
Advances in Engineering Software 41 (2010) 1087–1109
Contents lists available at ScienceDirect

Advances in Engineering Software

journal homepage: www.elsevier .com/locate /advengsoft
TracED: A tool for capturing and tracing engineering design processes

María Luciana Roldán *, Silvio Gonnet, Horacio Leone
CIDISI – INGAR/UTN – CONICET, Avellaneda 3657, 3000 Santa Fe, Argentina
a r t i c l e i n f o

Article history:
Received 14 November 2008
Received in revised form 25 June 2010
Accepted 28 June 2010
Available online 31 July 2010

Keywords:
Design process support
Design history
Software architectures
Knowledge acquisition
Architectural design decisions
Operational approach
0965-9978/$ - see front matter � 2010 Elsevier Ltd. A
doi:10.1016/j.advengsoft.2010.06.006

* Corresponding author. Tel.: +54 342 4534451; fax
E-mail addresses: lroldan@santafe-conicet.gov.a

santafe-conicet.gov.ar (S. Gonnet), hleone@santafe-c
a b s t r a c t

The design of products or production processes in many engineering disciplines such as chemical, or soft-
ware engineering, involves many creative and sometimes unstructured activities, with an opportunistic
control flow. During these design processes, several models are generated, which have different levels of
abstraction of the object being designed. Given the difficulties in dealing with this complexity using an
improvised way, there is an urgent need for tools that support the capture and tracing of this process.
In this proposal, TracED, a computational environment to support the capture and tracing of engineering
design process is presented. It allows defining a particular engineering design domain and supporting the
capture of how products under development are transformed along an engineering design process. Par-
ticularly, in this work, we consider software architectures design domain. As in any complex process, the
support of computational tools is required for enabling its capture.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Product and production process design in many engineering
disciplines such as chemical, or software engineering is a challeng-
ing task. Over the last 30 years, the engineering design process has
been transformed by the introduction of massive computing
power, where problem-solving environments (PSEs) play a main
role. PSEs aim to assist engineers in solving several complex tasks.
A design PSE must be able to handle all requirements of a design
team and to integrate with the stages of the design process. More-
over, it must be configurable by the design team itself to suit each
new problem as it is tackled [1]. The design PSE should be flexible
and should not constrain the task of the designer in an unnatural
manner [2]. In order to assist engineers during the design process,
it is necessary to understand such a process and to have a com-
puter representation of it. However, design problems are ill-struc-
tured, because the designer does never have enough information in
the initial state and the properties of the goal state are never fully
specified in advance. Therefore, many different goal states are
conceivable and acceptable [3,4]. All this become designing in a
nondeterministic process, which is difficult to model and even
more difficult to prescribe [5]. As a consequence of the previously
pointed out features, there is a real need of supporting tools that
could capture how an engineering design process was carried
out. By having such tools, the tracking and tracing of the design
process would be possible, as well as the analysis of its rationale.
ll rights reserved.

: +54 342 4553439.
r (M.L. Roldán), sgonnet@
onicet.gov.ar (H. Leone).
In this way, the design experts’ knowledge could be captured, thus
providing the foundations for learning and training activities and
future reuse.

Several attempts to provide support to the design process in dif-
ferent engineering domains have been reported [6–8]. Some tools
are based on design reasoning capture by means of the concepts
proposed by the IBIS model [9]. Another line of research related
to design is the management of development processes products
(where products are models, data, diagrams, etc.). For some time
now, there have been widely used systems for managing products
and their versions [10]. This practice responds to the basic need
of storing and organizing the products of a development process
[11]. These management systems, like software configurations-
managing systems, are focused on products, and they do not con-
sider the design process tracing. Consequently, these tools do not
satisfy the need of capturing the design process together with its
reasoning.

In this paper, TracED, a computational environment to support
the capture and tracing of engineering design process is proposed.
The environment is based on a generic model for capturing the de-
sign process in terms of the operations applied to the design ob-
jects [12]. Its goal is the capture of the developed model versions
during a design process; in other words, it represents the design
states and how they were obtained. The environment was designed
with the requirement of supporting various design domains, there-
fore, TracED could be adapted to each new design problem, accord-
ing to the particular concepts of a given design domain and the
possible operations that can be applied over the instances of those
concepts. For example, regarding software engineering, one of the
most important stages is the software architecture design process

http://dx.doi.org/10.1016/j.advengsoft.2010.06.006
mailto:lroldan@santafe-conicet.gov.ar
mailto:sgonnet@santafe-conicet.gov.ar
mailto:sgonnet@santafe-conicet.gov.ar
mailto:hleone@santafe-conicet.gov.ar
http://dx.doi.org/10.1016/j.advengsoft.2010.06.006
http://www.sciencedirect.com/science/journal/09659978
http://www.elsevier.com/locate/advengsoft

1088 M.L. Roldán et al. / Advances in Engineering Software 41 (2010) 1087–1109
(SADP), to which research and industry communities have paid
special attention in the last decade [13]. The software architecture
of a computing system is the structure of the system, which com-
prise software elements, the externally visible properties of those
elements, and the relationships among them [13]. It is the first
artefact that may be analyzed to determine how well software
quality attributes (performance, modifiability, availability and so
on) are being achieved. In addition, the software architecture
serves as mean of communication, is the manifestation of earliest
design decisions, and is a re-usable abstraction that can be trans-
ferred to new systems. It gives a high return on investment
because decisions made for the architecture have substantial
downstream consequences and because checking and fixing a soft-
ware architecture is relatively inexpensive. As other complex engi-
neering design processes, SADP involves several activities such as
exploration, evaluation, and composition of design alternatives
[14,15]. In order to address these activities, the research commu-
nity has been working intensively in the achievement of modelling
languages [16,17], design methods [13] and computer environ-
ments for architect assistance [18–20]. Those tools are focused
on assisting designers in generating a software architecture design
to satisfy a set of requirements. However, regular design tools of-
ten left out documentation of associated rationale, design decisions
and applied knowledge. These omissions stem from the fact that
such information may be intuitive or obvious to the architects in-
volved in the design process, or from the lack of adequate com-
puter-aided environments that allow them to support the design
process and the software maintenance (to fix bugs, to implement
new functionalities, etc.). Thus, most architectural design knowl-
edge and architectural design decisions made through SADP re-
main in the minds of experienced designers, and are lost over
time. Consequently, capturing design decisions is highly important
to capitalize previous designs. To this aim, this contribution
assumes an operational perspective where design decisions are
modelled by means of design operations.

The remainder of this article is organized as follows. In Section
2, a conceptual and generic model for capturing and tracing a de-
sign process is presented. The proposed model employs a version-
ing administration approach based on an operational perspective.
It is not intended for a specific domain; on the contrary, it can be
applied to different domains such as software [21] and chemical
engineering [12]. Then, this section introduces suitable extensions
for making it applicable to the software architecture design
process. Therefore, the model is outlined in an object-oriented ap-
proach to provide the foundations for developing a computational
tool that enables capturing and tracing a design process; particu-
larly the definition of the necessary concepts and operations for
SADP domain are included. Afterwards, the core tools of TracED
are presented in Section 3. This section describes how a particular
engineering design domain can be defined on TracED, and then, by
using it, the several products of a design process can be captured
and traced. As a conducting example, we present a case study on
the software architectures domain, in order to illustrate the ap-
proach. In Section 4, related research is analyzed. Finally, conclu-
sions and an outline for further work round out this article in
Section 5.
2. A model to capture and trace the engineering design process

As it was introduced in the previous section, it is necessary to
have a computational environment to support the capture and
tracing of engineering design processes. As a result, it would be
possible to think about the reuse of parts of previous projects to
modify, extend, and integrate it according to new needs, as stated
by Concheri and Milanese [22]. They also denote that in order to
provide such features, all the information involved and used in
the design process should be formalized and modelled in a suitable
format for automatic data processing. Therefore, the scheme to
capture and trace an engineering design process proposed in this
paper is a mixed approach that combines object-oriented technol-
ogy and situational calculus [23,24]. This choice is justified by the
following reasons: (i) object-oriented approaches make the knowl-
edge representation task much simpler because they reflect a more
natural view of the domain to be modelled, and the model exten-
sion requires no strategic changes in the structure of the knowl-
edge base itself; (ii) by means of the situation calculus, the
evolution of the products of a design project is represented. The sit-
uation calculus is a first-order language for representing changes,
sometimes enriched with some second-order features [24]. The ba-
sic concepts are situations, actions, and fluents. Briefly, actions are
what make the dynamic world change from one situation to an-
other. Fluents are situation-dependent functions used to describe
the effects of actions. Possible world histories, which are sequences
of actions, are represented by first order terms called situations.
Situation calculus is perfectly suitable to model dynamic worlds,
which, in this case, is the evolution of a model in an engineering
design process. This evolution is specified by using successor state
axioms, first order formulas that encode the axioms about how the
products of a design project evolve. Therefore, situation calculus is
used to formalize the evolution of a design process and object-ori-
ented technology to represent the main concepts to enable the
construction of computational tools that implement the formu-
lated specification.

The proposed scheme considers the design process as a se-
quence of activities that operate on the products of the design pro-
cess, named design objects. Typical design objects are models of the
artefact being designed (i.e. an information system, an industrial
piece of equipment, or a chemical process plant), specifications
to be met (i.e. stream purity specs, products’ throughput for pro-
cess system engineering, quality attributes such as modifiability
or performance for software engineering), variable values (i.e. re-
flux ratios, number of stages of a separation unit, operating tem-
peratures and pressures, etc.). Naturally, these objects evolve as
the design process takes place, giving rise to several versions that
must be kept. These versions may be considered as snapshots ta-
ken to design objects at a given point of time; and the set of those
versions conform a model version. A model version describes the
state of the design process in that time, including the artefact being
designed. For example, Fig. 1 partially shows two model versions,
mk and mq. Both model versions are the result of a fragment of a
SADP and include the structure of the artefact being designed.
The example corresponds to the case study described in Section 3.

In this scheme, each model version is generated by applying a se-
quence of operations on a predecessor model version. The sequence of
operations may include the elimination, creation, and modification
of versions that constitute the predecessor model version. As it is
exemplified in Fig. 1, the model version mq is obtained from the
model version mk by deleting the WebApplication component and
adding the components View, Model, and Controller, with their
ports and connectors. Therefore, all model versions may have zero
or more successor model versions and must have only one predeces-
sor model version (except for the initial model version, which does
not have a predecessor model version). Consequently, the represen-
tation scheme of versions is a tree structure, where each model
version is a node and the root is the initial model version. This tree
structure is illustrated in Fig. 1. There, it is possible to see the
several successor model versions that have been proposed (Model
Version mi, Model Version mk) from the initial model version (Model
Version m0), by applying the sequence of operations /i and /k,
respectively. This model evolution is posed as a history made up
of discrete situations. The situation calculus [23,24] is adopted

Model
Version m0

Model
Version mj

Model
Version mk

Model
Version mp

Model
Version mi

Model
Version mq

Precedence Relationship
A Sequence of Operations
was performed

φi

φk

φq

φj

φp

<<system>>
Struts

Model Version mk

Model Version mq

<<system>>
Struts

<<component>>
WebApplication

<<component>>
View

<<component>>
Model

<<component>>
Controller

Fig. 1. Tree-structured representation of a design process.

M.L. Roldán et al. / Advances in Engineering Software 41 (2010) 1087–1109 1089
for modelling such version generation process. In the context given
by the design process, it is possible to assimilate each new gener-
ated model version with a situation, and each action with a sequence
of operations, which is applied on a predecessor model version.
Therefore, the new model version mq is achieved by performing
the following evaluation: apply(/q, mk) = mq, where /q represents
the sequence of operations applied on the predecessor model ver-
sion mk.

