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Abstract: The use of electrocardiogram (ECG) data for personal identification in Industrial Internet 15 
of Things can achieve near-perfect accuracy in an ideal condition. However, real-life ECG data are 16 
often exposed to various types of noises and interferences. A reliable and enhanced identification 17 
method could be achieved by employing additional features from other biometric sources. This 18 
work, thus, proposes a novel robust and reliable identification technique grounded on multimodal 19 
biometrics, which utilizes deep learning to combine fingerprint, ECG and facial image data, 20 
particularly useful for identification and gender classification purposes. The multimodal approach 21 
allows the model to deal with a range of input domains removing the requirement of independent 22 
training on each modality, and inter-domain correlation can improve the model generalization 23 
capability on these tasks. In multitask learning, losses from one task help to regularize others, thus, 24 
leading to better overall performances. The proposed approach merges the embedding of 25 
multimodality by using feature-level and score level fusions. To the best of our understanding, the 26 
key concepts presented herein is a pioneering work combining multimodality, multitasking and 27 
different fusion methods. The proposed model achieves a better generalization on the benchmark 28 
dataset used while the feature-level fusion outperforms other fusion methods. The proposed model 29 
is validated on noisy and incomplete data with missing modalities and the analyses on the 30 
experimental results are provided. 31 

Keywords: Personal identification; multimodal biometrics; deep learning; gender classification; 32 
electrocardiogram; fingerprint; face recognition; feature-level fusion 33 

 34 

1. Introduction 35 
Personal identification using electrocardiogram (ECG) data is a recent development in 36 

biometrics and has a great potential to be applied in Industrial Internet of Things (IIoT) environments. 37 
Such system presented with ECG data can return identifications by verifying whether or not 38 
individuals are in the database. Previous researches have focused on identification and 39 
authentication using databases of ECG profiles acquired from only a few subjects under restricted 40 
conditions [1–11]. However, ECGs captured in real-life are likely to contain noises and interferences, 41 
requiring the identification based on unseen ECG profiles to be robust towards noisy and incomplete 42 
data. 43 

Traditional machine learning (ML) methods for personal identification include feature 44 
extraction and classification methods, but deep learning (DL) approaches can achieve better results 45 
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for several reasons. First, ML methods are generally comprised of a channel of tailored feature 46 
extraction and classification models, including k-nearest neighbors (kNN) or random forest, resulting 47 
in uncertainty of being able to extract solely informative features. Performances are determined by 48 
the selected combination of feature extraction and classification methods, which may lead to poor 49 
performances. In contrast, the DL utilizes neurons, which broaden the choice of feature extraction 50 
and learning models. This degree of freedom means that modeling between raw data and the label is 51 
trained by the gradient descent rule, which minimizes overall losses. 52 

Second, the DL is superficial with structured raw data (e.g., audio and image data), whereas the 53 
hand-crafted features captured by the ML may also contain unrelated features. If the input is less 54 
structured (e.g., age or gender) then feature extraction is unnecessary. However, image and audio 55 
data are highly dimensional, so feature extraction should be considered carefully. DLs outperform 56 
MLs on image and audio data in various domains [12, 13].  57 

Third, the DL is typically preferred for the analysis of ECG data [14–16]. For example, AlexNet 58 
[12] has been used as a pre-trained model to perform feature extraction from ECG profiles and predict 59 
for cardiac arrhythmia with 92.4% accuracy [14]. An ECG biometric recognition using convolutional 60 
neural networks (CNNs) has also been tested, attaining a similar error percentage of 2.26% [15] and 61 
93.6% precision in the screening of paroxysmal atrial fibrillation [16]. However, when kNN and 62 
support vector machine (SVM) models are attached on the top of the CNN feature, the precision 63 
drops to 90.7% and 92.9%, respectively. This shows that the traditional pipeline involving the 64 
selection of feature extraction and classifier modules is outperformed by an end-to-end trainable DL 65 
model.  66 

A multimodality is preferable to a single modality in DL models, and can involve various 67 
biometric inputs such as ECG, facial images, fingerprints, voice, ear images, and iris data. Any model 68 
using single modality appears to be easily corrupted by powerline fluctuations, surrounding noises, 69 
electromyography (EMG), movement artifacts, and electrodes, so the challenge lies on developing 70 
accurate unimodal identification algorithms. Noise reduction techniques have been tested to 71 
overcome these effects [17], but multimodality has many additional benefits. If the signal-to-noise 72 
ratio of one modality is low, offsetting the effects can be performed by another to maintain the 73 
cumulative performance. Furthermore, latent correlations between modalities can be trained to 74 
improve the performance. Finally, it is easier to train multimodal models than multiple independent 75 
models for each modality.  76 

An appropriate fusion method should also be combined with multimodal models, particularly 77 
a feature-level fusion, because it accommodates correlations between modalities. However, the 78 
algorithms before and after the feature-level fusion are performed independently, allowing any 79 
errors that occur before the fusion can accumulate. The end-to-end training of the system minimizes 80 
such accumulated errors. 81 

Incomplete ECG profiles can be overcome by a multitask learning. In real-world settings, ECG 82 
data are influenced by factors such as heart rate and disease. Such factors can be marginalized if the 83 
model can be trained by the multitask learning to focus on the target task and ignore other factors. 84 
When implementing the multitask learning, the loss of each task can be weighted and a suitable 85 
method to determine weightings is therefore required. In this paper, our tasks are person 86 
identification and gender classification: if the former is well trained, then the latter would also show 87 
an improvement in performance. In other words, if the identification is difficult to train, then gender 88 
classification can help to train the network. The benefit of multitask learning is that deficiencies in 89 
one task helps to regularize the other, so that the training constructively progresses regardless of 90 
incompleteness of either characteristics of personal identification or gender classification. 91 
Accordingly, one model can perform two tasks by comparing the models trained on each task. 92 

