
Pergamon

PII: S 0 9 5 2 - 1 9 7 6 (9 6) 0 0 0 4 9 - 8

Engng Applic. Artif. lntell. Vol. 9, No. 5, pp. 523-532, 1996
Copyright (~ 1996 Elsevier Science Ltd

Printed in Great Britain. All rights reserved
0952-1976/96 $15.00+0.00

Contributed Paper

Adaptive Simulated Annealing Genetic Algorithm for
System Identification

I L - K W O N J E O N G
Korea Advanced Institute of Science and Technology, Korea

J U - J A N G L E E
Korea Advanced Institute of Science and Technology, Korea

(Received August 1994; in revised form March 1995; received for publication June 1996.)

Genetic algorithms and simulated annealing are leading methods of search and optimization. This paper
proposes an efficient hybrid genetic algorithm named ASAGA (Adaptive Simulated Annealing Genetic
Algorithm). Genetic algorithms are global search techniques for optimization. However, they are poor
at hill-climbing. Simulated annealing has the ability of probabilistic hill-climbing. Therefore, the two
techniques are combined here to produce an adaptive algorithm that has the merits of both genetic
algorithms and simulated annealing, by introducing a mutation operator like simulated annealing and
an adaptive cooling schedule. The validity and the efficiency of the proposed algorithm are shown by
an example involving system identification. Copyright © 1996 Elsevier Science Ltd

Keywords: Genetic algorithm, simulated annealing, system identification.

1. INTRODUCTION

Genetic algorithms (GAs) are search methods based on
natural selection and genetics, while neural networks and
fuzzy theory originate from human information process-
ing and inference procedures. 1,2 GAs are currently being
used in various problems, including control problems. In
the control area, the GA has been used in identification,
adaptation and neural-network controllers. 3-5

Calculus-based search methods usually assume a
smooth search space, and most of them use the gradient-
following technique. A GA is different from conventional
optimization methods in several ways. The GA is a par-
allel and global search technique that searches multiple
points, so it is more likely to obtain a global solution.
It makes no assumption about the search space, so it is
simple and can be applied to various problems. However,
GAs are inherently slow, and are not good at fine-tuning
solutions.

Correspondence should be sent to: II-Kwon Jeong,Department of
Electrical Engineering, Korea Advanced Institute of Science and
Technology, 373-1 Kusong-dong, Yusong-gu, Taejon 305-701,
Korea. E-mail: jik@odyssey.kaist.ac.kr.

Simulated annealing (SA) is another important algo-
rithm which is powerful in optimization and high-order
problems, but is very slow. 6 SA uses random processes
to help guide the form of its search for minimal energy
states. A GA merged with SA has been proposed to
improve sm. 7 This algorithm uses simulated-annealing
crossover (SAR) and simulated-annealing mutation
(SAM) operators instead of standard ones. It has the
merit that populations can be kept small. However, it has
three drawbacks. SAR is far from the standard crossover
which is a main component of a GA. One would have
to redesign a cooling schedule for the algorithm at each
time of execution. Because the algorithm has a strong
resemblance to SA, it has the same drawback of slowness
as SA.

In the analysis and design of control systems, it is
necessary to have a mathematical model of the given
plant. Such a mathematical model, here called sim-
ply a "model", must describe the system dynamics as
completely as possible. There are two approaches to ob-
taining a mathematical model of a plant. One approach
is to obtain a model based on physical laws; the other is
to use experimentation. In general, it may not be possible
to obtain an accurate model by applying physical laws

523

524 IL-KWON JEONG and JU-JANG LEE: ASAGA

only. Some of the plant parameters must be determined
by experiment. Constructing mathematical models and
estimating optimal parameter values by experimental
means is called "system identification".

This paper proposes an adaptive simulated anneal-
ing genetic algorithm (ASAGA), which is designed to
improve the speed of convergence to the solution, to
be implemented easily, and to be robust to the search
space. The paper is organized as follows. In Section 2, ge-
netic algorithms and simulated annealing are described.
In Section 3, the proposed algorithm, named ASAGA, is
presented. In Section 4, an application of ASAGA to a
problem of system identification is included, with simu-
lation results, to show the performance of the proposed
algorithm.

