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Abstract

Sizing and shape structural optimization problems are normally stated in terms of
a minimum weight approach with constraints that limit the maximum allowable
stresses and displacements.

However, topology structural optimization problems have been usually stated
in terms of a maximum stiffness (minimum compliance) approach. In this kind of
formulations, the aim is to distribute a given amount of material in a certain domain,
so that the stiffness of the resulting structure is maximized (the compliance, or
energy of deformation, is minimized) for a given load case. Thus, the material mass
is restricted to a predefined percentage of the maximum possible mass, while no
stress or displacement constraints are taken into account.

In this paper we analyze and compare both approaches, and we present a FEM
minimum weight with stress constraints (MWSC) formulation for topology struc-
tural optimization problems. This approach does not require any stabilization tech-
nique to produce acceptable optimized results, while no truss-like final solutions are
necessarily obtained. Several 2D examples are presented. The optimized solutions
seem to be correct from the engineering point of view, and their appearence could be
considered closer to the engineering intuition than the traditional truss-like results
obtained by means of the widespread maximum stiffness (minimum compliance)
approaches.
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1 Introduction

Around four decades ago Schmidt [1] proposed a revolutionary idea that gave
rise to a new discipline: engineers, as a general rule, try to design minimum cost
objects or systems that must withstand the maximum unfavorable estimated
loads; therefore, (optimum) design could be systematically stated in terms of
constrained minimization problems; then, these problems could be solved by
means of mathematical programming techniques implemented in high speed
digital computers. Sizing and shape structural optimization problems have
been thereafter mainly written in terms of minimum weight formulations,
with non linear constraints that limit the maximum allowable stresses and
displacements [2,3,4].

However, since Bendse and Kikuchi proposed the basic concepts [5] in 1988,
most of topology structural optimization problems have been routinely stated
in terms of minimum compliance (maximum stiffness) approaches. In this kind
of formulations, one tries to distribute a given amount of material within a
given domain, so that the stiffness of the resulting structure is maximized (the
compliance is minimized) for a given load case [6]. The traditional minimum
compliance formulations offer some obvious advantages, since one avoids deal-
ing with a large number of highly non-linear constraints. This could be consid-
ered crucial, if one takes into account the large number of design variables that
is inherent to topology optimization. However, one can also argue that this
gives rise to several important drawbacks. Thus, multiple load cases can not
be considered, different solutions are obtained for different restrictions on the
amount of material, and the final design could be unfeasible in practice, since
no constraints are imposed on stresses and displacements. Moreover, the min-
imum compliance problem is said to be ill-posed, since the solution oscillates
as the discretization refinement is increased [7,8,9], although this difficulty can
be partially overcome by introducing porous materials.

The SIMP (solid isotropic material with penalty) formulation [7,9,10] is the
most widely used minimum compliance approach, so far. In this formulation,
one introduces a non-dimensional design variable per element (the relative den-
sity, that is the one’s complement of the porosity), which value ranges from
0 to 1. The aim is to compute the design variables (the amount of porous
material that must be distributed within each element) in such a way that a
highly non-linear objective function is minimized (the compliance, or energy
of deformation), while a single linear constraint is satisfied (the total amount
of material is limited, by the so called filling factor, to occupy a predefined
percentage of the domain volume). The SIMP formulation is easy to imple-
ment in a FEM framework. Moreover, several explicit procedures have been
proposed to iterate the relative density of the elements [7,9], what facilitates
solving the minimization problem. However, a spread porous material distri-



bution is frequently considered an unwanted result, and numerical instabilities
do often occur. Therefore, additional penalization and stabilization techniques
must still be employed [7,9]. On the other hand, an image filter is generally ap-
plied, in order to enable the final interpretation of the results. These normally
resemble truss-like structures [7].

But one could question these results, since the final design depends on so many
arbitrary parameters (filling factor, degree of discretization, applied penaliza-
tion and stabilization techniques, image filter, etc.) One could even say that
the final results are somehow impelled to resemble truss-like structures, since
this is what one expects to obtain as a satisfactory final design. On the other
hand, the final design could be unfeasible in practice, since the formulation
disregards the stress and displacement fields. And, obviously, the stiffest de-
sign that can be built with a given amount of material will normally differ
from the cheapest (in cost of material) design that can support a set of given
load cases.