ECG in the wild could also contain noise because it may be collected from various devices 93 
differing in precision (e.g., smart watches, smart bands). It may also contain errors, or outliers, which 94 
could be due to faulty instruments, data transmission/interference or technology compatibility issues. 95 
The condition of the subject at the time of measurement also has an influence on noise. Similarly, 96 
facial image data can be affected by the viewing angle, brightness, and blurring, while fingerprint 97 
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data can be influenced by the position and pressure of the fingers. The model architecture must 98 
therefore be robust and must consider a generalization. Therefore, the proposed model is also 99 
relevant and applicable to intelligent home systems where the access is granted using briometrics of 100 
the household members. The main contributions of the work described in this article can be 101 
summarized as follows: 102 
 103 
• multimodal biometrics using combined facial image, fingerprint, and ECG data, 104 
• multitask learning for personal identification and gender classification tasks,  105 
• feature fusion methods using a deep neural network, 106 
• end-to-end trainable architecture, and 107 
• a robust model under noisy and/or incomplete data situations. 108 

 109 
The remainder of the paper is structured as follows. Section II presents related work on modality, 110 

fusion methods and multitask learning. Section III describes preprocessing, architecture, and deep 111 
learning methods for user identification and gender classification. Section IV discusses our 112 
experimental results under various conditions, and Section V concludes with the provision of future 113 
work. 114 

2. Related Work 115 

2.1. ECG Analysis 116 
ECG profiles provide useful biometric data because the electrical properties of the heart carry 117 

unique information suitable for personal identification or authentication [18–21]. Among various 118 
approaches that have been tested, single-lead ECG data collected across 19 subjects was fed into a 119 
Ziv-Merhav cross-parsing algorithm, which achieved 100% accuracy for a larger number of 120 
experiments [2]. Other successful methods include SVMs [3, 4], qualifying similarity or dissimilarity 121 
[5], and random forest models [6]. Personal identification has also been achieved by analyzing the 122 
frequency features of ECG signals without a fiducial point [7, 8] and classifying the shape of heart 123 
rate variability by principal component analysis and linear discriminate analysis [1, 9]. 124 

2.2. Multimodal Learning 125 
Multimodal learning can combine multiple types of biometric data to recognize or authenticate 126 

users, and the fusion of multimodal features can increase the accuracy of verification [22, 23]. For 127 
example, combined ECG and fingerprint data achieves greater accuracy than either of the individual 128 
modes [24][25]. The uncertainty in the time domain features of ECG was 5.0% [18], but by combining 129 
ECG and facial image data this was reduced to 1.0% [23]. Finally, the accuracy of personal 130 
identification using palm prints (82.1%) or ECG (89%) was increased to 94.7% by combining them 131 
into a multimodal model [26]. In addition to multimodal learning research related to user 132 
identification using ECG, there are various multimodal learning studies related to disease diagnosis 133 
using magnetic resonance imaging (MRI) [27–29]. 134 

2.3. Handling Multimodal Databases 135 
Multimodal databases are handled by constructing either a true or virtual database to combine 136 

the unimodal data. True multimodal databases provide all the biometric data from real people. 137 
However, this is an expensive and time-consuming process. There is a limited set of data that can be 138 
gathered, and the risk of losing personal information increases. Most studies in this area, therefore, 139 
use virtual multimodal databases, which are quicker and easier to assemble [30–34]. Given two 140 
mutually exclusive subject-based databases, a virtual multimodal database would be formed by 141 
pairing subjects in each database so that the data for each subject would be combined. Achieving this 142 
is possible by assuming that a single subject can independently be represented using a variety of 143 
biometric traits [34]. Currently, there is a lack of accurate multimodal database in the public domain 144 
possessing face, fingerprint and ECG data. 145 
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 146 

2.4. Feature Fusion Techniques 147 
As data propagates from the input layer to the label, fusion can be achieved at five different 148 

stages, namely the input, feature, score, decision and rank. 149 
Input-level fusion means that the data are concatenated or fused and then used as the model 150 

input. This approach is suitable if each modality has the same data type.  The input-level fusion is 151 
not widely used because most modalities have different data types, which need to be extracted in an 152 
independent manner. 153 

A feature-level fusion integrates different features from multiple biometrics, thus, constructing 154 
a dataset by concatenating each independent biometric [35]. Little progress was made for a long time 155 
due to implementational challenges, but more recent work has been successful with the feature-level 156 
fusion in three different scenarios [36] as well as the feature-level concatenation of face and 157 
fingerprint data [37]. 158 

A score-level fusion achieves a good level of compromise between the simplicity of 159 
implementation and effectiveness given that it is more accessible than input-level or feature-level 160 
fusion but can nevertheless achieve successful matches with incomplete data. Many score-level fusion 161 
approaches have therefore been reported, including those using Bayesian framework [38] and 162 
density-based methods [39]. The effectiveness of score-level fusion reflects the presentation of results 163 
as raw scores, quantized scores, or probabilities when biometric traits are combined and features are 164 
matched. However, one disadvantage of the score-level fusion is given by the diversity of scores 165 
obtained from a variety of matching strategies. 166 

