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Abstract

3D numerical simulations of ferromagnetic materials carcompared with
experimental results via microwave susceptibility. Instipaper, an optimised
computation of this microwave susceptibility for large ines is proposed. The
microwave susceptibility is obtained by linearisation lo¢ Landau and Lifchitz
equations near equilibrium states and the linear systerhe swlved are very ill-
conditionned. Solutions are computed using the Conjugateliént method for
the Normal equation (CGN Method). An efficient precondiépis developed con-
sisting of a projection and an approximation of an “exac€qanditioner in the set
of circulant matrices. Control of the condition number doghte preconditioning
and evolution of the singular value decomposition are shiovthe results.

1 Introduction

Ferromagnetic simulation via the micromagnetic model iga-life computational
challenge. Ferromagnetic materials are used in numerqugations such as radar
protection, magnetic recording or micro electronics. lestn applications, the mag-
netic objects studied are micro or nano-objects which dffecult and expensive to
craft. Thus, one of the optimisation solutions, for the ghapd composition of such
particles, is numeric simulation. The first step in this tygdesimulation is to com-
pute the dynamic of the magnetisation and the equilibritatest However, a direct
comparison of the results with experiments is impossibte3fa particles. The main
comparison tool is microwave susceptibility as the resapaanumerical curves can
be compared with the physical experiments. At that poinessh\difficulties are en-
countered. The main one is managing a large number of degféeedom. This is
required to compute interesting configurations with sudfitiaccuracy.

In this article, we use the micromagnetism model in order taleh the magneti-
sation behaviour in ferromagnetic materials. This model isesoscopic model, ie. a
model valid for a scale between the one used for microscopixvill equations and
the scale of classic macroscopic Maxwell equations. Inrtiugdel, magnetisation does
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not linearly depend on magnetic excitation but is contblig a non-linear system: the
Landau-Lischitz equatio}(1). This model was introducedbywn [1,[2].

There are two ways to obtain the equilibrium states. The lliystnergy minimi-
sation ([3[4[5]), the second by relaxation of the dynamgtesy ([6/7]). The main
advantage of the dynamical approach is to compute an equititstate linked to given
initial data by a life-like dynamic process; then, we canlgglynamical treatments,
via the external field, in order to find specific equilibriuratss.

Computation of the microwave susceptibility can be perfedrhy two main meth-
ods: the Harmonic Direct Computation and the Fourier TranmsfMethod. The first
method is based upon the use of a linearised version of tHatewoequation pertu-
bated by a time harmonic external field. The second is based tife injection of an
harmonic perturbation. The Fourier method implies theltggm of a time dependant
problem that is quite ill-conditionned for low frequencigise time step ensuring that
the convergence vanishes swiftly when the frequency deesdut the linearisation
methods permit the range of frequencies used in the apiplitsato be attained.

2 The microwave susceptibility problem

2.1 The linearisation

In this problem, we are interested in computing the micraveesponse of a ferro-
magnetic system to an external harmonic exitation. We denshat the ferromagnetic
material is homogeneous and contained it lass piecewize domain & denoted
Q. Then, we study the evolution of the magnetisation field & ieighbourhood of
an equilibrium state of the dynamic equation. This equatiotthe micromagnetism
model [1], is given by the Landau-Lifchitz system: findin H'([0, 7] x R3, Q; R3)

= {m e L*(R%R3)|Vt € [0,T], m)q € H'(Q;R?) andm = 0 in R\Q} such that

{ %—T = f(myhext) = —mA (H(m)+£€) —amA (mA(H(m)+4£)),€ (0,T] x Q,
m(z,0) = mo(x), Yt € Q.

N (1)
where H is a linear operator, front/1 ([0, 7] x R?,;R?) into H~}(R?; R?), ¢ the
external magnetic field (independent of the magnetisatwhedement of.°>°([0, 7] x
R3; R3), o the damping factor (a strictly positive real) and) is a given element of
S2(Q)={m € H'(R*,;R?) | |m|q| = 1, a.e. inQ}. In this model, we can see that
the local module of the magnetisation is naturally preseére this article, we define
H as follows:Vm € H([0,T] x R, Q; R3)

H(m)=AAm+ Hy(m) + K(m — (m.u)u)

whereA and K positive real constants andis an element ofi! ([0, 7] x R3,Q; 52)
(S? designates the unit sphere). The operéafgis defined in the sense of distributions

onR3 by
rot(Hq(m)) = 0,
div(Hy(m)) = —div(m).
Now, let us define the equilibrium states of the systgm (1)



