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Fig. 2. A geometry with an invalid classification of its vertices.
Taking into account these values, we can rewrite Eq. (2) as:

XNvertices

i 1

ai ð0 � SÞ þ ð1 � EÞ ð2 � RÞ ð1 � CÞ 4;

where S; E; R and C are the number of vertices classified as side,
end, reversal and corner, respectively. Therefore, a correct classifica
tion of the vertices has to verify

E C 2R 4: ð4Þ

The basic idea of the new algorithm is to slightly modify the ini
tial classification of vertices in such a way that Eq. (2), or condition
(4), is verified. Hence, we will solve the following problem to gen
erate a valid classification:

minimize
XNvertices

i 1

jai aij;

constrained to :
XNvertices

i 1

ai 4;

ð5Þ

where ai is the initial detected classification of vertex i, see Eq. (3),
and ai is the resulting classification. Note that ai can be a real value
whereas ai is always an integer value. Although Eq. (5) is not a
linear integer problem we can modify it in order to obtain a linear
integer problem. Each absolute value is decomposed in the sum of
two variables, Di and di, and two new equations are introduced. In
this way,

jai aij Di þ di; i 1; . . . ;Nvertices;

Di P ai ai; i 1; . . . ;Nvertices;

di P ai ai; i 1; . . . ;Nvertices;

Di;di P 0; i 1; . . . ;Nvertices:

The new objective function to minimize is

XNvertices

i 1

qiDi þxidi; ð6Þ

where qi and xi are two positive weights that control the cost of
increasing or decreasing the classification of vertex i. It is straightfor
ward to verify that if ai ai > 0, then Di ai ai and di 0.
Conversely, if ai ai < 0, then Di 0 and di ai ai. Finally, in
order to limit the variation of the solution (the classification of
vertices) we impose that

Di þ di 6 1; i 1; . . . ;Nvertices: ð7Þ

Eq. (7) are equivalent to

jai aij 6 1; i 1; . . . ;Nvertices:

Therefore, the new problem to solve is

minimize
XNvertices

i 1

qiDi þxidi;

constrained to :
XNvertices

i 1

ai 4;

Di P ai ai; i 1; . . . ;Nvertices;

di P ai ai; i 1; . . . ;Nvertices;

Di þ di 6 1; i 1; . . . ;Nvertices;

Di; di P 0; i 1; . . . ;Nvertices:

ð8Þ

Note that the minimization of the objective function (6) pro
vides a new vertex classification that globally is not far from the
initial classification since it takes into account the total differences
between the classical, ai, and the new, ai, classifications. In
addition, constraints (7) ensure that locally, at each vertex, the
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variation of the solution is bounded (a vertex initially classified
as end could be classified as side, end or reversal but not as corner).
The definition of the parameters qi and xi is described in the
Appendix.

It is worth to notice that Eq. (4) is only a necessary condition to
obtain a valid vertex classification. However, the reciprocal is not
sufficient. For this reason, there exist geometries such that the clas
sification of its vertices verifies Eq. (4) and leads to an invalid dis
cretization. Fig. 2 presents the vertex classification of a given
geometry. This classification verifies Eq. (4) although it leads to
an invalid mesh.

The proposed algorithm flow for simply connected domains is:
first, we compute a provisional vertices classification as detailed in
Section 2.1. Second, if this classification is not valid, we solve the
linear problem (8). Third, the submapping algorithm continues as
defined in Section 2.

4. Multiply connected surfaces

Special procedures are required in order to apply the algorithms
detailed in Sections 2 and 3 to multiply connected surfaces. Multi
ply connected surfaces are defined by one outer loop of edges and
several inner loops of edges.

Ref. [1] proposes a procedure to mesh multiply connected do
mains using submapping. This procedure assumes that it is possi
ble to generate a structured mesh taking into account only the
outer boundary. In order to avoid this constraint we propose to
convert the surface into simply connected by connecting the outer
boundary with inner boundaries by means of virtual edges. Fig. 3
shows a multiply connected geometry converted into simply con
nected using a virtual edge.

