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Genetic algorithms and simulated annealing are leading methods of  search and optimization. This paper 
proposes an efficient hybrid genetic algorithm named ASAGA (Adaptive Simulated Annealing Genetic 
Algorithm). Genetic algorithms are global search techniques for optimization. However, they are poor 
at hill-climbing. Simulated annealing has the ability of  probabilistic hill-climbing. Therefore, the two 
techniques are combined here to produce an adaptive algorithm that has the merits of  both genetic 
algorithms and simulated annealing, by introducing a mutation operator like simulated annealing and 
an adaptive cooling schedule. The validity and the efficiency of  the proposed algorithm are shown by 
an example involving system identification. Copyright © 1996 Elsevier Science Ltd 
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1. INTRODUCTION 

Genetic algorithms (GAs) are search methods based on 
natural selection and genetics, while neural networks and 
fuzzy theory originate from human information process- 
ing and inference procedures. 1,2 GAs are currently being 
used in various problems, including control problems. In 
the control area, the GA has been used in identification, 
adaptation and neural-network controllers. 3-5 

Calculus-based search methods usually assume a 
smooth search space, and most of them use the gradient- 
following technique. A GA is different from conventional 
optimization methods in several ways. The GA is a par- 
allel and global search technique that searches multiple 
points, so it is more likely to obtain a global solution. 
It makes no assumption about the search space, so it is 
simple and can be applied to various problems. However, 
GAs are inherently slow, and are not good at fine-tuning 
solutions. 

Correspondence should be sent to: II-Kwon Jeong,Department of 
Electrical Engineering, Korea Advanced Institute of Science and 
Technology, 373-1 Kusong-dong, Yusong-gu, Taejon 305-701, 
Korea. E-mail: jik@odyssey.kaist.ac.kr. 

Simulated annealing (SA) is another important algo- 
rithm which is powerful in optimization and high-order 
problems, but is very slow. 6 SA uses random processes 
to help guide the form of its search for minimal energy 
states. A GA merged with SA has been proposed to 
improve sm. 7 This algorithm uses simulated-annealing 
crossover (SAR) and simulated-annealing mutation 
(SAM) operators instead of standard ones. It has the 
merit that populations can be kept small. However, it has 
three drawbacks. SAR is far from the standard crossover 
which is a main component of a GA. One would have 
to redesign a cooling schedule for the algorithm at each 
time of execution. Because the algorithm has a strong 
resemblance to SA, it has the same drawback of slowness 
as SA. 

In the analysis and design of control systems, it is 
necessary to have a mathematical model of the given 
plant. Such a mathematical model, here called sim- 
ply a "model", must describe the system dynamics as 
completely as possible. There are two approaches to ob- 
taining a mathematical model of  a plant. One approach 
is to obtain a model based on physical laws; the other is 
to use experimentation. In general, it may not be possible 
to obtain an accurate model by applying physical laws 
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only. Some of the plant parameters must be determined 
by experiment. Constructing mathematical models and 
estimating optimal parameter values by experimental 
means is called "system identification". 

This paper proposes an adaptive simulated anneal- 
ing genetic algorithm (ASAGA), which is designed to 
improve the speed of convergence to the solution, to 
be implemented easily, and to be robust to the search 
space. The paper is organized as follows. In Section 2, ge- 
netic algorithms and simulated annealing are described. 
In Section 3, the proposed algorithm, named ASAGA, is 
presented. In Section 4, an application of ASAGA to a 
problem of system identification is included, with simu- 
lation results, to show the performance of the proposed 
algorithm. 

2. GENETIC ALGORITHMS AND SIMULATED 
ANNEALING 

2.1. Genetic algorithms 

A GA is a search method based on natural selection 
and genetics. The central theme of the research on GAs 
has been the robustness, and the balance between the 
efficiency and the efficacy necessary for survival in many 
different environments. GAs are computationally simple, 
yet powerful, and are not limited by assumptions about 
the search space. 