Definition 1 For a given/in L>°(R3; R3) (independent of time), a magnetisation state
me, in HY(R3, ©; R?) is an equilibrium state if, and only if,

f(me, £) =0, a.e. inQ.
Then, for a given equilibrium state,, associated to an external stédteve define the
microwave susceptibility

Definition 2 For a given equilibrium staten,, associated to an external fielgl we
denote a susceptibility tensor of the order 3 complex mesri¢/) defined by

X))k = _$()\k,m1)079, Y(l, k) € {1,2,3}?,

with A\, = (.e™? and ¢, is a contant vector oR?. Furthermore, we suppose that
(Ck)req1,2,3) is an orthogonal basis a@k3. Then, forallk in {1, 2, 3}, my, is a solution
of (@) for the external field,, + ¢ and the intial datang = m,.

Formally, if the excitatiorn(, is sufficiently small, then the magnetisation responses
will be also small and we can define this response for ekeny{1, 2, 3} by

wt
mr — MMy = Ui € y

with 1, € HL(R3,Q; C3). In the following we suppose that, andy, are of the same
order.
Then, if we re-write the systerfil(1) verified by;, the linearised equation gives

(iw — Digoh — Dag)(pk) = D1,e(Cr) (2)
where, for alkw in L>°(R3; R?), we set
Dy y(w) = —my ANw — amyg A (Mg Aw),

Dy o(w) = (H(mg) + ) ANw~+amg A (w A (H(mg) +£))

2.2 The discretisation of the linearised equation

In order to discretise the equation, we consider a mondlitf) such that2 ¢ K(Q).
Ideally, this monolith is the smaller containiiy Then, K (2) is discretised using a
regular cubic mesh of cell$;);cn, Whereh is the length of a cell and/;, is the set of
the indices. We se®;, = Uiezvm,h Q; whereN;,, , C N, is the set of indices such
that, for everyi in Ny, p, Q; N Q # 0.

Then, we choose as a discrete space for all euclidian dpace

Wi(F) ={u € L*(R* F)|lu = 0in R*\ K (Q) andVi € Ny, ujq, is a constarjt

for eachu in Wy, we set:Vi € Ny, u; = ujq,. We choose thé.2 scalar product on
R3 as the scalar product diy,, we denote i{u, v)o o for all u,v in L?(R3; F). Then,
setting
Py,
L2 (R%F) — Wi(F)

u — Ph(u):Z(%/Qiudx)

1ENp



wherel,; is defined forz in R? by 1,(x) = 1 if 2 belongs td;, 1;(x) = 0 otherwise.
Py designates the canonical injectionidf, (') onto L?(R?; F).
These definitions lead to the following formulas for the dite magnetic contribu-
tions:
Hop=PF,o0H, OP;:,

and
Hgp = PpoHgo Py,

the analysis ofH, ; is straightforward. On the other hand, the analysidHgf;, is
not direct, in particular, it has been demonstrated thatdiscretisation preserves the
main properties of the demagnetisation operafgi(H, is a projection operator), and
a lower estimate of its lower eigenvalue is given. Furtheenthe computation of this
operator is very expensive: the discrete matrix is a fullrmatThen, to optimise its
computation, we choose to use a regular cubic mesh whichre@asspecific structure
for the discrete operator. This block-Toeplitz structunatdes us to reduce the storage
of the matrix from# (N, )? to O(#(Ny,)) and the computation cost from (N, )? to
O(#(Np,) log(#(Ny))). For complete analysis of the discretisationidf, see [[8].
The Laplacian operator is discretised using the clasgipaint scheme, the discretised
operator is designated in the following By;,. The total discretised magnetic field is
then defined by

Hp(m) = AApym + Hg p(m) + Hg p(m).