A decision-level fusion generates a binary outcome (yes or no) as typically applied in a personal 167 
identification scenario (identified/present in database or not identified/not present). The decision-168 
level fusion is therefore used for other binary outcomes such as majority voting [40] or Boolean 169 
operations [41]. Despite the simple and intuitive outcome, the decision-level fusion is less popular 170 
than the score-level and the rank-level fusions because certain types of data cannot be adapted to this 171 
strategy naturally. 172 

Finally, a rank-level fusion consolidates larger than two results from identification to improve 173 
the reliability of a recognition task, and is therefore popular in the domains of data mining and 174 
pattern recognition. Variations of the rank-level fusion method include top rank [42], Borda count 175 
[43], weighted Borda count [44] as well as Bayes fuse based on a Bayesian inference [45, 46]. The 176 
performance of this strategy keeps improving, as shown in the mixed group ranks method [47]. 177 

2.4. Feature Fusion Techniques 178 
A multitask learning intends to exploit meaningful information embedded in a variety of 179 

connected tasks to enhance generalization across all the relevant tasks. It can be utilized to identify 180 
several features at once, such as the recognition of gender, age and identity using an ensemble of 181 
features subjected to decision tree and Bayes network analysis [48]. The multitask learning allows the 182 
sharing of representations between tasks, and the execution of the main task can sometimes be 183 
enhanced by utilizing knowledge from other tasks [49]. In contrast to optimizing the learning of 184 
individual tasks, multitask learning considers a set of interrelated tasks that must be solved, and the 185 
performance is enhanced by jointly executing the tasks and exchange the data representing different 186 
features [50]. To reduce learning bias, multitask learning can be combined with other learning 187 
techniques such as semi- or unsupervised, reinforcement, active, multi-view, and graphical models. 188 
Many groups have applied multitask learning to ECG profiles, and a deep multitask learning model 189 
with additional network fine-tuning has increased the accuracy of the ECG signal evaluation by 5.1% 190 
[51]. 191 

 192 
 193 
 194 
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3. Methods 195 
Our network architecture is organized into three different components, namely a feature 196 

extraction that converts the input into the embedding space, a fusion layer that combines features 197 
from each modality, and a task layer that performs the task (Fig. 1). First, the feature extraction is 198 
performed in a unique manner on each modality, given their specific characteristics. The data for 199 
fingerprint (𝑥") and face (𝑥#) biometrics are static images, whereas the ECG data (𝑥$) are temporal 200 
signal traces. Classifiers trained on sizeable databases might be applied as an established feature 201 
extractor [52]. We employed Residual Network 50 (ResNet50) to extract features using 𝑥# and 𝑥".  202 

 203 

 204 
Figure 1. Comprehensive network architecture of the multimodal deep multitask learning system. 205 

 206 
A fully connected (FC) layer was considered to align the ECG data with the dimension number. 207 

The CNN was continued by a max pooling component intended for 𝑥$ (ECG data) with the purpose 208 
of removing reliance on a temporal axis for the extracted feature. The fusion layer (neural network) 209 
considers chained features as the input from the feature extraction component. Following up the data 210 
propagation, information representing every modality is combined to reduce the overall loss. It is 211 
concluded by the task layer using the combined features from the fusion layer as its input, and 212 
classification is performed after a single layer, with the node quantity specifying the class quantity. 213 

3.1. Preprocessing 214 

3.1.1. Face and Fingerprint Data 215 
As stated above, only limited data are available for user identification in multimodal datasets, 216 

thus, more facial images and fingerprints are required to implement a generalized network. The 217 
augmentation of facial images and fingerprint data was achieved by rotation, translation and 218 
cropping (the latter not for facial images, because the entire face is needed for identification). Images 219 
were rotated from –30° to 30° in 5° intervals to obtain 12 new images per original image. For 220 
translation, each image was translated from –5 to 5 pixels in 1-pixel intervals to obtain 10 new images 221 
per original image. For cropping, we created images with 60% of the original size at random positions 222 
in the original image to obtain 47–50 new images per original image. After augmentation, we used a 223 
transfer-learning technique where a pre-trained neural network, ResNet50 is adopted to extract 224 
features comprising a set pair of fingerprint and facial images.  225 

3.1.2. ECG Data 226 
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The Pan Tompkins QRS detection algorithm is widely used to find the R peak, which is the center 227 
of the QRS complex within the ECG signal. Herein, the ECG signal is passed through low and high 228 
bandpass filters, and differential values are obtained for peak detection based on these data. During 229 
this process, we determine the threshold ECG peak value and the minimum time to generate the R 230 
peak, yielding candidate groups for actual R peaks. The detection algorithm calculates the differential 231 
values and then squares each value for detecting the peak. Values are set to zero if the peak is 232 
negative, as it is not intuitive to retain them. 233 

The R peak detection process was implemented as shown in Fig. 2. Initially, a bandpass filter is 234 
considered to sharpen the peaks and smooth the rest of the signal. The original value is then 235 
subtracted from the present value in the filtered signal to calculate the differentiated signal. Following 236 
the replacement of any negative values with zero, the peaks are derived from candidate points that 237 
are greater than both the previous value and the next value. Finally, to validate the computed R peaks, 238 
the algorithm superimposes the peak indices with the same indices in the original ECG signal. If the 239 
overlaps are confirmed, the indices are stored. Having applied the Pan Tompkins QRS detection 240 
algorithm, we added one more step to account for any delay compared to the raw signal. The 241 
additional step ensures that, if there is a peak value larger than the detected peak value in the adjacent 242 
range, we set the larger peak value as the R peak value. 243 
 244 

 245 
Figure 2. Process for R peak detection. (A) Application of a bandpass filter, (B) differentiation, (C) clipping 246 
of negative values to zero, (D) detection of maximum points, and (E) matching to the original signal. 247 