Current search methods can be classified into three 
groups: calculus-based, enumerative and random 
method. All of these methods lack robustness. 1 On the 
other hand, SA searches for the minimal energy state 
and uses random processes. The important thing to rec- 
ognize is that a randomized search does not necessarily 
imply a directionless search. If more-human-like opti- 
mization tools are needed, the most important goal of 
optimization should be improvement. Although a GA 
cannot guarantee that the solution will converge to the 
optimum, it tries to find the optimum, that is, it works 
towards an improvement. GAs are different from normal 
search procedures in four ways: 

1. GAs work with a coding of the parameter set, not 
the parameters themselves. 

2. GAs search from a population of points, not a single 
point. 

3. GAs use objective function information, not deriva- 
tives or other auxiliary knowledge. 

4. GAs use probabilistic transition rules, not determin- 
istic rules. 

The GA may be thought of as an evolutionary process, 
where a population of solutions evolves over a sequence 
of generations. During each generation, the fitness (good- 
ness) of each solution is calculated, and solutions are 
selected for reproduction on the basis of their fitness. The 
probability of survival of a solution is proportional to 
its fitness value. This process is based on the principal of 

"survival of the fittest". The reproduced solutions then 
undergo recombination, which consists of crossover and 
mutation. A genetic representation may differ from the 
real form of the parameters of the solutions. Fixed-length 
and binary encoded strings have been widely used for 
representing solutions, since they provide the maximum 
number of schemata, and are simple to implement.l, 2 

A simple GA is really easy to use, yet powerful. It uses 
three basic genetic operators: reproduction, crossover and 
mutation. Reproduction is a process in which individual 
strings (solutions) are copied according to their fitness 
values (objective function values). Crossover requires a 
mating of two randomly selected strings. The informa- 
tion on the strings is partly interchanged according to 
a randomly chosen crossover site. Crossover is applied 
to take valuable information from the parents, and it is 
applied with a certain probability. Mutation is the occa- 
sional random alteration of the value of a string position. 
Mutation insures against bit loss, and can be a source of 
new bits. Since mutation is a random walk through the 
string space, it must be used sparingly. 

There are three differences between GA and random 
searches. First, there exists a direction of the search, due 
to the selection probability. Second, the better strings gen- 
erate more offspring. Finally, it is likely to be improved 
in average fitness after some generations. 

2.2. Simulated annealing 

Simulated annealing (SA) is a stochastic computational 
technique derived from statistical mechanics for finding 
near-global minimum-cost solutions to large optimiza- 
tion problems. 6 One should understand the basics of 
statistical mechanics to appreciate the relationship be- 
tween techniques in statistical physics and large optimiza- 
tion problems. Statistical mechanics is the study of the 
behavior of very large systems of interacting components, 
such as atoms in a fluid, in thermal equilibrium at a finite 
temperature. 

Suppose that a configuration of a system is identified 
with the set of spatial positions of the components. If a 
system is in thermal equilibrium at temperature T, then 
the probability rrr(s) that the system is in a given con- 
figuration s depends on the energy E(s), and follows the 
Boltzmann distribution 

r-Jg.~] 
~-wesexp[ kr J 

(1) 

where k is Boltzmann's constant and S is the set of all 
possible configurations. 

For the simulation of the behavior of a system in ther- 
mal equilibrium at temperature T, suppose that at time 
i the system is in configuration q. A candidate r for the 
configuration at time i + 1 is generated randomly and 
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The cooling process is inherently slow. Researchers 
have determined a cooling schedule that is sufficient for 
convergence. Specifically, for a given sequence of temper- 
atures {7;,.} that satisfies equation (3) for a large constant 
c, the probability that the system is in configuration s as 
i - oo is equal to rr0 (s), which means that the system is 
in the minimum-energy configuration with probability 1. 
In practice, however, it is often unnecessary to adhere to 
this conservative schedule in order to achieve acceptable 
results 

C 
7],.-0 as i ~ o o  and T / _ > - -  (3) 

log i" 

Fig. 1. The objective function F(x).  

accepted according to 

r r r ( r )  - ( E ( r )  - E ( q ) )  ] .  
P - rrr(q------S - exp [ k T  (2) 

If  p is greater than 1, that is, the energy of r is strictly 
less than the energy of q, then configuration r is accepted 
as the new configuration for time i + 1. If  p is less than 
or equal to 1, then configuration r is accepted as the new 
configuration, with the probability p. Thus, configura- 
tions of higher-energy states may be attained. It is proved 
that as time i goes to infinity, the probability that the 
system is in a given configuration s equals rrr(s), and 
the distribution of configurations converges to the Boltz- 
mann distribution. Thus, at low temperatures the low- 
energy states predominate because of the nature of the 
Boltzmann distribution. 

It is not sufficient to simply lower the temperature 
to achieve low-energy configurations. One must use an 
annealing process, where the temperature of the system 
is elevated, and then gradually lowered, spending enough 
time at each temperature to reach thermal equilibrium. 
The following preparatory steps are needed to apply the 
simulation of annealing to optimization problems. 