Next, we present a FEM minimum weight with stress constraints (MWSC)
approach for topology structural optimization problems [9,11,12].

2 The Structural Analysis Model

2.1 The Structural Analysis Problem

Let Q° be a domain in the material space originally occupied by a certain
deforming body. Due to given external loads the body is deformed onto a
different domain 2. Thus, every arbitrary point P° in ° is carried into a
different position P in ). Let r° and r be the material coordinates vectors of
points P? and P, respectively. Our aim is to compute the displacements

u(r?) =r(r’) —r°, (1)
which are the key to obtain the strains e(r°) and the stresses o(r°). In lin-

ear elasticity with small displacements and small displacement gradients the
corresponding expressions are

€ = Lu, o0 = De. (2)

Let the external loads be the forces b(r°) per unit volume (of the body) in
the domain Q°, and ¢(r°) per unit area on the surface I'?. In these terms, the



structural analysis problem can be written as [13,14]

Find ueH,
such that  a(w,u) = (w,b)oo + (w,t)r, Yw € H,

being  a(w,u) = ///Q (Lw)"D(Lu) dS2. (3)
(w,b)qe = //QO w?b dS, (w, )y = /ro w't drl,

where the trial functions u and the test functions w are required to satisfy
the essential boundary conditions (prescribed displacements) and their corre-
sponding homogeneous boundary conditions, respectively.

2.2  The Finite Element Numerical Model

As a general rule, it will not be possible to obtain the exact solution of the
above stated problem. Hence, we will try to approximate the exact solution
in a finite-dimensional context. Thus, we replace the function spaces H, and
H,, by their respective finite dimension subspaces H" and H". Let u" and w"
be the discretized trial and test functions in the above mentioned subespaces.
Let w” be a trial function that satisfies the essential boundary conditions. And
let {¢i(r°)} and {w;(r°)} be conveniently selected bases of discretized trial
and test functions in the corresponding subespaces H" and H!, verifying the
homogeneous boundary conditions of our problem. In this terms we can write
[13,14]

u'(r’) = u’(r’) + Z@i(ro)az-, (%) = ¢i(r°) I,
v (4)
W' (1) = W, ()8, W,(r) = ().

J=1

In a FEM formulation the unknown e; is the nodal displacements vector of
node number i. Moreover, the domain 2° is discretized in such a way that

nelem

QO = U Ee, E61 mEm :Q) \V/€1 ?é €9, (5)
e=1

being FE. the so-called finite elements. On the other hand, in solid mechanics
one normally resorts to a Galerkin type formulation, by taking the same base
for both, the trial and the test functions. Thus,

w;(r°) = ¢;(r°). (6)



Therefore, the FEM numerical model of structural analysis can be written as
Find a={a}, i=1,...,N
such that iKﬁai:fj j=1,....,N (7)
being iji =a(®;, ),
fi=(®,b)a0 + (®;,t)r; — a(®;,u").

The required terms can be computed on an element by element sequence.
Thus,

nelem

Kji = Z K,
e=1
nelem (8)

= [ ertdr+ X £
o e=1
being the element contributions
K¢, = /[/E (L2,)"D(L,) O

fi= ///E 6 (@fb— (LQj)TD(Lup)) do. )

Once the solution @ to problem (7) is found, we can compute at any point
r° € ()° the aproximations

u"(r°) = uf (r°) + i ®,(r’)a, (10)
e"(r°) = Lu(r°), o (r°) = De"(r°). (11)

3 MWSC Formulation

3.1 The Structural Analysis Problem with Relative Density

Let the domain §2° be occupied by a porous material. Let p(r°) be the relative
density of the material (one’s complement of the porosity, which adimensional
value must range from 0 to 1) at point P° of material coordinates r°. For a
given distribution of (porous) material, defined by the relative density field
p(r°), our aim is to compute the displacements (1) and the associated strains
and stresses (2). We assume again the linear elasticity hypothesis, what implies
small displacements and small displacement gradients.