 248 
We cropped a total of 300 data samples prior and post R peak detection to produce a vector 249 

representing the QRS complex. Following this mechanism, we normalize each QRS complex using a 250 
min-max method. 251 

 252 
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253 

 254 
Figure 3. Four examples of QRS compositions extracted from the same record. The compositions on the top 255 
row show consistency within the record, but those on the bottom row show irregularities within the record. 256 
 257 

Given the less importance nature of the inter-QRS complexes temporal information, compared 258 
to the complexes themselves, we extracted three QRS complexes to make one input. A single sequence 259 
therefore possesses three time-steps, indicating formation of this sequence using a group of three 260 
QRS complexes. The extracted QRS complex, based on the R peak in each recording and plotted in 261 
the same grid, is captured in Fig. 3. The consistency of the R peak wave varies depending on the 262 
records. 263 

3.2. Feature Extraction 264 

3.2.1. ResNet50 265 
ResNet is a known method to perform feature extraction from image data [53]. It has been 266 

constructed via training of ImageNet, one of the comprehensive datasets for object classification. 267 
Herein our feature extraction method used ResNet50 that is applied to our face/fingerprint images, 268 
with mean pooling of features (7 × 7 × 2048). The input size of the images was set to 224 × 224. 269 
ResNet50 is a CNN with 50 layers that is trained to classify images into 1000 categories in the 270 
ImageNet database. It comprises a convolution layer (3 × 3 filter), a max-pooling layer and a residual 271 
network comprising a residual block and identity block as depicted in Fig. 4. The overall structure is 272 
given in Fig. 5. The output shape after the identity block is described at the bottom of each identity 273 
block box in Fig. 5. 274 

 275 
Figure 4. Detailed structure of the residual and identity blocks. The residual block allows direct connection 276 
from input to output, whereas the identity block uses an identity matrix instead of a direct connection. 277 
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 278 

 279 
Figure 5. The architecture of ResNet, comprising a convolution and a max-pooling layers, followed by series 280 
of alternating residual and identity blocks. 281 

3.2.2. CNN Model for ECG 282 
Although models based on long short-term memory architecture has been widely used for 283 

identifying [54], the CNN was employed herein to extract features, seeing the less importance nature 284 
of inter-QRS temporal information, in comparison to the actual complexes. For the CNN, we have a 285 
one-dimensional convolution layer, which considers a tensor with shape (batch size, time step, 300) 286 
as an input and yields an output tensor with a similar shape characteristics. This is then followed by 287 
operating a single max-pooling task. The results of ECG feature extraction are chained with two 288 
feature vectors arising from the different modalities (Fig. 6). 289 

 290 
Figure 6. The one-dimensional CNN used to extract ECG features. 291 
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3.3. Feature Fusion 292 
Input level fusion using three different modalities effectively is difficult. We thus compared the 293 

score-level fusion with feature-level fusion. For the score-level fusion, we tested three techniques, 294 
namely sum, product and max rule. For the feature-level fusion, three features were extracted from 295 
every modality for normalization as well as concatenation as the model inputs. 296 

3.4. Classification 297 
Our proposed system has to decide the most likely class for each test case. We therefore used the 298 

softmax activation function, which considers the class-wise outputs and their transformation into 299 
corresponding probabilities via Eq. (1): 300 

 301 

Softmax(𝑦.) = 	
exp	(𝑦.)
∑ exp	(𝑦5)5

 (1) 

 302 
Herein y denotes the network output with the same dimension as the class count, and y. is the i89 303 
component of y. Note that Eq. (1) ensures that normalization of the exponential numerator by the 304 
sum of exponential terms in the denominator. The class with highest number is the target class. For 305 
identifying users and classifying genders, the cost function considered the cross-entropy loss during 306 
the model training. The function can be computed using Eq. (2): 307 
 308 

H(y, 𝑦<) = 	−> 𝑦. log(𝑦<.)
.

 (2) 

 309 
Here we have	y and 𝑦< denoting the output and original distributions, respectively. The logarithm 310 
usage in Eq. (2) corresponds to penalty being applied for incorrect predictions, i.e., high loss with 311 
divergence of the predicted class from the real label. Eq. (2) does not represent a symmetrical function 312 
with H(y, 𝑦<) ≠ 	H(𝑦<, y) because only the logarithm of predicted probabilities is considered. 313 
 314 

3.5. Joint Loss 315 
Joint training of the network to simultaneously handle more than one tasks was performed by 316 

applying a joint loss that integrates cross-entropy (binary) for classifying genders (LC) and cross-317 
entropy (categorical) for identifying users (LD). Two losses were weighted and summed for final loss 318 
calculation in the model training. The formula for each loss is shown in Eq. (3)-(5). The most favorable 319 
indicators for wC and wD in Eq. (5), where the sum is 1, were found experimentally. 320 

 321 

𝐿C = 	−𝑦 log 𝑦< − (1 − y) log(1 −𝑦<)	 (3) 

𝐿D = 	−>𝑦.
.

log𝑦<	 (4) 

𝐿5H.I8 = 	𝑤C × 𝐿C + 𝑤D × 𝐿D	 (5) 

3.6. Optimization 322 
For optimizing parameters, Adam, an efficient procedure for the gradient-based optimization of 323 

stochastic objective functions, was utilized relying on lower-order moments adaptive estimation [55]. 324 
This takes advantages of the two well-known methods, namely AdaGrad and RMSProp [56, 57]. 325 
Parameter optimization was achieved as shown in Eq. (6) and (7). 326 
 327 
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𝛼8 = 	𝛼 ∙ O1 − 𝛽D8/(1 − 𝛽C8)	 (6) 

