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Abstract

A critical metric of the coverage quality in Wireless Sensor Networks (WSNs)

is the Minimal Exposure Path (MEP), a path through the environment that

least exposes an intruder to the sensor detecting nodes. Many approaches have

been proposed in the last decades to solve this optimization problem, ranging

from classic (grid-based and Voronoi-based) planners to genetic meta-heuristics.

However, most of them are limited to specific sensing models and obstacle-free

spaces. Still, none of them guarantee an optimal solution, and the state-of-the-

art is expensive in terms of run-time. Therefore, in this paper, we propose a

novel method that models the MEP as an Optimal Control problem and solves

it by using a Semi-Lagrangian approach. This framework is shown to converge

to the optimal MEP while also incorporates different homogeneous and het-

erogeneous sensor models and geometric constraints (obstacles). Experiments

show that our method dominates the state-of-the-art, improving the results by

approximately 10 % with a relatively lower execution time.
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1. Introduction

Wireless Sensor Networks (WSNs) are commonly used in a vast range of

civilian and military applications and have been the focus of many studies.

Such networks are constituted of multiple stationary wireless nodes with pro-

cessor, memory, radio transceiver, power source, and a set of sensors used to5

collect data from the region where they have been deployed. In this context, a

fundamental aspect is the coverage of the WSN, i.e., the monitoring quality of

the network considering the dispersion of sensors and their properties. Most of

the studies consider a full coverage of the area of interest, where every portion

of the environment is within the sensing range of at least one sensor [1]. How-10

ever, different sensing models can be found in the literature [2], and each one

represents a target detection differently.

Detection of mobile targets using WSNs is a typical usage example of such

systems, and it has been formulated as different problems in the literature, such

as trap coverage [3], barrier coverage [4], and minimum exposure path [5, 6]. In15

the Minimal Exposure Path (MEP) problem, the goal is to determine a path

through the sensing field that connects two arbitrary positions and minimizes

the likelihood of a target being detected by the network during its movement.

This is critical since the exposure can also be used as a quality metric of the

WSN, and the MEP represents the worst-case coverage performance. Moreover,20

this information allows to enhance the network during the design phase or to

optimize and maintain it after deployment. The MEP problem has been the

focus of many works in the literature and is generally tackled with grid-based

approaches [5], methods based on the use of Voronoi diagrams [6], and heuristic

solutions such as evolutionary algorithms [2].25

In this paper, we propose a formulation based on optimal control theory for

determining optimal control inputs for an intruder in the MEP problem. This

approach uses the Dynamic Programming Principle to approximate the solution

with a Semi-Lagrangian numerical scheme and policy iteration to accelerate the

convergence. Fig. 1 illustrates a scenario filled with sensor nodes, over which we30
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pinit

pgoal

Figure 1: MEP problem: find a path between a source (pinit) and destination (pgoal) that

minimizes the exposure of a moving target to a set of sensor nodes. Our approach computes a

value function representing an exposure field over the network, whose gradient approximates

the optimal solution.

compute a value function capable of leading an agent from pinit to pgoal while

minimizing its exposure to the network topology.

The methodology was evaluated considering recently available benchmarks,

and it overcame the state-of-the-art in all instances. Specifically, we highlight

the following contributions:35

• we proposed a novel approach to solve the MEP problem using an opti-

mal control framework that ensures convergence to the optimal solution –

results are on average 10 % better than the state-of-the-art.

• our formulation allows to incorporate the target’s dynamics (which pro-

duces smoother solutions), as well as many different sensing models and40

intensity functions for homogeneous and heterogeneous network topolo-

gies;

• it also allows to model geometric constraints, such as obstacles, holes, and

other non-navigable areas;

• the method is faster than the best one in the literature, even when em-45

ployed for a large number of nodes – it is even more efficient when com-

puting other paths in the same scenario (for the same pgoal).
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The remainder of this paper is structured as follows: Sec. 2 reviews existing

literature; Sec. 3 introduces preliminary concepts and formulates the problem;

Sec. 4 presents and details the proposed approach; Sec. 5 shows numerical re-50

sults; and finally, in Sec. 6, we conclude and discuss avenues for future investi-

gation.

2. Related work

Coverage is one of the most fundamental factors regarding WSNs, and it

is related to problems such as deployment planning and network optimization.55

The coverage quality can be assessed, for example, by the exposure of an arbi-

trary path going through the sensing field, where a higher minimum exposure

represents better coverage.

A typical scenario for the employment of WSNs is related to the detection

and tracking of mobile targets. Such a task is important, for example, in wildlife60

monitoring or, in the case of security applications, to detect possible intruders.

Problems such as trap coverage [3, 7] and barrier coverage [4] are usually con-

cerned about the detection of the target that reaches the sensing range of a

node, and the path it takes inside the monitored area is generally not consid-

ered. On the other hand, the Minimal Exposure Path (MEP) problem allows for65

a broader understanding and representation of the strengths and weaknesses of

the WSN under consideration, as it serves to better characterize the behavior of

a target accordingly to its movement inside the field [5, 6]. It is usually formu-

lated as a trajectory optimization problem, which considers the path exposure

as the cost function to be minimized.70

Analytical solutions to the MEP problem only exist in the trivial case where

a single sensor node is considered [8]. There is no exact solution to the multiple

sensor nodes case, and it has not yet been proven that it is solvable under such

circumstance [9]. In this sense, different approximation solutions have been

proposed to tackle this scenario [10].75

Approaches tackling the MEP problem are generally separated into two cat-
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egories, depending on the node sensing function used: i) idealistic models; and

ii) realistic probability models. Idealistic models are more straightforward rep-

resentations of the signal attenuation in WSNs, and consequently, the MEP can

be solved by simpler algorithms. The first studies in this context used grid-80

based approaches and Voronoi diagrams [6, 11, 9]. The main problem with

such methods is that, although easy to implement, they cannot be applied to

scenarios where multiple sensors are used to detect the intruder (called the

all-sensor intensity model). Also, when destination and source points do not

lie in the Voronoi diagram, such approaches are unable to provide the optimal85

solution [12].

