each step to the partially built

data collection tree until all the nodes are covered.

Different operations occur in the network deployed in the

testbed as explained in Section 2.1 and are shown in Fig. 2.

The network under consideration is a homogeneous sensor net-

work. That is, each node in the network is equipped with the

same types of sensors and hence different nodes consume con-

stant and equal amounts of energies for generating data from

their sensors in each wake-up period (represented by ku for node

u in (4)). Considering these facts, the difference in the energy

consumption of different nodes mainly arises from the periodic

data collection phase because of different numbers of descen-

dants that different nodes have in the data collection tree. A

node with a higher number of descendants is expected to spend

more energy and vice-versa.

The reduction in the battery voltage of a node due to a sin-

gle packet transmission (even with maximum payload length)

is very small. In order to have a noticeable battery voltage re-

duction, there have to be several packet transmissions by the

node. So for the lifetime performances of different algorithms

(BDCT, SPT and RDCT) to be noticeably different, a large

number of packets must be transmitted by nodes using the trees

constructed by these algorithms. Hence, the performances of

different algorithms can be compared in two ways.

The first approach is to perform the convergecast operation

along the data collection tree constructed by each algorithm for

a large number of wake-up periods so that there is sufficiently

enough discharge in the battery voltage of each node in the net-

work. This approach has several practical difficulties. Even

though the nodes in the network are synchronized during the

data collection tree formation stage, all nodes are not perfectly

synchronized to each other. Because of synchronization errors,

some nodes may spend more time in the active stage and drain

more energy in each wake-up period than others. The synchro-

nization errors between nodes grow with each wake-up period

because of clock drifts [43] and it calls for the execution of a

periodic synchronization strategy, which will be another energy

overhead. Note that the energy consumption in synchroniza-

tion are not the same for all the nodes in the network, which

may lead to an unfair comparison of the lifetime performances

of different algorithms.

The second approach for the performance comparison, which

we use, is to consider that each node has a very large amount

of data which needs to be sent to the sink node in each wake-

up period. So even when data collection happens only for one

wake-up period, there is sufficiently noticeable discharge in the

battery voltages. Thus, in our evaluation strategy, we consid-

ered each node to have 30, 000 generated data packets (100

bytes each) to transfer to its parent node in one wake-up period,

in addition to the data packets received from its descendants.

For example, a node with two descendants has to send a total of

90, 000 packets to its parent node.

Once all the nodes in the network are turned ON, they enter

into the neighbour discovery phase and the sink node constructs

the data collection tree as detailed in Section 2.1 using a par-

ticular tree construction approach (BDCT or SPT or RDCT).

Once the data collection tree is built, during the wake-up pe-

riod, each node receives data packets from its children, sends

them along with its generated data packets to its parent node

and goes to the sleep stage. Thus, data is collected at the sink

node from all the nodes in the network. We call this process

as one “data collection round”. This process is performed for

seven continuous data collection rounds, which constitutes one

test case. Each node in the testbed is equipped with an approx-
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imately fully charged lithium ion battery at the beginning of a

test case. Even though the batteries are almost fully charged,

the initial voltages of the batteries are not exactly the same.

They are observed to be within the range 4.18 - 4.2 volts. The

battery voltage of each node is measured before and after each

data collection round. All the activities occurring in one test

case as well as in one data collection round are shown in Fig. 9.

Three test case measurements are carried out for each tree con-

struction algorithm (BDCT, SPT and RDCT).

Charge the battery
of each node fully

Turn ON all the nodes
in the network

Measure all the 
node voltages

Formation of the time  

synchronized data collection tree 

Collect data from all the nodes 

Turn OFF all the nodes
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Data collection round 7 

Figure 9: Activities occurring in one test case

Now, a fairness index [44] is a quantitative measure for the

degree of fairness of resource allocation in a distributed sys-

tem. Jain’s fairness index [44] is a measure of fairness of

the resources allocated to n users, where user i receives value

(amount of resource) xi, and is defined as:

J(x1, x2, x3, ..., xn) =
(
∑n

i=1 xi)
2

n ×
∑n

i=1 x2
i

(7)

Jain’s fairness index lies between 0 and 1. We use the Jain’s

fairness index on the battery voltages after each data collection

round as a measure to identify how close to each other the bat-

tery voltages are. If all the nodes have the same battery voltage,

J takes the value 1. If p nodes out of n nodes have equal bat-

tery voltages and the remaining nodes have zero battery voltage,

then J takes the value
p

n
. When the battery voltages are close

to each other, the Jain’s fairness index is close to one and vice-

versa. Various other properties of the Jain’s fairness index are

detailed in [44] and [45].