𝜃8 ⟵ 𝜃8TC − 𝛼8 ∙ 𝑚8/(V𝜈8 + 𝜖̂)	 (7) 

 328 
where 𝛼8 is the step size at time-step t and 𝛽C, 𝛽D are rates characterizing exponential decrement 329 
for moment estimation. To calculate the updated parameter vector 𝜃8 , we used updated biased 330 
moment estimates (𝑚8, 𝜈8) and 𝛼8. 331 

4. Experiments 332 
Nine experiments were carried out to investigate the performance of the new model. The first 333 

experiment considered multitask learning (identifying users and classifying genders) using single 334 
modality and multimodality. The second experiment compared multitask and single-task learning 335 
based on multimodal biometrics comprising ECG data from ECG-ID [58, 59], PTB [58, 60]), facial 336 
images (Face95 [61]) and fingerprints (FVC2005 [62]. The third experiment tested the user 337 
authentication using two distance metrics. The fourth experiment added noises to the data to verify 338 
the robustness of the model. 339 

 340 
Figure 7. Noise in the fingerprint input data for the multimodal deep multitask learning system. 341 

 342 
Figure 8. Noise in the face input data for the multimodal deep multitask learning system. 343 

Finger A Finger B Finger C

Finger A with
5% Black Pixel

Finger B with
5% Black Pixel

Finger C with
5% Black Pixel
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 344 
Figure 9. Noise in the ECG input data for the multimodal deep multitask learning system. 345 

 346 
The fifth experiment investigated the impact on performance when one or two of the three 347 

biometric datasets were missing. The sixth experiment compared the performances of feature-level 348 
and score-level fusions where the latter based on sum, max or product rules. The seventh experiment 349 
modified the joint loss to give various weights. The eighth experiment investigated how data 350 
augmentation affected the performance of the multimodal/multitasking model. The final experiment 351 
changed the hyper-parameters of the fusion model to find the optimal model architecture. The 352 
number of nodes was changed to compare the accuracy of each task (user identification and gender 353 
classification). 354 

4.1. Dataset 355 

4.1.1. ECG Data 356 
The ECG-ID has 310 records from 90 subjects with composition: 44 males and 46 females with 357 

ages from 13–75 years. Each single-lead trace was observed and stored for 20 s and sampled at 500 358 
Hz at 12-bit resolution. The range of observation is ±10 mV. The dataset provides not only raw signals 359 
(EC I), but also processed signals with high-frequency and low-frequency noises filtered out (ECG I 360 
filtered). Associated data include subject age, gender and recording date. 361 

The PTB ECG has 549 records from 290 subjects with composition: 209 males and 81 females 362 
with ages from 17–87 years. Every record comprises 15 concurrently measured signals, namely the 363 
standard 12 leads (i, ii, iii, avr, avl, avf, v1, v2, v3, v4, v5, v6) along with the three Frank lead ECGs 364 
(vx, vy,vz). Every signal is sampled at 1 kHz and at 16-bit resolution. The range of observation is 365 
±16.384 mV. Associated data include a comprehensive clinical summary, gender, age and diagnostic 366 
classes. To ensure an identical sampling rate to ECG-ID, PTB ECG signals were resampled at 500 Hz. 367 

4.1.2. Facial Images 368 
The Faces95 database contains 1440 images with composition: 72 male and female subjects (20 369 

per subject), primarily bachelor-level students. The images are portrait formatted and have resolution 370 
of 180 × 200 pixels. For data gathering purposes, the subjects take a single step movement 371 
approaching the camera to simulate realistic changes such as variations in head scale and lighting as 372 
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well as face position translation. The images also show variations in facial expression, but no variation 373 
in hair style. 374 

4.1.3. Fingerprint Images 375 
The FVC2006 database has 7200 images from 150 subjects, each image based on four sensors 376 

(1800 images per sensor) with different resolutions: electric field sensor (96 × 96 pixels), optical sensor 377 
(400 × 560 pixels), thermal sweeping sensor (400 × 500 pixels) and SFinGe v3.0 (288 × 384 pixels). The 378 
dataset is segmented into subsets. Each of the subsets DB1-A to DB4-A contains 140 subjects with 12 379 
images per subject, giving 1680 images per subset. Each of the subsets DB1-B to DB4-B contains 10 380 
subjects with 12 images per subject, giving 120 images per subset. 381 

4.1.4. Virtual Dataset 382 
A total of 58 virtual subjects were produced to decrease the variability. Because the subjects in 383 

the Face95 database are primarily bachelor-level students, it was viewed that the ages of the virtual 384 
individuals ranged from teens to thirties. The gender information was labeled by two different 385 
annotators in a complete affirmation. Utilizing criteria from the labeled gender and the age range, a 386 
valid sample was selected, matching age/sex variables from the ECG dataset with the face attributes. 387 
To ensure accuracy and fairness, we selected the scanner type used when the subjects were 388 
fingerprinted by using the fingerprint images in subset DB1-A of the FVC2006, and arranged each 389 
image randomly with the virtual subject already assigned to ECG and face data. Virtual subjects were 390 
therefore designed with three modalities (face, fingerprint and ECG) according to the gender and age 391 
labeled in the dataset. 392 