Later, the results were improved by using hybrid evolutionary algorithms,

and other biological-inspired solutions for fixed and mobile nodes [2, 13]. For

example, in [14], a Physarum Optimization Algorithm (POA), that mimics the

behavior of such organism, is used. The application of meta-heuristics provides90

accurate results since they usually do not rely on approximate cell/grid rep-

resentations. To improve performance and efficiency, the authors of [15] also

proposed a Hybrid Genetic Algorithm (HGA) based on particle swarm opti-

mization.

More realistic sensor models have been investigated in recent articles, such95

as directional nodes [16] and sensing probability models [17]. To tackle the

drawbacks of grid-based and Voronoi-based approaches, [2] presents an HGA

based on a Numerical Functional Extreme (NFE) model, transforming the MEP

into a global optimization problem. Results overcame the state-of-the-art at that

moment, however, similarly to other existing works, the method was based on100

a m x m grid, whose resolution influences the output precision.

Currently, the state-of-the-art in the MEP problem is [12], which presents

two approaches to solve it: (i) the GB-MEP, a grid-based method with some

modifications; and (ii) the GA-MEP, based on a genetic algorithm with a fea-

tured individual representation and an effective combination of genetic opera-105

tors. Since it is based on a meta-heuristic algorithm, the GA-MEP provides bet-

ter precision performance than the GB-MEP between 77 % to 88 % of the cases,
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depending on the nodes distribution (Gaussian distribution is only 40 %). On

the other hand, the GB-MEP is much faster, depending on the resolution used

to compute E (·). Also, when compared with the genetic algorithm proposed in110

[2], the GA-MEP dominates the HGA-NFE, winning in all tested instances.

Other aspects of the environment and the sensor field are also important to

be treated in the MEP context. For example, in [18], an artificial-potential ap-

proach that considers the presence of static obstacles and evaluates the paths for

multiple vehicles is proposed. Besides also considering cluttered environments,115

in [19], an adaptive cell decomposition approach capable of handling heteroge-

neous WSNs is proposed. Obstacles and heterogeneous topologies are typically

more realistic and difficult to deal with than other scenarios.

More recently, the MEP formulation was combined with the Dubins Ori-

enteering Problem (DOP), and a multi-objective evolutionary algorithm was120

proposed [20]. In this context, besides minimizing the exposure, the path is

subjected to a bounded curvature and limited budget. Moreover, the goal is to

visit a set of points that maximizes the total reward collected.

In this work, the MEP problem is considered in an optimal control setting,

and a Dynamic Programming Approach is employed to solve it. Considering125

a continuous-time agent, it amounts to solving a partial differential equation,

known as the Hamilton-Jacobi-Bellman equation, which can be solved numer-

ically, among other possibilities, by Semi-Lagrangian approximation schemes

[21]. To handle possibly infinite values for the exposure, representing unreach-

able or forbidden regions on the search space (due to the presence of obsta-130

cles), we propose the use of a Kruzkov transformation [22, 21, 23], which maps

values in [0,∞) to the [0, 1] range. A suitable Dynamic Programming Prin-

ciple is presented for this transformed case, which is employed to propose a

Semi-Lagrangian Approximation scheme to solve the optimal control problem

by discretizing it in time and employing an unstructured grid in space. Our135

approach is shown to converge to the optimal solution of the problem utilizing

the Barles-Souganidis Theorem [24, Theorem 2.1].
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3. Problem formulation

In the MEP problem, the exposure function E (·) presents two main aspects.

First, it depends on the model of the sensors composing the network, here re-140

ferred to as the sensing function S (·). Second, it depends on how the combined

energy of all sensors is computed at each location, defined as the intensity func-

tion I (·). Next, we discuss these aspects and formalize the Minimal Exposure

Path as a problem of nonlinear optimization.

3.1. Node sensing functions145

According to the literature, there are different sensing models used in WSNs,

but all of them depend on the Euclidean distance between the sensor location

s and the position p for which we must compute the detection. The most

commonly used sensor functions are described below.

• Boolean disk coverage model [2],150

S (s,p) =

1, if ‖s− p‖ ≤ r

0, otherwise

, (1)

where r is the critical sensing range. As the name suggests, it emulates an

on-off detection behavior, which might be used in very simple scenarios.

• Attenuated disk coverage model [2, 12],

S (s,p) =
λ

‖s− p‖µ
, (2)

where λ and µ are positive parameters related to the propagation and

attenuation of the node signal.155

• Sensing probability model [2],

S (s,p) = e−α‖s−p‖
β

, (3)

where α and β also represent positive parameters of signal attenuation.
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• Probability coverage model with noise [25, 12],

S (s,p) =
λ

‖s− p‖µ
+ η, (4)

where η represents an additive noise energy factor, generally modeled as

a Gaussian distribution.160

Generally speaking, functions (1) and (2) are known as idealistic models,

while (3) and (4) are considered to be realistic probability representations of the

real-world. In homogeneous networks, the same function and parameters are

used to model all sensors, while in heterogeneous topologies, they are distinct.

3.2. Field intensity functions165

A second aspect of the sensor field is the impact of all n sensors over the

exposure function. Below we describe two main models found in the current

literature.