1. One has to identify the analogues of the physics 
concepts in the optimization problem itself. Note 
that the energy function becomes the objective func- 
tion, and the configurations of particles becomes 
the configurations of parameter values. Finding a 
low-energy configuration becomes finding a near- 
optimal solution, and temperature becomes the con- 
trol parameter for the simulation. 

2. One has to select a cooling schedule (annealing 
schedule), consisting of a set of decreasing temper- 
atures, together with the amount of time to spend 
at each temperature. 

3. One should have a way of generating and selecting 
new solutions. 

2.3. Comparison of a GA with SA using an example 

Consider the following example. 

E x a m p l e :  Find the minimum of the objective function 
F ( x ) ,  when -1 < x < 1 

F ( x )  = ( x  + 0.9)(x + 0.7)(x + 0.2)(x - 0.4) 
x ( x - O . 7 ) ( x - 0 . 9 )  +0.04. (4) 

It is known by calculation that the true solution is about 
0.078. Figure 1 shows the objective function. F ( x )  has 
two local minima as well as the global minimum in the 
specified region of x. 

For the simulation of GA and SA, the following set- 
tings were used. 

• G A :  x is coded as an 8-bit binary number and scaled 
to produce a value between -1 and 1, and the sim- 
ple GA is used. The population consists of eight 
strings, crossover probability Pc is 0.8 and mutation 
probability Pm is 0.01. 

• S A :  equation (2) is used as the probability of ac- 
ceptance of a new solution. A cooling schedule is 
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Fig. 2. GA, the average result of ten simulations of 
estimating x minimizing F(x) .  
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Fig. 3. SA, estimated value of x minimizing F(x). 

selected to satisfy equation (3). In the simulation, 
equations (5) and (6) are used as the probability of 
acceptance and the cooling schedule respectively 

p(i) = exp [-AE/T(i)] (5) 

T ( i ) =  To (6) 
log i 

where i = 1, 2, 3 . . . .  and AE is the change in the 
objective function value, p(i) is considered to be 1 
when i is equal to 1. 

Figure 2 shows the average of the estimated solutions 
from ten independent executions of the GA, and Fig. 3 
shows the estimated solution using SA. Figure 2 indicates 
that the GA finds the solution quickly, but it does not 
always determine the true solution. On the other hand, 
one can see the drifting of the solution and slow con- 
vergence to the global minimum in Fig. 3. Because the 
example here is rather simple, the GA could get a near- 
minimum solution in the initial population, which con- 
sists of randomly chosen strings. 

3. ADAPTIVE SIMULATED ANNEALING 
GENETIC ALGORITHM 

3.1. Limitations of the GA 

The GA is a very useful algorithm because of its ver- 
satility. However, it has three major limitations. First, the 
performance is degraded as the problem size grows. As 
in the case of the simple example in Section 2.3, the GA 
outperforms SA. But, as the problem size grows, the GA 
requires a larger population to obtain a satisfactory solu- 
tion. This situation occurs, for example, when the GA is 
used for the optimization of the weights or the structure 
of a large neural network. Secondly, premature conver- 
gence occurs when the GA cannot find the optimal solu- 
tion due to loss of some important characters (genes) in 

the strings. The reason is that the GA depends heavily on 
crossover, and the mutation probability is generally too 
small to move the search into another space. To overcome 
this problem, a large population can be used so that it 
includes many characters. However, this is not desirable 
because the computational burden is increased and the 
speed of convergence is slow. There has been much work 
done to prevent premature convergence for small popu- 
lations: using the rank of the fitness values so that the 
selectivity is not proportional to the fitness value, scaling 
the fitness value according to the gene loss, changing the 
genetic operator, constraining mating (incest prevention), 
lowering the fitness values of similar strings, adjusting 
the mutation probability or inserting new genes, using a 
parallel GA when the population is large, merging the 
GA with another method, etc. Another limitation of the 
GA is that it lacks a hill-climbing capability. The reason 
is also that the probability of mutation is much smaller 
than the probability of crossover. 