4.2. Results 393 

4.2.1. Comparison of the Unimodal and Multimodal Models 394 
Like earlier models, the proposed model achieved the perfect accuracy based on the individual 395 

modalities of the ECG-ID, Face95 and FVC2006 datasets. There is no possibility to compare the 396 
performance of different models if the accuracy in a test scenario is 100%, so we added noise to 397 
achieve better generalization and discrimination (Figs 7–9). To the ECG dataset, we added Gaussian 398 
noise whose standard deviation is 0.1 for a series of three normalized QRS complexes. For the 399 
fingerprint images, we selected 5% of the pixels and changed the color to black. And for the facial 400 
images, we selected 97% of the pixels and changed the color to black.  401 

The new model takes account of multimodality by propagating each modality to a feature 402 
extraction module, where it is represented by the fixed size of embedding (the same size for each 403 
modality). Unimodal and multimodal models were distinguished in terms of performance by the 404 
specific inclusion or exclusion of modalities. Changing the number of input modalities also changed 405 
the output of the feature extraction module. Based on the extracted feature embedding, user 406 
identification and gender classification are therefore carried on in the fusion and classification layers. 407 
The results of the unimodal and multimodal experiments are compared in Table 1. 408 

Each experiment was carried out three times with different random seeds for initializing 409 
associated weights, and the average results in each case were reported to avoid biases caused by the 410 
parameter initialization. For the identification of virtual subjects, the accuracy was ≤85% when using 411 
a single modality, but this increased to >90% when using two or three modalities, with the highest 412 
score achieved when all three modalities were included (98.28%). 413 

Similarly, the multimodal models achieved better gender classification results (>93% accuracy) 414 
than models based on a single modality, and the model combining all three modalities showed the 415 
highest performance (97.70%). 416 

These results using a feature-level fusion confirm that the user identification works well even if 417 
there are noises in the input biometric data and that three modalities provide more accurate results 418 
than two. The suitability of deep and wide networks for the merging of three modalities is unclear, 419 
so the use of hyper-parameters in the fusion layer should be explored. Fig. 10 demonstrates the 420 



 13 of 21 

 

consequences of changing the node quantity in each FC layer when processing noisy data from a 421 
virtual database. We did not add further layers because this increases the computational 422 
requirements and the size of the model.  423 

 424 
Figure 10. The total accuracy of user identification and gender classification depending on the number of nodes 425 
in each fully-connected (FC) layer. 426 
 427 

Table 1. Multitasking accuracy for different combinations of modalities (feature-level fusion). 428 
Modality Task Accuracy (%) 

ECG Face Finger ID Gender ID Gender 
O   O  77.49 - 
O    O - 91.95 
 O  O  76.44 - 
 O   O - 88.51 
  O O  83.91 - 
  O  O - 90.80 

O O  O  95.98 - 
O O   O - 93.68 
O  O O  94.83 - 
O  O  O - 95.40 
 O O O  96.55 - 
 O O  O - 94.83 

O O O O  98.28 - 
O O O  O - 97.70 

 429 
Table 2. Comparative performance of single- and multi-task learning models. 430 

Task Accuracy (%) 
ID Gender ID Gender 
O  98.28 - 
 O - 97.70 

O O 98.97 96.55 

 431 
The number of nodes in each FC layer was initialized as 150 for the first and second layers, 432 

resulting in 900 features after feature fusion. We obtained at least 600 features from two of the three 433 
biometric datasets (ECG, facial image and fingerprint). Fig. 10 also summarizes the performance 434 
achieved in the experiment and demonstrates the benefits of FC layers with (300,150) nodes, which 435 
increased the accuracy of user identification and gender classification to 98%. Our model also 436 
outperformed the baseline approach with 300 nodes in the first FC layer and 200 nodes in the second 437 
(the poorest performance in this experiment). We therefore found that the (300,150) approach 438 
achieved the greatest accuracy in this experiment on the virtual database, and confirmed that the 439 
performance of the model degrades if the number of nodes is too large or too small. 440 
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 441 

Figure 11. The total accuracy of user identification and gender classification using different sets of joint loss 442 
weights. 443 

4.2.2. Single- and Multi-Task Learning 444 
Single- and multi-task learning were compared by adding a loss term as necessary in each 445 

experiment. For example, when a gender classification was omitted, the loss function only contained 446 
the log likelihood of user-identity classification. However, in multitask learning experiments we 447 
included the cross-entropy of user identification and gender classification, and the balance between 448 
the two loss functions was controlled by the joint loss weight. The optimized weights were 449 
determined experimentally as follows. The performance of the multimodal and multitask model was 450 
evaluated on the virtual database with noises. The joint loss weight was varied from 0 to 1 in 451 
increments of 0.05. The parameters of the network were initialized according to different random 452 
seeds for each experiment. Also, six runs were carried out and averaged to reduce the bias. The final 453 
joint loss weights were 0.65 and 0.35 for identifying users and classifying genders, respectively. The 454 
performance of our model surpassed that of the baseline approach that applies uniform weights (0.5) 455 
for both tasks, and the improvement was greatest for the user identification task (Fig. 11). This 456 
confirmed that each task shared features with different weights to enhance the performance of multi-457 
task in comparison to a single-task learning. As shown in Table 2, the multitask learning achieved 458 
0.69% better score in the user identification task but the single-task model was 1.15% better for gender 459 
classification. This reflects the trade-off relationship inherent in multiple tasks. For example, adding 460 
loss weight to the identification task achieves a better performance in this task, but reduces the 461 
accuracy of gender classification. For this context, we took the mean of the identification and 462 
classification tasks as the model performance. Even if we cannot achieve the greatest accuracy for 463 
gender classification, it excels the user identification accuracy. We can also see the improve efficiency 464 
in our proposed multi-task model due to equal predictive performance at a half training time, in 465 
comparison to the single-task counterpart.  466 
 467 