• All-sensor field intensity function [12],

I (p) =

n∑
i=1

S (si,p) , (5)

where the influence of all sensors in the field is incorporated in the com-170

putation of the exposure, no matter how far they are from p.

• Maximum-sensor intensity function [2],

I (p) = max
i

S (si,p) , (6)

where only the influence of the node with the highest sensing function is

used to compute the exposure. When the field is composed of homoge-

neous nodes, this sensor is the closest to p.175

3.3. Minimal Exposure Path

Now we can compute the exposure E (·) of a path p(t), which is directly

related to the WSN ability to detect mobile targets traversing its sensing field.
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The exposure is defined as the time integral of the cumulative energy perceived

by the sensors in the network [5, 6], according to a given intensity function.180

More formally:

E (p(t)) =

∫ tf

0

I (p(t)) |ṗ(t)| dt, (7)

where tf is the time the goal is reached. Here, pinit = p(0) represents the

source position, while pgoal = p(tf ) is the destination position. In other words,

a target moving from pinit to pgoal will be exposed to the node set according to

(7). Finally, the MEP problem can be defined as finding a path throughout the185

environment that less exposes the target. Formally:

Problem 1 (Minimal Exposure Path). Let N = {ni}ni=1 be a sensor field

formed by a set of n nodes distributed in a R2 (cluttered) environment, each

node represented by a sensing model S (·) : R2 → R. In this context, the main

goal is to compute a penetration path p∗ through N , leading from the source

position pinit to the destination pgoal, that minimizes the exposure (7) of the

target, i.e.,

p∗(t) = arg min
p(t)

E (p(t)) .

4. Methodology

4.1. Numerical approximation scheme

In this paper, we tackle the MEP problem in an optimal control setting.

First, let us consider a path generated by the dynamic system:

ṗ(t) = u(t), with p(0) = pinit, (8)

where p(t) is the target position and u(t) the velocity vector over time. We

consider that the set of admissible control inputs (velocities) is given by:

U = {u ∈ Rm | 0 < umin ≤ ‖u(t)‖ ≤ umax ∀t} .

With these definitions, exposure (7) can be rewritten as:

E (p(t),u(t)) =

∫ tf

0

I (p(t)) ‖u(t)‖dt.
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Now, we can also define the value function V (·) : R2 → R such that, for

every point p(t) in the space, determines the minimum exposure from p(t) to

pgoal:

V (p(t)) = inf
u∈U

E (p(t),u(t)) . (9)

This value function admits the Dynamic Programming Principle (Optimality

Principle) since any point along the path should be optimal. Then, it can be

written as:

V (p(t)) = inf
u∈U

(
V (pu(∆t)) +

∫ ∆t

0

I (p(t)) ‖u(t)‖dt

)
, (10)

with pu(∆t) representing the point at time ∆t along the path, taken when

considering velocities defined by u(t). In the presented form, the value function190

can be approximated by employing a Semi-Lagrangian approach [21].

To deal with constraints along the path, such as obstacles and restricted

zones, we consider that the value function must be infinite in those locations.

In addition, assuming that the exposure is always non-negative, the value of the

goal location must always be null. When considered together, these constraints

lead to the boundary conditions:

V (p(t)) =

 0, for p(t) = pgoal

∞, for p(t) ∈ ∂O
, (11)

with ∂O representing the boundaries of geometric forbidden regions. To better

tackle these infinite values, we employ a rescaling of the value function (known

as Kruzkov transformation [21]), such that:

V (p(t)) = 1− e−V(p(t)). (12)

By making use of the original Dynamic Programming Principle of the value

function, and concerning:

E∆t,u =

∫ ∆t

0

I (p(t)) ‖u(t)‖dt

10



in this transformed setting, we have:

V (p(t)) = 1−e
− inf

u∈U
(V (pu(∆t))+E∆t,u)

,

= 1− sup
u∈U

(
e−V (pu(∆t))e−E∆t,u

)
,

= 1− sup
u∈U

((
−1+e−V (pu(∆t))

)
e−E∆t,u +e−E∆t,u

)
,

V (p(t)) = 1+ inf
u∈U

(
V (pu(∆t))−1

)
e
−

∆t∫
0

I(p(t))‖u(t)‖dt
. (13)

Eq. (13) can be seen as the Dynamic Programming Principle for this trans-195

formed V (·), and we can also employ a Semi-Lagrangian numerical scheme to

approximate the solution, by employing a time discretization, followed by a

space discretization.

We consider the time discretization of (13) by applying a trapezoidal approx-

imation for the integral term, and a trapezoidal method to solve the system of200

equations composed of (8). By considering a time step of ∆t, this leads to:

V k(pk) = 1+ inf
uk∈U

(
V k+1

(
pk+1

)
− 1
)
e−gk(pk,uk), (14)

with

gk(pk,uk) = 1
2

(
I (pk) + I

(
pk+1

) )
‖uk‖∆t, (15)

and

pk+1 = pk + uk∆t. (16)

Afterwards, we perform the space discretization of V (·), by considering an

unstructured grid of points covering the space. Since these points will be used205

to represent V (·), they are the only points over the space for which the value

is updated. Since V k+1

(
pk+1

)
might not be a part of the grid, it is replaced

by a finite element linear interpolation over the grid. In this work, we have

employed the Delaunay triangulation on the unstructured grid points to find

a triangulation of the space (see Fig.2). We consider these triangles as our210

finite elements, and represent the interpolation of V k+1

(
pk+1

)
as IV k+1

[pk+1].

