Generation of structured meshes in multiply connected surfaces using submapping
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ABSTRACT

The submapping method is one of the most widely used techniques to generate structured quadrilateral meshes. This method splits the geometry into
pieces logically equivalent to a quadrilateral. Then, it meshes each piece keeping the mesh compatibility between them by solving an integer linear
problem. The main limitation of submapping algorithms is that it can only be applied to geometries in which the angle between two consecutive edges is,

approximately, an integer multiple of 7/2. In addition, special procedures are required in order to apply it to multiply connected domains. This article
presents two ori ginal modifications to mitigate these shortcomings. Finally, it presents several numerical examples that show the applicability of the

developed algorithms.
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1. Introduction

Structured meshes are still used in a wide range of simulations
where a strict alignment of elements can be required by the
analysis, i.e. boundary layers in computational fluid dynamics or
composites in solid mechanics. The submapping method is one of
the most powerful algorithms to generate structured quadrilateral
meshes [1,2]. This method decomposes the geometry into patches
and then meshes each patch separately keeping the mesh compat
ibility by solving a linear integer problem. In our implementation
we have used the transfinite interpolation method (TFI) to mesh
each patch, see [3] for details. Although the submapping method
generates high quality meshes, this method is not general in the
sense that not every geometry can be meshed by this algorithm.
The major limitation of the submapping algorithm is that it can
only mesh geometries such that the angles between two consecu
tive edges of its boundary are, approximately, an integer multiple
of /2. In addition, special algorithms are required in order to gen
erate meshes in multiply connected volumes using the submap
ping method.

In this work, we present two algorithms in order to improve the
applicability of the submapping method. First, we deduce a new
algorithm to classify the vertices that define the geometry. In this
way, we mitigate the “m/2 limitation”. Therefore, the improved
algorithm can be applied to geometries where the standard
algorithm fails. In addition, we present an automatic algorithm to
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convert a multiply connected geometry into simply connected.
Therefore, we extend the applicability of the submapping method
to geometries that contain several holes.

The structure of the article is as follows. In Section 2 we briefly
review the basis of the submapping algorithm. From this recapitu
lation, in Section 3 we present a new automatic algorithm to com
pute a valid classification of the geometry vertices. In Section 4 we
focus on the discretization of multiply connected surfaces. Finally,
we present several examples to illustrate the applicability of the
proposed algorithms.

2. The submapping method

In order to generate a structured mesh over a given surface, and
according to [1,2], we assume that there exists a representation of
the geometry where every edge is horizontal or vertical. We define
this representation as the computational domain, whereas the ori
ginal geometry is defined as the physical domain.

2.1. Vertex and edge classification

Vertex classification is a crucial step of the submapping
algorithm, since subsequent steps rely on this classification. In this
section we introduce the basis of the classical classification of
vertices. However, given a non blocky geometry this procedure
may lead to an invalid classification of the vertices. In Section 3,
we will describe an algorithm to detect incorrect classifications
and compute a new one that allows to generate a structured mesh.

The vertices of the geometry are classified according to the
angle defined by their adjacent edges. Since these angles are,



approximately, an integer multiple of 7/2, a vertex can be classi
fied as: side (the angle is 0), end (angle 7/2), reversal (angle )
or corner (angle 7/2).

The edges of the geometry are classified according to their
direction in the computational domain. Since, by construction,
the edges in the computational domain are horizontal or vertical,
they are classified as +I (horizontal going from left to right), I
(horizontal going from right to left), +J (vertical going upwards)
or J(vertical going downwards), see [1,2] for details. Fig. 1 shows
a simple geometry with its vertices and edges properly classified.

2.2. Boundary discretization

In order to generate a structured mesh, it is necessary to com
pute the number of elements over each edge of the geometry. To
this end, Ref. [4] proposes to solve the following integer linear
problem
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where n, is the number of divisions of edge e, N, is a lower bound
for n., and w. is a weight that controls the cost of adding or sub
tracting elements on each edge. We define this weight as

w, 1/I(e), where I(e) is the length of edge e. Variable M is defined
as
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and it controls the distribution of the number of divisions among
the edges.

