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Abstract

The aim of presented paper is modeling of degradation processes in

historical mortars exposed to moisture impact during freezing. Internal

damage caused by ice crystallization in pores is one of the most impor-

tant factors limiting the service life of historical structures. Coupling

the transport processes with the mechanical part will allow us to address

the impact of moisture on the durability, strength and stiffness of mor-

tars. This should be accomplished with the help of a complex thermo-
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hygro-mechanical model representing one of the prime objectives of this

work. The proposed formulation is based on the extension of the clas-

sical poroelasticity models with the damage mechanics. An example of

two-dimensional moisture transport in the environment with temperature

below freezing point is presented to support the theoretical derivations.

Nomenclature

a water absorption coefficient, [kgm−2s−0.5]

b body force, [Nm−3]

b Biot’s coefficient, [−]

btcs thermal conductivity supplement, [−]

bϕ approximation factor, [−]

C discretized capacity matrix

ci specific heat capacity of ice, [Jkg−1K−1]

cs specific heat capacity of solid matrix, [Jkg−1K−1]

cl specific heat capacity of liquid water, [Jkg−1K−1]

De elastic stiffness matrix, [Pa]

Dl capillary transport coefficient, [m2s−1]

Dϕ liquid conduction coefficient, [kgm−1s−1]

dw damage parameter, [−]

E Young’s modulus, [Pa]

F prescribed fluxes

ft tensile strength, [Pa]

H total enthalpy of porous material, [Jm−3]

hi specific melting enthalpy of ice, [Jkg−1]

hv latent heat of phase exchange, [Jkg−1]

K discretized conductivity matrix

K bulk modulus of porous material, [Pa]

Ks bulk modulus of solid matrix, [Pa]

lintl internal length, [m]

Mw molar mass of water, [kgmol−1]

n unit normal vector, [−]
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n total porosity, [−]

pa atmospheric pressure, [Pa]

pl liquid pressure, [Pa]

pp average pore pressure, [Pa]

psat saturation vapor pressure, [Pa]

qh heat flux, [Wm−2]

ql liquid transport flux, [kgm−2s−1]

qv water vapor flux, [kgm−2s−1]

R gas constant, [Jmol−1K−1]

r pore radius, [m]

r nodal values

rar layer of adsorbed water, [m]

rcr critical pore radius, [m]

rir curvature radius of ice crystal, [m]

Sh heat source, [Wm−3]

Sw moisture source, [kgm−3s−1]

t time, [s]

u displacement vector, [m]

w total water content, [kgm−3]

w80 water content at 0.8 [−] relative humidity, [kgm−3]

wi content of ice, [kgm−3]

wf free water saturation, [kgm−3]

α thermal expansion coefficient, [K−1]

αh heat transfer coefficient, [Wm−2K−1]

αswr short wave absorption coefficient, [−]

βv water vapor transfer coefficient, [kgm−2s−1Pa−1]

Γ boundary

γ generalized midpoint integration parameter, [−]

γli liquid/ice surface tension, [Nm−1]

∆sm melting entropy, [PaK−1]

δ vapor diffusion coefficient in air, [kgm−1s−1Pa−1]

δv water vapor permeability of porous material, [kgm−1s−1Pa−1]

ε0 equivalent strain at elastic limit, [−]

εeq equivalent strain, [−]

εf equivalent strain at critical crack opening, [−]

θ temperature, [◦C]

λ thermal conductivity of moist porous material, [Wm−1K−1]

λ0 thermal conductivity of dry porous material, [Wm−1K−1]
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µ water vapor diffusion resistance factor, [−]

ν Poisson’s ratio, [−]

ρs bulk density, [kgm−3]

σ total stress, [Pa]

σ′ effective stress, [Pa]

ϕ relative humidity, [−]

χ local pressure on the frozen pore walls, [Pa]

ψ cumulative volume of pores, [−]

Ω domain

Subscripts

ext exterior

i ice

in initial

int interior

l liquid water

p pore

r radius

s solid

v water vapor

1 Introduction

Understanding the hydro-thermo-mechanical behavior of building materials ex-

posed to weather conditions is the first step toward avoiding deterioration of

structures in general and historical ones in particular, as high moisture content

in building material and its phase changes are often a cause of internal damage.