3.2. Previous work on hybrid techniques using SA 

SA can be applied to a high-order problem, since it 
has a stochastic hill-climbing capability and the solu- 
tion state cannot stay at a fixed point for a long time. 
Therefore, there has been much work on hybridizing the 
GA with SA for performance improvement. Sirag and 
Weisser 8 proposed the thermodynamic genetic operator 
which uses exp(-Om/T) as the mutation probability. 
There is a method in which the evolution of the operator 
probabilities is based on an assignment of credit from 
previous generations. Certain work uses SA-flavored 
Gaussian mutations, As = N(0, 0-). SAGA consists of a 
GA stage and an SA stage. 9 

Recently, Adler 7 proposed a new hybridization of GA 
with SA. In that algorithm, the hybridization of GA 
with SA was designed so that each algorithm maintains 
its own identity. The algorithm uses simulated-annealing 
crossover (SAR) and simulated-annealing mutation 
(SAM). It has some drawbacks. First, SAR is far from 
the standard crossover which is a main component of a 
GA. Second, one has to redesign a cooling schedule for 
the algorithm at each time of execution. Finally, because 
it is focused on SA rather than GA, it is like a parallel 
SA, and slow due to the cooling schedule. 

The next section proposes a new hybrid GA which 
uses a new mutation operator like simulated annealing 
and an adaptive cooling schedule. Thus, repeated cooling 
schedules become possible. 

3.3. Proposed hybrid genetic algorithm 

A new hybridization of a GA with SA is proposed: 
the adaptive simulated annealing genetic algorithm 
(ASAGA). In merging a GA with SA, it is difficult to 
maintain each algorithm's own identity perfectly. When 
Adler 7 tried to solve this problem, the resulting algo- 
rithm converged slowly. Therefore, a simple and effective 
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Table 1. Proposed hybrid genetic algorithm 
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Step 1: 
Step 2: 
Step 3: 
Step 4: 
Step 5: 
Step 6: 

Step 7: 
Step 8: 

Step 9: 
Step 10: 
Step 11: 

ASAGA (Adaptive Simulated Annealing Genetic Algorithm) 
i =  1, Initialization of population, Determine To. 
If the generation number is enough or stopping criterion is satisfied then go to step 11 or else go to step 3. 
Calculation of fitness values of each string. 
Probabilistic determination of the number of offspring proportional to the fitness value. 
Reproduction and formation of the new generation. 
Random mating. If the string is the fittest then make no change to it or else apply crossover operator 
with the crossover probability Pc. 
Generate a random string, and if a better solution is acquired then accept the string and go to step 9. 
Accept the string generated in step 7 with the probability of i ( l l f - l l f ' ) /To where f '  is the new fitness and 
f is the ,old fitness values. 
If the fittest is the same for Nrcset generations then i = 1 and reset To, else i = i + 1. 
Go to step 2. 
The fittest is the solution. Algorithm ends. 

hybrid algorithm is proposed here to improve the per- 
formance of the GA. To preserve the merits of the GA 
no change is made to the crossover operator. The pro- 
posed algorithm, named ASAGA, includes the merits of 
SA by changing the mutation operator. This is basically 
different from only changing the operator probability. 
The new mutation operates like simulated annealing as 
follows. It generates a random string, which it accepts if 
the string is better than the original string. Otherwise, 
the string is accepted according to the probability given 
in equation (5). For the cooling schedule which is related 
to the speed of ASAGA, equation (6) is used again. 
SA searches for the minimal energy state while the GA 
searches for the string with the maximum fitness value. 
Therefore, equation (5) can be rewritten as 

p(i) = exp [- ( ~  - f ) /T(i)] (7) 

where i = 1, 2, 3 . . . . .  f is the fitness value of the original 
string and f '  is the fitness value of the randomly gener- 
ated string, i is increased by 1 at each generation. Again, 
p(i) is considered to be 1 when i is equal to 1. From 
equations (6) and (7) 

p ( i ) = e x p [  (T' - 7) " l°gi] = (8) 

Determining To is generally difficult because it depends 
on the problem being solved. In a simulation of ASAGA, 
To is defined as the reciprocal of the fitness value of the 
worst string in the population corresponding to i = 1. 

To insure both high search speed and good solution 
quality, an adaptive rule is suggested 

Adaptive rule: reset i to I when Flagrcsct = True (9) 

[ True, if the fittest solution is 
Flagreset = j the same for Nresct generations (10) 

[ False, otherwise 

where Nreset is a positive integer constant. Flagreset is true 
when the algorithm is stuck in a certain region of the 
search space, that is, the algorithm may get stuck at a 
local minimum, and this means that certain characters 
for the solution are required. If  the cooling schedule is 
started again by equation (9), then the probability of ac- 
cepting inferior solutions again becomes large. Thus, the 
algorithm may have a chance to escape the local min- 
imum and search for the global minimum. Therefore, 
equations (9) and (10) reduce the probability of failing 
to find the global solution. The elitist strategy, that is, al- 
ways transferring the best solution to the next generation 
without any alterations, is applied in order to maintain a 
good quality solution under the condition of randomized 
search due to the repeated cooling schedules. 