2. GENETIC ALGORITHMS AND SIMULATED
ANNEALING

2.1. Genetic algorithms

A GA is a search method based on natural selection
and genetics. The central theme of the research on GAs
has been the robustness, and the balance between the
efficiency and the efficacy necessary for survival in many
different environments. GAs are computationally simple,
yet powerful, and are not limited by assumptions about
the search space.

Current search methods can be classified into three
groups: calculus-based, enumerative and random
method. All of these methods lack robustness. 1 On the
other hand, SA searches for the minimal energy state
and uses random processes. The important thing to rec-
ognize is that a randomized search does not necessarily
imply a directionless search. If more-human-like opti-
mization tools are needed, the most important goal of
optimization should be improvement. Although a GA
cannot guarantee that the solution will converge to the
optimum, it tries to find the optimum, that is, it works
towards an improvement. GAs are different from normal
search procedures in four ways:

1. GAs work with a coding of the parameter set, not
the parameters themselves.

2. GAs search from a population of points, not a single
point.

3. GAs use objective function information, not deriva-
tives or other auxiliary knowledge.

4. GAs use probabilistic transition rules, not determin-
istic rules.

The GA may be thought of as an evolutionary process,
where a population of solutions evolves over a sequence
of generations. During each generation, the fitness (good-
ness) of each solution is calculated, and solutions are
selected for reproduction on the basis of their fitness. The
probability of survival of a solution is proportional to
its fitness value. This process is based on the principal of

"survival of the fittest". The reproduced solutions then
undergo recombination, which consists of crossover and
mutation. A genetic representation may differ from the
real form of the parameters of the solutions. Fixed-length
and binary encoded strings have been widely used for
representing solutions, since they provide the maximum
number of schemata, and are simple to implement.l, 2

A simple GA is really easy to use, yet powerful. It uses
three basic genetic operators: reproduction, crossover and
mutation. Reproduction is a process in which individual
strings (solutions) are copied according to their fitness
values (objective function values). Crossover requires a
mating of two randomly selected strings. The informa-
tion on the strings is partly interchanged according to
a randomly chosen crossover site. Crossover is applied
to take valuable information from the parents, and it is
applied with a certain probability. Mutation is the occa-
sional random alteration of the value of a string position.
Mutation insures against bit loss, and can be a source of
new bits. Since mutation is a random walk through the
string space, it must be used sparingly.

There are three differences between GA and random
searches. First, there exists a direction of the search, due
to the selection probability. Second, the better strings gen-
erate more offspring. Finally, it is likely to be improved
in average fitness after some generations.

2.2. Simulated annealing

Simulated annealing (SA) is a stochastic computational
technique derived from statistical mechanics for finding
near-global minimum-cost solutions to large optimiza-
tion problems. 6 One should understand the basics of
statistical mechanics to appreciate the relationship be-
tween techniques in statistical physics and large optimiza-
tion problems. Statistical mechanics is the study of the
behavior of very large systems of interacting components,
such as atoms in a fluid, in thermal equilibrium at a finite
temperature.

Suppose that a configuration of a system is identified
with the set of spatial positions of the components. If a
system is in thermal equilibrium at temperature T, then
the probability rrr(s) that the system is in a given con-
figuration s depends on the energy E(s), and follows the
Boltzmann distribution

r-Jg.~]
~-wesexp[kr J

(1)

where k is Boltzmann's constant and S is the set of all
possible configurations.