Figure 10: Comparison of the Jain’s fairness indices under the proposed ap-

proach, shortest path tree and random tree approaches

5.1.2. Experimental Results

Fig. 10 compares the data collection performance of the pro-

posed approach with those of the shortest path tree and random

data collection tree approaches. BDCT1, BDCT2, BDCT3 are

three test cases where the proposed lifetime maximization al-

gorithm is used for building the data collection tree. SPT1,

SPT2 and SPT3 (respectively, RDCT1, RDCT2 and RDCT3)

are three test cases where the sink node builds the shortest path

tree using Dijkstra’s algorithm (respectively, builds a random

tree). The major observations from Fig. 10 are as follows:

1. In each test case, the Jain’s fairness index at the start (0th

data collection round) is close to one, which indicates that

the initial battery voltages for different nodes are close to

each other. However, the Jain’s fairness index is not ex-

actly one, which indicates that all nodes do not have ex-

actly the same voltage to start with even though they are

fully charged. Also, this value is slightly different for dif-

ferent test cases as well.

2. The Jain’s fairness index decreases as the data collection

round number increases for all the three data collection

tree construction algorithms. Intuitively, this is due to the

following reason. In the WSN, some nodes are far from

the sink and others are close to it. Correspondingly, each

tree has leaf nodes as well as nodes close to the root and

hence there is a difference in the energy consumption of

different nodes in a particular data collection round, lead-

ing to unequal battery voltage levels. This results in the

reduction of Jain’s fairness index with the data collection

round number.

3. The rate of decrease in the Jain’s fairness index is least

for BDCT and most for RDCT. This indicates that the pro-

posed BDCT collects data in a more load balanced man-

ner compared to SPT and RDCT. The proposed approach

utilizes the nodes with higher battery energy to relay more

data packets. Thus BDCT provides a longer lifetime for

the network compared to SPT and RDCT. The same trend

is consistently observed in all the test cases studied.

Fig. 11 shows the load on each node in the first data col-

lection tree for each test case. By load of a node in the tree,
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(a) BDCT - test case 1 (b) BDCT - test case 2 (c) BDCT - test case 3

(d) SPT - test case 1 (e) SPT - test case 2 (f) SPT - test case 3

(g) RDCT - test case 1 (h) RDCT - test case 2 (i) RDCT - test case 3

Figure 11: Load on each node during the first data collection round of each test case

we mean the number of descendants the node has plus an addi-

tional one (representing its own generated data). Each node has

a fully charged battery during this data collection tree formation

stage and hence a high lifetime tree is expected to have a highly

balanced load. It is clear from Fig. 11 that BDCT has better

load balancing when compared with SPT and RDCT; RDCT

performs the worst. This trend is consistently observed in all

the test cases.

Fig. 12 shows some of the data collection trees constructed

during different data collection rounds of test case 1 under each

of the three algorithms. The major observations from Fig. 12

are as follows:

1. Many nodes directly get connected with the sink node un-

der BDCT as well as under SPT. This is expected under

BDCT since the root node (sink) is considered to have in-

finite energy. Also, it happens under SPT since the en-

ergy required for direct communication with the sink is

less than that for multi-hop communication. This trend is

not visible in case of RDCT.

2. The loads on different nodes are observed to be more bal-

anced under BDCT than under SPT and RDCT. For ex-

ample, the maximum load of any node under BDCT is

observed to be three (refer to node 18 in Fig. 12a, node

11 in Fig. 12b and node 6 in Fig. 12c). Among the trees

formed under SPT, node 7 in Fig. 12f has a load of 8 and

among the trees formed under RDCT, node 15 in Fig. 12h

and node 5 in Fig. 12i have the maximum load of 19 each.

5.2. Simulations based performance evaluation of the proposed

algorithm in large networks

In this section, we study the performance of the proposed

algorithm in large networks through simulations using Python.

The lifetime of the network is considered as the time until the

first node in the network fails due to battery depletion. The sim-

ulation studies are carried out to understand how the lifetime of

the network varies in large networks when the data collection

happens through different data collection trees. The network

lifetime under the proposed algorithm (BDCT) is compared

with those under the state-of-the-art Randomized Switching for

Maximizing Lifetime (RaSMaLai) algorithm [16], the shortest

path tree (SPT), minimum spanning tree (MST) [42], and ran-

dom tree (RDCT) based data collection schemes.