The proposed algorithm is shown in Table 1. The mod- 
ified mutation operator offers the GA a hill-climbing 
capability. From the viewpoint of GA, the modified mu- 
tation operator functions in the same way as the standard 
one did. From the viewpoint of SA, it can be thought 
that SA deals with multiple points which are presented 
through the selection process of the GA, and this is de- 
sirable for SA which has to search the neighborhood of 
current solutions. Strings with high fitness make more 
offspring which have to be applied to SA, so SA operates 
near the good solution. This is also good for the repro- 
duction and crossover of the GA. The proposed algo- 
rithm behaves like SA when the population size is small, 
and like a GA when the population size is large. 

4. SYSTEM IDENTIFICATION 

Identification means the determination of the model of 
a dynamic system from input/output measurements. The 
knowledge of the model is necessary for the design and 
implementation of a high-performance control system. 
System identification is an experimental approach for de- 
termining the dynamic model of a system. It includes four 
steps: 1° 
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1. Input/output data acquisition under an experi- 
mentation protocol. 

2. Choice of  the model structure and complexity. 
3. Estimation of  the model parameters. 
4. Validation of  the identified model. 

ASAGA is applied here to the problem of estimating 
model parameters to show its performance. Consider a 
system described by an A R M A X  model: 

A ( q - I ) y ( t )  = B ( q - l ) u ( t  - d )  + C ( q - l ) e ( t )  (11) 

where q-i is the backward shift operator, i.e. u(t  - 1) = 
q - l u ( t ) ,  while y(t), u(t)  and e( t )  are output, input and 
noise respectively. The objective is to identify the sys- 
tem polynomials, A ( q  -1) and B ( q - l ) ,  and the delay d us- 
ing the given input u(t)  and the output y ( t ) .  T h e  error 
sequence is defined as 

rl(t) = y ( t )  - ~( t )  (12) 

with 

/ l ( q - ] ) p ( t )  = B ( q - l ) u ( t  - d )  (13) 

where the estimated output, )3 (t), is the output of  a system 
driven by the actual input u( t ) ,  and .~(q-l) and B(q -I) 
are the estimates of  A ( q  - l  ) and B ( q  - l  ) respectively. 

The fitness function to be maximized is chosen as 

1 
F ( t )  = w t (14) 

Zi=o[O( - i ) ] 2  

where w is the window size. 
The simulated system is the same as that in Ref. 3 for 

the purpose of comparison, and C ( q  -1 ) is not used. The 
system polynomials, poles and zeros are as follows: 

A ( q  - l )  = 1 . 0 -  1.5q -1 +0.7q -2 
B(q_ l )  = bo(1.O +0.5q_ 1 +O.Oq_2) (15) 

F,M! 9:5-D 
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Fig. 7. ASAGA, the best estimation result among 20 simulations. (a) Pl, P2; (b) zl, z2; (c) b0, d; (d) F(t). 

poles: (0.7500+ j0.3708) 
zeros: (-0.2500___0.2500) (16) 

where the gain, b0 is 1. The delay, d, is 1. 
To apply the GA, a reparameterization is introduced. 

In the reparameterized plane, [a, b] means a pair of  real 
roots, (a _ b), when b is positive, and it means a pair 
of  complex roots, (a +_ jb),  when b is negative or zero. 
Thus, any complex conjugate poles can be represented 
as two real numbers by using reparameterization. In the 
reparameterized plane, poles and zeros can be rewritten 
a s  

poles: [0.7500, -0.3708] = [pl, p2] 
zeros: [-0.2500, +0.2500] = [zl, z2]. (17) 

A simple GA and ASAGA are applied to identify p L, 
P2, zl, z2, b0 and d. In the simulation, seven bits were used 
for each parameter except for d (two bits). Thus, a string 
is 37 bits long. In the simple GA, Pc = 0.8, Pm = 0.1, 
population size = 100 and window size = 30. Values for 

pc and Pm were determined by trial and error in order to 
show the best performance, b0 is assumed to be between 
0 and 2, and Pl, p2, zl and z2 are assumed to be in the 
[ -  1, 1 ] range, so the resolution is slightly finer than 0.02. 
Although the true value of p2 is -0.  3708, the limitation 
on the resolution due to coding makes the best estimated 
p2 equal to -0.375(= -1  + 80/27). So, p2 is assumed to 
be in the [-0.996, 1.004] range, which makes the best 
estimated value of  p2 equal to -0.  371. In ASAGA, Nrese t 

in equation (10) is 3, and the other conditions are the 
same as the simple GA. 