For the simulation of the behavior of a system in ther-
mal equilibrium at temperature T, suppose that at time
i the system is in configuration q. A candidate r for the
configuration at time i + 1 is generated randomly and

IL-KWON JEONG and JU-JANG LEE: ASAGA 525

0'16 I

0.14

0.12~

0.1

"~ 0.08

0.06

0.04

0.02

0
-I

08

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 11.6 (I.8

X

The cooling process is inherently slow. Researchers
have determined a cooling schedule that is sufficient for
convergence. Specifically, for a given sequence of temper-
atures {7;,.} that satisfies equation (3) for a large constant
c, the probability that the system is in configuration s as
i - oo is equal to rr0 (s), which means that the system is
in the minimum-energy configuration with probability 1.
In practice, however, it is often unnecessary to adhere to
this conservative schedule in order to achieve acceptable
results

C
7],.-0 as i ~ o o and T / _ > - - (3)

log i"

Fig. 1. The objective function F(x).

accepted according to

r r r (r) - (E (r) - E (q))] .
P - rrr(q------S - exp [k T (2)

If p is greater than 1, that is, the energy of r is strictly
less than the energy of q, then configuration r is accepted
as the new configuration for time i + 1. If p is less than
or equal to 1, then configuration r is accepted as the new
configuration, with the probability p. Thus, configura-
tions of higher-energy states may be attained. It is proved
that as time i goes to infinity, the probability that the
system is in a given configuration s equals rrr(s), and
the distribution of configurations converges to the Boltz-
mann distribution. Thus, at low temperatures the low-
energy states predominate because of the nature of the
Boltzmann distribution.

It is not sufficient to simply lower the temperature
to achieve low-energy configurations. One must use an
annealing process, where the temperature of the system
is elevated, and then gradually lowered, spending enough
time at each temperature to reach thermal equilibrium.
The following preparatory steps are needed to apply the
simulation of annealing to optimization problems.

1. One has to identify the analogues of the physics
concepts in the optimization problem itself. Note
that the energy function becomes the objective func-
tion, and the configurations of particles becomes
the configurations of parameter values. Finding a
low-energy configuration becomes finding a near-
optimal solution, and temperature becomes the con-
trol parameter for the simulation.

2. One has to select a cooling schedule (annealing
schedule), consisting of a set of decreasing temper-
atures, together with the amount of time to spend
at each temperature.

3. One should have a way of generating and selecting
new solutions.

2.3. Comparison of a GA with SA using an example

Consider the following example.

E x a m p l e : Find the minimum of the objective function
F (x) , when -1 < x < 1

F (x) = (x + 0.9)(x + 0.7)(x + 0.2)(x - 0.4)
x (x - O . 7) (x - 0 . 9) +0.04. (4)

It is known by calculation that the true solution is about
0.078. Figure 1 shows the objective function. F (x) has
two local minima as well as the global minimum in the
specified region of x.

For the simulation of GA and SA, the following set-
tings were used.

• G A : x is coded as an 8-bit binary number and scaled
to produce a value between -1 and 1, and the sim-
ple GA is used. The population consists of eight
strings, crossover probability Pc is 0.8 and mutation
probability Pm is 0.01.

• S A : equation (2) is used as the probability of ac-
ceptance of a new solution. A cooling schedule is

0.18

.=
o

o

<

0.16

11.14

0.12

0.1

o.o8 ! . -__ ~

0.04

0.1)2

0 i i i
0 2 4 6 8 10 12 14 16 18

Generation

Fig. 2. GA, the average result of ten simulations of
estimating x minimizing F(x) .

20

526 IL-KWON JEONG and JU-JANG LEE: ASAGA

I

0.8

0.6

0.4

0.2

41.2

41.4-

-0.6

-0.8

_|11
0 200 ~ 0 ~ 0 800 1000 12'00 1400 1600

Iteration

Fig. 3. SA, estimated value of x minimizing F(x).

selected to satisfy equation (3). In the simulation,
equations (5) and (6) are used as the probability of
acceptance and the cooling schedule respectively

p(i) = exp [-AE/T(i)] (5)

T (i) = To (6)
log i

where i = 1, 2, 3 and AE is the change in the
objective function value, p(i) is considered to be 1
when i is equal to 1.

Figure 2 shows the average of the estimated solutions
from ten independent executions of the GA, and Fig. 3
shows the estimated solution using SA. Figure 2 indicates
that the GA finds the solution quickly, but it does not
always determine the true solution. On the other hand,
one can see the drifting of the solution and slow con-
vergence to the global minimum in Fig. 3. Because the
example here is rather simple, the GA could get a near-
minimum solution in the initial population, which con-
sists of randomly chosen strings.