Because of variable climatic conditions, the moisture gradients induce mechan-

ical stresses in the porous material. These stresses mostly develop due to the

growth of ice crystals through the pore structure. Therefore, there is a strong

need for investigating the influence of moisture on the mechanical material be-

havior, which leads to numerical and experimental coupling of mechanical and

thermo-hygro phenomena.
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In the literature, the above described problem is addressed from several per-

spectives. The first group of publications is focused on the description of the

coupled heat and moisture transport reflecting the moisture migration under the

conditions of the ice crystal formation in the pores, 2-D and 3-D aspects and dif-

ferent moisture/heat sources, such as wind driven rain, solar short and long wave

radiation etc., see [8, 10, 25]. An extensive overview of various transport models

is available in [12, 26]. While models for transport processes have been developed

during several decades, the theory of ice crystallization in the pores has emerged

only recently, [19, 20, 22]. The authors established relations between physical

state of porous system and pore pressures. The physical conditions of ice for-

mation process are described by thermodynamic balance equation between ice,

liquid water and solid matrix. Finally, the mechanical response of porous media

subjected to the frost action was studied by several authors [4, 27, 28]. On the

one hand, the poroelasticity formulation based on Biot’s continuum model was

adopted. It is an efficient method for elastic modeling of porous system, which

is subjected to the pressure of the fluid. On the other hand, a novel microme-

chanics approach was introduced to analyze the creation of micro-cracks in the

microstructure during freezing process [9, 13]. These results predict effective

mechanical and transport properties at microscopic level and can be utilized as

an input for multi-scale analysis of porous media.

As a preamble, our goal is to quantify the internal damage caused by the ice

crystallization pressure in historical mortars. In particular, a critical point in

a restoration works is frequent applications of lime mortars for preserving com-

patibility with the historical materials. However, lime mortars are very porous,

their mechanical strength and durability are mostly very low [17, 21], thus

the development of a lime mortar with improved internal hydrophobicity and

associated improved resistance against damage due to the effects of ice crystal-
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lization is inevitable. To address this issue with respect to its complexity, an

analysis combining both experimental work and numerical simulations has to be

done. Nevertheless, the numerical methodology developed within this work can

be utilized to simulate the response of any porous material subjected to the frost

action.

A theoretical formulation of the problem is presented in Section 2, followed by

numerical calculations in Section 3. Section 3.1 then investigates the influence

of pore size distribution on the evolution of damage parameter. The essential

findings are summarized in Section 4.

2 Material model

The problem of porous system subjected to ice crystallization can be divided into

three physical phenomena - heat and moisture transport, ice formation process

and evolution of damage caused by pore pressure. Using the thermodynamics,

poromechanics and damage mechanics, we propose here the concept of multi-

phase constitutive model based on the assumption of the uncoupled system in

the sense of numerical analysis, see Fig. 1. These models are characterized by

combining different physical or mechanical models (in space and time) in order to

accurately describe structural response of deteriorating infrastructure over time.

The general framework of the proposed model was primarily inspired by the work

published in [1, 2, 4, 6, 10, 19, 27, 28].

In the presented work, the porous material is treated as multi-phase medium

consisting of solid matrix, liquid water, water vapor and ice. The mathematical

formulation consists of three governing equations representing the conservations

of energy Eq. (4), mass Eq. (5) and linear momentum Eq. (36). The chosen

primary unknowns are temperature θ [◦C], moisture ϕ [−] and displacement of
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solid matrix u [m].

Transport model

Ice formation process

Inputs Type of model Results

θi+1, ϕi+1

pi+1
p

θi, ϕi

Robin BC: θi+1
∞

, ϕi+1
∞

Neumann BC: qh,swr, ql,rain

Dirichlet BC: θ̂i+1, ϕ̂i+1

Damage model
di+1
w , ui+1

Neumann BC: ti+1

Dirichlet BC: ûi+1

Figure 1: Algorithmic framework of proposed model

The present section derives the governing equations of the analytical model.

After theoretical formulation, a proper numerical time and space integration

scheme is introduced to convert the proposed governing equations into a fully

discrete form. Some details on the numerical implementation are also available

in [11, 24].

2.1 Transport model

We use the diffusion model by Künzel, see [10], which is based on Krischer’s

concept [26]. Künzel neglected the liquid water and water vapor convection

driven by gravity and total pressure as well as enthalpy changes due to liquid

flow and choose relative humidity ϕ as the only moisture driving force. The
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water vapor diffusion is then described by Fick’s law written as

qv = −δv∇ (ϕpsat) , (1)

where qv [kgm
−2s−1] is the water vapor flux, δv [kgm

−1s−1Pa−1] is the water vapor

permeability of a porous material and psat = psat(θ) [Pa] is the saturation water

vapor pressure being exponentially dependent on temperature. The transport of

liquid water is assumed in the form of surface diffusion in an absorbed layer and

capillary flow typically represented by Kelvin’s law

ql = −Dϕ∇ϕ, (2)

where ql [kgm
−2s−1] is the flux of liquid water, Dϕ = Dl (dw/dϕ) [kgm

−1s−1]

is the liquid conductivity and Dl [m
2s−1] is the capillary transport coefficient,

dw/dϕ is the derivative of water retention function. The Fourier law is then

used to express the heat flux qh [Wm−2] as

qh = −λ∇θ, (3)

where λ [Wm−1K−1] is the thermal conductivity and θ [◦C] is the local temper-

ature. Introducing the above constitutive equations into energy and mass con-

servation equations we finally get resulting set of differential equations for the

description of heat and moisture transfer expressed in terms of temperature and

relative humidity as

• the energy balance equation

∂H

∂θ

∂θ

∂t
= ∇ · [λ∇θ] + hv∇ · [δv∇{ϕpsat(θ)}], (4)
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• the conservation of mass equation

dw

dϕ

∂ϕ

∂t
= ∇ · [Dϕ∇ϕ] +∇ · [δv∇{ϕpsat(θ)}] , (5)