Table 3. Confusion matrix obtained during authentication. 468 
Data Type Threshold FAR (%) Accuracy (%) 

Non- 
Augmented 

Euclidean 6.02–8.56 0.0 100 
Cosine 0.14–0.32 0.0 100 

Augmented 
Euclidean 9.09 0.66 99.67 

Cosine 0.20–0.25 0.0 100 
 469 

4.2.3. Authentication 470 
The authentication experiment incorporated a feature vector that consolidates three different 471 

modalities (ECG, facial image and fingerprint) from the fusion layer. There is a trade-off during 472 
authentication when the model inputs are unimodal data. For example, facial image data are easy to 473 
obtain but their accuracy may be compromised by factors such as aging. Fingerprint data are highly 474 
accurate, but the quality of the source material deteriorates over time. In a previous study [63], the 475 
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equal error rate of authentication was range of 2.69 to 3.07% using fingerprint data alone. We 476 
conducted authentication experiments using multimodal data to overcome the tradeoffs inherent to 477 
unimodal data and thus improve the performance.  478 

We evaluated the authentication performance using our virtual dataset of 58 subjects. We 479 
divided the subjects into two groups of 53 and 5, respectively, then picked 5 random subjects from 480 
the group of 53 and combined them with the first group of 5. The authentication experiment therefore 481 
involved 53 subjects in the database and 10 test subjects, allowing us to compare the similarity 482 
between the two sets. The 53 subjects in the database also have feature vectors with average pooling. 483 
Because each subject has nine features, the average pooling can represent the general characteristics 484 
of the subject. In addition, we tested authentication with augmented data to prevent over-fitting and 485 
to establish the general performance.  486 

Similarity can be measured using various metrics, including the Euclidean distance that 487 
represents the actual distance between two points and the cosine distance which is useful when the 488 
vector size is not significant. With non-augmented data, the accuracy was 100% and the false 489 
acceptance rate (FAR) was 0% when we applied an optimal Euclidean distance threshold range of 490 
6.02 to 8.56 and optimal cosine distance threshold range of 0.14 to 0.32 (Table 3). With augmented 491 
data, the accuracy was 99.67% with the Euclidean distance metric but 100% with the cosine distance 492 
metric (Table 3). The authentication performance of the multimodal model is therefore near 100%. 493 
The receiver operating characteristics (ROCs) for the non-augmented and augmented data are shown 494 
in Fig. 12 and Fig. 13, respectively. 495 

 
Figure 12. Receiver operating characteristics using 

non-augmented data. 

 
Figure 13. Receiver operating characteristics using 

augmented data. 
 496 

4.2.4. Robustness to Noisy Data 497 
To determine whether our model is robust when presented with noisy data, we added noises to 498 

one or more of the modalities during the user identification and gender classification tasks (Table 4). 499 
For the identification task, the highest accuracy achieved with a single modality was 84.29% (for the 500 
noisy fingerprint data). When the noises were added to two of the modalities, the highest accuracy 501 
was 95.21%. However, when the noise was added to all three modalities, the accuracy increased to 502 
98.97%. For the gender classification task, the best-performing single modality was ECG, with an 503 
accuracy of 90.04% despite the noisy data. When the noise was added to two modalities, the highest 504 
accuracy was 95.21% (noisy ECG and fingerprint data). When the noise was added to all three 505 
modalities, the accuracy reached 96.55%. The observations herein confirm that the multimodal model 506 
performs superior to models with any single modality when noises are included in the data. This 507 
mirrors the results with clean data for user identification, where the best single modality (facial 508 
images) achieved an accuracy of 99.42% but the trimodal approach achieved an accuracy of 100%. In 509 
contrast, in the clean data experiment for gender classification, the trimodal approach achieved an 510 
accuracy of 99.43% but was outperformed by the unimodal and bimodal models (100%). Overall , 511 
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these experiments demonstrate that that the trimodal model is robust to data, with only a 1.03% drop 512 
in performance compared to the clean data for the user identification task. 513 

 514 
Table 4. Unimodal and multimodal test for noise input. 515 

Modality 
Noise 

Accuracy (%) 
ECG Face Finger ID Gender 

O   O 80.08 90.04 
 O  O 72.99 87.74 
  O O 84.29 88.70 

O O  O 94.83 95.02 
O  O O 93.68 95.21 
 O O O 95.21 92.91 

O O O O 98.97 96.55 
O    98.27 98.85 
 O   99.43 100.00 
  O  76.44 89.66 

O O   100.00 100.00 
O  O  98.85 96.55 
 O O  100.00 98.85 

O O O  100.00 99.43 
 516 

Table 5. Accuracy of the multimodal model with incomplete biometrics. 517 
Modality 

Noise 
Accuracy (%) 

ECG Face Finger ID Gender 
O   O 31.61 82.18 
 O  O 39.66 79.89 
  O O 52.30 83.91 

O O  O 81.61 86.21 
O  O O 87.36 89.66 
 O O O 87.36 89.08 

O    21.26 83.33 
 O   94.25 95.98 
  O  43.10 80.46 

O O   98.28 98.28 
O  O  70.69 85.63 
 O O  100.00 97.70 

4.2.5. Robustness to Partial Modalities 518 
In the experiments described above, the combination of modalities in the training and testing 519 

sessions were the same. However, in real-world there may be scenarios in which one or more of the 520 
modalities would be incomplete. To prove the robustness of the multimodal model when presented 521 
with incomplete input data, we trained the model using all three modalities but evaluated its 522 
performance with one or more missing, in the presence and absence of the noise (Table 5). 523 