3. ADAPTIVE SIMULATED ANNEALING
GENETIC ALGORITHM

3.1. Limitations of the GA

The GA is a very useful algorithm because of its ver-
satility. However, it has three major limitations. First, the
performance is degraded as the problem size grows. As
in the case of the simple example in Section 2.3, the GA
outperforms SA. But, as the problem size grows, the GA
requires a larger population to obtain a satisfactory solu-
tion. This situation occurs, for example, when the GA is
used for the optimization of the weights or the structure
of a large neural network. Secondly, premature conver-
gence occurs when the GA cannot find the optimal solu-
tion due to loss of some important characters (genes) in

the strings. The reason is that the GA depends heavily on
crossover, and the mutation probability is generally too
small to move the search into another space. To overcome
this problem, a large population can be used so that it
includes many characters. However, this is not desirable
because the computational burden is increased and the
speed of convergence is slow. There has been much work
done to prevent premature convergence for small popu-
lations: using the rank of the fitness values so that the
selectivity is not proportional to the fitness value, scaling
the fitness value according to the gene loss, changing the
genetic operator, constraining mating (incest prevention),
lowering the fitness values of similar strings, adjusting
the mutation probability or inserting new genes, using a
parallel GA when the population is large, merging the
GA with another method, etc. Another limitation of the
GA is that it lacks a hill-climbing capability. The reason
is also that the probability of mutation is much smaller
than the probability of crossover.

3.2. Previous work on hybrid techniques using SA

SA can be applied to a high-order problem, since it
has a stochastic hill-climbing capability and the solu-
tion state cannot stay at a fixed point for a long time.
Therefore, there has been much work on hybridizing the
GA with SA for performance improvement. Sirag and
Weisser 8 proposed the thermodynamic genetic operator
which uses exp(-Om/T) as the mutation probability.
There is a method in which the evolution of the operator
probabilities is based on an assignment of credit from
previous generations. Certain work uses SA-flavored
Gaussian mutations, As = N(0, 0-). SAGA consists of a
GA stage and an SA stage. 9

Recently, Adler 7 proposed a new hybridization of GA
with SA. In that algorithm, the hybridization of GA
with SA was designed so that each algorithm maintains
its own identity. The algorithm uses simulated-annealing
crossover (SAR) and simulated-annealing mutation
(SAM). It has some drawbacks. First, SAR is far from
the standard crossover which is a main component of a
GA. Second, one has to redesign a cooling schedule for
the algorithm at each time of execution. Finally, because
it is focused on SA rather than GA, it is like a parallel
SA, and slow due to the cooling schedule.

The next section proposes a new hybrid GA which
uses a new mutation operator like simulated annealing
and an adaptive cooling schedule. Thus, repeated cooling
schedules become possible.

3.3. Proposed hybrid genetic algorithm

A new hybridization of a GA with SA is proposed:
the adaptive simulated annealing genetic algorithm
(ASAGA). In merging a GA with SA, it is difficult to
maintain each algorithm's own identity perfectly. When
Adler 7 tried to solve this problem, the resulting algo-
rithm converged slowly. Therefore, a simple and effective

IL-KWON JEONG and JU-JANG LEE: ASAGA

Table 1. Proposed hybrid genetic algorithm

527

Step 1:
Step 2:
Step 3:
Step 4:
Step 5:
Step 6:

Step 7:
Step 8:

Step 9:
Step 10:
Step 11:

ASAGA (Adaptive Simulated Annealing Genetic Algorithm)
i = 1, Initialization of population, Determine To.
If the generation number is enough or stopping criterion is satisfied then go to step 11 or else go to step 3.
Calculation of fitness values of each string.
Probabilistic determination of the number of offspring proportional to the fitness value.
Reproduction and formation of the new generation.
Random mating. If the string is the fittest then make no change to it or else apply crossover operator
with the crossover probability Pc.
Generate a random string, and if a better solution is acquired then accept the string and go to step 9.
Accept the string generated in step 7 with the probability of i (l l f - l l f ') /To where f ' is the new fitness and
f is the ,old fitness values.
If the fittest is the same for Nrcset generations then i = 1 and reset To, else i = i + 1.
Go to step 2.
The fittest is the solution. Algorithm ends.