Problem (1) is a linear integer problem that can be solved using
the branch and bound method, see [5] for details. In our implemen
tation, we use the Ip_solve library [6] to solve this problem. The
solution of (1) provides a discretization of the boundary that
accepts a structured quadrilateral mesh in the interior of the
domain. Once the problem is solved, we can construct the compu
tational space. Recall that we know the direction of each edge.
Hence, we only need to determine the length of these edges.
According to [1], we define the length of an edge in the computa
tional space as its number of intervals (i.e. the length of an element
in the computational space is the unity).

Note that the solution of the integer linear problem (1) induces
a computational space in which the boundary is closed. However,
for a given geometry (assuming a correct vertex classification) if
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the prescribed lower bounds, N,, are not properly set, then the
boundary of the computational space can be folded. Thus, it is
impossible to generate an acceptable mesh for these cases.

2.3. Geometry decomposition

The standard procedure to decompose a domain is using cutting
edges. Cutting edges are determined in the computational domain,
and have to start at vertices classified as comer or reversal. In addi
tion, cutting edges are horizontal or vertical in the computational
domain. Among the possible cutting edges, the shortest one is se
lected. When the geometry is decomposed into two parts, the pro
cedure is iterated recursively in both parts until there are no corner
or reversal vertices. Such a patch is logically equivalent to a quad
rilateral. Therefore, it can be meshed using a standard mapping
algorithm. In our implementation, we use the transfinite interpola
tion method.

3. Vertex classification algorithm

It is usual that the boundary of the surface is defined by edges
such that the angles between two adjacent edges are not exactly
equal to an integer multiple of /2 (fuzzy angles). In these cases
the classical classification of vertices may lead to unacceptable re
sults. To overcome this drawback, several implementations allow
the users to set the vertex classification manually. This alternative
reduces the automatization of the algorithm. In order to mitigate
this constraint we propose an algorithm to automatically modify
the initial classification and extend the applicability of the sub
mapping method.

Let 6; be the angle defined by the two adjacent edges at vertex i
in the computational domain, defined between 7 < 6; < 7. If the
vertices have been properly classified, then the angles verify
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Dividing last equation by 7/2 we obtain
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According to the classical classification of vertices, the value of
o is:
0 for side vertices,
1  for end vertices,
2 for reversal vertices,
1 for comner vertices.
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Fig. 1. Vertex and edge classification of a simple geometry. (a) Vertex classification in the physical domain. (b) Edge classification in the computational domain.
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Taking into account these values, we can rewrite Eq. (2) as:
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where S, E, R and C are the number of vertices classified as side,
end, reversal and corner, respectively. Therefore, a correct classifica
tion of the vertices has to verify

E C 2R 4 (4)

The basic idea of the new algorithm is to slightly modify the ini
tial classification of vertices in such a way that Eq. (2), or condition
(4), is verified. Hence, we will solve the following problem to gen
erate a valid classification:

Nvertices
minimize Z log g,
il
5
NDETUCES ( )

constrained to : Z o 4,
i1

where o; is the initial detected classification of vertex i, see Eq. (3),
and o; is the resulting classification. Note that @; can be a real value
whereas «; is always an integer value. Although Eq. (5) is not a
linear integer problem we can modify it in order to obtain a linear
integer problem. Each absolute value is decomposed in the sum of
two variables, D; and d;, and two new equations are introduced. In
this way,
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The new objective function to minimize is
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where p; and w; are two positive weights that control the cost of
increasing or decreasing the classification of vertex i. It is straightfor
ward to verify that if o o >0, then D; o o and d; O.
Conversely, if o; o; <0, then D; 0 and d; o o;. Finally, in
order to limit the variation of the solution (the classification of
vertices) we impose that
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Therefore, the new problem to solve is
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Note that the minimization of the objective function (6) pro
vides a new vertex classification that globally is not far from the
initial classification since it takes into account the total differences
between the classical, o;, and the new, o; classifications. In
addition, constraints (7) ensure that locally, at each vertex, the
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Fig. 2. A geometry with an invalid classification of its vertices.

end

variation of the solution is bounded (a vertex initially classified
as end could be classified as side, end or reversal but not as corner).
The definition of the parameters p; and w; is described in the
Appendix.

It is worth to notice that Eq. (4) is only a necessary condition to
obtain a valid vertex classification. However, the reciprocal is not
sufficient. For this reason, there exist geometries such that the clas
sification of its vertices verifies Eq. (4) and leads to an invalid dis
cretization. Fig. 2 presents the vertex classification of a given
geometry. This classification verifies Eq. (4) although it leads to
an invalid mesh.