The general scheme used in such approach represents a design
object at two levels, the repository and the versions level. Each model
version is generated from views of a repository that keeps all the
objects that have been created and modified due to the model
evolution during a design project. The elements constituting the
repository are called versionable objects. A versionable object
(VersionableObject in Fig. 2) represents the artefact that can evolve
during a design project, whose history is desirable to be kept
during the modelling process. Furthermore, relationships among
the different objects are maintained in the repository (represented
by Association association class, Fig. 2).

At the versions level, the evolution of versionable objects con-
tained in the repository is explicitly represented. A model version
consists of a set of instances of object versions (ObjectVersion in
Fig. 2), which represent the versions of the objects that compose
a given model at a time point. Therefore, a versionable object keeps
a unique instance in the repository, and the versions that it assumes
in different model versions belong to the versions level. The class
Repository

end

object
Version

ObjectType

AssociationTyp

*

*

instance

Association

successor*

VersionableObject

predece

*

predecessor

successor
ModelHistory

Activity

*

History

origin *

VersionHistory
0

Versions

M
*

*

Fig. 2. Version admin
diagram [25] illustrated in Fig. 2 shows the main concepts. The
relationship between a versionable object and one of its object ver-
sions is represented by the version relationship. Each transforma-
tion operation applied to a model version incorporates the
necessary information to trace a model evolution. This information
is represented by VersionHistory relationships between the object
versions to which the operation is applied and the ones arising as
the result of its execution (Fig. 2). In order to represent engineering
design evolution, a model version has zero or more successor mod-
el versions (noted by � cardinality at successor role of ModelHistory
association shown in Fig. 2).

This domain-independent model for version administration of-
fers primitive operations to represent the transformation of model
versions: add, delete, and modify. By using the add(v) operation, an
object version v, that did not exist in a predecessor model version,
can be incorporated into a successor model version. Conversely,
the delete(v) operation eliminates an object version v that existed
in the predecessor model version. In addition, if a design object has
a version vp, the modify(vp, vs) operation creates a new version vs

of the existing design object, where vs is a successor version of vp.
Thus, an object version v is added after applying the sequence of
operations u to model version m when the new version v is created
by means of an add or modify operation (Expression 1). On the other
hand, Expression 2 represents the fact that an object version v is de-
leted after applying the sequence of operations u to model version m
when the version v is deleted by the delete or modify operation.
Domain

partcontainer

propertyType

e

1..* Belong *

*

*

version1..*

ObjectVersion
1..*

ModellingConcept

ssor

*

Version

DomainRelationship

*

*

..1

Property

PropertyValue

odelVersion

Operation

* *

*

istration model.

1090 M.L. Roldán et al. / Advances in Engineering Software 41 (2010) 1087–1109
ð8/;v ;mÞðaddðvÞ 2 / _ ð9vpÞmodifyðvp;vÞ 2 /Þ) addedðv ; applyð/;mÞÞ
ð1Þ

ð8/;v ;mÞðdeleteðvÞ 2 / _ ð9v sÞmodifyðv ;v sÞ 2 /Þ) deletedðv ; applyð/;mÞÞ
ð2Þ

From these definitions, and using the format of successor state
axioms proposed by Reiter [23], a formal specification of the cases
in which an object version belongs to a model version is presented.
In Expression 3, the predicate belong(v, m) is true when object ver-
sion v belongs to model version m. Thus, an object version v belongs
to a model version that arises after applying the sequence of oper-
ations u to model version m, if and only if one of the following con-
ditions is met: (i) v is added when the new version is created; (ii) v
already belonged to the predecessor model version m (belong(v, m))
and it is not deleted when u is applied. From this expression, the
object versions belonging to a model version can be specified. Then,
it is possible to reconstruct a model version mi+1 by applying all
operation sequences from the initial model version m0.

ð8/; m;mÞbelongðm; applyð/;mÞÞ () ðbelongðv ;mÞ
_ addedðv; applyð/;mÞÞÞ ^ ðqdeletedðv; applyð/;mÞÞÞ ð3Þ

Once the versions belonging to a model version are defined, the
relationships existing among object versions have to be specified. In
this proposal, object versions belonging to a model version are not
explicitly associated to other object versions belonging to the same
model version. These links are represented at the repository level.
Consequently, the relationship existing between two object ver-
sions must be inferred from the relationship established between
the versionable objects that have been versioned. This inference
is represented by Expression 4, in which an association ak is in-
ferred between two object versions v1 and v2 belonging to the same
model version m (inferredAssociation(ak, v1, v2, m)), if and only if
there exists an association ak between the two versionable objects
o1 and o2 (association(ak, o1, o2)), of which v1 and v2 are versions,
respectively (version(v1, o1) and version(v2, o2)).

ð8v1;v2;m; akÞinferredAssociationðak;v1;v2;mÞ () ð9o1; o2Þbelongðv1;mÞ
^ belongðv2;mÞ ^ versionðv1; o1Þ ^ versionðv2; o2Þ
^ associationðak; o1; o2Þ

ð4Þ

On the other hand, it is important to consider that operations
have preconditions. Precondition axioms allow specifying the con-
ditions under which an action can be performed. Thus, it is neces-
sary to specify the preconditions to apply a sequence of operations
/ to a given model version m, fact that is expressed by the possso(/,
m) predicate in Expression 5.

ð8/;mÞposssoð/;mÞ () ð8opi; opi 2 /Þpossoðopi;/;mÞ ð5Þ

The posso(opi, /, m) predicate expresses that a sequence of oper-
ations / may be applied to a model version m if each operation opi

belonging to / can be applied to m, as well as opi can be applied in
all the situations generated by applying the i � 1 previous opera-
tions in the sequence, where opi is the i-th operation belonging
to / (Expression 6).

ð8/;mÞð8opi; opi 2 /;9/1;/2;/

¼ /1 � opi � /2Þpossoðopi;/;mÞ () ð8mi;m

6 mi < applyð/1 � opi;mÞÞpossðopi;miÞ ð6Þ

Therefore, a sequence / can be applied to m if each operation of
/ is applicable to m and does not violate the preconditions of the
other operations belonging to /. The poss(op, m) predicate ex-
presses that an operation op is applicable to a given model version
m. This fact is represented by the following axioms:
� Operation add(v) can be applied to model version m if the object
version v does not belong to m (Expression 7);
� Operation delete(v) can be applied to model version m if the

object version v belongs to m (Expression 8) ;
� Operation modify(vi, vj) can be applied to model version m if the

object version vi belongs to m and object version vj does not
belong to it (Expression 9);
ð8v ;mÞpossðaddðvÞ;mÞ () qbelongðv ;mÞ ð7Þ
ð8v ;mÞpossðdeleteðvÞ;mÞ () belongðv ;mÞ ð8Þ
ð8v i;v j;mÞpossðmodifyðv i;v jÞ;mÞ () belongðv i;mÞ ^ qbelongðv j;mÞ

ð9Þ

In this way, situation calculus allows formalizing the evolution
of a design process by means of the specification of a set of actions,
fluents, state successor axioms, and action preconditions. The situ-
ations are represented by the model version concept. Actions are gi-
ven by add, delete, and modify primitive operations, which conform
the several sequences of operations that are applied to generate a
new situation (model version). Belong is a fluent which specifies
the object versions that belong to a model version. This fact is rep-
resented by a successor state axiom (Expression 3), where the ef-
fects of operations are expressed. These effects were defined by
added and deleted predicates. Finally, preconditions axioms make
possible to maintain the model consistence. With these elements,
situation calculus represents change and evolution in an engineer-
ing design process.

Fig. 3 illustrates the described schema to express the model ver-
sions. In this case, a fragment of a SADP is shown. The example pre-
sents the two model versions illustrated in Fig. 1, where the model
version mq is generated from the model version mk by the application
of a sequence of operations. In this simple case, design objects are in-
stances of the structural view concepts of a software architectural
description languages such as ACME [16], i.e. components, connec-
tors, ports, so on; and the set of primitive operations (composed by
add, delete and modify) has been extended by operations as apply-
MVC (applyMVC operation will be explained in Section 2.1.2). This
example shows a sequence of operations composed by only one
operation, applyMVC. This operation refines the WebApplication
component (model version mk) on View, Model, and Controller com-
ponents, with their ports and connections (model version mq).

In Fig. 3, third level is also presented, the inferred models level. The
third level is inferred from views produced by the version level on the
repository. The Struts system belongs to both inferred model ver-
sions (k and q) and it is obtained by viewing the repository from
the model versions mk and mq. At repository level, the Struts system
is represented by S, an instance of versionable object. At this level, S is
linked with the versionable objects that represent WebApplication,
View, Model, and Controller components (W, V, M, and C versionable
objects, respectively). As it is illustrated in Fig. 3, S has an object ver-
sion V1S that belongs to model version mk and mq (illustrated in the
intersection of both model versions). In addition, the WebApplication
component only belongs to the k inferred model version. At versions
level, this component has an object version, V1W, which belongs to
model version mk but it does not belong to model version mq. This
object version was refined in a set of object versions by applying
an applyMVC operation. Then, V1W was deleted from the successor
model version (mq); and the object versions representing the model,
view and controller components were added to mq.
2.1. Instantiating the generic model with a particular engineering
design domain

The primitive operations add, delete, and modify are not enough
to capture and trace an engineering design process like SADP or

Inferred Models

q Inferred Model

Repository

Versionable
Objects

Object
Version

Design
Object

Versions
Versions

Model
Version mk

P6

P5

P1
MC

W

S

P4

V P2
P3

k Inferred Model

V1W

VC
VM

<<system>>
Struts

<<component>>
WebApplication

<<system>>
Struts

<<component>>
View

<<component>>
Model

<<component>>
Controller

M

C

V1P5

V1MC

V1VC
V1P

V1M

V1C
V1P4 V1VM

V1P2

V1P3

V1V

V1P1 Model
Version mq

φq= {applyMVC(V1W)}
(modelHistory)

applyMVC

V1S

mk ∩ mq

Fig. 3. Representation scheme of model versions.

System
Quality

Requirement

Component
Type

Requirement

Style

Property Type

Functional
Requirement

Responsibility Quality
Scenario

Connector
Type

Component

Role

Port
Attachment

Property

Connector

Fig. 4. A SADP domain model.

M.L. Roldán et al. / Advances in Engineering Software 41 (2010) 1087–1109 1091
process system engineering [26]. For that reason, one important
contribution of this proposal is allow for representing the particu-
lar operations of a design domain. The strategy consists of, first of
all, identifying the several design object types (modelling concepts
in Fig. 2) that participate in the design process, such as System,
Component, Connector, Responsibility, and Scenario for SADP, or
Stream, Reactor, Distillation column for process system engineering.
Then, the specific operations of that engineering design domain
should be added to the model. This model extension is tackled in
the following sections.

2.1.1. The domain model
In order to capture the versions generated during a design pro-

cess, a generic and flexible computational tool for their capturing
and tracing has to allow the definition of the particular modelling
concepts (design object types) according to the working domain.
For this purpose, the Domain package shown in Fig. 2 enables the
definition of these concepts. Domain package gives the concepts
for the specification of the particular design domain where the
structure of the design objects, whose versions will be captured,
is detailed. Thus, these design objects are the building blocks to
represent the design artefact, requirements, and other design prod-
ucts such as the arguments of made decisions.

For each design object type, whose history has to be main-
tained, an instance of ModellingConcept (Fig. 2) must be generated
for which its versionable properties are specified by a set of in-
stances of Property class. Furthermore, the relationships among
those concepts will be instantiated from DomainRelationship in Do-
main package (Fig. 2).

2.1.1.1. A domain model for software architectures design process
(SADP). By considering SADP, the architect (designer) needs to cap-
ture and trace the evolution of design objects like component, con-
nector, port, responsibility, etc. Theses concepts are found in
numerous Architectural Description Languages (ADL) [17]. Addi-
tionally, the architect can extend the modelling concepts set with
concepts that come from architectures design methods, such as
Attribute Driven Design (ADD) [27], which considers quality
requirement, scenario, and assessment. On the other hand, design
rationale related concepts (constraint, assumption, argumentation,
etc.) should be also considered.