hybrid algorithm is proposed here to improve the per-
formance of the GA. To preserve the merits of the GA
no change is made to the crossover operator. The pro-
posed algorithm, named ASAGA, includes the merits of
SA by changing the mutation operator. This is basically
different from only changing the operator probability.
The new mutation operates like simulated annealing as
follows. It generates a random string, which it accepts if
the string is better than the original string. Otherwise,
the string is accepted according to the probability given
in equation (5). For the cooling schedule which is related
to the speed of ASAGA, equation (6) is used again.
SA searches for the minimal energy state while the GA
searches for the string with the maximum fitness value.
Therefore, equation (5) can be rewritten as

p(i) = exp [- (~ - f) /T(i)] (7)

where i = 1, 2, 3 f is the fitness value of the original
string and f ' is the fitness value of the randomly gener-
ated string, i is increased by 1 at each generation. Again,
p(i) is considered to be 1 when i is equal to 1. From
equations (6) and (7)

p (i) = e x p [(T' - 7) " l°gi] = (8)

Determining To is generally difficult because it depends
on the problem being solved. In a simulation of ASAGA,
To is defined as the reciprocal of the fitness value of the
worst string in the population corresponding to i = 1.

To insure both high search speed and good solution
quality, an adaptive rule is suggested

Adaptive rule: reset i to I when Flagrcsct = True (9)

[True, if the fittest solution is
Flagreset = j the same for Nresct generations (10)

[False, otherwise

where Nreset is a positive integer constant. Flagreset is true
when the algorithm is stuck in a certain region of the
search space, that is, the algorithm may get stuck at a
local minimum, and this means that certain characters
for the solution are required. If the cooling schedule is
started again by equation (9), then the probability of ac-
cepting inferior solutions again becomes large. Thus, the
algorithm may have a chance to escape the local min-
imum and search for the global minimum. Therefore,
equations (9) and (10) reduce the probability of failing
to find the global solution. The elitist strategy, that is, al-
ways transferring the best solution to the next generation
without any alterations, is applied in order to maintain a
good quality solution under the condition of randomized
search due to the repeated cooling schedules.

The proposed algorithm is shown in Table 1. The mod-
ified mutation operator offers the GA a hill-climbing
capability. From the viewpoint of GA, the modified mu-
tation operator functions in the same way as the standard
one did. From the viewpoint of SA, it can be thought
that SA deals with multiple points which are presented
through the selection process of the GA, and this is de-
sirable for SA which has to search the neighborhood of
current solutions. Strings with high fitness make more
offspring which have to be applied to SA, so SA operates
near the good solution. This is also good for the repro-
duction and crossover of the GA. The proposed algo-
rithm behaves like SA when the population size is small,
and like a GA when the population size is large.

4. SYSTEM IDENTIFICATION

Identification means the determination of the model of
a dynamic system from input/output measurements. The
knowledge of the model is necessary for the design and
implementation of a high-performance control system.
System identification is an experimental approach for de-
termining the dynamic model of a system. It includes four
steps: 1°

328 IL-KWON JEONG and JU-JANG LEE: ASAGA

15

1~]

5

04
-5

-I0

u(O -15

-20
-50

. . - y(t)

:l

0 50 t 00 150 200

t

Fig. 4. Input and output for the sample.

0.8

0.6 ~ pl

0.4

0.2

°fl -0.2

p2

-0.4-

-0.6
0

2

1.8

1.6

1.4

1.2

I

0 .8

0.6
0

0.75

-0.371

I O0 200 30O 400 50O 600

Generations

(a)

d

1

0.8

0.6

0.4

0.2

I °
~ -0.2

-0.4

-0,6

-08

-1

140

120

I00

80

6O

4O

2O

0
0

0.25

t 12-~ .. j___:_o.?_~

100 200 300 400 500 600

Generations

(b)

100 200 300 400 500 600 20 40 60 80 100 ! - 20 - - 1 4 0 160

Generations t

(c) (d)

?