Taken together, both discretizations (time and space) lead to a Semi-Lagrangian
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approximation scheme of (13), in the form:

V k(pk) = 1 + inf
uk∈U

(
IV k+1

[pk+1]− 1
)
e−gk(pk,uk), (17)

with boundary conditions

V k(pk) =

 0, if pk = pgoal

1, if pk ∈ ∂O
. (18)

Eq. (17) can be directly employed in a backwards in time-marching scheme,

known as value iteration, to find an approximate solution to (13). Since, in the

way the problem has been presented, we are interested in stationary/infinite

horizon solutions, we have employed an acceleration technique known as policy

iteration [21, Section 8.4.7]. In this technique, we alternate between finding an

optimal policy uk and an optimal value V (·). At every grid point, the optimal

policy is:

uk = arg min
uk∈U

(
IV [pk+1]− 1

)
e−gk(pk,uk), (19)

and fixed for this iteration. Afterwards, the value function is updated according

to (18) and

V (pk)− IV [pk+1]e−gk(pk,uk) = 1− e−gk(pk,uk).

These steps are repeated until the algorithm converges to the minimum of the

value function. The Minimal Exposure Path is then found by integrating the

system trajectory (16), starting at p0 = pinit and employing the optimal policy

given by (19), until the path reaches pgoal. The original value function in (9)

can be recovered by:

V (p) = − ln
(
1−V (p)

)
.

4.2. Convergence analysis215

The Dynamic Programming Principle of the transformed value function in

(13) can be recast as a partial differential equation, known as the HJB equation,

of the form:

sup
u∈U

(
V (p) `(p,u)−∇V (p) · f (p,u)− `(p,u)

)
= 0 (20)
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with `(p,u) being the cost, and f (p,u) defining the system dynamics, given by:

`(p,u) = I (p) ‖u‖, (21)

f (p,u) = u.

Having defined this partial differential representation, we are now ready to

state the main result concerning the convergence of our proposed methodology.220

Theorem 1. Let our optimal control problem be represented by the HJB equa-

tion (20). As long as `(p,u) and f (p,u) are Lipschitz continuous in p, and

`(p,u) > 0 ∀p,u, there is a unique viscosity solution to (20), corresponding to

the optimal solution to the MEP problem. In addition, the proposed numerical

solution scheme converges to this unique viscosity solution as the time step, ∆t,225

and the maximum distance between points on the grid, ∆p, tend to zero, so long

as ∆p tends faster than ∆t.

Proof. Note that `(p,u) and f (p,u) being Lipschitz continuous and `(p,u) >

0 ∀p,u, are sufficient conditions to ensure that there is a unique viscosity

solution to (20), and that the problem admits a comparison principle [22]. In230

this case, from the Barles-Souganidis Theorem [24, Theorem 2.1], as long as

our numerical approximation scheme is monotone, a contraction mapping, and

consistent, it converges to the unique viscosity solution of the HJB equation

[21]. As such, the remainder of this proof shows these three properties of the

approximation scheme in (17).235

4.2.1. Monotonicity

Consider two functions W and V , with W ≤ V for every point on the grid.

Suppose that the inf operator in (17) is attained by w for W , and u for V . It

follows that:

W k(pk) ≤ 1 +
(
IW [pk+1]− 1

)
e−gk(pk,u),

V k(pk)−W k(pk) ≥ e−gk(pk,u)
(
IV [pk+1]− IW [pk+1]

)
,

which implies that V k(pk)−W k(pk) ≥ 0 since we employed a linear interpola-

tion.
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4.2.2. Contractiveness

Considering two functions W and V , with w minimizing W . It follows that:

V k(pk)−W k(pk) ≤ e−gk(pk,w)
(
IV [pk+1]− IW [pk+1]

)
,

V k(pk)−W k(pk) ≤ e−gk(pk,w)‖V −W‖(k+1)
∞ ,

with ‖V −W‖(k+1)
∞ being the maximum of the error between the two functions

in the next time step. Since we are assuming that `(p,u) > 0, then gk(pk,uk) >

g∆t > 0 ∀pk,uk. Since a similar bound can be found for W k(pk) − V k(pk),

then:

‖V −W‖(k)
∞ ≤ e−g∆t‖V −W‖(k+1)

∞ .

As we solve the problem back in time, this shows that our approximation scheme240

is a contraction mapping, with contraction rate e−g∆t. From the Banach fixed-

point Theorem, it guarantees that our approximation scheme converges to a

unique solution.

4.2.3. Consistency

We start our consistency analysis by considering the error of time discretiza-

tion, comparing solutions from (13) and (14). If we consider that the inf operator

is attained by u in (14), it follows that:

V (p(t))−V k(pk) ≤
(
V (pu)− 1

)
e−

∫ ∆t
0

I(p(t))‖u(t)‖dt −
(
V k+1

(
pk+1

)
− 1
)
e−gk(pk,u).

Some algebraic manipulations lead to:

V (p(t))−V k(pk) ≤
(
V (pu)− 1

) (
e−

∫ ∆t
0

I(p(t))‖u(t)‖dt − e−gk(pk,u)
)

+ e−gk(pk,u)
(
V
(
pk+1

)
−V k+1

(
pk+1

))
+ e−gk(pk,u)

(
V (pu)−V

(
pk+1

))
.