This proposal defines the domain with design objects taken
from the Attribute Driven Design method (ADD) [27], and the
architectural description language ACME [16]. The class diagram
shown in Fig. 4 introduces these concepts and their relationships.
This model is implemented by the instantiation of the classes of
Domain package (Fig. 2). The classes presented in Fig. 4 are going

1092 M.L. Roldán et al. / Advances in Engineering Software 41 (2010) 1087–1109
to be instances of ModellingConcept and their properties are going
to be instances of Property. Finally, the relationships in Fig. 4 will
be instantiated from DomainRelationship in Domain package.

The ADD method is based on a decomposition process where
architectural patterns (or styles) are chosen at each stage to fulfil
a set of quality scenarios. Then, component and connector types pro-
vided by architectural patterns are instantiated and functionality is
allocated to them. The input to ADD is a set of requirements (func-
tional and quality requirements). Quality requirements are expressed
as a set of system specific quality scenarios, and functional require-
ments are translated into a set of responsibilities. Quality scenarios
and responsibilities can be delegated to other components when
the original component is refined. At the end of a method iteration,
the designer verifies how well the architectural design achieves the
scenarios and sets an assessment (this concept is included in Fig. 5).
In ADD, the different model versions can be represented using var-
ious types of views. In the scope of this work, the component view
is employed to describe the architecture, together with some de-
sign rationale concepts. Accordingly, ACME [16] has been chosen
as the architectural description language. ACME defines a compo-
nent as a computational element and data store of a system. A com-
ponent may have multiple interfaces, named ports. Connectors
represent interactions among components and have interfaces that
are defined by a pair of roles. The systems comprise components and
connectors, establishing attachments between roles and ports. In
Fig. 4, the attachment concept is not considered as a modelling con-
cept but as a domain relationship. Moreover, ACME proposes ele-
ments to document extra-structural properties of a system’s
architecture, such as properties. Furthermore, it is possible to attach
constraints to design elements (this concept is included in Fig. 5).
With the aim of providing a more powerful language, ACME de-
fines component, connector, and property type building blocks.
Based on these modelling concepts, it is possible to define families
or styles. They are composed by a set of property, component and
connector types and a set of constraints.

Besides already described concepts, other modelling concepts
that allow capturing the design rationale applied during the design
process can be regarded, as the set shown in Fig. 5. These new
modelling concepts are included in the domain model and related
Constraint

RConstrainsTo

Argument

Assumption

RRejectsArg

RSystAssump

Alternative

RSupportsArg

QualityScen

System

ArchitecturalElement

RSystAlt

*

*

*

1

1

*

1

1 1
1

1

1

*

*

1

1

*

1

1

*

*

*
*

RCCT

RLAE
RSAAE

RASA

RARA

RRAAE

RSS1

RSS2

RAA2

RAA

RRSS

RQSA

RAAE

RSAA

RSAA

Fig. 5. Incorporating design rationale mo
to those that were already shown in Fig. 4, which are generalized
by the architectural element abstract concept. Some of these design
rationale modelling concepts are: assessment (an appreciation of an
architect about the achievement of a given scenario); assumption (a
kind of constraint, which is known in advance); alternative (differ-
ent solutions, or directions for the intended system); argument (an
assertion in which reasons are advanced for or against some alter-
native or proposal), and constraint (a rule or condition that restrict
the design process).

Due to the fact that instances of the concepts usually need to be
associated to other elements (i.e. software architecture structural
modelling concepts with design rationale modelling concepts), it
is valuable for the designer to count on another group of modelling
concepts that allow the linking of both, which represent reified
associations (or relationships). For example, an object version
whose type is RSystAssump could express that a system is restricted
by a given Assumption-type object version (Fig. 5). Another model-
ling concept, RTradeOff allows expressing situations such as the
existence of tradeoffs between two quality requirements, when
the achievement of one quality requirement affects the achieve-
ment of another, and vice versa. For instance, an association
RTradeOff may relate modifiability quality requirement and perfor-
mance quality requirement objects, indicating that the applying
of modifiability tactics such as separation of concerns causes a
low performance, whereas a good performance level precludes
the facility in changing the future implementation of the architec-
ture’s design. Additionally, RConstraintsTo represents the link
among a Constraint-type object version and one or more object ver-
sions of architectural elements. RSupportsArg and RRejectsArg mod-
elling concepts allow linking a set of architectural elements with
the argument that justify or refuse their presence in a given model
version. In addition, RSystAlt modelling concept establishes a one
to one relationship between an Alternative object and a given Sys-
tem object (which aggregates a whole architectural solution). Fi-
nally, ROppossiteTo and RSimilarTo express the existence of two
opposite or similar explored alternatives. It should be noted that
these domain relations were represented as modelling concepts in-
stead of ordinary domain relationships. This was done to allow the
versioning of their instances.
Assessment

FunctionalRequirement

RIsAlternativeOf

RSimilarTo

ROppositeTo

RReqSyst

Requirement

ario

RQReqSce

RTradeOff

*

1

1

1

*

RQRQRS

RQSQRS

1

RRSR

QualityRequirement

delling concepts to a domain model.

M.L. Roldán et al. / Advances in Engineering Software 41 (2010) 1087–1109 1093
Another way of adding design rationale to a model is including
in the model the intentions and goals of the designer when an
operation is performed. This is represented by linking the results
of certain design decisions to the intended goals of those decisions.
Regarding SADP, a ‘‘goal” could be a requirement to be met, a sce-
nario to be verified, or a constraint that must be satisfied, among
others. To achieve that, it is necessary to include modelling con-
cepts that represent the relationship to be captured. For example,
RPossibleScenarioSolution modelling concept (Fig. 6), which links a
QualityScenario with a set of ArchitecturalElements, allows express-
ing that it is probably that these object versions achieve the quality
scenario with an acceptable level of satisfaction. Additionally, Fig. 6
includes RConsidersConstraint modelling concept to express that a
design (set of various interrelated ArchitecturalElements) takes into
account a particular Constraint that was imposed on a system or
part of a solution. It is important to note that RConstrainsTo
(Fig. 5) and RConsidersConstraint (Fig. 6) are different concepts.
The former permits to express an identified constraint that must
be satisfied by an architectural model (it is imposed), and the later
Constraint

Assumption

RConsidersConstraint

Assessm

RRegardsAssumption

*

Syste

ArchitecturalE
*

1

*

1
1

RCCC

RCCAE

RA

RAS2
RAS1

Fig. 6. Modelling concepts related to design rationale

predecessor

scope

successor

iterator
declares

arguments

currentresults

1..*

Loop Next

Operations

1..*
{ordered}

body

ModelVersion
(from Versions)

CurrentModelVersion

Primitive

IterationAddDelete Modify

body

VersionHistory
(from Versions)

Version
(from Versions)

Argument

Operation
(from Domain)

Command

name

Variable
reference

body

AuxiliaryFunctioMacroCommand

ObjectVersion
(from Versions)

Get P

Fig. 7. Operatio
allows representing a case where particular set of object versions
were incorporated to, or eliminated from, a given model version
because a given Constraint was taken into account.
2.1.2. The operations model
The primitive operations add, delete, and modify have to be ex-

tended with suitable operations for a specific engineering design
domain such as applyMVC operation employed in Fig. 3. In order
to provide the foundations for computational tools, this contribu-
tion proposes an object-oriented operations model, which is flexi-
ble enough for specifying the domain’s necessary operations. For
each modelling concept, a set of possible operations is defined. To
implement operations, the well-known Command design pattern
was used [28]. Therefore, a command abstract class is introduced
into the Operations package illustrated in Fig. 7. An operation is de-
fined as a macro command (MacroCommand class), a subclass of
command that simply executes a sequence of commands. There-
fore, when an operation is specified, it is necessary to define both
the arguments and the body of the operation. The body of a macro
ent Quality Scenario

RPossibleScenarioSolution

*

1..*

m

lement *

*

*

RQSA

AE RPSSQS

RPSSAE

for expressing intentions and pursued objectives.

type

elementType

type

VariableAssignment

PrimitiveDataType

Collection

ObjectVersion
(from Versions)

Literal

PropertyValue
(from Versions)

<<Interface>>
RunTimeValue

ModellingConcept
(from Domain)

value

n

ApplicableTo

reference

DataType

ortMap? Delegate?

type

ns package.

1094 M.L. Roldán et al. / Advances in Engineering Software 41 (2010) 1087–1109
command contains one or more already defined commands that are
available for being used in other operation specifications. They can
be primitives operations (such as add, delete, or modify), auxiliary
function commands (like iteration and variable assignment), or pre-
vious defined operations. AuxiliaryFunction abstract class repre-
sents special predefined commands offered by the operation
model, which can be used as building blocks for defining complex
operations. Iteration class represents a command, which has a
repetitive behaviour and is related to a collection of elements. It
is specialized in Loop and Next, which have a slightly difference
among them. The first one executes a body (or commands se-
quence) for each element in the collection. The second one, Next,
works as a pointer that goes through the collection of elements,
and allows access to each element. Frequently, Next is used as part
of a body of Loop command. Another valid auxiliary function is
VariableAssignment that represents the assignment of a value to a
variable of a given type. As subclasses of AuxiliaryFunction, addi-
tional commands have been defined in [29].

As shown in Fig. 7, every command has one or more data typed
arguments. Arguments are considered as a kind of variable. A vari-
able can be also declared and used in the body of an operation
and has a given type. The abstract class DataType generalizes the
types described by the model and it is based on the data types de-
fined by the Abstract Syntax Kernel Metamodel for Expressions de-
fined by the UML 2.0 OCL Specification [30]. Therefore, DataType
subclasses are PrimitiveDataType and Collection. PrimiteDataType
includes Integer, Float, String and Boolean types. Collection describes
an ordered list of elements of a particular given type, without
duplicates, and it is parameterized with an element type. Further-
more, ModellingConcept is included as a data type to enable speci-
fying arguments that make the type of an expected object version
explicit to be added during the execution of an add primitive.

As regards VariableAssignment, it denotes the mapping between
a Variable and a RunTimeValue. The last one is an interface that rep-
resents the run-time values during the execution of an operation.
RunTimeValue can be realized by different values like literal, object
version, modelling concept, or property value (value of a property of
an object version, Fig. 7), depending on the variable type.

2.1.2.1. An operations model for software architecture design process
(SADP). In this section, the primitive operations add, delete, and
modify are extended with suitable operations for SADP domain like
the ones listed in Table 1. Table 1 classifies them as: (a) operations
Table 1
Possible operations for the software architecture design domain.

Structural modelling concepts’ operations

Basic operations

addComponent deleteComponent
addConnector deleteConnector
addFunctionalRequirement deleteFunctionalRequirement
addPort deletePort
addProperty deleteProperty
addQualityRequirement deleteQualityRequirement
addResponsibility deleteResponsibility

addRole deleteRole
addScenario deleteScenario
addTypeComponent deleteTypeComponent
adTypeConnector deleteTypeConnector
aetAttachment deleteAttachment

Architectural design rationale concepts’ operations

setAssessment addArgument
modifyAssessment supportDecision
addContraint opposeDecision
satisfyContraint addAssumption
related to structural concepts, or (b) operations related to design
rationale concepts. The first category is grouped in several com-
plexity levels:

(i) Basic: operations that allow creating and deleting basic
design objects (like components and connectors).

(ii) Special: more complex operations that involve object refine-
ment or delegation.

(iii) Styles/mechanisms application: operations that generate a
new set of design objects, which have a configuration based
on an architectural style; or even if they do not modify the
model structure, they affect some design objects properties.