180 200

Fig. 5. Simple GA, the best estimation result among 20 simulations. (a) Pl, P2; (b) zl, z2; (c) b0, d; (d) F(t).

IL-KWON JEONG and JU-JANG LEE: ASAGA 529

E

<

B

<

0.8

0.6

0.4

0.2

0

-0.2

-0,4

. .O_._7_5_
pl

L . . . -0,371

0 100 200 300 400 500 600

G e n e r a t i o n s

(a)

1.6

1 . 5

1.4

1.3

1.1

lo ,oo 2oo 3oo ~o 5~o 60o
G e n e r a t i o n s

(c)

0.3

0.21 . "0,-25- - -

0'1 f

~ -0.2

E -0.3

-0.4 ! I
-0.5

-0.6

<

0 100 200 300 400 500

G e n e r a t i o n s

(b)

2

, , , J , , , i

0 20 40 60 80 100 120 140 160

t

(d)

600

180 200

Fig. 6. Simple GA, the average estimation result of 20 simulations. (a) p], P2; (b) zl, z2; (c) b0, d; (d) F(t).

1. Input/output data acquisition under an experi-
mentation protocol.

2. Choice of the model structure and complexity.
3. Estimation of the model parameters.
4. Validation of the identified model.

ASAGA is applied here to the problem of estimating
model parameters to show its performance. Consider a
system described by an A R M A X model:

A (q - I) y (t) = B (q - l) u (t - d) + C (q - l) e (t) (11)

where q-i is the backward shift operator, i.e. u(t - 1) =
q - l u (t) , while y(t), u(t) and e(t) are output, input and
noise respectively. The objective is to identify the sys-
tem polynomials, A (q -1) and B (q - l) , and the delay d us-
ing the given input u(t) and the output y (t) . T h e error
sequence is defined as

rl(t) = y (t) - ~(t) (12)

with

/ l (q -]) p (t) = B (q - l) u (t - d) (13)

where the estimated output,)3 (t), is the output of a system
driven by the actual input u(t) , and .~(q-l) and B(q -I)
are the estimates of A (q - l) and B (q - l) respectively.

The fitness function to be maximized is chosen as

1
F (t) = w t (14)

Zi=o[O(- i)] 2

where w is the window size.
The simulated system is the same as that in Ref. 3 for

the purpose of comparison, and C (q -1) is not used. The
system polynomials, poles and zeros are as follows:

A (q - l) = 1 . 0 - 1.5q -1 +0.7q -2
B(q_ l) = bo(1.O +0.5q_ 1 +O.Oq_2) (15)

F,M! 9:5-D

5 3 0 I L - K W O N J E O N G a n d J U - J A N G L E E : A S A G A

0.8

0.6

0.4

0.2

o

-0.2

~2

-0.4

2

1.8

1.6

1.4

1.2

0.75

-(].371

100 200 300

Generations

(a)

40(1 500 600

._d

~0

0.8

0.6

0.4

_~ 0.2

~ 0

-02

-0.4

-0.6

-0.8

180~

160~3

1400

1200

10o0

800

600

400

200

0

0.25

-0.25

100 200 300 400 500

Generations

(b)

600

lO0 200 300 400 500 61~1 20 40 60 80 lO0 120 140 160 180

Generations t

(c) (d)

200

Fig. 7. ASAGA, the best estimation result among 20 simulations. (a) Pl, P2; (b) zl, z2; (c) b0, d; (d) F(t).

poles: (0.7500+ j0.3708)
zeros: (-0.2500___0.2500) (16)

where the gain, b0 is 1. The delay, d, is 1.
To apply the GA, a reparameterization is introduced.

