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Abstract

The efficiency of a mass consistent model for wind field adjustment depends on several
parameters that arise in various stages of the process. On one hand, those involved in the
construction of the initial wind field using horizontal interpolation and vertical extrapo-
lation of the wind measures registered at meteorological stations. On the other hand, the
stability parameter which allows from a strictly horizontal wind adjustment to a pure verti-
cal one. In general, the values of all of these parameters are based on empirical laws. The
main goal of this work is the estimation of these parameters using genetic algorithms, such
that some of the wind velocities observed at the measurement station are regenerated as
accurately as possible by the model. In addition, we study the effect of the mesh refinement
on the parameter estimation in several numerical experiments.

Key words: Parameter estimation, genetic algorithms, wind field modelling, mass
consistent models, adaptive mesh refinement, finite element method.

1 Introduction

A three-dimensional finite element model for wind field adjustment is developed.
In general, these problems are defined over regions with complex terrain, there-
fore a suitable discretization of the studied zone will be necessary. Here, we have
used a technique for constructing tetrahedral meshes which are adapted to the ter-
rain orography and have a higher density of nodes near the terrain surface [1]. In
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section 2, our mass consistent model is presented. It generates a velocity field for
an incompressible fluid which adjusts to an initial one obtained from experimental
measures and physical considerations. The construction of the initial field is de-
veloped in section 3. The first step is to carry out a horizontal interpolation at the
height of the measurement stations over the terrain. From these data, vertical pro-
files are constructed taking into account the atmospheric stability, the roughness
of the terrain, the geostrophic wind and the atmospheric stratification. Once the
initial field is computed, we formulate the mass continuity equation of an incom-
pressible fluid with non-flow-through boundary condition on the terrain surface.
The adjustment is carried out by a least square function. The Lagrange multipliers
technique leads to an elliptic problem which is solved by using the finite element
method. However, there may exist some zones of the domain where more accuracy
of the numerical solution is required due to the irregularity of the terrain as well as
to strong variations of the solution. In order to improve the solution, an adaptable
refinement of the three-dimensional mesh is proposed in section 4. First, for each
element of the mesh to be refined, an error indicator is computed attending to the
current numerical solution. This points out what elements must be refined. The pro-
posed refinement technique, based on the subdivision in 8-subtetrahedra, allows a
higher discretization of the selected zones without excessive propagation along the
mesh. This process may be repeated until the error indicators of the numerical so-
lution satisfy the imposed tolerance. In section 5, we remark the parameters of the
wind model to be estimated which lead us to construct the fitness function. Genetic
algorithms are used to solve this parameter estimation problem and their properties
and possibilities are briefly described in section 6. Section 7 is devoted to solve
the same numerical experiments presented in [2] in order to show the improve-
ments obtained with the mesh refinement. Finally, our conclusions are presented in
section 8.

2 Mass Consistent Model in 3-D

This model [3] is based on the continuity equation for an incompressible flow where
the air density is constant in the domain 2 and no-flow-through conditions on T,
(terrain and top) are considered
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We formulate a least-square problem in © with (@, v, w) to be adjusted
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where the interpolated wind vy = (g, vo, wy) IS obtained from experimental mea-
surements, and a1, a» are the Gauss precision moduli. This problem is equivalent
to find a saddle point (v, ¢) of the Lagrangian (see [4])

B (@) = min {E @+ [ ¢§~ﬁd9} @)

being v = (u,v,w), ¢ the Lagrange multiplier and K the set of admissible func-
tions. The Lagrange multipliers technique is used to minimise the problem (4),
whose minimum comes to form the Euler-Lagrange equations

9¢

0 )
UZUOJFTha—ja U:UO+Tha_z, w:w0+Tv$ (5)

where T = (T}, Ty, T,,) is the diagonal transmissivity tensor, with 7, = ﬁ and
T, = ﬁ Since a; and «s are constant in €2, the variational approach results in an
elliptic problem substituting (5) in (1)
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We consider Dirichlet condition for open or flow-through boundaries and Neumann
condition for terrain and top

¢p=0on T, (7)
i-TVp=—i-0 on I, (8)

The problem given by (6)-(8), is solved using tetrahedral finite elements (see [1])
which leads to a set of 4 x 4 elemental matrices and 4 x 1 elemental vectors. These
are assembled to form a symmetric linear system of equations which is solved by a
preconditioned conjugate gradient method.