The test input for the sample data is chosen as 

u(t) = sin(t) - sin(t/2.5) + random(-1 ,  1) (18) 

where random ( -  1, 1) is a random number between - 1 
and 1. 

The input and output of the system are shown in 
Fig. 4. One simulation was done using 200 samples with 
three generations per sample, that is, 600 generations for 
each run. 20 simulations were done for each algorithm. 
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Figure 5 shows the best result among 20 simulation 
results using the simple GA. It shows six estimated pa- 
rameters and F ( t )  for each generation. Figure 6 shows 
the averaged parameters and F ( t )  over 20 simulations. 
The results obtained using ASAGA are shown in Figs 7 
and 8, which correspond to Figs 5 and 6 respectively. 

Comparing Figs 5 and 7, it can be seen that ASAGA 
has a good hill-climbing capability. Note that ASAGA 
has found the exact parameters. Figures 6 and 8 show that 
ASAGA consistently outperforms the simple GA. To see 
the effect of the adaptive cooling schedule the problem 
was solved 20 times by ASAGA using Nreset = 10. Figure 
9 shows the averaged identification results for Pl and p2 
using 3 and 10 for Nreset- It shows faster convergence when 
Nreset is 3, which indicates that repeated cooling schedule 
contributes to the fast convergence, and thus small values 
o f  Nrese t are good. However, too-small values of Nreset 
may reduce the SA feature of ASAGA. 

For a comparison with a recursive method, a gradient 
algorithm is introduced. The algorithm uses the following 
series-parallel identification model: 

n-I  m-1 
33(t + 1) = Z d i ( t ) y ( t  - i) + ~ t~j(t)u(t  - j )  

i=0 j=0 
(19) 

and the adaptation law: 

ai(t  + 1) = 

~i(t)  - 17 • 
e( t  + l ) y ( t -  i) 

K - m -  1 1 + 17(~7201 yZ(t - i) + ~j=0 u2( t - J))  

recursive identification method and ASAGA have solved 
basically different problems. The recursive identification 
method uses the identification model, while ASAGA does 
not know any system information, and the recursive iden- 
tification can adapt only one step per one sample. 

5. CONCLUSION 

An efficient hybrid genetic algorithm named ASAGA 
(Adaptive Simulated Annealing Genetic Algorithm) has 
been proposed. ASAGA was designed to preserve the 
merits of both SA and GA, to improve GA while not 
greatly altering the identities of each algorithm, and to 
speed up the convergence. The differences from previous 
work on GA with SA are the use of the standard crossover 
operator and the introduction of the adaptive cooling 
schedule. An example of discrete-time system identifi- 
cation shows that the proposed algorithm, ASAGA, is 
effective and superior to the simple GAs, and even bet- 
ter than the gradient algorithm. It has also been shown 
that the adaptive cooling schedule contributes to the hill- 
climbing and the fast convergence. Identification using 
ASAGA has been shown to be basically different from 
recursive identification methods. 

More theoretical analysis of ASAGA, and applications 
to more versatile control system structures, should be 
done in order to complete the exploration of the ideas 
that have been presented here. 

R E F E R E N C E S  

t~j(t + 1) = 

t)j(t) -- I 7 • 
e(t  + 1 )u ( t - j )  

(20) 

, r - n - I  2, t m-I  l +17. t2. i=oY t - i )+~ . j=0  u 2 ( t - j ) )  

where 17 is a positive adaptation gain. Equation (15) can 
be represented as 

y ( t +  1) = 1.5y(t)- 0 .7y(t-  1 )+u( t )+  0.5u(t-  1). 
(21) 

True values of a0, al, b0 and bl in equation (19) are 1.5, 
-0.7, 1.0 and 0.5 respectively. Figure 10 shows the recur- 
sire identification result using equations (19) and (20) 
with 0 = 2 and the same input as earlier. The recursive 
method did not do as well as ASAGA. The recursive 
method requires more sample data, and it is very difficult 
to determine the optimal adaptation gain. Note that the 
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