From the dynamics considered in (8), pu = pk+1, and by making use of the

Mean Value Theorem, gk(pk,uk) > g∆t, and the fact that [26, Corollary 1.4],

for a Lipschitz function `(t) we have that the error of a trapezoidal integration

14



is bounded by ∆t2

8

(
sup ˙̀− inf ˙̀

)
. It follows that:

V (p(t))−V k(pk) ≤ C1∆t2 + e−g∆t‖V − V k‖∞, (22)

for some constant C1. If we consider that the inf operator is attained by u∗ in

(13), and that:

ûk =
1

∆t

∫ ∆t

0

u∗(τ)dτ

is the control obtained by the mean of the optimal control over a time step, it

follows that

V k(pk)−V (p(t)) ≤
(
V k+1

(
pk+1

)
− 1
)
e−gk(pk,ûk)

−
(
V (pu∗)− 1

)
e−

∫ ∆t
0

I(p(t))‖u∗(t)‖dt.

Since, for the particular case of the dynamics considered in (8), pu∗ = p(t) +

ûk∆t, following similar arguments to the ones used in obtaining (22), we have:

V k(pk)−V (p(t)) ≤ C2∆t2 + e−g∆t‖V − V k‖∞,

with C2 some constant term. This implies that:

(1− e−g∆t)‖V − V k‖∞ ≤ C∆t2,

‖V − V k‖∞ ≤ C∆t, (23)

with C = max(C1, C2).245

For the space discretization error, we analyze the errors of the value function

on the grid points, by comparing (14) and (17). To differentiate them, we will

denote the value on the grid points of (17) by vk. If we consider that the inf is

attained by u in (14), it follows that:

vk(pk)−V k(pk) ≤
(
Ivk+1

[pk+1]−V k+1

(
pk+1

))
e−gk(pk,u),

which, by considering that gk(pk,u) > g∆t, leads to:

vk(pk)−V k(pk) ≤ e−g∆t
∣∣∣Ivk+1

[pk+1]− IV k+1
[pk+1]

∣∣∣
+ e−g∆t

∣∣∣IV k+1
[pk+1]−V k+1

(
pk+1

)∣∣∣ . (24)
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Since V is Lipschitz, then:∣∣∣IV k+1
[pk+1]−V k+1

(
pk+1

)∣∣∣ ≤ C3∆p,

with C3 being a constant and ∆p the largest distance between any point and a

grid point. Combining this inequality with (24), we have that:

vk(pk)−V k(pk) ≤e−g∆t‖v − V k‖∞ + e−g∆tC3∆p.

Since a similar bound can be found for V k(pk)− vk(pk), then:

‖v − V k‖∞ ≤e−g∆t‖v − V k‖∞ + C4∆p,

‖v − V k‖∞ ≤C4
∆p

∆t
(25)

with C4 a constant. Combining (23) and (25), we have that:

‖V − v‖∞ ≤ C5∆t+ C6
∆p

∆t
, (26)

with C5 and C6 being constants. As suggested in [21], the best coupling be-

tween ∆t and ∆p, in this case, is given by ∆p = ∆t2, indicating that our grid

resolution should be finer than our time discretization resolution.

Since we have shown that our scheme is monotone, a contraction mapping,

and consistent, from the Barles-Souganidis Theorem, we have proven its con-250

vergence.

Remark 1. Although our consistency analysis considered the specific case of the

system dynamics given by (8), similar bounds can be found for other dynamics

(as long as f (p,u) is Lipschitz), by considering the numerical integration error

of solving the ordinary differential equation by the method being used).255

Remark 2. Note that our convergence results demand that `(p,u) in (21) is

Lipschitz continuous, which demands that the Boolean disk coverage model (1)

be approximated by a Lipschitz continuous function and that a maximum value

be allowed for the Attenuated disk coverage model (2) and for the Probability

coverage model with noise in (4). In addition to this, the fact `(p,u) > 0, ∀p,u260

requires that the intensity of the sensor field does not vanish at any point, which

is essential to ensure that the problem admits a unique optimal solution.

16



Figure 2: Spatial grid discretization: points are more concentrated around nodes (black dots)

and in the obstacles boundaries (black regions).

4.3. Implementation details

As previously discussed, the approach is composed of a time and a space

discretization, and our results converge to the optimal solution as these dis-265

cretization errors decrease. Concerning the time discretization, if the time-step

∆t is too small, it could slow down the convergence of the iterations when value

iteration is used. This problem is somewhat mitigated when employing the pol-

icy iteration, but a suitable time-step must still be chosen. For the experiments

in the next section, we have set ∆t = 0.1.270

Although the proposed approach could be employed with a regular struc-

tured grid on the space, using rectangles as finite elements for the interpolation,

unstructured grids allow for a better representation of the nonlinear profile of

the node sensing functions and the transformed value function in (12). It also

allows representing obstacles with arbitrary geometries. In that regard, we have275

used a simple heuristic to sample grid points, concentrating them near the nodes

and obstacle boundaries, as shown in Fig. 2. Basically, the higher the exposure

value at p, the higher is the chance of it receiving a grid point. For each sensor

node, we have used about 100 grid points.

To solve the minimization problem in (19), we perform an exhaustive search280

within a discrete set of allowable velocities. Although this is not the most

efficient approach, it avoids local minima.

If values of (9) are too high, usually caused by having some sensing node too
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close to the goal, there may be numerical problems working with the Kruzkov

transformed value function in (12), as the values might get too close to 1. To

mitigate this problem, we might consider the rescaling of the intensity functions

(5) and (6), by dividing it by ω, leading to:

I(p) =
I (p)

ω
, ω ≥ 1, (27)

employed in (15) instead of the original intensity function. For the experiments

in the next section, we have set ω = 100.