3 Interpolated Wind

The first step for constructing the interpolated wind is the so-called horizontal in-
terpolation. The wind speeds measured are interpolated at station height z,,, using
the distance and the height difference between each point and the station [3]
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where v, is the velocity observed at station n, /N is the number of stations consid-
ered in the interpolation, d,, is the horizontal distance from station n to the point
where we are computing the wind velocity, |Ah,,| is the height difference between
station » and the studied point, and ¢ is a weighting parameter (0 < ¢ < 1), which
allows to give more importance to one of these interpolation criteria.

In the vertical profile of wind, we assume that this model does not take into account
the turbulence phenomena near the terrain due to its roughness. Thus, we establish

Uo(2) =0 z <z (10)

We have considered a logarithmic profile in the surface layer, which takes into
account the previous horizontal interpolation, as well as the effect of roughness and
the air stability (neutral, stable or unstable atmosphere, according to the Pasquill
stability class) on the wind intensity and direction. Above the surface layer, a linear
interpolation is carried out using the geostrophic wind. The logarithmic profile is
given by

v*

Uo(2) L
where v* is the friction velocity, & is von Karman constant, z, is the roughness
length and z,; is the height of the surface layer. The value of ®,, depends on the air
stability

(log = — @) 20 <2< 2q (11)
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d,=0 (neutral)

o, =—5— (stable) (12)

— 2arctan + g (unstable)

where § = (1—162)"*and + = a2}, with a, b, depending on the Pasquill stability
class. L is the so called Monin-Obukhov length. The friction velocity is obtained at
each point from the interpolated measurements at the height of the stations (hori-
zontal interpolation)
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The height of the planetary boundary layer z,, above the ground is chosen such
that the wind intensity and direction are constant at that height

U
Zpbl = 7 |f | (14)

where f = 2w sin ¢ is the Coriolis parameter (w is the earth rotation and ¢ the
latitude), and  is a parameter depending on the atmospheric stability. The mixing



height & coincides with z,;, in neutral and unstable conditions. In stable conditions,
Zilitinkevich suggests (see [5])

(15)

where ~' is another constant of proportionality. The height of the surface layer is
Zg = 1% From z; to z,,, a linear interpolation with geostrophic wind @, is carried
out

o(2) = p(2) o(za) + [1 — p(2)]7, Zst < 2 < Zpp (16)
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Finally, this model assumes

Up(2) = 1, Z > 2y (18)

4  Adaptive Mesh Refinement

Nowadays, most of the codes which use the finite element methods consider adap-
tive techniques. In the generation of adaptive meshes, the local refinement of the
domain is necessary due, on one hand, to the geometry and, on the other hand, to
the numerical solution. The computation of error estimators or at least suitable er-
ror indicators of the numerical solution is carried out to determine the elements to
be refined or derefined in a mesh. Here we propose one error indicator which takes
into account the gradient of the solution in each element. We obtain the initial mesh
using a non-structured mesh generator [1,6] and then apply a refinement technique
of nested meshes based on this error indicator.

Some adaptive techniques in 2-D had been developed in the past which obtained
good results in several steady and non-steady problems (see, i.e., [7-9,4]). In these
works, a version of Rivara 4-T local refinement algorithm [10] was used. In 3-D,
the problem is substantially different. Among the refinement algorithms developed
in 3-D, we can consider those based on the bisection of tetrahedra [11-13] and
those which use the 8-subtetrahedron subdivision [14-16]. In fact, the algorithm
developed in [13] may be understood as the generalisation of the 4-T Rivara al-
gorithm in 3-D. This last one is also based on the bisection of the triangle by its
longest edge. The disadvantage of this method is the high number of possible cases
in which a tetrahedron may be divided, considering the different possibilities of the
4-T subdivision on its four faces, during the process of mesh conformity. However,



the algorithms proposed in [14-16], which generalise the subdivision in 4 subtri-
angles of Bank et al. [17] in 3-D, are simpler due to a lower number of possible
subdivisions of a tetrahedron. We propose a refinement algorithm based on the 8-
subtetrahedron subdivision developed in [16]. Consider an initial triangulation 7,
of the domain given by a set of n, tetrahedra ¢1, ¢3, ..., ¢, . Our goal is to build a
sequence of m levels of nested meshes 7" = {m < 7o < ... < 7, }, such that the
level 7, is obtained from a local refinement of the previous level 7;. The error
indicator ¢ associated to the element ¢/ € 7; which has been used is gradient type
and it is defined as follows, . .