Additionally, it is important to count on operations that are
applicable to architectural design rationale concepts. These opera-
tions embody those designer’s decisions, analysis activities, or
tradeoffs evaluations, which have a fundamental impact on the
architecture, and which have to be documented in order to enable
the architecture’s future evolution. In other words, the capture of
design rationale provides a valuable tool for understanding a sys-
tem’s architectural design. For example, an operation like setAssess-
ment conveys the action of assigning a value that indicates how
well a scenario is satisfied by a group of design objects with a given
configuration and a set of properties. Operation addArgument is in-
tended for making explicit the reason that supports or rejects a po-
sition or decision, by adding it as an object version. In this case, an
instance of a relationship concept indicates the argument that is
rejecting or supporting a decision. The addAssumption operation
is also specified using the identified concepts and the primitives
operations. This operation considers the sequence of actions for
adding an object version whose design object type is assumption,
and adding the relation between an element (or set of elements).
The addAssumption operation is applied when the designer wants
to express facts that were beforehand considered on the design
of system architecture.

Fig. 8 presents functional specifications for some of the basic
operations defined in Table 1. The rest of the operations are defined
in a similar way, using primitive operations like add(c), and non-
primitive ones, like addPort(c, p). For example, the addComponent(s,
c, lResps, lPorts) operation allows adding a component c to a system s.
As it can be seen in Fig. 8, this operation is carried out by a series of
operations. First, a version of component c is added (add(c)). After
that, a set of responsibilities (specified by list lResp) and ports (de-
Special operations

refineComponent
refineResponsibility
delegateResponsibility
delegateScenario
verifyScenario
assignPossibleScenarioSolution
Styles/Mechanisms application

applyIntermediaryBlackboard
applyControlLoop
applyRuleEngine
applyClientServer
applyPoolOfConnections
applyMVC
applyMVC-go

addAlternative
acceptAlternative
rejectAlternative

addComponent(s,c, lResps,lPorts)
add(c)
for each r in lResps
 addResponsibility(c,r)
end for
for each p in lPorts
 addPort(c, p)
end for
addRelationship(s, c)

deleteComponent(s, c)
lPorts = getPorts(c)
for each p in lPorts
 deletePort(c, p)
end for
delete(c)

addPort(c, p)
add(p)
addRelationship(c, p)

deletePort(c, p)
// port deletion implies
// deletion of the connector
// attached to it
deleteConnector(getConnector

 (getRol(p)))
delete(p)

addResponsibility(c, r)
add(r)
addRelationship(c, r)

deleteResponsibility(c, r)
delete(r)

Fig. 8. Specifications of basic operations.

M.L. Roldán et al. / Advances in Engineering Software 41 (2010) 1087–1109 1095
tailed by list lPorts) are inserted. Some of these design objects can
have associations at repository level. Such associations are asserted
as facts, and, if possible, they are inferred at version level, as it was
specified by Expression 4. For clarifying purposes, in operations’
functional specifications, a pseudooperation addRelationship is
used, which simulates the addition of an association into the repos-
itory (just between versionable objects). Functional specifications
give an outline of how the operations could be configured using
a computational tool. They are useful as an example of the syntax
provided by a computational tool based on the proposed model.
Section 3 shows an example of how TracED allows the definition
of these operations by using similar elements.

Just as defining basic operations, it is possible to define the spe-
cial operations. Fig. 9 presents some examples. The delegateRespon-
sibility(c1, c2) operation enables delegating a responsibility of
component c1 to component c2. Thus, if a given responsibility is as-
signed to a component c1 in a model version m and a delegateRe-
sponsibility(c1, c2) operation is included in the sequence of
operations applied to the model version m, then the resulting mod-
el version shows that the responsibilities delegated to c2 will not be
assigned to c1. In a similar way, the operation delegateScenario pro-
ceeds with components and scenarios. A function with a question
mark (‘?’) at the end indicates that it is an interactive function, thus
the user is asked about how to proceed. For example, delegate?
delegateResponsibility(c1, c2)
lResps = getResponsibility(c1)
for each r in lResps
 if (delegate?(c2, r))
 addRelationship(c2, r)
 end if
end for

d

setAttachment(role, port)
addRelationship(role, port)
end for

assignPossibleScenarioSolution(pss
add(pss)
addRelationship(sce, pss)
for each v in versionsList
 addRelationship(pss, v)
end for

Fig. 9. Specifications of
function is repeatedly executed into a loop of the delegateResponsi-
bility operation in order to ask the user about assigning a given
responsibility to another component or not. It should be noted that
delegate? should be included in operations model as a subclass of
AuxiliaryFunction (Fig. 7).

The operations that apply an architecture style refine a compo-
nent instance with a new set of components and connectors that
are instantiated from a preexisting architecture style. They interact
with the designer asking how to delegate responsibilities and sce-
narios, as well as how to map connectors between external compo-
nents and refined components. For example, considering the
client–server style defined in Fig. 10, the applyClientServer(c) oper-
ation refines the component c in two new components: Server and
Client. The type of Server component is TServer modelling concept,
whereas the type of Client component is TClient modelling concept.
Both TServer and TClient are ModellingConcept instances, which ex-
tend Component modelling concept. These new components have
some predefined responsibilities and ports. Furthermore, a connec-
tion between them that meets the properties imposed by the style
is added. Finally, the designer is asked for responsibilities delega-
tion from the original component to Server and Client components.

In a similar way, applyMVC operation is defined. In this case, the
operation aims to achieving separation of concerns in a software
application, by using model-view-controller (MVC) [28] architec-
elegateScenario(c1, c2)
 lScens = getScenario(c1)
 for each s in lScens
 if (delegate?(c2, s))
 addRelationship(c2, s)
 end if
 end for

, sce, versionsList)

special operations.

applyClientServer(c)
 s = getSystem(c)
 addComponent(s,{Browser, TClient}, [P1])
 addComponent(s,{WebServer, TServer}, [P2])
 addConnector(s,{InternetConn,THTTPConnector},[R1,R2])
 delegateScenario(c,Browser)
 delegateScenario(c,WebServer)
 delegateResponsibility(c, Browser)
 delegateResponsibility(c, WebServer)
 setAttachment(R1, P1)
 setAttachment(R2, P2)
 deleteComponent(s, c)
applyMVC(c)
 s = getSystem(c)
 addComponent(s,{View, TView}, [P1,P2])
 addComponent(s,{Controller, TController}, [P3, P4])
 addComponent(s,{Model, TModel}, [P5,P6])
 addConnector(s,{ConnModView,TCModView},[R1,R6],[P1,P6])
 addConnector(s,{ConnViewCtrlr,TCViewCtrlr},[R2,R3],[P2,P3])
 addConnector(s,{ConnModCtrlr,TCModCtrlr },[R4,R5],[P4,P5])
 setAttachment(R1, P1)
 setAttachment(R2, P2)
 setAttachment(R3, P3)
 setAttachment(R4, P4)
 setAttachment(R5, P5)
 setAttachment(R6, P6)
 delegateScenario(c,Model)
 delegateScenario(c,View)
 delegateScenario(c,Controller)
 delegateResponsibility(c, Model)
 delegateResponsibility(c, View)
 delegateResponsibility(c, Controller)
 lp = getPorts(c)
 for each p in lp
 np = PortMap?(p) // Ask the user the port to map
 r = getRol(p)
 addRelationship(np, r)
 end for
 deleteComponent(s, c) //Predecessor object version is removed
applyMVC-go(c, g)
 // g (goal): receives the quality requirement that is
 // intended to reach when the operation is executed
addedVersions := applyMVC(c)
sce := select(getScenarios(g))
assignPossibleScenarioSolution(pss, sce, addedVersions)

applyIntermediary(BB, lConn)
addComponent({BB, TBlackBoard})
for each Cn in lConn
 addPort(BB, PBB1).
 addPort(BB, PBB2).
 LRol = GetRole(Cn)
 R1 = LRol(0)
 R2 = LRol(1)
 P1 = GetPort(R1)
 P2 = GetPort(R2)
 addConnector(C1, [R1, RCI1])
 addConnector(C2, [R2, RCI2])
 deleteAttachment(P1,R1)
 deleteAttachment(P2,R2)
 setAttachment(RCI1, PBB1)
 setAttachment(RCI2, PBB2)
 deleteConnector(Cn)
end for

Fig. 10. Specification of some architectural style application operations.

1096 M.L. Roldán et al. / Advances in Engineering Software 41 (2010) 1087–1109
tural pattern. The Model provides access to the necessary business
data as well as the business logic needed to manipulate that data.
The Model typically has some means to interact with persistent
storage — such as a database — to retrieve, add, and update the
data. The View is responsible for displaying data from the Model
to the user. This layer also sends user data to the Controller. The
Controller handles all requests from the user and selects the view
to return. When the Controller receives a request, it forwards the
request to the appropriate handler, which interprets what action
to take according to the request. The Controller calls on the Model
to perform the desired function. After the Model has performed
the function, the Controller selects the View to be sent back to the

M.L. Roldán et al. / Advances in Engineering Software 41 (2010) 1087–1109 1097
user according to the state of the Model’s data. Each of these com-
ponents is generated by applyMVC execution, along with their
responsibilities, ports, and connectors. Additionally, the assigned
responsibilities and the scenarios to be satisfied by the original
component c are delegated to new components (delegateResponsib-
ilites and delegateScenarios operations, Fig. 9), by interacting with
the actor who executed the operation.

Fig. 10 also presents an alternative for materializing the MVC
pattern in a design operation, called applyMVC-go. The suffix go
stands for ‘‘goal oriented”, thus indicating the designer specifies
and executes the operation thinking in addressing an specific goal
or objective. The applyMVC-go operation besides appling the MVC
pattern, it captures why the designer executes it. To achieve that,
applyMVC-go includes an extra argument to indicate the quality
requirement that the designer is addressing. At the end of the
applyMVC-go specification, additional commands are included to
prescribe how the added object versions have to be linked to a par-
ticular object version that represents a quality scenario to make ex-
plicit the intention of the designer. As the passed argument value is
a quality requirement, the designer is asked to select one quality
scenario relative to such a requirement, which is going to be spe-
cifically addressed (this action is embedded in the assignPossib-
leScenarioSolution operation, which was specified in Fig. 9).

Finally, Fig. 10 presents applyIntermediary operation which
materializes in the present model, a well known tactic for breaking
the dependency chain among components in a system. In this case,
the intermediary is a blackboard (an object version whose type is
TBlackBoard modelling concept).

In spite of the complexity inherent to style application opera-
tions, note that each of them can be translated into a sequence of
primitive operations add, delete, and/or modify that are applied to
a predecessor model version, which results in a new model version.
From this, it is possible to express these operations in terms of
added and deleted predicates introduced in Expressions 1 and 2.
For illustration purposes, let us consider again the addCompo-
nent(s, c, lResps, lPorts) operation. If it is part of a sequence of opera-
tions /, which is applied to a model version m, then a version of
a component c that have a set of responsibilities ri (lResps) and ports
pi (lPorts) will belong to the successor model version (apply(/, m)),
as it is defined in Expression 10.
Fig. 11. A global picture of
ð8/; s; c; lResps; lPorts;mÞaddComponentðs; c; lResps; lPortsÞ 2 /

() addedðc; applyð/;mÞÞ
^ ð9rcÞinferredAssociationðrc; s; c; applyð/;mÞÞ
^ ðð8r 2 lRespsÞaddedðr; applyð/;mÞÞ
^ ð9rrÞinferredAssociationðrr ; c; r; applyð/;mÞÞÞ
^ ðð8p 2 lPortsÞaddedðp; applyð/;mÞÞ
^ ð9rpÞinferredAssociationðrp; c;p; applyð/;mÞÞÞ ð10Þ

It is important to point out that inferredAssociation(a, v1, v2, s)
predicate is just an relationship inferred from a repository associ-
ation between versionable objects o1 and o2, which are associated
with v1 and v2 by version predicate. The association between ver-
sionable objects was asserted as a fact (association(a, o1, o2))
(Expression 4).