The transport coefficients defining the material behavior are nonlinear functions

of the temperature, moisture and material properties. We briefly recall their

particular expressions [10]:

• w - total water content [kgm−3],

w = wf
(bϕ − 1)ϕ

bϕ − ϕ
, (6)

where wf [kgm
−3] is the free water saturation and bϕ [−] is the approxima-

tion factor, which must always be greater than one. It can be determined

from the equilibrium water content (w80) at 0.8 [-] relative humidity by sub-

stituting the corresponding numerical values in Eq. (6). Fig. 2(a) shows an

example of variation of water content as a function of relative humidity.

• δv - water vapor permeability [kgm−1s−1Pa−1],

δv =
δ

µ
, (7)

where µ [−] is the water vapor diffusion resistance factor and δ [kgm−1s−1Pa−1]

is the vapor diffusion coefficient in air given by

δ =
2.306 · 10−5 pa
Rv (θ + 273.15) p

(
θ + 273.15

273.15

)1.81

, (8)

with p set equal to atmospheric pressure pa = 101325 [Pa] and Rv =

R/Mw = 461.5 [Jkg−1K−1]; R is the gas constant (8314.41 [Jmol−1K−1])

9



0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

ϕ [−]

w
[k

gm
−

3
]

 

 

w [kgm−3]

−20 0 20 40 60 80
1.5

2

2.5x 10
−11

θ [◦C]

δ v
[k

gm
−

1
s−

1
P
a−

1
]

 

 

δv [kgm−1s−1Pa−1]

(a) (b)

0 50 100 150
10

−10

10
−5

10
0

w [kgm−3]

D
ϕ

[k
gm

−
1
s−

1
]

 

 

Dϕ [kgm−1s−1]

0 50 100 150
0.4

0.5

0.6

0.7

0.8

0.9

w [kgm−3]

λ
[W

m
−

1
K

−
1
]

 

 

λ [Wm−1K−1]

(c) (d)

Figure 2: (a) Variation of water content as a function of relative humidity, (b)
variation of water vapor permeability as a function temperature, (c) variation
of liquid conductivity as a function of water content, (d) variation of thermal
conductivity as a function of water content

and Mw is the molar mass of water (18.01528 [kgmol−1]). An example of

variation of water vapor permeability as a function of temperature is seen

in Fig. 2(b).

• Dϕ - liquid conduction coefficient [kgm−1s−1],

Dϕ = Dl
dw

dϕ
, (9)
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where Dl [m
2s−1] is the capillary transport coefficient given by

Dl = 3.8

(
a

wf

)2

· 103w/(wf−1), (10)

An example of variation of liquid conductivity Dϕ [kgm
−1s−1] as a function

of water content is plotted in Fig. 2(c).

• λ - thermal conductivity [Wm−1K−1],

λ = λ0

(

1 +
btcsw

ρs

)

, (11)

where λ0 [Wm−1K−1] is the thermal conductivity of dry building material,

ρs [kgm
−3] is the bulk density and btcs [−] is the thermal conductivity sup-

plement. An example of variation of thermal conductivity as a function of

water content is shown in Fig. 2(d).

• psat - water vapor saturation pressure [Pa],

psat = 611 exp

(
a θ

θ0 + θ

)

, (12)

where

a = 22.44 θ0 = 272.44 [◦C] θ < 0 [◦C]

a = 17.08 θ0 = 234.18 [◦C] θ ≥ 0 [◦C]

(13)

• hv - evaporation enthalpy of water [Jkg−1]

hv = 2.5008 · 106
(
273.15

θ

)(0.167+3.67·10−4θ)

. (14)

11



• H - total enthalpy of porous material [Jm−3]

H = ρscsθ +

[

(w − wi)cl + wici − hi
dwi

dθ

]

θ, (15)

where ρs [kgm
−3] is the bulk density, ci [Jkg

−1K−1] is the specific heat ca-

pacity of ice, cs [Jkg
−1K−1] is the specific heat capacity of solid matrix,

cl [Jkg
−1K−1] is the specific heat capacity of liquid water and hi [Jkg

−1] is

the specific melting enthalpy of ice, wi [kgm
−3] is the content of ice.