Then, for a given external field in W, (R3), we setmy, ¢, element ofiV;,(5?),
the equilibrium state of the discretised version [df (1). sThiate is obtained using
an explicit time discretisation combined with an optimisatof time which ensures
its stability (see[lRI_1C.17]). This equilibrium state, agmsgreviously, is such that:
Vi e Np, 368; < 0and

Hy(mp,e)1i = Bimp e,

we setH,(mp ) = Bi(myp,e) WhereBy is a diagonal operator. Knowing an equi-
librium state for the discretised sytem, we can define thealiised discrete system:
Vw € Rf,

(iw — D1,pe(Hp — Be))pn = D1,p,eCn 3)

whereD; ;¢ is the operatoD; , built for them,, , equilibrium state.
Then, for each elementof 17, (R?), we associate a unique elemé&hof R3# (V»)
defined by

1
Vi € Ny, U; € R* andU; = ﬁ/ u(z) dz.
Q;

Using this bijection betweel,, (R?) andR3#(V»)  we can write a matricial version
of the linearised discrete version &8 (1): fig, in R3#(Vx) such that, for a givei;,
built on {;, we have

MU, = DYy, (4)



where, for every/ in R3#(N») for everyi in Nj,

(M,U); = }33/ ((zw—DWHh—Bg <ZU1>>

1ENp,

(D Yi); = ]113/ (Dl,hyg(z: Y,m-li)) dx

1€ENp,

and

For use in the remainder of this paper for everjn R3#(Nx) we set:
DHU = —-M,U + iwU

thenH is the matrix associated to the discrete operaipr— B,.

2.3 Some properties of the discrete systerhl(4)

We set)M,, the element oR3#(Vr) associated teny, ,. Let us defindmy, ¢]* by
[mp. " = {W e C¥#WNW i e Ny, My, W; =0},

and we designate bi;- the projection fronC3# (V) into my, . Then we can demon-
strate:

Theorem 1 For everyY in R3#(Nx) and for everyw strictly positive, the systerfl(4) is
regular and its solution is in an element [of, ¢]*

Proof: If U is the solution of[{K), then we have
wU = D(Y, + HU),

knowing thatD sends elements @>#("») in [my, /], we conclude thal/ is also an
element ofmy, (] *.

Then, considering/ in [my, ¢+, due to the structure off, we haveHV as an
element of[my, ,]-. Each diagonal block (83) has Oy + i anda — i as eigenval-
ues. Knowing that the eigenvalues Hf (symetric matrix) are real, we deduce that
the eigenvalues oD H are complex numbers of non vanishing real parts unless the
eigenvalueis null. Then, the eigenvalues\éf, can not vanish.

]
The conditioning number of the matriX,, can be estimated

Theorem 2 For everyw real strictly positive, we have

24 14021+ 5) (A +1+K
conO(Mw)S\/w + (1 +a%)( +2h Sz 1+ K)
w



Proof: Thistheoremis proved using the Courant-Fisher theoreimgianitian matrices
which provides formulae for the highest and lowest eigamsl The proof is then
classical and uses the fact tHat D is the projection matrix ofin,, (] multiplied by
1+ a?).

O

We notice that the conditioning number c@id,,) bahaves as expected whenends
to infinity:

wh—{l;o condM,,) = 1.
Here, the fact that grows to infinity means that it dominatg?@. Now, if we consider
thatw is fixed, the behaviour of coifd,,) shows that the system is ill-conditioned

}113% cond M,,) = oc.

Thus, the pre-conditioning of the system is essential. ¢t the most interesting part
of the spectrum of susceptibility for numerous applicagianthe low frequency part.

3 The precontioning strategy

3.1 Choice of the inversion method

In order to solve systenl(4), we chose an iterative methaslctioice is conditioned
by the fact that the matrices considered are non-symmeidtimitrices and the order
of the systems to solve is great (up10°). Three main iterative methods are used
commonly to solve non symmetric systems:

e the normal conjugate gradient (CNG),
e the generalised minimal residual method (GMRES),
¢ the conjugate gradient squared (CGS).

As shown in the article of Nachtigal, Reddy and TrefetHer],[fhbne of this three
methods could be considered as a cure-all for all non-symorsststems. As the con-
vergence quality of CGS and GMRES is influenced by eignevelustering of the
system matrix, CNG method convergence depends on singalle ¢lustering. As the
preconditionning strategy presented in this article ibagon the amelioration of the
singular value clustering, we chose, of course, the CNG atktirurthermore, tests
not presented in this article show that the CNG method seeilns inore adaptated for
this type of system, even if not preconditioned.