In this way, the definition of new operations allows enlarging
the set of operations, without modifying the successor state axiom
(Expression 3). Furthermore, it is possible to define the precondi-
tion axioms of the proposed operations. For instance, the precondi-
tion for applying the addComponent operation is specified in
Expression 11, where the poss(op, m) predicate expresses that a gi-
ven version s, which represents the system where the new compo-
nent is going to be incorporated, must belong to model version m,
and component version c as well as their responsibilities and ports
must not belong to model version m.

ð8s; c; lResps; lPorts;mÞpossðaddComponentðs; c; lResp; lPortsÞ;mÞ
() belongðs;mÞ ^ qbelongðc;mÞ
^ ð8r 2 lRespsÞqbelongðr;mÞ ^ ð8p 2 lPortsÞqbelongðp;mÞ ð11Þ

It is important to note that each functional specification of an
operation proposed in this section implies the instantiation of
the operation model. The following section details how the compu-
tational environment allows such instantiation, by providing gra-
phic user interfaces with features for operations definition.

3. TracED

TracED is a research prototype for validating the proposed mod-
el for capturing and tracing engineering designs. Such a prototype
has been developed using Java language, and MySQL database [31].
TracED environment.

1098 M.L. Roldán et al. / Advances in Engineering Software 41 (2010) 1087–1109
Hibernate framework [32] has been used in order to achieve ob-
jects persistency on a relational database, providing agile objects
saving and recovering.

The major components are Domain Editor and Versions Manager.
Both of them were developed following the object-oriented models
proposed in the previous section. The Domain Editor allows the def-
inition of modelling concepts along with their suitable operations.
The Versions Manager offers features for users to carry on engineer-
ing design model evolution. User views of both modules were ob-
tained by means of an Observer design pattern implementation
[28]. In Fig. 11, a global picture of TracED environment is pre-
sented. Domain Editor and Versions Manager components imple-
ment the proposed model. Making use of Domain Editor, a
domain expert defines one or more engineering design domains.
Then, by working with the Versions Manager, designers can choose
an existent domain and use the modelling concepts and operations
defined in it to develop several design projects.

3.1. Domain editor: specifying modelling concepts and operations

Domain editor is the tool that enables the definition of an
engineering design domain. This is achieved by implementing the
domain package proposed in Fig. 2. Therefore, the modelling
concepts included in Figs. 4–6 can be defined, by using Domain Edi-
tor. A partial view of SADP domain specified in TracED is visualized
in Fig. 12.

Modelling concepts are organized hierarchically in a tree struc-
ture. On the upper-left corner of Fig. 12, the modelling concepts
navigation tree shows the concepts’ tree. Each concept is able to
have zero or more descendents and a unique parent. This structure
is obtained by specializing modelling concept (Fig. 2) in abstract
Fig. 12. Partial view of SADP doma
modelling concept and concrete modelling concept. An abstract mod-
elling concept can not be instanced in any project. Abstract concepts
are useful because they define general design objects which may
be specialized later. This enables generalizing common properties
and relationships used by a set of design objects. For example,
the Requirement abstract modelling concept has been added in
Fig. 12, which generalises Quality Requirement and Functional
Requirement design objects. An abstract modelling concept is illus-
trated in the domain editor with its name in italics.

In the modelling concepts navigation tree shown in Fig. 12, the
name of the selected concept appears highlighted, in this case com-
ponent. In the frame below, the properties or attributes of the se-
lected concept are listed. Each attribute is a pair of an attribute
name and an attribute type. There are four defined primitive types:
String, Integer, Boolean, and Float. In the example, there are two
attributes defined as String, name and type. The first has an obvious
meaning, and the second one can indicate if the component is a
module, a filter, a data storage, etc. Properties are defined and
edited working with the properties tab of the modelling concept
specification window. There, the designer can indicate whether a
modelling concept is abstract or concrete, assign a concept descrip-
tion, create or modify properties (instances of Property class, Fig. 2),
and set visibility of properties. Additionally, it is possible to define
the modelling concept as a relationship (representing an associa-
tion reification), which is useful when it is necessary to keep ver-
sions of such a relationship. This is the case of hasResp modelling
concept in Fig. 12, which defined in this way allows tracing how
responsibilities were delegated from one component to another.

The designer can create binary relationships between modelling
concepts. These relationships are instances of DomainRelationship
(Fig. 2). One relationship’s end assumes the role of container, and
in model specified in TracED.

M.L. Roldán et al. / Advances in Engineering Software 41 (2010) 1087–1109 1099
the other one, the role of part. Both relationship roles are qualified
by the multiplicity attributes (contMultiplicity and partMultiplicity).
Furthermore, it is possible to define the relationship as composition,
aggregation, or association. They have the same semantics as their
respective relationships in UML [25].

The Domain Editor provides features for specifying operations,
whose implementation is based on the Operations Model (Fig. 6)
presented in the previous section. Following, the way in which a
domain operation can be defined by an instantiation of the Opera-
tions Model is depicted. Fig. 13 shows the Operations Tab of Compo-
nent modelling concept specification window. As it can be
observed, three operations have been defined for it: addComponent,
deleteComponent, and delegateResponsibility. The Domain Editor al-
lows the specification of these macro commands and their input
arguments, by means of a special window that is presented in
Fig. 14. There, the definition of addComponent macro command is
Fig. 13. Editing a modelling concept.

Fig. 14. Specification of addCom
shown, which follows the functional specification that was pre-
sented in Fig. 8. In this window, the body of a macro command is
detailed. For accomplishing this, the actor can select one or more
of the existing operations, which are listed in a combo box. Addi-
tionally, Fig. 14 explains how the VariableAssignment described in
Operations Model is carried out using TracED. It is achieved by
establishing a series of mappings among different arguments. In
this way, the binding of arguments (variables) and their values
(which are unknown at the moment of the specification) are set
beforehand the execution of the macro command.

As stated in Fig. 7 (Operations package), the tool offers pre-built
operations (AuxiliaryFunction) such as Loop and Next. Loop can be
used in the body of macro commands as a repetitive control struc-
ture, in order to move the control along a collection variable; and it
performs a series of actions for each element. On the other hand,
Next is useful to get in sequential order the next element of a col-
lection. Next does not have a body, it only saves a pointer to the last
accessed element, and moves forward each time it is executed,
returning as a result the element on the current position. Fig. 15
shows the loop over a responsibilities collection, which assigns
each responsibility to a component by mean of the addResponsibil-
ity operation. As shown in Fig. 15, the body of a Loop (the repetitive
sequence of actions) is defined in a separated window.

Moreover, in some macro command specifications, it is neces-
sary to obtain object versions related to a given object version.
For example, it can be considered an operation for deleting a com-
ponent (deleteComponent operation), which has an object version
component as input argument. The operation requires to know
the component to be remove and the ports of that component, in
order to delete them too. In such a case, the deleteComponent oper-
ation body has to include an instance of Get command, in order to
obtain the ports associated to the component. This kind of com-
mands does not constitute domain operations; they are just auxil-
iary commands (or functions) for querying about object versions
(AuxiliaryFunction, Fig. 7). TracED provides this feature by selecting
the radio button ‘‘function” in the operation specification window.

Aforementioned commands along with primitives and previ-
ously defined domain operations can be part of new domain oper-
ponent macro command.

1100 M.L. Roldán et al. / Advances in Engineering Software 41 (2010) 1087–1109
ations or macro commands. As it can be seen, macro commands
have a higher abstraction level than the underlying basic opera-
tions. In this way, the higher the abstraction level of an operation,
the freer is the designer of knowing the involved actions by the
performed operation.

3.2. Versions manager

The versions manager is the core of TracED. It enables the exe-
cution of a design project. When a new design project is created,
an existing domain has to be selected for it. Thus, version man-
ager allows the developing of the project, by considering model-
ling concepts and operations defined in such a work domain.
Therefore, the evolution of a project is based on the execution
of these domain operations and the instantiation of these model-
ling concepts. Additionally, versions manager’s features make
TracED able to keep information about: (i) predecessor and suc-
cessor model versions (if any exists) of each model version; (ii)
history links which save traces of applied sequences of operations,
which originated new model versions and (iii) references to the
set of object versions that arose as a result of each operation exe-
cution. Furthermore, TracED implements the successor state ax-
iom specified in Expression 3. Therefore, it is possible to
reconstruct a model version mi+1 by applying all operation se-
quences from the initial model version m0. Fig. 16 presents a se-
quence diagram that depicts an implementation of the successor
state axiom proposed in the model (Expression 3), which aims
to know the objects versions that belong to a given ModelVersion_i
model version. As Expression 3 points out, in order to find out
the objects versions that belong to a given model version it is
necessary, first, to obtain the object versions that are present in
the predecessor model version (predecessorObjectVersions :=
getObjectVersions()). The sequence diagram shows how this inter-
action among instances takes place. ModelVersion_i sends a mes-
sage to itself (getPredecessorModelVersion()) to know its
predecessor model version (ModelVersion_i � 1). Then, it sends a
message to such ModelVersion_i � 1 instance, by means of getOb-
jectVersions() method. This method has a recursive definition
Fig. 15. Specification of an ope
and causes a cascade of getObjectVersions() methods executions,
which stops when the initial model version is reached. Therefore,
this method returns all object versions (predecessorObjectVersions)
that belong to the predecessor model version (ModelVersion_i � 1).
Second, as Expression 3 prescribes, it must be obtained the added
object versions resulting from the execution of the sequence of
operations applied on ModelVersion_i � 1 to generate ModelVer-
sion_i (addedObjectVersions := getAddedObjectVersions()). Conse-
quently, by sending the getPreviousModelHistory() message,
ModelVersion_i obtains the sequence of operations that originated
it from ModelVersion_i � 1. This is possible because each executed
operation in the sequence of operations has been captured by
means of VersionHistory objects, which keep information of each
operation performed. In this way, it is possible to get a set of
added object versions (addedObjectVersions in Fig. 16), by means
of getAddedObjectVersions() message. Thus, addedObjectVersions
collects all the object versions that arose from operation execu-
tions (for example, regarding the SADP domain in Fig. 3, the Mod-
el, View and Controller component-typed object versions, which
arise from the execution of applyMVC operation). Finally, succes-
sor state axiom in Expression 3 suggests that object versions that
were deleted by the applying of the sequence of operations on the
predecessor model version (deletedObjectVersions := getDeletedOb-
jectVersions()) are not present in the regarded model version.
Thus, ModelVersion_i, by sending a getDeletedObjectVersions()
message, asks to VersionHistory object the set of deleted object
versions (deletedObjectVersions in Fig. 16). In this way,
getDeletedOV() collects all the object versions that were removed
from the model version to which the operation was applied (fol-
lowing the previous example, the WebApplication component-
typed object version that was refined in a new set of components
by the applyMVC operation). Therefore, as illustrated in Fig. 16, the
inferred object versions set (inferredObjectVersions) is obtained by
deleting the deletedObjectVersions and adding the addedObjectVer-
sions to the resulting object versions from the initial getObjectVer-
sions() sent to the predecessor model version (ModelVersion_i � 1).
As a result, the set of object versions that belongs to a given mod-
el version is obtained (inferredObjectVersions).
rations sequence in a Loop.

ModelVersion_i
:ModelVersion

ModelVersion_i-1
:ModelVersion

mh
:ModelHistory

oph :VersionHistory

loop

[for each oph in ophList]

loop

[for each oph in ophList]

inferredObjectVersions:=
getObjectVersions()

predecessorObjectVersions := getObjectVersions()

modelVersion_i-1:= getPredecessorModelVersion()

predecessorObjectVersions := getObjectVersions()

addedObjectVersions := getAddedObjectVersions()

mh := getPreviousModelHistory()

addedObjectVersions := getAddedOV()

ophList := getOperationsHistory()

ovList := getAddedOV()

addedObjectVersions := include(ovList)

deletedObjectVersions:= getDeletedObjectVersions()

mh := getPreviousModelHistory()

deletedObjectVersions := getDeletedOV()

ophList:= getOperationsHistory()

ovList := getDeletedOV()

deletedObjectVersions := remove(ovList)

inferredObjectVersions:=
belong_or_added_and_notDeleted(predecessorObjectVersions,
addedObjectVersions, deletedObjectVersions)

arg1 := addObjectVersions(previousObjectVersions, addedObjectVersions)

inferredObjectVersions:= deleteObjectVersions(arg1, deletedObjectVersions)

Fig. 16. Successor state axiom implementation on TracED.