In the presence of artificial noise, the accuracy of the model never reached 90% regardless of 524 
which modality or modalities were omitted, but there was a jump in performance when the number 525 
of modalities increased from one to two, with all combinations of two modalities achieving an 526 
accuracy of 80% or more for both tasks. In the absence of artificial noise, the accuracy reached 100% 527 
for user identification and 98.28% for gender classification even in the absence of ECG data. The 528 
model therefore works well with limited biometric input if the noise in each dataset is weaker than 529 
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the levels indicated in Fig. 7–9. Alternative models are not required as long as we can use at least two 530 
modalities. 531 

4.2.6. Fusion Techniques 532 
Our new model uses fusion techniques to concatenate biometric characteristics, thus reducing 533 

the independent characteristics of each modality for reliability improvement and accuracy 534 
maintenance [64]. We compared feature-level fusion; which was applied prior to matching to 535 
aggregate the features into a single vector, and score-level fusion; which was applied post matching 536 
to compute the similarity level utilizing particular procedures (i.e., sum, product and max in our 537 
experiments) for every output to generate the final output vector (Table 6). 538 

When using the feature-level fusion, the accuracy of user identification was 98.97% and the 539 
accuracy of gender classification was 96.55%. When using the score-level fusion, we found that the 540 
sum rule yields the accuracy of 98.85% and 99.42% for the same tasks. This represents an 541 
improvement of 2.87% for the gender classification, reflecting the robustness of the sum rule when 542 
exposed to noisy data [65]. For the score-level fusion method, the change of weights was also 543 
experimented for each modality, assigning a weight of 0.5 to one modality and 0.25 to the others. The 544 
results indicate that achieving the greatest accuracy is noted when the ECG weight is larger than or 545 
equal to the other modalities. Herein ECG appears to make the most significant contribution among 546 
the three modalities to improve the performance. 547 
 548 

Table 6. Comparison of feature-level and score-level fusion methods. 549 
Fusion 
Level Rule 

Weight Accuracy (%) 
ECG Face Finger ID Gender 

Feature - - - - 98.97 96.55 

Score 

Sum 

0.33 0.33 0.33 98.27 99.42 
0.50 0.25 0.25 98.85 99.42 
0.25 0.50 0.25 98.85 99.42 
0.25 0.25 0.50 97.70 99.42 

Product 

0.33 0.33 0.33 96.55 89.08 
0.50 0.25 0.25 95.98 89.66 
0.25 0.50 0.25 93.10 89.08 
0.25 0.25 0.50 93.68 87.36 

Max 

0.33 0.33 0.33 89.66 89.66 
0.50 0.25 0.25 89.66 87.93 
0.25 0.50 0.25 89.66 86.21 
0.25 0.25 0.50 89.66 87.36 

4.2.7. Data Augmentation 550 
A data augmentation virtually increases the amount of samples in the dataset using the existing 551 

ones while playing a role of a regularizer preventing the overfitting. It is particularly helpful for 552 
improving the performance in imbalanced class problems. We applied the data augmentation 553 
techniques described in preprocessing section and generated 455 data points for each modality. The 554 
experiments dealing with two tasks simultaneously were performed for each combination of 555 
modalities, but only the database was different. We found that the difference in the performance of 556 
the model when tested on the original and augmented databases ranged from 1.9% to 24.47% 557 
depending on the individual modality. When multiple modalities were used in the augmented 558 
dataset, the accuracy was always 99% or more. We therefore confirmed that data augmentation 559 
makes the model get generality, and that it is possible to create a model that attains high accuracy 560 
even with a small amount of data in real-world settings. 561 
 562 
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Modality 
Augment 

Accuracy (%) 
ECG Face Finger ID Gender 

O    80.08 90.04 
 O   72.99 87.74 
  O  84.29 88.70 

O O   94.83 95.02 
O  O  93.68 95.21 
 O O  95.21 92.91 

O O O  98.97 96.55 
O   O 99.92 100.00 
 O  O 97.46 98.31 
  O O 86.19 95.23 

O O  O 100.00 100.00 
O  O O 99.98 100.00 
 O O O 99.49 99.03 

O O O O 100.00 100.00 

 563 

5. Conclusion 564 
We have introduced a new multimodal and multitask learning model that uses ECG, facial 565 

image and fingerprint features for user identification and gender classification. We have conducted 566 
a number of experiments in an environment that assumes extreme noises, indicating that our model 567 
is robust to noises, and have achieved greater accuracies than unimodal approaches. The proposed 568 
model has also proven to be robust against the spoof attack problem that unimodal model is 569 
vulnerable to. Our results show the desirable characteristics of our proposal. For identifying users, 570 
classifying genders and authentication, our model outperforms other approaches reported in the 571 
existing literature. The feature-level fusion ensures that the proposed model achieves similar 572 
performances despite incomplete data (losing one out of the tree), indicating its suitability for 573 
practical scenarios with a good level of security and accuracy. Future research directions that could 574 
lead to more accurate user identification, gender classification and authentication are as follows. End-575 
to-end learning approach can be applied to the whole network with a sufficiently large database and 576 
more biometrics. A model that works well with more biometrics can achieve better performance in 577 
the missing modal situation since the remaining modals can complement the functionality of the 578 
missing modal. It should be noted that the technique used for the multimodal data fusion in the 579 
proposed model was to simply concatenate the multimodal features, and this can be improved 580 
further by using an attention model to select the most suitable modality or feature that is present in 581 
the sample. 582 
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