To compute virtual edges, we first generate the mesh of the
boundary using the same element size that has been prescribed
to the submapping method. Using the boundary mesh, we generate
a constrained Delaunay triangulation (CDT) of the interior of the
geometry. The edges of the CDT will be the candidate virtual edges.
In our implementation, the CDT is generated using the Triangle li
brary [7]. Fig. 4a shows a CDT of a multiply connected domain. The
conversion of a geometry into simply connected is performed in
four steps:

(i) We select the outer boundary.
(ii) Among the edges of the CDT that connect the outer bound

ary with an inner boundary, we select the one that provides
the best angles (i.e. the angles between the edge and the
boundaries are approximately an integer multiple of p=2).
If there is more than one edge with the same angles, we
choose the shortest one.
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Fig. 10. Mesh generated over an engine of a DLR F6 aircraft. (a) Front view. (b) Rear view. (c) Detail of the front part of the mesh. (d) Detail of the rear part of the mesh.
six intervals in the front part and three intervals in the rear zone. In
this case, each surface is simply connected and the vertex classifi
cation is correctly detected. Thus, we do not need to compute an
alternative vertex classification, and we do not need to convert
the surfaces into simply connected. Fig. 10a and b present two gen
eral views of the final mesh. Fig. 10c and d show a detail of the final
mesh in the front and rear part of the engine, respectively.

Finally, the sixth example presents the discretization of the fluid
around a cross section of the engine of a DLR F6 aircraft. It is
defined by a multiply connected geometry in which the vertex
classification is not valid (Fig. 11a). Hence, we need to apply the
algorithm presented in Section 3 to compute a valid classification,
and the algorithm detailed in Section 4 to convert the geometry
into simply connected. The proposed submapping algorithm is ap
plied in conjunction with a procedure that generates fifteen
boundary layers around the profile of the engine. Fig. 11b shows
a global view of the coarse mesh generated using the submapping
method. Fig. 11c shows a detail of the mesh in the front of the pro
file, while Fig. 11d shows a detail of the mesh in the rear zone.

6. Conclusions

The submapping method imposes that the angles defined be
tween two consecutive edges of the boundary have to be, approx
imately, an integer multiple of p=2. Furthermore, the vertices of
the geometry have to be classified in such a way that they define
a closed domain in the computational space. These two conditions
are the major constraints of the applicability of the submapping
method. In addition, special algorithms have to be developed in or
der to mesh multiply connected domains. Therefore, in this work,
we presented two original contributions in order to improve the
applicability of the submapping method.

The first one is focused on vertex classification. Given a geome
try, multiply connected or not, we propose a necessary condition
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that has to be verified by a valid vertex classification. This condi
tion states that if a geometry is to be meshed using a submapping
method, then the summation of the outer angles derived from the
vertex classification should equal to 2p. If an invalid classification
of the vertices is found, then the method automatically generates a
new one that verifies the proposed condition by solving a linear
integer problem. Although the proposed algorithm extends the
applicability of the submapping method, we have pointed out that
there still exists geometries that can not be meshed using it. The
basic reason is that we have proposed a necessary condition.
Therefore, it is possible to find a vertex classification that verifies
it and leads to an invalid discretization.

The second contribution deals with the conversion of multiply
connected geometries into simply connected. To this end, the pro
posed procedure automatically connects inner boundaries with the
outer boundary using virtual edges. Virtual edges are computed
using an auxiliary constrained Delaunay triangulation of the sur
face. Once the geometry is simply connected, the submapping
method proceeds according to the proposed algorithm for simply
connected domains. Note that, opposite to the standard procedures
to convert multiply connected geometries into simply connected,
the new procedure does not impose any condition on the outer
boundary of the geometry. Therefore, additional geometries can
be meshed using the proposed procedure.

Additional research is needed in order to extend the applicabil
ity of the submapping method. On the one hand, it will be of the
major importance to deduce a sufficient condition to be verified
by vertex classification in order to obtain a valid mesh. On the
other hand, the robustness of the interval assignment has to be im
proved. For instance, the solution of the integer linear problem al
ways provides a number of intervals such that the boundary of the
computational space is closed. However, the boundary of the com
putational space can be folded. Thus, it is impossible to generate an
acceptable mesh. Additional equations should be included in the
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