Finally, even though our conditions converge to the optimal solution, in285

practice, we have a sub-optimal path, and a local optimization procedure is

performed over the path found by the policy in (19). This procedure checks

along the path, described by a series of points in discrete-time, if each point

could be substituted by a better point close to it, and replaces it if that is the

case.290

5. Experiments

In this section, we first show an illustrative example to discuss different

aspects of our approach. Next, we compare our results with the state-of-the-art

literature considering recently available benchmarks. Finally, we provide results

with cluttered environments and heterogeneous sensor nodes.295

5.1. Illustrative example

We begin by employing our method to the scenario presented in [2, Section

VII.A]. It consists of a network topology with 32 nodes, modeled as attenuated

disk coverage functions (2) with λ = 4 and µ = 2. They have also adopted the

maximum-sensor intensity function (6). Considering a 10 m x 10 m space, desti-300

nation point was set to pgoal = [10, 6.5], while source position was initially set to

pinit = [0, 4]. Subsequently, we have also determined paths for pinit = [0, 8] and

pinit = [5, 0]. Fig. 3 presents the value function (gray-map background) and the

MEPs computed by our approach when applied to the aforementioned scenario,
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Figure 3: Example scenario (presented in [2]). The black dots are the nodes locations, while

the color-map represents V (p). We computed three different MEPs to pgoal = [10, 6.5], the

first one starting from pinit = [0, 4] (red line), and other two beginning from pinit = [0, 8] and

[5, 0].

concerning all three source positions. The exposure values and execution times305

are shown at Tab. 1.

Table 1: Exposure value and execution time for the paths shown in illustrative example of

Fig.3.

pinit E(·) Time(s)

[0, 4] 43.533 1349

[0, 8] 43.126 138

[5, 0] 46.759 130

It is possible to notice that, the execution time for the first trial was 1349 s,

while for the other two sources it was approximately ten times faster. The first

path is slower because, in the first run, our method has to compute the value

function (9), which is more computationally costly. However, for all subsequent310

computations of a MEP (for the same pgoal), we can use the previous V (p) illus-

trated at Fig.3. This is an essential advantage of our technique when compared
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to the literature since other approaches usually require a complete algorithm

reset (e.g., evolutionary algorithms) for every new pinit.

Tab. 2 presents a comparison between our method and the other three dis-315

cussed in [2]. The parameter m represents the grid resolution used in the al-

gorithm. Small grid cell numbers have less exposure, especially due to the low

accuracy of the results. On the other hand, high accuracy grids (with larger m)

achieves values closer to the true exposure, however, by exponentially increas-

ing time and storage costs [2]. Our approach is capable of providing the most320

accurate value of E (·) (optimal), except for some small numerical inaccuracy.

Table 2: Comparison between our method and results in Ye et al. [2].

HGA-NFE [2] Grid-based [2] Voronoi-based [2] Semi-Lagrangian

m E(·) Time(s) E(·) Time(s) E(·) Time(s) E(·) Time(s)

40 42.59 36.34 57.04 42.76

47.44 4.60 43.53 134980 43.01 83.76 55.05 178.30

100 43.38 132.91 54.66 274.28

5.2. Comparative analysis with the state-of-the-art

In order to qualitatively evaluate the performance of our Semi-Lagrangian

approach, first, we define the sensing function and the field intensity function

according to [12] (state-of-the-art). The authors have used the probability cov-

erage model with noise for the sensor node, given by Eq. (4). Assuming the

noise energy as a normal distribution with zero mean, η ∼ N (0, σ2), they have

simplified the sensing function, such as:

S (s,p) ≈ − ln

(
1−Q

(
A− λ

‖s−p‖µ

σ

))
,

with

Q(x) = 1√
2π

∫ ∞
x

e
−t2

2 dt,

where A = 6.0 is a threshold detection, λ = 100.0, µ = 1.0 and σ = 1.0. Still, for

the field intensity function, results in [12] are based on the all-sensor intensity325

model (5).
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Next, we apply our method to the exact scenarios described in the aforemen-

tioned work, whose sensors were deployed into a 500 m x 500 m environment.

The authors have used three different random distributions to place the nodes:

(i) Exponential distribution method, (ii) Uniform distribution method, and (iii)330

Gaussian distribution method. They have tested a total of 240 configurations,

with 80 different topologies for each of those three distribution methods. The

set of topologies also present networks with a number of sensors n ranging from

30 to 1001. Here, however, for the sake of space, we have simulated experiments

for all topologies with 30 and 100 nodes to verify the behavior of our approach335

subjected to a low and a high n.

All trials receive as input the source position pinit = [0, 150] and the destina-

tion position pgoal = [500, 350], and they were executed using Python 3.8.5 on

an Intel CoreTM i7-7500U CPU 2.70 GHz x 4 and 16 GB of RAM under Ubuntu

20.04.340

Tables 3, 4 and 5 compile the results for the Exponential, Uniform and

Gaussian distribution methods, respectively. When comparing the minimum

exposure value of the GA-MEP and the GB-MEP with our approach, we can

see that the Semi-Lagrangian method always provides results that are smaller

(or at most equivalent) to those in [12].345

Here it is important to say that the exposure values for the GA-MEP given

in the tables are the best ones obtained after H runs of their main algorithm.

Since it is based on meta-heuristics, there are no guarantees that the optimal

values are always reached. Also, the execution times shown for the GA-MEP

are the average values of all trials, such that the real-time spent to reached the350

best E (·) is H times larger than those presented. Consequently, we can claim

that, based on the experiments, for H ≥ 3 the Semi-Lagrangian approach is

faster than the GA-MEP in most of the scenarios.

1Data available at: Nguyen Thi My, Binh (2020), “Data for: Efficient Approximation

Approaches to Minimal Exposure Path Problem in Probabilistic Coverage Model for Wireless

Sensor Networks”, Mendeley Data, V1, doi: 10.17632/5zh6cc2xww.1
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Table 3: Comparison with nodes placed using the Exponential distribution method [12].