M.L. Roldán et al. / Advances in Engineering Software 41 (2010) 1087–1109 1101
3.2.1. Operation execution
This section depicts the execution of an Operation in the Ver-

sions Manager tool. Since an Operation is a MacroCommand, its
execution consists of the execution of each of its subcommands.
Thus, as it was introduced in Fig. 7, an operation has a commands
body. A macro command has input arguments, whose values have
to be provided before being executed. Each command in the com-
mands sequence has its own arguments. In order to execute the
operation, each argument must be linked to a given value. This
value could be provided by the result of a previous command,
or could be provided by an input argument defined for the oper-
ation itself. This means that in the moment of specifying the
operation, the arguments values are not known, although it is
known where can be get them. Thus, when the environment exe-
cutes a given operation, it must recover the expected argument
values.

1102 M.L. Roldán et al. / Advances in Engineering Software 41 (2010) 1087–1109
Fig. 17 presents a sequence diagram, which models the dynamic
aspects of an operation execution. This diagram involves instances
of graphic user interface (UserInterface), Operation, Command, Argu-
ment, ModelVersion, ModelHistory and VersionHistory classes, which
interchange messages among them. The first message of the se-
quence is triggered by some component of the UserInterface (it
could be a menu option), which after obtaining the input argument
values, dispatches an execute() message to the chosen operation in-
stance. Before being performed the operation itself, its precondi-
tions are checked (verifyPreconditions() method). Then, for each
command in the body, it must be obtained and assigned the values
for its arguments (by means of the getLinkedArguments(), get-
Value() and setValue() messages shown in Fig. 17) and then, with
all this information ready, it must be triggered a new command
execution (successors := execute()). When the cascade of executions
of commands ends, an instance of VersionHistory is created to kept
information about the execution of the operation. VersionHistory
maintains the predecessors and successors object versions of the
operation execution. This VersionHistory instance becomes part of
the ModelHistory that links the predecessor model version with
the successor model version.

It should be highlighted that, the first step in a macro command
execution, is the checking of the operation’s preconditions, which
is implemented by the verifyPreconditions() method. As an exam-
ple, the preconditions of addComponent operation were expressed
sd MacroCommand

loop

loop

UserInterface anOperation
:Operation :Ar

cmd
:Command

[for each cmd
in cmdSeq]

[for each arg in
argList]

vh:= execute(arguments,
currentMV)

verifyPreconditions()

cmdSeq := getCommandSequence()

argList:= getArguments()

linkedArg:= getLinkedArgument()

v:= getValue()

setValue(v)

successors:= execute()

vh:= createVersionHistory(anOperation, a

addVer

Fig. 17. Sequence diagram of
by means of a poss predicate in Section 2.1.2. In case a precondition
is not accomplished, TracED is capable of managing different poli-
cies. One outstanding aspect to consider is that before a delete
operation execution, TracED controls if the object versions to be re-
moved exist. In case of an attempt of eliminating an object version
which has been just added to the current model version, the envi-
ronment offers the following alternatives to the actor: (1) to undo
the add operations that incorporated the objects that are now in-
tended to be removed; (2) to create (automatically) a new model
version where it is possible to execute the desired delete opera-
tions and (3) to cancel the execution. Option one is suitable when
the designer involved in the process makes a mistake or intends to
undo a given action; and option two is preferable when the actor
really wants to keep a record of all past operations, in spite of
not having consequences for the current model version.

3.2.2. A case study on the software architectures domain: Struts
To clarify the features of the Version Manager, a conducting case

study is introduced, which considers the design process of Apache
Struts, a free open-source framework for creating Java web applica-
tions [33]. The main considerations in the conception of Struts Pro-
ject is that Web applications differ from conventional websites in
that web applications can create a dynamic response. Thus, a
web application can interact with databases and business logic en-
gines to customize a response.
arg
gument

linkedArg
:Argument

vh
:VersionHistory

currentMV
:ModelVersion

mh
:ModelHistory

rguments, successors)

sionHistory(vh) addVersionHistory(vh)

an Operation execution.

M.L. Roldán et al. / Advances in Engineering Software 41 (2010) 1087–1109 1103
Web applications based on Java Server Pages sometimes mix to-
gether database code, page design code, and control flow code.
These large applications become difficult to maintain, unless these
concerns are separated. One way to separate concerns, in a soft-
ware application, is to use a model-view-controller (MVC) [28]
architecture. In Fig. 10, a specification of this operation was pro-
posed. The Struts framework has been designed to help developers
to create web applications that use the MVC architecture. In this
paper, the architectural design process of Struts is taken as a case
study. Thus, this case study aims to resemble the work carried
Domain Versions
successor

*

Domain

DesignProject

1..* currentMV

ModelVersion

currentMV

predecessor

StrutsProject

SADPDomainRoot Model Version

Fig. 18. Creation of a new design project.

Fig. 19. Versions manager – cr
out by the architects who identified the need of separating con-
cerns in java web developments, and starts working in the devel-
opment of Struts framework.

Fig. 18 shows the instances [25] generated during the definition
of a new project, called StrutsProject. An instance of DesignProject is
created (StrutsProject), which is associated to the selected design
domain, SADPDomain (which was partially defined in Section
3.1). Furthermore, the initial model version (Root Model Version)
is generated, which is the root of the tree structure of the version
management scheme. Once a design project is defined, it is possi-
ble to generate the model versions, capture the evolution of design
objects, and navigate through their versions. Fig. 19 shows the user
interface of version manager, where a snapshot of the first model
version of Struts project is presented. There, created model ver-
sions are hierarchically organized like a tree. On the upper-left of
the version manager window in Fig. 19 appears the ‘‘model ver-
sions tree” navigator. The initial model version is called Root Model
Version that is the starting point to create all the new Model Ver-
sions. Root Model Version has no object versions and it cannot be
edited by anyone.

To create a new model version, the designer must select a mod-
el version that will be the parent of the new one. The selected mod-
el version is called current Model Version. Parent model version is
referenced as the predecessor model version. Some rules or restric-
tions must be satisfied when using this module. Firstly, when a
successor model version has been created from a predecessor mod-
el version, it is not possible to execute more operations on the pre-
decessor model version. The designer can chose an existing
eation of Model Version 1.

1104 M.L. Roldán et al. / Advances in Engineering Software 41 (2010) 1087–1109
successor model version (a leaf model version), or can create a new
model version from it.

3.2.3. Designing the Struts architecture
In order to guide the development of the case study on TracED, a

SEI’s design method for designing software architectures (ADD)
was adopted, which was introduced in Section 2.1.1. Therefore,
Struts’ design process will be presented as a recursive decomposi-
tion process, which is guided by selected architectural drivers.

3.2.3.1. Creating thefirst model versions. In the context of a new pro-
ject, the actor logged in TracED starts from the Root Model Version,
which is empty. The first step is to create a model version (Model
Version 1 in Fig. 19). At the model version’s navigator panel, the
user places the focus on this new model version, and executes
one or more domain operations. In Design Objects menu, available
operations for the current domain are arranged in submenus that
correspond to each domain’s modelling concept. For example, in
order to select addSystem operation, system submenu must be ac-
cessed. The execution of addSystem(Struts) operation, which adds
the first object version named Struts is shown in Fig. 19. Thus, a se-
quence of operations /1 consisting of a single addSystem operation
must be applied on the root model version, in order to generate
Model Version 1 (apply({addSystem(Struts)}, Root Model Version).
The way of doing this by using TracED is slightly different from
the one previously introduced because the actor must create the
new model version first (providing a name, and an optional
description, in this case, Model Version 1). After that, the designer
executes successively each operation that forms part of the se-
quence of operations. Obviously, TracED is responsible for verifying
the preconditions of each operation in the sequence. As the opera-
tions are executed on the predecessor version model, the sequence
of operations applied to the predecessor model version is captured
and the resulting (or successors) object versions populate the mod-
el version that was recently created.
Fig. 20. Model Vers
At this point, the actor involved in developing Struts defines the
architectural drivers for the intended architecture. They are Modi-
fiability and Testability. Modifiability requirement aims to achieve
separation of concerns, loose coupling, and modularity characteris-
tics. Separation of concerns is desirable because there are many
levels of functionality that need to be addressed. Modularity as-
pects allow functionalities developed in one project to be packaged
independently and then be re-used across other projects; also al-
low developers to work independently and build upon each other’s
work. Finally, Struts requirement of Testability (which is related to
loose coupling characteristics) aims to extending, enhancing, or
correcting system features easier, by avoiding bugs caused by
unexpected impacts of changes introduced in code, etc. Also refers
to the easy way in which the software can demonstrate its faults
through (typically execution-based) testing. Therefore, the archi-
tect incorporates the desired quality requirements for Struts sys-
tem into the architectural design. This is done by executing a
new sequence of operations /2 = {addQualityRequirement(Modifi-
ability), addQualityRequirement(Testability)} on the predecessor
model version (Model Version 1). For these operations, the precon-
dition is that Struts object version exists in the predecessor model
version (Model Version 1), which is true.

In order to proceed with the software architectures design pro-
cess of Struts, Quality Requirements have to be translated into Qual-
ity Scenarios. Quality Scenarios provide a way of making a quality
requirement concrete, and making the architectural design easier
to be evaluated. These are the quality scenarios to be considered
by the designer: (i) it is easy to add different view types such as
HTML, WML, and XML (ScModifiability1); (ii) it requires just 1 day
to incorporate into the project a new human resource, regarding
training and ‘‘knowledge transferring” activities (i.e. a designer to
work on the application view, a new programmer skilled in data
access to work on the model, or another programmer to work in
the business logic): the rest of the project is not affected (ScModi-
fiability2); (iii) common style elements can be included by several
ion 4 snapshot.

M.L. Roldán et al. / Advances in Engineering Software 41 (2010) 1087–1109 1105
pages (ScModifiability3). The pages simply use the common defini-
tions defined in a style sheet. If a style needs to be changed, that
change can be made in one file rather than on each page individu-
ally; (iv) writing and running a unit test for a specific business logic
component takes at most 1 person-hour (ScTestability1). The test
methods exercise the class to be tested, and verify that such a class
behaves as it is expected. Regarding this scenarios, a new model
version Model Version 3 is attained by the execution of /3 = {add-
Scenario(ScModifiability1), addScenario(ScModifiability2), addScenar-
io(ScModifiability3), addScenario(ScTestability1)}.

Next, the actor begins to build the architecture by incorporating
structural elements. Therefore, the first component is added by
executing an addComponent operation, which generates WebAppli-
cation object version. WebApplication represents the component
that has the following responsibilities: handling of requests
that come from browsers (RRequestHandling), validation making
(RValidation), delegating of control on specific components
(RControlDelegation), database interaction (RDBAccessing), process-
ing of requested actions (RBusinessLogic), and updating of the state
of the application and the user views (RDataPreparation, RForwar-
dResults, RGenerateResponse). These responsibilities object versions
are incorporated to the model version Model Version 4 as a conse-
quence of applying addComponent operation, which includes in its
body a loop over a responsibility named collection argument (see
addComponent specification in Fig. 14). Fig. 20 illustrates the state
of the resulting model version (Model Version 4). Note that the
relation between the component and each responsibility has been
reified as a hasResp-type object version. Additionally, it should be
pointed out that all visualized associations are inferred from
associations that exist at repository level (between versionable
objects).