Let df) be the volume of a differential region in the vicinity of point P°. By
definition, the volume occupied by the porous material within the differential
region will be p(r°)dS2. Therefore, the structural analysis problem (3) can be
written as [9]

Given p(Q°)
find u < H,
such that  a(w,u) = (w,b)oo + (w,t)r, Yw € H,

being  alw,u) = ///Q (Lw)"D(Lu) p d92,
(w,b)qo = //Qo w’b p dS, (w,t)ro = /ro w't dl.

Notice that, in comparison with the original statement (3), the modifications
are reduced to taking into account the porosity effect in the integration. In fact,
once the displacements are known, the strain and stress fields are computed
with the same expressions, independently of the actual material distribution.
However, we must exclude the case in which the relative densitity is locally
null, since the concepts of displacement, strain and stress become meaningless.

It is worthy to reflect on the physical meaning of the stress o(r°) computed by
means of expressions (2). It really represents the stress tensor of the deforming
body. However, we recall that in the vicinity of each point there are probably
regions occupied by material, as much as empty ones. Therefore, if we try to
analyze the forces equilibrium in a finite subdomain, we should operate with
the so-called effective stress, by multiplying the stress o(r°) by the relative
density p(r°).

3.2 The Finite Element Numerical Model with Relative Density

Let p. be the relative density of element number e, what is assumed constant
within the element. Let p = {p.} (e = 1,...,nelem) be the relative densities
vector, that will constitute the design variables of the topology optimization
problem. For a given p, the structural analysis problem to be solved is:

Find a(p)
al . (13)
such that Z:sz’(P)Oli(P) =f;ip), j=1,...,N,



The required terms can be computed on an element by element sequence. Thus

nelem

Kji(p) = > Kj(p.),
e=1 l (14>
T neltem .
fj(P) = //ng)jtdr‘i‘ 62::1 fj(p6>7
being the element contributions
K:(p.) = [[| (£®)" DI p. g,

Fi(pe) = ///E e (<I>JT b— (L<I>j)TD(Lup)> pe dS).

Once the solution a(p) to problem (13) is found, we can compute at any
arbitrary point r° € €2° the aproximations

u"(r’, p) = u’(r’) + Zl ®;(r%)ai(p), (16)
sh(ro7p) = L'u'h<'r07 p)? 0h<rov p) = Deh(roa p) (17>

By comparing (16) and (17) with (10) and (11) we observe that displacements,
strains and stresses are still computed in the usual way. Therefore, if we wish to
adapt an existing FEM numerical model of structural analysis as a component
of a topology optimization system, we only have to modify the element contri-
butions (9) computation. Moreover, the required adjustment is quite simple,
since we only need to introduce the relative density in the integration of the
corresponding expressions (15). Furthermore, computing contributions (15) is
fairly straightforward, since we assume that the relative density is constant
within each element. Thus, we just have to multiply the original results (9) by
the corresponding relative densities. On the other hand, the original results
(9) give the first order derivatives of contributions (15) with respect to the
design variables. Moreover, all the other first and higher order derivatives are
obviously null.

We conclude that we do not have to modify the source at the lower level for
adapting an existing FEM code into a topology optimization system. In prac-
tice, only slight adjustments must be implemented in the data flow between
the higher level routines. In fact, any conventional code should contain all
the basic tools to perform the required new computations and the associated
sensitivity analysis.