Instance GB-MEP [12] GA-MEP [12] Semi-Lagrangian

n Ord E(·) Time (s) Best E(·) Avg. time(s) E(·) Time (s)

30

1 38.3990 0.631 43.3873 331 26.2863 557

2 0.0402 0.695 0.0401 394 0.0281 504

3 29.8977 0.974 29.5743 551 25.3489 517

4 0.4342 0.429 0.4342 247 0.3288 431

5 1.8524 0.784 1.6056 411 1.6056 477

6 0.0481 0.929 0.0421 320 0.0406 724

7 1.0559 1.519 1.0604 313 0.6674 437

8 0.0027 0.427 0.0023 224 0.0021 426

9 0.0114 2.487 0.0109 256 0.0102 443

10 0.1734 0.849 0.1280 385 0.1239 491

100

1 5.2302 1.6840 4.0037 934 4.0037 3085

2 1035.9792 7.304 1034.8402 1050 903.3848 2619

3 2.4163 1.324 2.4069 691 2.3007 1959

4 1.2142 1.066 1.1727 807 1.0458 2210

5 6.6685 1.306 6.2369 888 6.1064 4068

6 7.8457 1.189 6.4425 1030 5.5539 2882

7 3.8835 3.012 4.3673 1121 2.8832 1979

8 61.0651 1.093 60.3105 917 51.5410 2060

9 138.5203 1.099 120.4673 1348 105.7741 2413

10 1.8611 1.794 1.4176 667 1.3986 2030

Table 6 compiles the percentages of improvement provided by our method

over the minimum values given by both algorithms of [12]. The highest improve-355

ments have been reached under Exponential (30) and Gaussian (100). Also, the

total average of the Exponential distribution is higher than for other distribu-

tions, indicating that the GA-MEP is more susceptible to highly concentrated

nodes. The average improvement for all scenarios was approximately 10 %.

Fig. 4 present some comparative tests compiled in the previous tables. Here,360

for each distribution (Exponential, Uniform, and Gaussian) and each n =

{30, 100}, we have chosen the instance with the best percentage improvement

reached by our method. Blue and green lines represent the MEPs obtained by
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Table 4: Comparison with nodes placed using the Uniform distribution method [12].

Instance GB-MEP [12] GA-MEP [12] Semi-Lagrangian

n Ord E(·) Time (s) Best E(·) Avg. time(s) E(·) Time (s)

30

1 0.0053 3.094 0.0047 515 0.0046 700

2 0.0117 2.444 0.0109 397 0.0108 712

3 0.0082 1.513 0.0079 371 0.0077 701

4 0.1768 5.414 0.1749 444 0.1651 1353

5 0.0019 0.786 0.0017 290 0.0017 600

6 0.0146 4.013 0.0142 393 0.0135 528

7 0.0026 0.477 0.0021 317 0.0021 506

8 0.0033 1.535 0.0073 326 0.0028 937

9 0.0128 2.504 0.0118 378 0.0103 603

10 0.0050 0.733 0.0042 493 0.0040 784

100

1 4.1743 9.036 5.3521 1160 3.3556 3215

2 5.3815 2.811 4.2433 1054 4.2017 2095

3 20.5244 9.3 20.4461 1110 19.7358 1786

4 0.9734 5.185 0.8304 1040 0.7895 2198

5 1.2987 3.98 1.2134 1066 1.1025 2811

6 1.9280 4.682 4.8181 1268 1.5576 2794

7 0.6936 3.797 1.8955 1191 0.6198 3191

8 3.4418 5.836 3.1789 1263 2.9332 2792

9 106.9770 9.965 106.5400 1272 101.0590 2621

10 5.1870 5.716 8.0124 1248 4.7532 3047

the GA-MEP and the GB-MEP, respectively, while the red line represents our

Semi-Lagrangian approach. Figures 4(a)-4(c) illustrate cases with few nodes,365

and figures 4(d)-4(f) are cases with a large number of sensors. Here, it is possi-

ble to see that most of the cases with greater improvement are those where the

GA-MEP fails to approximate the optimal solution. And even when it doesn’t

happen (Fig 4(a)), there is a significant difference between our result and those

provide by [12].370

It is also possible to notice that the highest average value was obtained

in the Exponential configuration with 100 nodes. It can be explained by the

concentration of sensors near the source position.
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Table 5: Comparison with nodes placed using the Gaussian distribution method [12].

Instance GB-MEP [12] GA-MEP [12] Semi-Lagrangian

n Ord E(·) Time (s) Best E(·) Avg. time(s) E(·) Time (s)

30

1 0.0008 0.697 0.0009 247 0.0009 704

2 0.0035 0.6 0.0043 322 0.0029 969

3 0.0001 0.414 0.0001 230 0.0001 640

4 0.0111 0.767 0.0302 371 0.0090 844

5 0.0014 0.924 0.0012 307 0.0012 850

6 0.0035 1.379 0.0037 233 0.0034 751

7 0.0031 0.687 0.0033 302 0.0031 1092

8 0.0040 0.691 0.0031 318 0.0031 845

9 0.0012 1.075 0.0013 240 0.0012 1393

10 0.0002 0.47 0.0002 255 0.0002 615

100

1 0.3134 2.195 0.6915 960 0.2452 3865

2 1.1851 5.021 1.4138 811 1.0962 2965

3 0.0009 1.621 0.0010 434 0.0009 5343

4 0.7224 1.274 0.5442 643 0.5029 3549

5 0.1625 1.577 0.4453 986 0.1334 3725

6 0.0585 1.176 0.0579 772 0.0579 2591

7 2.0298 3.22 2.3785 869 1.5953 3954

8 0.1247 1.772 0.7191 798 0.0909 4074

9 0.1766 1.404 0.1515 553 0.1511 2325

10 0.1049 1.3 0.2841 727 0.0871 4044

5.3. Cluttered environments

As previously said, the value function V (·) allows the modeling of geometric375

constraints, given by the boundary conditions at (11). Therefore, it is possible

to incorporate obstacles to the searching space, which makes the MEP problem

more attainable to real-world scenarios.