e = ()" |Ven| (19)
where the parameter p is generally assumed to be 1 or 2, and d;, the length of the
longest edge of tetrahedron ¢/. Note that if p = 1 and we consider linear inter-
polation in the elements of 7;, then ¢/ represents an upper bound of the maximal
variation of ¢, in the element /. Once the error indicator ¢/ is computed, such
element must be refined if €/ > #¢/__, being § € [0, 1] the refinement parameter
and €/ ,., the maximal value of the error indicators of the elements of 7;. From
a constructive point of view, initially we shall obtain 7, from the initial mesh 7,

attending to the following considerations:

a) 8-subtetrahedron subdivision. A tetrahedron ¢! € 7 is called of type I if ¢} >
vel . Later, this set of tetrahedra will be subdivided into 8 subtetrahedra as Figure
1(a) shows; 6 new nodes are introduced in the middle point of its edges and each one
of its faces are subdivided into four subtriangles following the division proposed by
Bank [17]. Thus, four subtetrahedra are determined from the four vertices of ¢} and
the new edges. The other four subtetrahedra are obtained by joining the two nearest
opposite vertices of the octahedron which results inside ¢}.

Once the type | tetrahedral subdivision is defined, we can find neighbouring tetra-
hedra which may have 6, 5, ..., 1 or 0 new nodes introduced in their edges that must
be taken into account in order to ensure the mesh conformity. In the following we
analyse each of these cases.

b) Tetrahedra with 6 new nodes. Those tetrahedra that have marked their 6 edges
for conformity reason, are included in the set of type | tetrahedra.

c) Tetrahedra with 5 new nodes. Those tetrahedra with 5 marked edges are also
included in the set of type | tetrahedra. Previously, the edge without new node must
be marked.

d) Tetrahedra with 4 new nodes. In this case, we mark the two free edges and it is
considered as type I.

e) Tetrahedra with 3 new nodes. In this case, we must distinguish two situations:

e.l. If the 3 marked edges are not located on the same face, then we mark the
others and the tetrahedron is introduced in the set of type | tetrahedra. Here, we can



make the previous consideration too, if we compare this step with other algorithms
based on the bisection of the longest edge.

In the following cases, we shall not mark any edge, i.e., no new node will be intro-
duced in a tetrahedron for conformity. We shall subdivide them creating subtetra-
hedra which will be called transient subtetrahedra.

e.2. If the 3 marked edges are located on the same face of the tetrahedron, then 4
transient subtetrahedra are created as Figure 1(b) shows. New edges are created by
connecting the 3 new nodes one another and these with the vertex opposite to the
face containing them. The tetrahedra of 7, with these characteristics will be inserted
in the set of type Il tetrahedra.

f) Tetrahedra with 2 new nodes. Also in this case, we shall distinguish two situa-
tions:

f.1. If the two marked edges are not located on the same face, then 4 transient
subtetrahedra will be constructed from the edges connecting both new nodes and
these with the vertices opposite to the two faces which contain each one of them.
This tetrahedra are called type Ill.a; see Figure 1(c).

f.2. If the two marked edges are located on the same face, then 3 transient
subtetrahedra are generated as Figure 1(d) shows. The face determined by both
marked edges is divided into 3 subtriangles, connecting the new node located in
the longest edge with the vertex opposite and with the another new node, such that
these three subtriangles and the vertex opposite to the face which contains them
define three new subtetrahedra. We remark that from the two possible choices, the
longest marked edge is fixed as reference in order to take advantage in some cases
of the properties of the bisection of the longest edge. These tetrahedra are called
type I11.b.

g) Tetrahedra with 1 new node. Two transient subtetrahedra will be created as we
can see in Figure 1(e). The new node is connected to the other two which are not
located in the marked edge. This set of tetrahedra is called type IV.

h) Tetrahedra without new node. These tetrahedra of ; are not divided and they
will be inherit by the refined mesh . We call them type V tetrahedra; see Figure
1(f).