3.2.3.2. Applying model-view-controller style. At this point of the de-
sign process, the designer considers it is convenient to apply mod-
el-view-controller (MVC) style, in order to achieve the intended
requirement of modifiability.
Fig. 21. Partial view of Model Versio
Having identified the quality requirements, the designer has in
mind to perform the applyMVC-go operation (applyMVC-go specifi-
cation was presented in Fig. 10) to the WebApplication component
that belong to the current model version. Therefore, applyMVC-go
belongs to the sequence of operation /5. As a result, a new model
version, Model Version 5, is obtained where three new components
Model, View, and Controller are present in Struts System (Fig. 21).
Between View and Controller components, there is a connector
named ConnViewCtrlr, which represents the interactions between
them. Additionally, between Model and Controller, there is a con-
nector in charge of informing changes to the state of the model
(ConnModCtrlr connector in Fig. 21). There exists another connector
(ConnModView) between Model and View, which represents the
notifications sent by the Model to the View for updating. Then, as
it is specified by the operation applyMVC-go, the responsibilities
of the original component are delegated to each new component.

However, not just structural and behavioural elements are
added by the operation execution. ApplyMVC-go operation also
adds a set of object versions for representing design rationale. In
fact, an explicit RPossibleScenarioSolution object versions is in-
cluded, which provides the links between the new architectural
elements and the scenario to be meet (in this case, ScModifiability2,
related to Modifiability requirement). This version, labelled as PSS1,
is shown in Fig. 21, where inferred repository associations are
highlighted and labelled as pss. In this way, the captured object
versions allow tracing the operation results (the impact of the deci-
sion on the architecture model) and the intended goals of the exe-
cuted operation.

The case study goes on by evolving the architectural model in
more complex model versions. The Web adds a constraint to soft-
ware developers, given by the stateless connection between the
client and the server, which made difficult for the Model to notify
changes to the View. On the Web, the browser has to re-query
the server to discover modifications to the application’s state. For
this reason, the designer decides to relax MVC pattern by deleting
the existing connector between Model and View component. Thus,
n 5, after applyMVC execution.

1106 M.L. Roldán et al. / Advances in Engineering Software 41 (2010) 1087–1109
Model Version 6 is reached as a consequence of applying /6 = {delet-
eConnector(ConnModView)}. Such a change means that the Control-
ler is responsible for managing the control flow between the Model
and the View. Fig. 22 shows the new model version that is obtained
(Model Version 6).

At this point of the design process, by analyzing the last model
version, the designer is able to verify if the scenarios that were set
at the beginning of the design process have been fulfilled. Thus, the
designer may execute setAssessment operations, incorporate design
rationale information to the next model version, and evaluate if it
is necessary to continue the design process.

3.2.4. Recovering information about an engineering design process
In general, the need of recovering how an engineering design

project has evolved is a fact. For instance, in a software develop-
ment project, it would be very useful to know how elements have
evolved from the first stage (where requirements were specified)
to implementation stage (where programming related objects are
generated). All steps and components of the project should be
clearly shown to the actor or user, thus allowing him to reconstruct
and analyze the design process.

As it was previously pointed out, a version history link is created
for each executed operation. Thus, it is possible to reconstruct
the history of a given model version by beginning from the Root
Model Version. Fig. 23 shows how TracED presents the history
information.

TracED allows the user to see the history of a given model ver-
sion. He can see which the predecessor was. By selecting a model
version from model version’s navigator panel, it is possible to see
what happened through the time. Fig. 23 shows the History Win-
dow, which informs all operations that have been applied from
the root to the selected model version. It shows the sequence of
operations form by addSystem which has been applied on Root
Model Version. In this window, it is possible to see detailed infor-
mation about each applied operation. For instance, the time in
Fig. 22. Relaxing the MVC style in order to make th
which an operation was applied, who the actor involved was and
the names assigned to the new object versions (successors object
versions). At the top of Model Version 1, the sequence of operations
that generates Model Version 2 is depicted. In this case, it involves a
series of addQualityRequirement operations. Similarly, Model Ver-
sion 3 is the result of applying a series of addScenario operations
on Model Version 2. Finally, moving the focus to Model Version 4,
the history window shows that an addComponent operation was
executed at the top of Model Version 3. For each executed opera-
tion, the history window lists all the successor object versions that
were generated because of such execution.

The History Window is just a way of presenting information
about a design process.

However, the model allows generating several queries to ex-
ploit the information kept by all the captures. Based on the design
process that was captured during the present case study, the model
can answer questions like the followings:

3.2.4.1. By means of which design operations Model Version 5 was
obtained?. This can be answered by concatenating all operation
sequences from the initial model version (root model version) or
from a given predecessor model version.

Sequence of operation /1�/2�/3�/4�/5 = {addSystem(Struts),
addQualityRequirement(Modifiability), addQualityRequire-
ment(Testability), addScenario(ScModifiability1), addScenario
(ScModifiability2), addScenario(ScModifiability3), addScenar-
io(ScTestability1), addComponent (Struts, WebApplication,
[RRequestHandling, RValidation, RControlDelegation, RDBAccessing,
RBusinessLogic, RDataPreparation, RForwardResults, RGenerateRe-
sponse], []), applyMVC-go(WebApplication, Modifiability)}
3.2.4.2. Which are the alternative successor model versions of Model
Version 4?. In the case study, just one possible state was explored;
this is achieved through the application of MVC architectural pat-
e architecture suitable for a Web environment.

Fig. 23. Consulting the history of Model Version 4.

M.L. Roldán et al. / Advances in Engineering Software 41 (2010) 1087–1109 1107
tern (made concrete by applyMVC-go operation), which obtains
Model Version 5. However, the designer could have considered an-
other solution, for instance, to apply a two-tiered pattern, which
would generate an alternative successor model version. In this
case, Model Version 4 would be the predecessor of the two alterna-
tive model versions.

3.2.4.3. How did a WebApplication component change along the
design process?. This information is captured by the history links. It
is possible to know that the WebApplication component was added
by the execution of the sequence of operations /4. Furthermore,
this component was refined by the execution of the applyMVC-go
operation when the sequence of operation /5 was carried out.
The component was refined in a set of three interrelated compo-
nents (View, Model and Controller). In order to make the case study
shorter, it does not show details about changes in particular prop-
erties of WebApplication component. This type of change would
arise several object versions of it (materialized by executions of
modify operations).

3.2.4.4. Who were the actors involved in the generation of WebAppli-
cation object version?. Despite it not having been detailed deeply in
this contribution, history links also captures information related to
the management of the design process. For instance, the history
link that captured the addComponent operation that created Web-
Application (as part of the sequence of operations /4) maintains
that the user ‘‘Luciana Roldán” was the responsible of their execu-
tion (actor lroldan in Fig. 23).

3.2.4.5. Which design operations have designers applied with the
intention of addressing modifiability requirement?. From a require-
ment (modifiability in this case) and a given model version, it is
possible to obtain all the object versions whose type is RPossib-
leScenarioSolution. These object versions are linked to the scenarios
that make assessable the intended requirement. Therefore, by
navigating through these object versions is possible to know the
operations that generated such object versions.

3.2.4.6. Which were the new products generated because of the
execution of applyComponent in sequence of operations /4?. The re-
sults are the new component, its responsibilities, and ports. They
are the following object versions: WebApplication (Component),
RDataPreparation (Responsibility), WA_DP1 (hasResp), RSendRe-
sponse (Responsibility), WA_SR1 (hasResp), RForwardRsults (Respon-

1108 M.L. Roldán et al. / Advances in Engineering Software 41 (2010) 1087–1109
sibility), WA_FR1 (hasResp), RDBAccessing (Responsibility), WA_DB1
(hasResp), RBusinessLogic (Responsibility), WA_BL1 (hasResp), RVali-
dation (Responsibility), WA_V1 (hasResp), RControlDelegation
(Responsibility), WA_CD1 (hasResp), RRequestHandling (Responsibil-
ity), and WA_RH1 (hasResp).
3.2.4.7. What were the architectural approaches applied to reach the
Model Version 6?. The architectural approaches [34] are repre-
sented by styles application operations defined in the design do-
main. If we search operations of this type on the sequence of
operations resulting from the concatenation of the sequences that
derived on Model Version 6, thus /1�/2�/3�/4�/5�/6, we find out
that applyMVC-go was performed. Therefore, the MVC pattern
was employed.
4. Related work

Tracing of engineering design processes has been addressed in
different engineering design domains. An example is the KDBS de-
sign support system for conceptual design of chemical processes
[35]. The KBDS environment makes the representation of the de-
signer’s intentions possible and allows model traceability, reflect-
ing to a certain extent the design history. The authors extended
KBDS [8] by incorporating a stuff of concepts to relate the repre-
sentation of argumentation with the generated products that were
recorded in design process history. As Bañares-Alcántara and King
[8] argue, the extension is conceived to record the design rationale
after decisions are made but not while they are being made. It is
responsibility of the designers (or design teams), to build the IBIS
network that represents the design rationale in a explicit way. Fur-
thermore, operations of the design process such as the request of
additional information, or the inclusion of explicit arguments to
justify a decision, are not captured while the design process is car-
ried out. Therefore, several products of process are not recorded at
they are generated/modified, missing the links among them and
the design process itself.

Pohl and collaborators [36] proposed an approach called PRIME
that has been applied in both software and mechanical engineer-
ing, which supports method-driven trace capture. We agree with
them in that traceability is a prerequisite for managing evolution
of systems, but sometimes it becomes expensive and labour inten-
sive. They argue that in order to minimize the information to be re-
corded and to reduce additional costs, the types of trace
information to be captured should be adjusted to project specific
needs. Therefore, a project manager must be supported in the def-
inition of the trace information and the trace steps required for
recording this information. An unclear point of the proposal is
how the products and actions of interest can be defined for a pro-
ject, something that TracED allows by means of the domain and
operations models. In addition, several approaches [37,38] have
been proposed to support architectural design processes. The ideas
presented in these proposals are certainly transferable to other de-
sign domains. Argo [37], for instance, supports the design process
through the use of critics, task organization and priorization. Par-
ticularly, critics consist on agents that watch for specific conditions
in the partial design as it is being constructed, and notify the de-
signer when those conditions are detected. Critics can be used to
advice to designers about the implications of, or the alternatives
to, a design decision. In Argo, critics place their feedback in the de-
signer’s ‘‘to do” list. Each ‘‘to do” item remains the designer to ad-
dress an open design issue. Argos’s process modelling extension
allows modelling the task involved in a typical design process.
The process model is represented like a connected graph of design
materials. In the same research line and adopting an operational
perspective similar to the employed in this work, Diaz-Pace and
Campo [38] propose a hierarchical planning approach, named
Designbots, to explore software architecture alternatives. Both
Argo and Designbots approaches are concerned in guiding a de-
signer through the design process, which is different than, but
complementary to, the focus of this paper. In fact, the knowledge
captured by tools like TracED forms the foundation for design-
assistance tools such as Argo and DesignBots.

Additionally, the recent interest in design decisions stimulated
the development of several decision-based architectural tools
[39]. In spite of the fact that most of them support the notion of de-
sign decisions, none of them represents design decisions as con-
crete executions of design operations as our approach does. In
addition, the versioning administration model we propose pro-
vides the elements to capture the operations together with their
results (successor object versions). This integrated capture of prod-
ucts and operations avoids the designer the need of setting explic-
itly the relation between architectural elements and architectural
decisions.
5. Conclusions

In this paper, TracED, a tool for capturing and tracing engineer-
ing design processes is presented. The approach provides the
mechanisms to capture the several products generated during a
engineering design process, as well as the elements for specifying,
executing, and capturing the operations that generated them.
Based on an extensible model, TracED allows the definition of a
particular domain and the operations suitable for it. Possible engi-
neering design processes that could be managed using TracED are
chemical engineering processes, or software engineering pro-
cesses. The extension proposed in this contribution focus on soft-
ware architectures design process. In order to support such a
process, a suitable work domain was proposed, which was used
in an example design project to design the architecture of a well-
known development framework. The proposed model has been
successful applied to another specific software engineering do-
main: mobile systems architectures [29]. Thanks to the flexibility
of the model, modelling concepts and operations suitable to the
design of software architectures for mobile systems were defined
and a case study was carried out.