3.2 An example of singular value repartition and of CNG conve
gence rate

In the remainder of this paper, we have chosen to illusttetadsults presented using
a plain example. This example has been chosen for the low,drfl2, of its system



which facilitates the visualisation (done with Matlab).€limesh chosen issax 4 x 4
regular cubic mesh of a cubic domain. We set it in the dimenegs systemd =
0,88 10710 K = 0,57 1072, a = 0,5 and the cube length is equal t06-5. For
this bench, we would want to choosebetweenu,,;, = 0,452 10° Hz andw,qe =
0,452 10° Hz. In Fig. 2 the error evolution for the CNG is shown. Here vewé
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Figure 1: Singular value decompostion for the non-prediord system.

chosen a final error criteria @) —°. With no preconditioning, the system converges in
56 iterations fotv,,;, and 48 iterations fow,, .., the precontioning number is almost
equal to 7500 (slight variations betweep,;,, andw.,q.)-
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Figure 2: Residue of the CNG far,,,;,,.



3.3 The preconditioning strategy
We have three main goals to build the preconditioner:
e to use the known properties of the system,
e decrease the conditioning number sensitivity to the mesh si
e build a cheap preconditioner (memory size and computatensd).

The first point is taken into account by using the result prestin Theorenll: the
right side of the preconditioner will be a projection ¢ny, ¢]-. This first step of
projection eliminates the cluster of singular values rle@nd ensures a convergence in
48 iterations forv,,,;, and of 27 iterations fow,,,q.

3.4 The “exact” preconditioner

As a first stage, we would want to build a symmetric left praéorer. The non sym-
metry of M,, comes from the operatd?; j (. In fact, we have

Dipew=—mgANw+ anJ‘w,

the first part of the operator is a rotation, and the secontigprojection. Then, it
is possible to prove thab; ; , does not have a main influence on the singular value
decomposition. This means that we may choose a left pretionéi M, ., built on the
operator

W — a(Hh — Bg),

That is to say, if we sell the matrix built on the operatdi;,, — By
My ., =iwld — oM.

Inthe sequel, even if we do not write the projection to ligtttee notations, we consider
that the system is right preconditioned By-. Then, we prove the following theorem

Theorem 3 For eachw andh strictly positive, we have

cond M, LM.) < /1+ g(h,w) 2+ g(h,w)?]

where

@+ a?) 1+ 5)2A + 1+ K)?
g(h’w)_\/ + (14 5)2(5 + 1+ K)?

Proof: In the spacémy, ]+, we have:D = R + ald, whereld is the eye matrix on
space[mW]L and R is the matrix associated to the operatomn,A. Moreover, for
everyU in [my ]+, we have

(HU, mh,g) = (U, Hmh,g) = 0,



this implies, by breaking off of the elements p#;, (], that HU is an element of
[m,.¢]*. We remark also that by working i, /-, we have

R? = —Id.
Then, we have
M(]—,;Mw = (iwH'—-Id)H 'NH,

where
N,=—-RH+(l1-a)H=NH.

Then, for every in [my, ¢]*, we have the following relation
M;&MWVM;;MMV = V| + 2R[V.ngj Ny V] + ||ng01JNh V2.

We designate aR[-] the real part of a complex number
Furthermore, we have the following estimations:

I(H™ R H)?|| = ||(H~'R* H)*|| =1,
this implies that| H ~'R H|| = 1. So, using the fact than

H'NH=-H'RH+ (1 -a)ld,

we have
|H'N H|| < V24 a2
and
w2
Mgl = ,rélj%ff()\_i +1)7t < g(h,w).

where); is the eigenvalues of the matriX in [mM]l anthL is the set of indeces of
[mg_’h]J‘.

Then, using the lowest eigenvalue controlled by projeqiar of the precondioner
we conclude the proof of the Theorem.

Finally, we have the good behaviour of the preconditionrystesn when the mesh
lengthh tends ta0:

%in})(M;iMw) <142+ a2,
O,
This version of the preconditioner gives excellent comtfdhe conditionning number

but needs the inversion of a full matrix. This leads us to #woad stage in which we
will replace the complete operatéf;, by its laplacian part.



3.5 Preconditioning by the Laplacian component: the directap-
proach

The Laplacian part off;, is the most punitive part of the matrid/,, in terms of pre-
conditioning. The idea in this section is to develop an apjpnate conditionef/, ., A
built on the operator

W — AA}I — B.