The energy parameters used for the simulations are in corre-

spondence with the actual energy consumption of various mod-

ules in the sensor nodes that are used in the experimental evalu-

ations described in Section 5.1. For our simulations, we follow

the same deployment strategies as used in the state-of-the-art

work [16]. In particular, nodes are randomly placed in an area
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(a) BDCT - 1st data collection round
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(b) BDCT - 4th data collection round
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(c) BDCT - 7th data collection round
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(d) SPT - 1st data collection round
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(e) SPT - 4th data collection round

2

14

20

17

15

3

5 7

9

8

19

6

11

18 10

12 13

16 21

22

(f) SPT - 7th data collection round
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(g) RDCT - 1st data collection round
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(h) RDCT - 4th data collection round
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(i) RDCT - 7th data collection round

Figure 12: Data collection trees constructed during different data collection rounds in test case 1

of 100m × 100m, and the number of nodes (N) is varied from

50 to 400. We have considered two test scenarios for the sim-

ulation studies. In scenario 1, the root node (sink) is placed at

the center of the deployment area, whereas in scenario 2, the

root node is placed at one corner of the deployment area. In

both the test cases, at time t = 0, the battery of each node is

fully charged. Each node in the simulations supports differ-

ent transmission power levels, and the maximum transmission

range of a node is considered to be 25 m. “NetworkX”[46] is

a Python library that is widely used for studying graphs and

networks. To model the network, we have used the “random-

geometric-graph” function [46] from the “NetworkX” package

for the graph generation.

Recall that the considered data collection approach (detailed

in Section 2.1) involves two stages: formation of a data collec-

tion tree, followed by periodic data collection along the tree.

Once the data collection tree is constructed for a generated ran-

dom connected graph G, the network enters into the periodic

data collection phase. In this phase, every node updates its cur-

rent remaining battery energy level in every data collection time

slot by deducting the consumed energy from the remaining bat-

tery energy level at the end of the previous time slot. The en-

ergy expenditure of a sensor node in each data collection time

slot includes the energy spent for sensor data generation, data

reception from its children and transmission to its parent node.

The reconstruction of a data collection tree happens once every

k data collection time slots (k = 10000 in the simulations). The

lifetime is defined to be the number of data collection time slots

until one of the nodes in the network gets depleted of its battery

energy. The simulations ignore the energy expenditure of nodes

during the sleep stage and the overhead which is required for

the tree construction phase, since tree construction occurs very

rarely (once every 10000 data collection time slots).

Fig. 13 shows the lifetimes of the network for both the test

scenarios, for the cases when data collection happens through

trees constructed using different algorithms, viz., BDCT, RaS-

MaLai [16], SPT, MST, and RDCT. Each lifetime evaluation

was carried out for ten randomly generated graphs, and each

point in Fig. 13 represents the average lifetime over the ten

simulation trials. Also, the lifetime values are scaled to be-

tween 0 and 1 (normalized). Fig. 13 shows that the proposed

data collection tree construction algorithm (BDCT) provides a

significantly higher lifetime than all the other tree construc-

tion approaches in both the test scenarios. Also, as the num-

ber of nodes (N) in the network increases, the network be-

comes denser, and the proposed algorithm (BDCT) outperforms
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RaSMaLai

(a) Test scenario 1: Root node at the centre

RaSMaLai

(b) Test scenario 2: Root node at a corner

Figure 13: Lifetimes of the network when data collection occurs through trees

constructed using BDCT, RaSMaLai, SPT, MST, and RDCT.

the other data collection schemes (RaSMaLai, SPT, MST, and

RDCT) by a larger margin. In particular, when N = 400, the

network lifetime under the proposed BDCT algorithm is more

than double that under the RaSMaLai, SPT, MST, and RDCT

algorithms.

6. Conclusions

In this paper, we addressed the problem of building a max-

imum lifetime data collection tree for periodic data collection

in sensor network applications. We formulated the maximum

lifetime data collection tree problem by considering the energy

expenditure on a data packet basis, in contrast to prior works,

which consider it on a data unit basis. Variable transmission

power levels of the radio and taking the sensor energy con-

sumption into account are other factors that make our prob-

lem formulation different from those in prior work. We proved

NP-completeness of the formulated problem by reducing the set

cover problem to it and proposed a novel algorithm for finding a

data collection tree with a high lifetime. The performance of the

proposed algorithm was evaluated via its actual implementation

on a WSN testbed consisting of 20 sensor nodes and compared

with those of the SPT and RDCT algorithms. It was observed

that the proposed algorithm discharges the nodes’ battery volt-

ages in a more balanced manner and thus provides a higher net-

work lifetime than the SPT and RDCT algorithms. Also, we

compared the performance of the BDCT algorithm in large net-

works with those of the RaSMaLai, MST, SPT and RDCT algo-

rithms through simulation studies. Our simulations show that

the proposed BDCT algorithm provides a significantly higher

lifetime than all the other tree construction approaches consid-

ered in both the test scenarios.
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