Generally, when we want to refine the level 7; in which there already exist transient
tetrahedra, we shall perform that in the same way as from 7, to 7, except for the
following variation: if an edge of any transient tetrahedron must be marked, due to
the error indicator or even to conformity reasons, then all the transient tetrahedra
are eliminated from their parent (deleting process), all the parent edges are marked
and this tetrahedron is introduced into the set of type | tetrahedra.



(@) Type | (b) Type 1I

(c) Type Ill.a (d) Type lll.b

(e) Type IV (F) Type V

Fig. 1. Subdivision classification of a tetrahedron as function of the new nodes (empty
circles).



5 Discussion on the Parameters to Be Estimated

In the following we define and discuss the four parameters of the wind model that
we are interested in estimating. First, we will consider the so called stability pa-

rameter
aq Tv
— 1 _ | 20
o= ‘/Th (20)

since the minimum of the functional given by (3) is the same if we divide it by
a2. On the other hand, for o >> 1 flow adjustment in the vertical direction pre-
dominates, while for a << 1 flow adjustment occurs primarily in the horizontal
plane. Thus, the selection of « allows the air to go over a terrain barrier or around
it, respectively [18]. Moreover, the behaviour of mass consistent models in many
numerical experiments has shown that they are very sensitive to the value chosen
for a. Therefore, we shall give particular attention to this problem. In the past,
many authors have studied the parameterisation of stability, since the difficulty in
determining the correct values of « have limited the possible wide use of mass-
consistent models in complex terrain. Sherman [19], Kitada et al. [20] and Davis
et al. [21], proposed to take o = 1072, i.e., proportional to the magnitude of w /u.
Other authors such as Ross et al. [22] and Moussiopoulos et al. [23] related « to
the Froude number. Geai [24], Lalas et al. [25] and Tombrou et al. [26], make the
« parameter vary in the vertical direction. Finally, Barnard et al. [27] proposed a
procedure to obtain « for each single wind field simulation. The main idea is to
use /N observed wind speeds to obtain the wind field and to keep the rest, V,, as a
reference. Then, several simulations are performed with different values of a. The
value which gives the best agreement with the reference observations is taken to be
the final magnitude of the stability parameter. Since this method provides values
of « that are only reliable for each particular case, it cannot provide an a priori
value suitable for other simulations. Here, we follow a version of the method pro-
posed in [27], using genetic algorithms as optimisation technique which leads to an
automatic selection of «.

The second parameter to be estimated is the weighting coefficiente (0 < e < 1) of
(9). Note that ¢ — 1 signifies more importance of the horizontal distance from each
point to the measurement stations, while ¢ — 0 signifies more importance of the
height difference between each point and the measurement stations [3]. In general,
the second approach has been used for complex terrains. On the other hand, the
first approach has been widely used for problems with regular topography or in
2-D horizontal analysis. In realistic applications, the possibility of existing zones
with complex orography and others with regular one, suggests that an intermediate
value of ¢ should be more useful.

The next parameter to discuss is ~y, given in (14) and related to the height of the
planetary boundary layer. There exist different versions of where to search for this
parameter. Panofsky et al. [28] proposed the interval [0.15,0.25]. On the other hand,



Ratto [29] directly suggested v = 0.3 in the WINDS code, while ~ is located in
[0.3,0.4] by de Baas [30]. Therefore, in our simulations, the search space for ~
must include all these possibilities.

Finally, we are interested in obtaining suitable values of the parameter ~ involved
in the computation of the mixing height for stable atmosphere, see (15). Garratt
[31] proposed ~" = 0.4. Also in the WINDS code one may find bounds of ~" around
0.4. Thus, the value of + will be searched in the surroundings of 0.4.

6 Genetic Algorithms

Genetic algorithms (GAs) are optimisation tools based on the natural evolution
mechanism. They produce successive trials that have an increasing probability to
obtain a global optimum. This work is based on the model developed by Levine
[32]. The most important aspects of GAs are the construction of an initial popula-
tion, the evaluation of each individual in the fitness function, the selection of the
parents of the next generation, the crossover of those parents to create the children,
and the mutation to increase diversity.