The proposed algorithm flow for simply connected domains is:
first, we compute a provisional vertices classification as detailed in
Section 2.1. Second, if this classification is not valid, we solve the
linear problem (8). Third, the submapping algorithm continues as
defined in Section 2.

4. Multiply connected surfaces

Special procedures are required in order to apply the algorithms
detailed in Sections 2 and 3 to multiply connected surfaces. Multi
ply connected surfaces are defined by one outer loop of edges and
several inner loops of edges.

Ref. [1] proposes a procedure to mesh multiply connected do
mains using submapping. This procedure assumes that it is possi
ble to generate a structured mesh taking into account only the
outer boundary. In order to avoid this constraint we propose to
convert the surface into simply connected by connecting the outer
boundary with inner boundaries by means of virtual edges. Fig. 3
shows a multiply connected geometry converted into simply con
nected using a virtual edge.

To compute virtual edges, we first generate the mesh of the
boundary using the same element size that has been prescribed
to the submapping method. Using the boundary mesh, we generate
a constrained Delaunay triangulation (CDT) of the interior of the
geometry. The edges of the CDT will be the candidate virtual edges.
In our implementation, the CDT is generated using the Triangle li
brary [7]. Fig. 4a shows a CDT of a multiply connected domain. The
conversion of a geometry into simply connected is performed in
four steps:

(i) We select the outer boundary.

(ii) Among the edges of the CDT that connect the outer bound
ary with an inner boundary, we select the one that provides
the best angles (i.e. the angles between the edge and the
boundaries are approximately an integer multiple of 7/2).
If there is more than one edge with the same angles, we
choose the shortest one.
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Fig. 3. Multiply connected surface converted into simply connected using a virtual edge. (a) Multiply connected surface. (b) Virtual edge. (c) Simply connected surface.
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Fig. 4. Multiply connected surface converted into simply connected. (a) Constrained Delaunay triangulation. (b) First step: outer boundary. (c) Second step: union of the outer
boundary with the first inner boundary. (d) Third step: union of the outer boundary with the second inner boundary. (e) Fourth step: union of the outer boundary with the

third inner boundary. (f) Final mesh.

(iii) If the chosen edge cuts a geometric edge, the geometric edge
is split in two parts.

(iv) The outer boundary is updated by adding the virtual edge
and the edges of the connected inner boundary. Steps (ii)
(iv) are repeated until all inner boundaries are connected
to the outer boundary.

Fig. 4b e illustrate the proposed algorithm to transform a mul
tiply connected surface into a simply connected surface. In each
figure the current outer boundary is marked using a thick line.
Once an inner boundary is connected, the new outer boundary is
the union of: (1) the previous outer boundary, (2) the virtual edge,
and (3) the connected inner boundary. Note that in Fig. 4c the vir
tual edge splits the upper boundary edge in two parts, according to
the third step of the proposed algorithm to convert a multiply con
nected surface into simply connected. It is important to point out
that in our application the edges of the outer boundary are counter
clockwise oriented, whereas the edges of the inner boundaries are
clockwise oriented. Therefore, when an inner boundary is con
nected to the outer boundary, the order of the edges is respected
and the inner part of the domain is univocally defined. Finally,
Fig. 4f shows the obtained mesh.

Four remarks on the proposed algorithm have to be made. First,
although a virtual edge in the physical space is traveled twice in
opposite directions, this is not true in the computational space.
Fig. 5a shows a geometry with a virtual edge. In the physical

domain, this virtual edge is traveled twice in opposite directions.
However, in the computational domain, the virtual edge is traveled
two times in the same direction, see Fig. 5b.

Second, note that virtual edges do not belong to the surface
boundary. Therefore, they can be moved if a smoothing algorithm
is used to improve the quality of the final mesh.

Third, it is worth to notice that Eq. (4) has to be modified when
dealing with multiply connected geometries. It is straightforward
to prove that in these cases the new condition is
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where H is the number of holes of the geometry. This way, the new
linear problem to solve in order to classify the vertices of the geom
etry is defined as
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Fig. 5. Virtual edges for a multiply connected geometry. (a) Physical domain. (b) Computational domain.
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Fig. 6. Meshes generated in the geometries of the first and second example using the submapping method. (a) Mesh generated in a mechanical piece. (b) Mesh generated in a

mechanical support.
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Fig. 7. Vertex classification for a mechanical support. (a) Classical vertex classification. (b) Corrected vertex classification.