The matrixM, ., A is a band matrix which could be more easily handled th&n,, the
earlier version of the preconditioner. This approximatdrthe preconditionef/, ,,
will be all the more accurate as the norms of the operdigrand H,, are dominated by
A As seen in Fig[3, the clustering of the singular value dguusition obtained for
h2 . L]

the system preconditioned By, ., A is good. The convergence of the CNG algorithm

Jany
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Figure 3: Singular value decomposition of the system préitemed byM, ., A.

using this method is very good: 7 iterations é&gy,;,, and 9 iteration fotv,, .. (see Fig.
@.
3.6 The approximated preconditioner

Nevertheless, the use of the pre-conditioh&y,, A stays expansive. The solution is
to build an easily invertible approximation 81, ., . Here we will use here the work
of [12]. The idea is to project the matri¥, ., A into the circulant matrix space in the
sense of the Froebenuis norm.

Given a circulant matrixC’ n by n on C generated by, vector ofC", we have

V(i,j) € {1,...,n}*andp € {1,...,n}, Ci; =c, if j—i=p—1 orj—i=n—pl.

Then, as shown in[12], for every matriX n by n onC, the projectiorC of M on the
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Figure 4: Residue of the system preconditionnedfy,, A.

space of the circulant matrices of ordeis generated by the vectegiven by

n—p+1 n

Vp € {1,...,n}, ¢p = o Z Miji—pt1 + Z Mi14n—pt1
=1 l=n—p+2

The three dimensional projection is more complex but thenndega is contained
in the one-dimensional projection.

When the circulant approximation matrix is built, the irsien is performed in
the Fourier space (the matrix produced is block-diagoxa 81 Fourier space), then
the precondioning is of complexit® (N log(/N)) for each iteration of the inversion
method. The other main advantage of the method is that thageids reduced to
O(N).

In this section, we have to keep in mind that the structuretir@e dimensional
one: the considered matrices are 3 level block matrices implies that the projection
must be performed on the 3 levels block circulant matrices.

In the small example presented to illustrate the paper, s precontioned by
the approximated preconditioner converges in 30 iteratfon the smaller frequency
and 26 iterations for the highest (see Hi§j. 6). The convexrgenrve is very good in
the sense that the slope is quasi-constant. This pointis gmportant: susceptibility
computations do not need high numerical accuracy. Effelstithe results obtained
will be compared to experimental results for which the ersaguite important. This
comes form the fact that the samples used for experimentaraiebe perfect and that
the measurement tools do not have very high precision fertyipie of experiment.
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Figure 5: Singular value decomposition of the system prditimmed by the circulant
approximation ofM ., A.

4 Numerical simulations

We present here the number of iterations for the simulatioa ferromagnetic dot.

This dot is meshed by a regular grid, sizet®#x 32. In this monolith a cylinder with

the axisz and a circular basis (32 cells for thelirection and 64 64 for the others)is

included. The total number of degrees of freedom is 39321 r€sults shown here
have been computed on the parallel machines of ONERA andaDlgsiation.

4.1 Parallel implementation

There are two possible levels of parallelisation for thisljfem: local parallelisation
for computations of each iteration and global parallelisabf the frequency compu-
tations.

The global parallelisation is a repartition of each freqryecomputation through
the processors. A main process distributes the computtieach processor such that
each processor is always occupied. This part is implemersied MPI.

The local implementation, not used for the results preskmee, is the parallelisa-
tion of the total magnetic field over the domain. In this comagion, one part is more
expensive than the others: the demagnetisation field. Inttae computation of de-
magnetisation is accelerated by using its Toeplitz strectsee([B]). This computation
strategy uses 3 dimensionnal FFT intensively. To enhare@déhformance, we have
to parallelise the FFT computation. To do so, we have chasese¢ OPEN-MP. This
choice avoids the transposition of the data via the clubtgrrust be performed while
using a distributed memory system. The results are vergfgaig: for a cubic struc-
ture and sufficient number of cells (for instanc&ax 32 x 32 mesh), the computation
time of FFT is divided byi.9 on a node of two processors.

12
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Figure 6: Residue of the system preconditioned by the @rdubpproximation
Mq,w,A-

4.2 Description of the benchmark statistics and results

The aim is to compute the susceptibility of a cylinder of palioy (see for example
[L3] for this type of results). The parameters of the materia the following:

Parameter Value
A 0.1787510~ 11
o 0.05

In the following tabldlL, we give the number of iterations étirectionsz andy.
The directionz in this computation is omitted because there is no resoreianthis
direction.