In the reparameterized plane, [a, b] means a pair of real
roots, (a _ b), when b is positive, and it means a pair
of complex roots, (a +_ jb), when b is negative or zero.
Thus, any complex conjugate poles can be represented
as two real numbers by using reparameterization. In the
reparameterized plane, poles and zeros can be rewritten
a s

poles: [0.7500, -0.3708] = [pl, p2]
zeros: [-0.2500, +0.2500] = [zl, z2]. (17)

A simple GA and ASAGA are applied to identify p L,
P2, zl, z2, b0 and d. In the simulation, seven bits were used
for each parameter except for d (two bits). Thus, a string
is 37 bits long. In the simple GA, Pc = 0.8, Pm = 0.1,
population size = 100 and window size = 30. Values for

pc and Pm were determined by trial and error in order to
show the best performance, b0 is assumed to be between
0 and 2, and Pl, p2, zl and z2 are assumed to be in the
[- 1, 1] range, so the resolution is slightly finer than 0.02.
Although the true value of p2 is -0. 3708, the limitation
on the resolution due to coding makes the best estimated
p2 equal to -0.375(= -1 + 80/27). So, p2 is assumed to
be in the [-0.996, 1.004] range, which makes the best
estimated value of p2 equal to -0. 371. In ASAGA, Nrese t

in equation (10) is 3, and the other conditions are the
same as the simple GA.

The test input for the sample data is chosen as

u(t) = sin(t) - sin(t/2.5) + random(-1 , 1) (18)

where random (- 1, 1) is a random number between - 1
and 1.

The input and output of the system are shown in
Fig. 4. One simulation was done using 200 samples with
three generations per sample, that is, 600 generations for
each run. 20 simulations were done for each algorithm.

IL-KWON JEONG and JU-JANG LEE: ASAGA 531

0.S

0.6

0.4

0.2

0

4) . 2 ~

4).4

0.75

0 100 200

1.6

300

Generations

(a)

4).371

1.5

L.4

1.3

1.2

1.1 ~ b 0

1 ' i i

0 100 200

400 500 600

0.3

0.2

0A

0

i 4).1

4).2

<
4).3

<

-0.4
!

-0.5

1200

1000

800

600

40O

200

.. 9:.25.

zl

--'~ - - ~ 4).25

100 200 300 400 500 600

Generations

(b)

i - - 0
300 400 500 600 0 20 40 60 80 100 120 140 160 t80 200

Generations

(c) (a)

Fig. 8. ASAGA, the average estimation result of 20 simulations. (a) Pl, P2; (b) zt, z2; (c) bo, d; (d) F(t).

>o
<

0.8

0.6

0.4

0,2

0

-0.2

-0.4

pl : Nreset=-3

• . ; " .

p2 ., "" ": : Nreset=lO
., • ,

I00 200 300 400 500

Generations

Fig. 9. ASAGA, Pt, P2: the average estimation result of
20 simulations using Nreset = 3, 10.

600

2

1.5

1

~ 0.5

i °
-0.5

-1

-1.5

Fig.

bO

bl

al
4).7

100 |50 200 250 300 350

Iterations

10. Es t ima ted p a r a m e t e r s us ing the g rad ien t
a lgor i thm.

400

532 IL-KWON JEONG and JU-JANG LEE: ASAGA

Figure 5 shows the best result among 20 simulation
results using the simple GA. It shows six estimated pa-
rameters and F (t) for each generation. Figure 6 shows
the averaged parameters and F (t) over 20 simulations.
The results obtained using ASAGA are shown in Figs 7
and 8, which correspond to Figs 5 and 6 respectively.

Comparing Figs 5 and 7, it can be seen that ASAGA
has a good hill-climbing capability. Note that ASAGA
has found the exact parameters. Figures 6 and 8 show that
ASAGA consistently outperforms the simple GA. To see
the effect of the adaptive cooling schedule the problem
was solved 20 times by ASAGA using Nreset = 10. Figure
9 shows the averaged identification results for Pl and p2
using 3 and 10 for Nreset- It shows faster convergence when
Nreset is 3, which indicates that repeated cooling schedule
contributes to the fast convergence, and thus small values
o f Nrese t are good. However, too-small values of Nreset
may reduce the SA feature of ASAGA.