Fourth, note that there is a single variable in the integer linear
problem (10) for each virtual edge, although the virtual edges are
traveled twice.

The final program flow for multiply connected domains is:

(i) Qassify the vertices as detailed in Section 2.1.
(ii) If vertex classification is not correct, compute a valid classi
fication by solving problem (10).
(iii) If the geometry is multiply connected, convert it into simply
connected using the algorithm explained in this section.
(iv) At this point, the submapping method proceeds as usual.

5. Numerical examples

In this section, we present six examples of meshes generated
using the submapping method. The user assigns an element size

and the algorithm automatically determines a correct vertex
classification and convert, if necessary, the geometry into simply
connected. Then, the submapping method is applied in order to
generate the mesh.

The objective of the first example is to show that the proposed
algorithm is able to mesh geometries that can be meshed using the
original submapping algorithm. That is, simply connected geome
tries such that vertex classification is correctly detected by the
standard algorithm. To this end, Fig. 6a shows a mesh generated
for a half of a gear. In this case, the geometry is simply connected
and the vertex classification is correctly detected.

The second example presents a simply connected geometry in
which the classical classification of vertices is incorrect, and the
geometry cannot be automatically meshed using the submapping
method. To this end, we consider the mechanical piece presented
in Fig. 6b. The classical classification of vertices is presented in
Fig. 7a. Since this classification does not verify Eq. (9), it is



Fig. 8. Discretization of an inner gear using the submapping method.

impossible to generate a valid mesh. Therefore, it is necessary to
solve the proposed linear problem (10) in order to compute a valid
classification of the vertices. Fig. 7b shows the corrected classifica
tion of vertices. Fig. 6b presents the mesh generated using the sub
mapping method.

The third example is devoted to the discretization of geometries
with several holes. Therefore, we need to apply the algorithm
presented in Section 4. To this end, we consider the geometry
presented in Fig. 8. Note that in this geometry, vertex classification

(c)

obtained using the original algorithm is valid. Therefore, it is not
necessary to solve problem (10) to obtain a valid classification.
Fig. 8 presents a mesh generated for this geometry using the sub
mapping method.

In the fourth example we couple the proposed algorithm for
submapping with a sweeping algorithm in order to mesh 3D geom
etries. More specifically, the fourth example presents a mechanical
piece that is meshed with hexahedral elements obtained by
sweeping a submapping mesh. The base profile consists of a mul
tiply connected domain where the vertex classification is not cor
rectly detected by the classical algorithms. Hence, we have to
obtain a valid classification of the vertices by solving Eq.(10). Then,
we apply the algorithm to convert the geometry into simply con
nected in order to generate a mesh using the submapping method.
Fig. 9a shows the mesh generated in the base profile. Afterwards,
we sweep the surface mesh in order to obtain the solid mesh. Figs.
9b d show three views of the hexahedral mesh.

In the fifth example we present an application of the proposed
algorithms to the discretization of a set of connected curved sur
faces. In particular, we show a mesh generated on an engine of a
DLR F6 aircraft. This geometry is composed of several connected
surfaces. For this reason, the algorithm automatically generates a
conformal mesh over common edges. In order to properly repro
duce the details of the geometry in the final mesh, we prescribe
different numbers of intervals on the edges that define the front
and the rear parts of the engine. More specifically, we prescribe
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Fig. 9. Mesh generated in the geometry presented in example four. (a) Bidimensional mesh generated using the submapping algorithm. (b—d) Views of the generated mesh.
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six intervals in the front part and three intervals in the rear zone. In
this case, each surface is simply connected and the vertex classifi
cation is correctly detected. Thus, we do not need to compute an
alternative vertex classification, and we do not need to convert
the surfaces into simply connected. Fig. 10a and b present two gen
eral views of the final mesh. Fig. 10c and d show a detail of the final
mesh in the front and rear part of the engine, respectively.
Finally, the sixth example presents the discretization of the fluid
around a cross section of the engine of a DLR F6 aircraft. It is
defined by a multiply connected geometry in which the vertex
classification is not valid (Fig. 11a). Hence, we need to apply the
algorithm presented in Section 3 to compute a valid classification,
and the algorithm detailed in Section 4 to convert the geometry
into simply connected. The proposed submapping algorithm is ap
plied in conjunction with a procedure that generates fifteen
boundary layers around the profile of the engine. Fig. 11b shows
a global view of the coarse mesh generated using the submapping
method. Fig. 11c shows a detail of the mesh in the front of the pro
file, while Fig. 11d shows a detail of the mesh in the rear zone.