3.3 Statement of the Stress Constraints

The values 6™(r°, p) computed by means of (16) and (17) are numerical ap-
proximations to the actual stress tensor components of the material being
deformed. Thus, the allowable values of the reference stress 6(o) at point r?
can be limited by introducing constraints type

9;(p) = 5'(0’"‘(1";?,/))) — Omaze <0, or

95(P) = Omin — 5(0‘h('r?7p)) <0, (18)

where 0,4, and ,,;;, are the corresponding upper and lower limits. However,
since we are dealing with a porous material, we could state alternative expres-
sions in terms of the effective stress. As a general rule, this is as simple as
multiplying the above expressions by the relative density p(r), what gives

9(p) = |#((15.0)) = G| p(r}) <0, or

9(p) = Guin = 5(a"15.0)) | () <0 19)

It is obvious that expressions (18) and (19) are equivalent, unless the relative
density is null. This is a singular but conceptually important case, since it
happens when all the material has been removed in the vicinity of the point
being considered. Apparently, the difference between both ways of imposing
the constraints seems to be insignificant. However, this could become a crit-
ical point, with unforeseeable effects on the performance of the optimization
algorithm and the final result.

To clarify this point we resort to an academic conceptual problem. Figure 1
(left) shows the rectangular solid section of a beam with height 2¢ and width
b. Let 0. be the elastic stress limit of the material. The section supports
the bending momment M; = 2bc*c./3, that is the maximum that can be
applied without exceeding the elastic stress limit. We add an upper layer and
a lower layer of porous material, both with height nc (n << 1), and we keep
the same value of the bending momment. In these conditions we state the
following (trivial) topology optimization problem: find the relative density p
of the material in the upper and lower layers such that the weight is minimized
and the elastic stress limit is not exceeded. It seems obvious that the exact
solution of this problem must be p = 0.

A quite simple strength of materials analysis [12] shows that the stress con-
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Figure 1. Layout (left) of an academic conceptual topology optimization problem,
and comparison (right) of constraint (20) [o] with constraint (21) [e]. (Notes: n=0.1;
the constraint is scaled by oe.)

straint type (18) associated to this problem can be written as

o(p) = | 1= B+ 30 +n*)p
14 (3n 430> +1%)p

o, <0. (20)

Figure 1 (right) shows that this constraint is not satisfied for values of the
relative density under p ~ 1/3. Moreover, the constratint is more severely
violated as we get closer to the exact solution p = 0! It seems clear that we
are facing a situation in which reaching the optimum calls for removing all
the material. However, in the vicinity of the optimum (that is for any value
of p slightly greater than 0) the constraint is largely violated. Furthermore,
its gradient is negative. This is even worse, since any consistent non linear
programming algorithm will try to raise the value of the relative density, what
precludes convergence to the exact solution of the problem. At the best of
times we could only obtain a non global optimum.

If we rewrite constraint (20) in terms of the effective stress (that is, multiplying
the above inequality by the relative density) we obtain the alternative stress
constraint type (19)

n—Bn+3* +1°)p
g(p) - ( 2 3) P Oe S O (21>
1+ Bn+3n2+n%)p

Figure 1 (right) shows that this constraint is still not satisfied for values of
the relative density under p ~ 1/3. However, the reformulated constraint is
strictly verified at the solution p = 0. And, most important, the gradient is
now positive in the vicinity of this point. Therefore, for initial values of p not



too far from the exact solution (less than 1/6 approximately) any consistent
non linear programming algorithm will try to reduce the value of the relative
density, what allows to achieve convergence.

This is a critical aspect of these formulations. The challenge is to find a con-
venient way for limiting the stress, without overestimating the strength nor
trending to fill in regions that should actually be hollowed out. The statement
type (19) partially fulfills these requirements. However, it seems to slow down
the converge. We have performed a few numerical tests, and this seems to be
a quite promising line, although the results are not yet conclusive. A more
detailed discussion on this topic can be found in [9].