For a comparison with a recursive method, a gradient
algorithm is introduced. The algorithm uses the following
series-parallel identification model:

n-I m-1
33(t + 1) = Z d i (t) y (t - i) + ~ t~j(t)u(t - j)

i=0 j=0
(19)

and the adaptation law:

ai(t + 1) =

~i(t) - 17 •
e(t + l) y (t - i)

K - m - 1 1 + 17(~7201 yZ(t - i) + ~j=0 u2(t - J))

recursive identification method and ASAGA have solved
basically different problems. The recursive identification
method uses the identification model, while ASAGA does
not know any system information, and the recursive iden-
tification can adapt only one step per one sample.

5. CONCLUSION

An efficient hybrid genetic algorithm named ASAGA
(Adaptive Simulated Annealing Genetic Algorithm) has
been proposed. ASAGA was designed to preserve the
merits of both SA and GA, to improve GA while not
greatly altering the identities of each algorithm, and to
speed up the convergence. The differences from previous
work on GA with SA are the use of the standard crossover
operator and the introduction of the adaptive cooling
schedule. An example of discrete-time system identifi-
cation shows that the proposed algorithm, ASAGA, is
effective and superior to the simple GAs, and even bet-
ter than the gradient algorithm. It has also been shown
that the adaptive cooling schedule contributes to the hill-
climbing and the fast convergence. Identification using
ASAGA has been shown to be basically different from
recursive identification methods.

More theoretical analysis of ASAGA, and applications
to more versatile control system structures, should be
done in order to complete the exploration of the ideas
that have been presented here.

R E F E R E N C E S

t~j(t + 1) =

t)j(t) -- I 7 •
e(t + 1)u (t - j)

(20)

, r - n - I 2, t m-I l +17. t2. i=oY t - i)+~ . j=0 u 2 (t - j))

where 17 is a positive adaptation gain. Equation (15) can
be represented as

y (t + 1) = 1.5y(t)- 0 .7y(t- 1)+u(t)+ 0.5u(t- 1).
(21)

True values of a0, al, b0 and bl in equation (19) are 1.5,
-0.7, 1.0 and 0.5 respectively. Figure 10 shows the recur-
sire identification result using equations (19) and (20)
with 0 = 2 and the same input as earlier. The recursive
method did not do as well as ASAGA. The recursive
method requires more sample data, and it is very difficult
to determine the optimal adaptation gain. Note that the

1. Goldberg, D. E., Genetic Algorithms in Search, Optimization, and
Machine Learning. Addison-Wesley, Reading, MA (1989).

2. Davis, L., Handbook o f Genetic Algorithms. Van Nostrand Rein-
hold, New York (1991).

3. Kristinsson, K. and Dumont, G. A., System identification and
control using genetic algorithms. IEEE Trans. Syst. Man Cybern.
22(5), 1033-1046 (1992).

4. Karr, C. L. and Gentry, E. J., Fuzzy control of pH using genetic
algorithms. IEEE Trans. Fuzzy Syst. 1(1), 46-53 (1993).

5. Ichikawa, Y. and Sawa, T., Neural network application lbr direct
feedback controllers. IEEE Trans. Neural Networks 3(2), 224 231
(1992).

6. Davis, L., Genetic Algorithms and Simulated Annealing. Pitman
Publishing, London (1987).

7. Adler, D., Genetic algorithms and simulated annealing: a marriage
proposal. IEEE bzt. Conf. on Neural Networks, pp. 1104-1109
(1993).

8. Sirag, D. and Weisser, P., Toward a unified thermodynamic genetic
operator. Proc. Second lnt. Conf. on Genetic Algorithms, pp. 116-
122 (1987).

9. Brown, D., Huntley, C. and Spillane, A., A parallel genetic heuris-
tics for the quadratic assignment problem. Proc. Third Int. Conf.
on Genetic Algorithms, pp. 406~,15 (1989).

10. Landau, I. D., System Identification and Control Design. Prentice
Hall, New Jersey (1990).