6. Conclusions

The submapping method imposes that the angles defined be
tween two consecutive edges of the boundary have to be, approx
imately, an integer multiple of 7/2. Furthermore, the vertices of
the geometry have to be classified in such a way that they define
a closed domain in the computational space. These two conditions
are the major constraints of the applicability of the submapping
method. In addition, special algorithms have to be developed in or
der to mesh multiply connected domains. Therefore, in this work,
we presented two original contributions in order to improve the
applicability of the submapping method.

The first one is focused on vertex classification. Given a geome
try, multiply connected or not, we propose a necessary condition

7
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Fig. 10. Mesh generated over an engine of a DLR F6 aircraft. (a) Front view. (b) Rear view. (c) Detail of the front part of the mesh. (d) Detail of the rear part of the mesh.

that has to be verified by a valid vertex classification. This condi
tion states that if a geometry is to be meshed using a submapping
method, then the summation of the outer angles derived from the
vertex classification should equal to 27. If an invalid classification
of the vertices is found, then the method automatically generates a
new one that verifies the proposed condition by solving a linear
integer problem. Although the proposed algorithm extends the
applicability of the submapping method, we have pointed out that
there still exists geometries that can not be meshed using it. The
basic reason is that we have proposed a necessary condition.
Therefore, it is possible to find a vertex classification that verifies
it and leads to an invalid discretization.

The second contribution deals with the conversion of multiply
connected geometries into simply connected. To this end, the pro
posed procedure automatically connects inner boundaries with the
outer boundary using virtual edges. Virtual edges are computed
using an auxiliary constrained Delaunay triangulation of the sur
face. Once the geometry is simply connected, the submapping
method proceeds according to the proposed algorithm for simply
connected domains. Note that, opposite to the standard procedures
to convert multiply connected geometries into simply connected,
the new procedure does not impose any condition on the outer
boundary of the geometry. Therefore, additional geometries can
be meshed using the proposed procedure.

Additional research is needed in order to extend the applicabil
ity of the submapping method. On the one hand, it will be of the
major importance to deduce a sufficient condition to be verified
by vertex classification in order to obtain a valid mesh. On the
other hand, the robustness of the interval assignment has to be im
proved. For instance, the solution of the integer linear problem al
ways provides a number of intervals such that the boundary of the
computational space is closed. However, the boundary of the com
putational space can be folded. Thus, it is impossible to generate an
acceptable mesh. Additional equations should be included in the
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Fig. 11. Mesh generated in the surface presented in example six. (a) Geometry of the sixth example. (b) Generated mesh. (c) Frontal detail of the mesh. (d) Rear detail of the

mesh.

integer linear problem in order to avoid folded geometries in the
computational space.

Finally, it is worth to notice that the standard submapping
method, and the new contributions presented in this article are
successfully implemented in the ez4u meshing environment [8].

Acknowledgements

The authors wish to thank Xevi Roca for his advice during the
implementation of the algorithms in the ez4u environment. This
work was partially sponsored by the Spanish Ministerio de Ciencia
e Innovaciéon under Grants DPI2007 62395, BIA2007 66965 and
CGL2008 06003 C03 02/CLL

Appendix A
In this appendix we detail how to compute the p; and w; param
eters that appear in the integer linear problem (8). This computa

tion is performed in two steps:

(i) Let W; be

Wi 1 2(oG  [ol),
where ; is computed according to Eq. (3), and [x] denotes the
nearest integer greater than or equal to x. Note that the max
ima of the W; function are located on the integer values of .

(ii) Let t; and t, be the tangent vectors of the adjacent edges at
vertex i. In addition, let n; and n, be second derivative
vectors of the adjacent edges at vertex i. We compute d,
det(t;,m), d» det(tz,m;), and d (dy + d>)/2. Finally, we

define:
pi 5/8Wi, w; 3/8W;, ifd>0,
P; 3/8W,, w; 5/8W,, ifd< 0,
Pi W,', ; W,‘, ifd 0.
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