Situation calculus provides a formal framework to express
which effects of the execution of certain operation are and when
it can be applied. In addition, it allows the definition of a formal
model for conflict detection in collaborative design. Taking this
advantage into account, a future extension of the presented ap-
proach consists of supporting the conflict management process,
developing features for conflict detection and resolution tasks. To
overcome such troubles, the tool must enable the capture of the
operations and actors that originated each product. This capture
need to be based on the explicit mechanism to manage different
versions of the design products proposed in the present contribu-
tion. A first application of the present proposal for collaborative
environments has been introduced in [12].

Although the valuable contributions of the computational tool
presented in this paper, it has some limitations because of its pro-
totypical status. One of its weak points is the lack of a suitable
graphical interface, which allows describing model versions by
using various views. Regarding software architecture domain, even
though an architect can specify several modelling concepts relative
to any view type by means of domain editor (i.e. Process, Resource
and Thread modelling concepts regarding a process view), Versions
Manager always shows all the object versions that belong to a gi-
ven model version. It is more valuable for the designer to display
just those object versions of interest, according to a given view
type.

M.L. Roldán et al. / Advances in Engineering Software 41 (2010) 1087–1109 1109
Another aspect to improve is TracED’s user interface. Textual
outputs are not user friendly, thus, the more numerous and com-
plex the applied operations are, the more illegible the textual re-
port becomes. Another form of presentation consists on allowing
bidirectional navigation between predecessor and successor
(resulting) object versions, displaying in a contextual window the
applied operation. It would be useful to provide an animated fea-
ture to replay a design process (or a fragment of a design process)
using a graphical representation of the models, so the designer can
actually see the changes occurred between model versions. Fur-
thermore, the information captured could be represented using
similar approach employed by SEURAT [40] or [41] to support
the visualization and use of design decisions and their rationale.
SEURAT [40] displays the decisions by hierarchical tables. In [41],
tabular list and graphs are used to visualise the design decisions.
Despite these limitations, current prototype of TracED is robust en-
ough for experimental usage.

In addition, besides the implementation decisions made to
build the prototype, other viable alternatives exist. One possibility
is the integration of TracED with a CASE tool intended to support
design activities. In the case of software architectures design pro-
cess, tools like ACMEStudio [42] and ArchStudio [43] have been
proposed. They have been developed in Eclipse, so they can be ex-
tended by adding TracED as a plug-in. In this way, TracED would
perform the capture of all applied operations, by working in back-
ground mode, without designer noticing it. Additionally, given the
capabilities provided by the Operations Model, new and higher le-
vel of abstraction operations could be specified for the CASE tool,
able of being included in the user menus.

Next research steps are concerned to how to exploit all captured
design information (applied design operations and resulting ver-
sion) in order to generate design knowledge valuable for carry
out other design projects, facilitate learning activities for inexpert
designers and make the understanding of past design decisions
easier. Some ideas to explore theses issues are the use of case
based reasoning and Bayesian nets for generating design assistance
guidelines, and the proposal of specific query mechanisms to yield
(semi) automatic documentation.

Acknowledgments

The authors wish to acknowledge the financial support received
from CONICET (PIP 2754), Universidad Tecnológica Nacional (25/
O118 – UTI1083) and Agencia Nacional de Promoción Científica y
Tecnológica (PAE PICT 02315). Also, they thank the anonymous
reviewers that contributed with their comments to improve the
quality of this paper.

References

[1] Keane A, Nair P. Problem solving environments in aerospace design. Adv Eng
Software 2001;32(6):477–87.

[2] Chapman C, Pinfold M. Design engineering – a need to rethink the solution
using knowledge based engineering. Knowl-Based Syst 1999;12(5–6):257–67.

[3] Goel V. A comparison of design and nondesign problem space. Artif Intell Eng
1994;9(1):53–72.

[4] Boyle JM. Interactive engineering system design: a study for artificial
intelligence applications. Artif Intell Eng 1989;4(2):58–69.

[5] Goldschmidt G. Capturing indeterminism: representation in the design
problem space. Des Stud 1997;18(4):441–55.

[6] Lee J, Lai K. What’s in design rationale? Human–Comput Interact 1991;6(3–
4):251–80.

[7] Lee J. Design rationale systems: understanding the issues. IEEE Expert
1997;12(3):78–85.

[8] Bañares-Alcántara R, King J. Design support systems for process engineering III.
Design rationale as a requirement for effective support. Comput Chem Eng
1997;21(3):263–76.

[9] Kunz W, Rittel HWJ. Issues as elements of information systems. Working paper
131, Institute of Urban and Regional Development, University of California,
Berkeley; 1970.
[10] Carnduff T, Goonetillake J. Configuration management in evolutionary
engineering design using versioning and integrity constraints. Adv Eng
Software 2004;35(3–4):161–77.

[11] Westfechtel B. Models and tools for managing development process. Lecture
notes in computer science, vol. 1646. Berlin: Springer; 1999.

[12] Gonnet S, Leone H, Henning G. A model for capturing and representing the
engineering process. Expert Syst Appl 2007;33(4):881–902.

[13] Bass L, Clements P, Kazman R. Software architecture in practice. 2nd
ed. Boston: Addison-Wesley; 2003.

[14] Jansen A, Bosch J. Software architecture as a set of architectural design
decisions. In: Proceedings of the 5th IEEE/IFIP working conference on software
architecture (WICSA 2005); 2005.

[15] ANSI/IEEE Std 1471. Recommended practice for architectural description of
software-intensive systems, ISO/IEC 42010; 2007.

[16] Garlan D, Monroe RT, Wile D. Acme: architectural description of component-
based systems. In: Leavens GT, Sitaraman M, editors. Foundations of
component-based systems. Cambridge University Press; 2000. p. 47–68.

[17] Medvidovic N, Taylor RN. A classification and comparison framework for
software architecture description languages. IEEE Trans Software Eng
2000;26(1):70–93.

[18] Jansen A, van der Ven J, Avgeriou P, Hammer D. Tool support for architectural
decisions. In: Proceedings of the 6th working IEEE/IFIP conference on software
architecture (WICSA 2007); 2007.

[19] Tang A, Nicholson A, Jin Y. Using bayesian belief networks for change impact
analysis in architecture design. J Syst Software 2007;80(1):127–48.

[20] Bachmann F, Bass L, Klein M. Preliminary design of ArchE: a software
architecture design assistant. Technical report CMU/SEI-2003-TR-021,
Software Engineering Institute, Carnegie Mellon University; 2003.

[21] Roldán ML, Gonnet S, Leone H. A model for capturing and tracing architectural
designs. In: IFIP international federation for information processing, vol. 219/
2006. Advanced software engineering: expanding the frontiers of software
technology. Boston: Springer; 2006. p. 16–31.

[22] Concheri G, Milanese V. MIRAGGIO: a system for the dynamic management of
product data and design models. Adv Eng Software 2001;32(7):527–43.

[23] Reiter R. Knowledge in action: logical foundation for describing and
implementing dynamical systems. Cambridge, MA: The MIT Press; 2001.

[24] Lin F. Situation calculus. In: van Harmelen F, Lifschitz V, Porter B, editors.
Handbook of knowledge representation; 2008. p. 649–69.

[25] OMG. Unified modeling language (OMG UML). Superstructure, V2.1.2; 2007.
<http://www.omg.org/spec/UML/2.1.2/Superstructure/PDF>.

[26] Eggersmann M, Gonnet S, Henning G, Krobb C, Leone H, Marquardt W.
Modeling and understanding different types of process design activities.
Latinoam Appl Res 2003;33(2):167–75.

[27] Wojcik R, Bachmann F, Bass L, Clements P, Merson P, Nord R, et al. Attribute-
driven design (ADD), Version 2.0. Technical report CMU/SEI-2006-TR-023,
Software Engineering Institute, Carnegie Mellon University; 2006.

[28] Gamma E, Helm R, Johnson R, Vlissides J. Design patterns. Elements of reusable
object-oriented software. Reading, MA: Addison Wesley; 1995.

[29] Roldán ML. Un modelo para la representación de conocimiento y
razonamiento en el proceso de diseño basado en arquitecturas de software.
Tesis doctoral, Facultad Regional Santa Fe, Universidad Tecnológica Nacional;
2009.

[30] OMG. Object constraint language, OMG available specification, Version 2.0;
2006. <http://www.omg.org/cgi-bin/doc?formal/2006-05-01>.

[31] MySQL documentation team. MySQL reference manual; 2006.
[32] Bauer C, King G. Hibernate in action. Greenwich: Manning Publications; 2005.
[33] Holmes J. Struts: the complete reference. New York: McGraw-Hill/Osborne;

2007.
[34] Clements P, Kazman R, Klein M. Evaluating software architectures. Methods

and case studies. Addison Wesley; 2002.
[35] Bañares-Alcántara R, Lababidi HMS. Design support systems for process

engineering II. KBDS: an experimental prototype. Comput Chem Eng 1995;19:
279–301.

[36] Pohl K, Weidenhaupt K, Dömges R, Haumer P, Jarke M, Klamma R. PRIME—
toward process-integrated modeling environments. ACM Trans Software Eng
Methodol 1999;8(4):343–410.

[37] Robbins J, Hilbert D, Redmiles D. Extending design environments to
software architecture design. Automated Software Eng 1998;5(3):
261–90.

[38] Díaz-Pace JA, Campo M. Exploring alternative software architecture designs: a
planning perspective. IEEE Intell Syst 2008;23(5):66–77.

[39] Tang A, Avgeriou P, Jansen A, Capilla R, Ali Babar M. A comparative study of
architecture knowledge management tools. J Syst Software 2010;83(3):
352–70.

[40] Burge J, Brown D. Software engineering using rationale. J Syst Software
2008;81(3):395–413.

[41] Lee L, Kruchten P. A tool to visualize architectural design decisions. QoSA
2008:43–54.

[42] Institute for software research. ArchStudio 4. Software and systems
architecture development environment. <http://www.isr.uci.edu/projects/
archstudio/index.html>.

[43] Schmerl B, Garlan D. AcmeStudio: supporting style-centered architecture
development (research demonstration). In: Proceedings of the 26th
international conference on software engineering; 2004.

http://www.omg.org/spec/UML/2.1.2/Superstructure/PDF
http://www.omg.org/cgi-bin/doc?formal/2006-05-01
http://www.isr.uci.edu/projects/archstudio/index.html
http://www.isr.uci.edu/projects/archstudio/index.html

	TracED: A tool for capturing and tracing engineering design processes
	Introduction
	A model to capture and trace the engineering design process
	Instantiating the generic model with a particular engineering design domain
	The domain model
	A domain model for software architectures design process (SADP)

	The operations model
	An operations model for software architecture design process (SADP)

	TracED
	Domain editor: specifying modelling concepts and operations
	Versions manager
	Operation execution
	A case study on the software architectures domain: Struts
	Designing the Struts architecture
	Creating the first model versions
	Applying model-view-controller style

	Recovering information about an engineering design process
	By means of which design operations Model Version 5 was obtained?
	Which are the alternative successor model versions of Model Version 4?
	How did a WebApplication component change along the design process?
	Who were the actors involved in the generation of WebApplication object version?
	Which design operations have designers applied with the intention of addressing modifiability requirement?
	Which were the new products generated because of
	What were the architectural approaches applied to reach the Model Version 6?

	Related work
	Conclusions
	Acknowledgments
	References