3.4 The Optimization Problem

Let 4t be the density of the material. We define the objective function

nelem

Fp) = [ p5ma 42 = 3 (p)F [ s (22)

e=1

where p is a tuning parameter that can be used to favor a mainly compact
(p > 1) or a mainly porous (p < 1) distribution of material. In this terms, the
topology optimization problem can be written as

Find p=1{p.} e=1,...,nelem
that minimizes F(p)

verifying gi(p) <0, j=1,....,m
0 < pmin <pe <1, e=1,... nelem

where the stress constraints g; (at the corresponding points r$) must be stated
accordingly to the previously exposed concepts, and the stress values o” (r?,p)
are computed by means of the proposed numerical model. Obviously, we can
consider displacement constraints too. On the other hand, we introduce a lower
limit for the relative density, since the entire hollowing out of some elements
could cause a singular stiffness matrix and stall the optimization process. We
emphasize that this topology optimization aproach is a kind of sizing opti-
mization from the operational point of view, since the design variables do
not modify the shape of the elements. The above stated formulation has been
imlemented by following the general methodology [3], and applying the sensi-
tivity analysis techniques [4] and the improved SLP algorithm with quadratic
line-search [15] developed by the authors.
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Figure 2. MWSC topology optimization of a simply supported structure, with small
height /length ratio, considering sliding (up) and fixed (down) supports. Concen-
trated load applied in the center of the upper side. (Note: only half of the solid is
represented in order to show the central section.)
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Figure 3. MWSC topology optimization of a simply supported structure, with large
height /length ratio, considering sliding (up) and fixed (down) supports. Concen-
trated load applied in the center of the upper side. (Notes: the supports are not
optimized; the entire hollowing out is not allowed.)



4 Application Examples

The examples presented below are bidimensional, the width of the structures
is constant, and we perform a plane stress analysis. However, the results are
represented as 3-D images [9], being the false width proportional to the relative
density of each element.

Figures 2 and 3 show the results for a simply supported structure, with small
and large height /length ratio respectively, both for sliding and fixed supports.
The domain containing the structure is a prism that bears a concentrated
9000 KN load (vertical, downwards) in the center of the upper side. We analyze
half of the structure, because of symmetry. The supports are not optimized.
The domain is discretized in 24 times 8 elements (8-node quadrilateral). The
material density is Y. =7650 Kg/m?.

Type (18) constraints
Oom — 0 <0, 020, <0 and —20,— o' <0, (24)

are imposed at the center of all the elements in terms of the elastic stress limit
O, being

1
O = \/2 [(01 — gI)2 4 (gIT — gIII)2 4 (gTTT — gI)2 (25)
the Von Mises reference stress. The absolute value of the stress is limited to the
double of the elastic stress limit, in accordance with the standard NBE EA-95
[16].

In figure 2 the domain is 32 m long, 1.5 m high and 1 m wide, and the material
is steel with elastic stress limit 0,=230000 KN /m?. We notice that the result
obtained in the first case is a clear double T shaped beam with variable section.
The width of the wings increases from the supports to the center of the span,
where the load is applied. The result obtained in the second case is similar.
However, the central section is closer to a T shaped beam. Actually, the lower
wing nearly disappears, since the tension due to the bending is balanced with
the compression due to the fixed supports.

In figure 3 the domain is 32 m long, 12 m high and 1 m wide, and the material
is fictitious with elastic stress limit 0,=8000 KN/m?. We notice that the result
obtained in the first case is clearly a cable stayed arch. The result obtained
in the second case is an arch too, but the tie looses its raison d’tre and it
disappears, since the supports are fixed.

13



5 Conclusions

In this paper we present a minimum weight with stress constraints (MWSC)
approach for topology structural optimization problems.

The formulation is derived by introducing minimal modifications to a FEM
model for linear elasticity problems with small displacements and small dis-
placement gradients.

Although the objective function is simple, as a general rule, this approach
leads to more complicated optimization problems with more computational
requirements than the maximum stiffness formulations, since a large number of
highly non-linear constraints must be taken into account to limit the maximum
allowable displacement and stress.

In return, the physical meaning of the optimization statement is closer to the
engineering point of view, while any kind of constraint can be included and
multiple load cases can be considered.

The formulation has been implemented in a topology optimization system,
and several application examples have been solved. The experience shows that
this approach does not require neither stabilization nor penalty techniques to
produce acceptable results.

The optimized solutions seem to be correct from the engineering point of view
and their appearence could be considered closer to the engineering intuition
than the traditional truss-like results obtained by the maximum stiffness ap-
proach.
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