Two population replacements are commonly used. The first, the generational re-
placement, replaces the entire population each generation [33]. The second, known
as steady-state, only replaces a few individuals each generation [34-36]. In our
experiments, initial population has been randomly generated and we use iteration
limit exceeded as stopping criterion. The selection phase allocates an intermediate
population on the basis of the evaluation of the fitness function. We have chosen two
selection schemes [32]: stochastic universal selection (SU) and binary tournament
selection (BT). The crossover operator takes bits from each parent and combines
them to create a child. Uniform crossover operator (U) is used here. It depends on
the probability of exchange between two bits of the parents [37]. The mutation op-
erator is better used after crossover [38]. It allows to reach individuals in the search
space that could not be evaluated otherwise. When part of a chromosome has been
randomly selected to be mutated, the corresponding genes belonging to that part
are changed. This happens with probability p. This work deals with two mutation
operators. The first is of the form v «— v 4+ p x v, where v is the existing allele
value, and p is selected from a Gaussian distribution (G). The second operator (R)
simply replaces v with a value selected uniformly randomly from the initialisation
range of that gene.

The fitness function plays the role of the environment. It evaluates each string of a
population. This is a measure, relative to the rest of the population, of how well that
string satisfies a problem-specific metric. The values are mapped to a nonnegative
and monotonically increasing fitness value. In the numerical experiments with this
wind model, we look for optimal values of «, ¢, v and ~'. For this purpose, the



average relative error of the wind velocities given by the model with respect to the
measures at the reference stations is minimised

1 ol 17n_17xnaynazn
T p=1 n

where (., yn, 2,) 1S the wind velocity obtained by the model at the location of
station n, and N, is the number of reference stations.

7 Numerical Experiments

We study the same wind field problem (cases | and Ill) related to the southern
area of La Palma Island (Canary Islands) which was defined in [39,2]. A 45600 x
31200 x 9000 m? domain with real data of the topography is discretized using the
code developed in [1]. The maximum height in this zone of the island is 2279 m. We
start from an initial mesh A, with 11416 nodes and 55003 tetrahedra. The refine-
ment of M, around the location of the measurement stations produces a new mesh
M with 11494 nodes and 55363 tetrahedra; see Figure 2. This local refinement
process has been developed only attending to geometrical considerations. The wind
measurements were taken in four stations: MBI, MBII, MBIII and LPA. In case |
we consider softly unstable conditions and in case 111 softly stable conditions, in or-
der to test the procedure for different stability conditions of the atmosphere. Due to
the small number of available data, we have used the observed wind speeds of sta-
tions MBI, MBII and LPA to obtain the interpolated wind field (9), i.e., N = 3, and
the measurement of MBIII is considered as reference station in the fitness function
(21),i.e., N, = 1.

In the first application (case 1), the parameter ' is not involved in the modelling
due to the unstable condition of the atmosphere, i.e., h = z,. Thus, only ¢, ¢ and
~ will be estimated in this case. The experiment has been divided in two stages.
First, we fix v = 0.3 and estimate « € [1072,10] and ¢ € [0, 1].

The second column of Table 1 (Stage 1) shows the values obtained for o and ¢,
which suggest a nearly vertical wind adjustment and remark the complexity of the
terrain, respectively. Note that we obtained with the model an error at station MBI11
about 4.96%. The strategy of GAs (BT, U, R) corresponds to the most efficient se-
lection, crossover and mutation operators after several tests with different combi-
nations. In the second stage, a, € and v € [0.15,0.5] are estimated. The results
are shown in the third column of Table 1. We observe that « takes the maximum
value of the space of search, € remains around 0.5 and ~ is reduced, such that the
error at station MBII1 is 4.76%. We remark that in this experiment the worst evalua-
tion of the fitness function, corresponding to values of the parameters in the search
space, yields an error of 68.07% and 34.62% in each stage, respectively. There-
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Fig. 2. Detail of the finite element mesh A/ used for the numerical experiment. Only the
triangulation of the boundary is plotted in order to hold clarity.

fore, the knowledge of suitable values of the studied parameters is essential for the
efficiency of the numerical model.