In Fig. 5, we progressively added obstacles to the base scenario (Fig. 3).

Fig. 5(a) shows the original MEP starting from pinit = [0, 4], whose exposure380

was previously computed as 43.53 (Tab. 2). When two obstacles are added

(Fig. 5(b)), a new path is computed and E (·) is increased to 50.78. After the

incorporation of five other obstacles (Fig. 5(c)), the path exposure reaches 54.74.
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Table 6: Percentages of improvement of our technique over [12].

Exponential Uniform Gaussian

Ord 30 100 30 100 30 100

1 31.5 0.0 2.6 19.6 0.0 21.8

2 29.9 12.7 1.3 1.0 18.0 7.5

3 14.3 4.4 3.2 3.5 0.0 0.0

4 24.3 10.8 5.6 4.9 19.2 7.6

5 0.0 2.1 0.0 9.1 0.0 17.9

6 3.6 13.8 5.1 19.2 2.9 0.1

7 36.8 25.8 1.9 10.6 0.0 21.4

8 10.0 14.5 16.1 7.7 1.3 27.1

9 6.4 12.2 12.8 5.1 2.5 0.3

10 3.2 1.3 4.8 8.4 5.0 17.0

Avg. 16.0 9.8 5.3 8.9 4.9 12.1

Std. 13.5 7.9 5.2 6.2 7.4 10.2

One can see that as more geometric constraints (i.e., non-navigable regions) are

incorporated into the environment, the agent’s exposure to the sensor network385

might remain the same or more commonly increase.

5.4. Heterogeneous networks

Finally, we applied our method to a sensor field composed of heterogeneous

nodes. We considered the same scenario described in Sec. 5.1, however, here we

have randomly chosen the parameter λ, as 1 or 3, for the sensing model (2).390

Fig. 6 presents the MEP computed for the heterogeneous network. We high-

light that the dashed circles do not represent limits to the detection range of

the sensors, but they only serve to illustrate the heterogeneity of the nodes.

6. Conclusion and future work

The use of Wireless Sensor Networks (WSNs) is continuously increasing in395

several civilian and military applications. In this context, the Minimal Exposure
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Path (MEP) between two arbitrary positions in the sensing field represents the

path that minimizes the likelihood of a moving target being detected. Finding

the MEP is critical since the exposure allows estimating the coverage quality of

a known deployed WSN.400

In this paper, we proposed an algorithm based on policy iteration for de-

termining an optimal control solution. This novel approach solves the MEP

problem ensuring convergence to the optimal solution, given results that over-

came the state-of-the-art in all instances, with an average improvement of about

10 % over available benchmarks. Our formulation allows us to incorporate the405

target’s dynamics and tackle geometric constraints (such as obstacles), as well

as many different sensing models and intensity functions for homogeneous and

heterogeneous network topologies. The method is faster than the best one in

the literature, even when employed for a very large number of nodes.

As future work, we intend to extend our method to larger search spaces,410

where it is possible to incorporate nonholonomic constraints to the target, three-

dimensional environments, and directional sensing models (such as cameras),

among others. To do this, it is imperative to improve the efficiency of the

algorithm, possibly resorting to meta-heuristics and numerical approximations.

We also expect to deal with dynamic scenarios, where node sensing functions415

vary not only with the sensors’ location but also along time.
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Douglas Guimarães Macharet is an Assistant Professor at the Department of Computer

Science (DCC) of the Universidade Federal de Minas Gerais (UFMG). He received an M.Sc.520

and D.Sc. degrees in Computer Science from the same university in 2009 and 2013, respec-

tively. He is with the Computer Vision and Robotics Laboratory (VeRLab), and his main

research interests are in mobile robotics, focusing on motion planning and navigation, multi-

robot systems, and swarm robotics and human-robot interaction.

30



0 100 200 300 400 500
x[m]

0

100

200

300

400

500

y
[m

]

GA-MEP GB-MEP Semi-Lagragian

(a) 30(7) nodes, Exponential: 36.8%.

0 100 200 300 400 500
x[m]

0

100

200

300

400

500

y
[m

]

GA-MEP GB-MEP Semi-Lagragian

(b) 30(8) nodes, Uniform: 16.1%.
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(c) 30(4) nodes, Gaussian: 19.2%.
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(d) 100(7) nodes, Exponential: 25.8%.
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Figure 4: Best results of our approach in comparison with [12] for each set of topologies.
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(a) Empty environment: E(·) =

43.533.
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(b) Two added obstacles: E(·) =

50.785.
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(c) Five more obstacles added: E(·) =

54.737.

Figure 5: MEP computed by our method in cluttered environments: a) empty scenario dis-

cussed in Sec. 5.1; b) two obstacles have been added, forcing the method to modify the MEP;

c) five more obstacles have been incorporated to the space, resulting in an even higher final

exposure.
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Figure 6: MEP computed for a scenario with a heterogeneous sensor network: E(·) = 32.032

and execution time of 1263 s.
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