The computation has been carried out on a node composed oiv8r®dBM
(1.1GHz) with 16 GO of Ram. An iteration takes almost 24 sesorthe complete
computation took 36 hours.

w/1,356 (Hz) | iterations forz | error iterations i fory | error

3.0010° 57 4921072 | 127 4.98102
2.7310° 100 4.851072 | 137 4.911072
2.4910° 198 4.901072 | 267 4.991072
2.2610° 146 4.991072 | 272 4.951072
2.0610° 188 4991072 | 329 4.901072
1.8810° 290 4961072 | 356 4.911072
1.7110° 316 4.991072 | 317 4.851072
1.5510° 326 4.98102 | 386 4.941072
1.4110° 390 4.99102 | 355 4.941072
1.2910° 298 5.0010~2 | 376 4.971072
1.1710° 329 4.881072% | 354 4.881072
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w/1,356 (Hz) | iterations forz | error iterations i fory | error

1.0710° 490 4971072 | 286 4.931072
9.7110% 615 4911072 | 400 5.00102
8.8410* 664 4.991072 | 504 4.951072
8.0510* 638 4.941072 | 416 4.811072
7.3310% 436 4941072 | 371 4.921072
6.6710% 318 4961072 | 319 4.701072
6.07104 291 4981072 | 294 4.921072
5.5310* 351 4.851072 | 266 4.911072
5.0310* 377 4.91102 | 258 4781072
4.5810* 433 4.991072 | 252 4.961072
4.1710% 480 4971072 | 248 4.851072
3.7910% 543 4911072 | 247 4.751072
3.4510* 592 4.951072 | 248 5.0010~2
3.1410* 547 4.991072 | 248 4.911072
2.8610% 549 4.861072 | 248 5.0010~2
2.61104 571 4.931072 | 247 4.971072
2.37104 618 4991072 | 243 4.991072
2.16104 653 4901072 | 244 4.991072
1.9710% 686 4.621072 | 247 4.921072
1.7910% 723 4.831072 | 251 4.921072
1.6310% 779 4.901072 | 254 4.971072
1.4810* 839 4941072 | 257 4.991072
1.3510* 855 4.901072 | 265 4.861072
1.2310% 842 4.991072 | 267 4.951072
1.1210% 832 4.90102 | 273 4.951072
1.0210% 832 4.941072 | 279 4.961072
9.27103 835 4.921072 | 280 4.981072
8.44103 691 4921072 | 289 4.891072
7.6810° 843 4.961072 | 292 4.941072
6.9910° 856 4.981072 | 296 4.971072
6.3610° 868 4.90102 | 302 5.0010~2
5.79103 875 4.931072 | 305 4.941072
5.27103 888 4.831072 | 311 4.951072
4.8010° 893 4981072 | 316 4.991072
4.37103 907 4.94102 | 319 4.941072
3.9810° 913 4.921072 | 327 4.941072
3.62103 923 4.971072 | 328 4.991072
3.30103 944 4991072 | 336 4.911072
3.00103 951 4.8510~2 | 339 4.941072

Table[d: Iteration table.
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5 Conclusion

The goal of the study was to allow the computing of micro-wsweceptibility of ferro-
magnetic particles with thin details. This last point cdffer very large meshes (about
300000 degrees of freedom) for which the classical invarsiethods with no precon-
ditionning did not work at all, or required such a large antoafiterations that the
computation times for an acceptable range of frequenciesfarafrom useful. The
strategy presented in this article is an industrial comparta approach, and obtains
interesting results for a large spectrum of benchmark. CGdatjpns of realistic ex-
periments have been performed (se€ [14,[18, 15]) for phlysystems where it was
possible to compare results with physical experiments.eSprablems remain, in par-
ticular, the strategy developed aims at the laplacian pfatiie total magnetic field
whereas some systems are revealed to be principally infaelmg the demagnetising
field. The next step is to extend the strategy of the paperderaio include the de-
magnetisation part of the magnetic field in the approximatedonditioner. The main
difficulty of the extension is algorithmic: to build a goodailant approximation of
block Toeplitz matrices. An another interresting pointttody would be the implemen-
tation of an efficient parallelised FFT algorithm for dibtrted memory systems. The
main problem of such an implementation would be the optitiieaf the transposition
phase of the data through the memory nodes of the distritayttdm.
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Residu

Relaxation pour un preconditionnement circulant sans projection
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Decomposition en valeur singulieres de la matrice projetee preconditionnee
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