For the second experiment (case I11) we have followed a similar procedure. Now,
v € [0.15,0.5] must be also considered. First, a problem with two unknown pa-
rameters («, €) is solved. The second column of Table 2 (Stage 1) shows the values
obtained for «, €. Next, four problems arising from fixing one of the parameters
each time, respectively, are studied (Stages 2-5). Finally, the four parameters are
estimated at the same time in Stage 6. The atmospheric stable conditions remain
the vertical adjustment predominance arising in the previous experiment with un-
stable conditions, as well as augment the importance of the horizontal distance in
the interpolation of the observed wind speeds. In Stage 6, the minimum error ob-
tained at station MBIl was about 11.87%, while the error related to the worst eval-
uation was 994.2%. In both experiments, the number of individuals of the initial
population was 100, except for stage 6 in case Il where it was 150.

Iterations and CPU timings on a five nodes cluster of 1.6 GHz Pentium 4 are shown
in Tables 1 and 2 for each stage, running 2 processes on each node. We also tried 3
and 4 processes on each node, however, the strategy of running 2 processes per node
was the fastest. We remark that the evaluation of one individual of any generation
means the resolution of a wind problem by the finite element method using two
adaptive mesh refinement steps (i.e., three meshes).

If we compare the results obtained here, applying a refinement strategy for both
cases, with those obtained in [2] without using refinement, we observe that the
error has been reduced about a half in each experiment. In addition, the values of
the parameters corresponding to the best individual also change with the domain
discretization.



Table 1

First experiment corresponding to the case | analysed in [39,2]. Strategy of genetic algo-
rithms, best evaluation of the fitness function and values of the parameters (fixed values are

Stage 1 Stage 2
GAs strategy | BT,U,R | SU, U, G
Iterations 88 135
CPU time (s) | 10385 16194
Best Fitness | 0.0496 0.0476
« 9.978 10.000
€ 0.609 0.484
ol (0.300) 0.150

written in parenthesis).

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6
GAs strategy | SU,U,G | SU,U,R | SU,U,R | SU,U,R | SU,U,R | SU,U,R
Iterations 81 82 93 123 435 431

CPU time (s) 9613 9478 10970 14758 50849 75692
Best Fitness 0.1810 0.1612 0.1248 0.1213 0.1191 0.1187
« 10.000 9.968 (9.968) 9.922 9.995 9.999
€ 0.672 0.780 0.808 (0.808) 0.810 0.808
v (0.300) | 0.244 0.234 0.230 | (0.230) | 0.231
5 (0.400) | (0.400) | 0.164 0.151 0.150 0.150

Table 2

Second experiment corresponding to the case Il analysed in [39,2]. Strategy of genetic
algorithms, best evaluation of the fitness function and values of the parameters (fixed values
are written in parenthesis).

Finally, as example, we consider a particular adaptive strategy for the computation
of the wind field in the second experiment by using the values of the parameters
corresponding to Stage 6. First, we refine the mesh A/ using the error indicator
given in (19) with a refinement parameter 6 = 0.4. The resulting mesh M, shown
in Figure 3, contains 13135 nodes and 64684 tetrahedra. We repeat the same refine-
ment strategy over M, to obtain M, with 19205 nodes and 99422 tetrahedra, see
Figure 4. Here, the measures of the four stations have been taken into account for
determining the interpolated wind field. Figures 5 and 6 illustrate the streamlines
and the velocities of wind obtained by the model at a height of 500 m.
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Fig. 4. Detail of the refined mesh M, obtained in the second step of refinement.

8 Conclusions

We have pointed out that the estimation of several parameters is essential for the
efficiency of a 3-D mass consistent model for wind field adjustment. The numeri-
cal experiments have shown that these codes are very sensitive to the values chosen
for «, €, v and +'. A methodology for solving these parameter estimation problems
is proposed. Genetic algorithms have proved to be an efficient and robust tool for
these optimisation problems when several parameters are involved (see also [40]).
Adaptive mesh refinement techniques allow us to reduce the error in the reference
stations. Finally, the resolution by GAs using a cluster of computers leads to com-
petitive timings compared to other optimisation solvers.



Fig. 5. Streamlines of wind velocities related to the second experiment at a height of 500
m.
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Fig. 6. Wind velocities related to the second experiment at a height of 500 m.
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