For the spatial discretization of the partial differential equations, a finite el-

ement method is preferred here to the finite volume technique. The discretized

form of energy and moisture balance equations then reads






Kθθ(rθ, rϕ) Kθϕ(rθ, rϕ)

Kϕθ(rθ, rϕ) Kϕϕ(rϕ)






︸ ︷︷ ︸

K(r)







rθ

rϕ







︸ ︷︷ ︸

r

+






Cθθ(rθ, rϕ) 0

0 Cϕϕ(rϕ)






︸ ︷︷ ︸

C(r)







drθ

dt

drϕ

dt







︸ ︷︷ ︸

ṙ

=







F θ

F ϕ







︸ ︷︷ ︸

F

,

(16)

where K is the conductivity matrix, C is the capacity matrix, r is the vector of

nodal values, and F is the vector of prescribed fluxes transformed into nodes.

For a detailed formulation of the matrices K and C and the vector F , we refer

the interested reader to [23, 24].

The numerical solution of the system Eq. (16) is based on a simple temporal

finite difference discretization. If we use time steps ∆ t and denote the quantities

at time step i with a corresponding superscript, the time-stepping equation is

ri+1 = ri +∆t[(1− γ)ṙi + γṙi+1], (17)

where γ is a generalized midpoint integration rule parameter. In the results

presented in this paper the Crank-Nicolson (trapezoidal rule) integration scheme

12



with γ = 0.5 was used. Expressing ṙi+1 from Eq. (17) and substituting into the

Eq. (16), one obtains a system of non-linear equations:

[γ∆tKi+1(ri+1) +Ci+1(ri+1)]ri+1 = γ∆tF i+1 +Ci+1(ri+1)[ri +∆t{1− γ}ṙi],

(18)

which can be solved by some iterative method such as Newton-Raphson.

2.2 Ice formation process

The ice crystallization process in the porous system is described by the pene-

tration of liquid/ice interface from external surfaces or large pores towards the

unfrozen zones [19].

The ice formation process is limited by a critical pore radius rcr(θ), see

Fig. 3(a). It describes the smallest geometrical radius of pore in which ice crystal

can form [14, 28],

rcr(θ) = rir(θ) + rar(θ), (19)

where rir [m] is the curvature radius of ice crystal (liquid-ice interface) formed at

a given temperature and rar [m] is the layer of adsorbed water which cannot freeze

during crystallization process. The empirical formula for rar [m] was proposed by

Fagerlund [5] as

rar(θ) = 1.97 · 10−9 3

√

1

|θ|
for θ < 0 [◦C] (20)

and rir [m] is introduced through the simplified form of the Gibbs-Duhem equa-

tion [27] as

rir(θ) =
2γli

∆sm|θ|
for θ < 0 [◦C], (21)

where γli [Nm
−1] is the liquid/ice surface tension and ∆sm [PaK−1] is the melting

13
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Figure 3: (a) Critical pore radius rcr as a function of temperature, (b) pore size
distribution obtained by mercury porosimetry and resulting cumulative porosity

entropy.

The concept of the pore pressure caused by the ice crystals is well known,

see [3, 4, 5, 14, 19, 20, 22, 27, 28]. To be more specific, let us consider spherical

liquid-ice interface at the entrance of the pore and cylindrical shape of pores.

Two interface equilibrium conditions are assumed to describe the interaction

between ice crystals and pore walls. The Laplace relation is applicable to control

the interface between the ice crystal and the liquid water:

pi − pl =
2γli
rir(θ)

, (22)

where pl [Pa] is the liquid pressure and pi [Pa] is the pressure in the ice crystal.

The second interface relation is expressed in the form of mechanical equilibrium

between the ice crystal and the pore pressure exerted by the ice crystal, pp [Pa],

as

pi − pp =
γli

r − rar(θ)
. (23)
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Finally, combining Eq. (22) and Eq. (23), we can write

pp = pl + χ(r, θ), (24)

where χ(r, θ) [Pa] is the local pressure on the frozen pore walls due to the ice

formation and it is characterized by following relation, see [18, 28],

χ(r, θ) = γli

(
2

rir(θ)
−

1

r − rar(θ)

)

. (25)

It has been advocated in [19] and [28] that the average pore pressure exerted

by the ice crystal on the pore walls can be introduced as

pp = pl +
1

n

∫
∞

rcr(θ)

χ(r, θ)
dψ

dr
dr, (26)

where n [−] is the total porosity and ψ(r) [−] is the cumulative porosity. The

cumulative porosity ψ [−] with a pore radius greater than r [m] is defined as, see

Fig. 3(b),

ψ(r) =

∫
∞

r

dψ

dr
dr. (27)

2.3 Mechanical (damage) model

The description of mechanical behavior of a porous media saturated with a liquid

water was firstly proposed by Biot [2] and extended in the more general context

of continuum thermodynamics for the ice crystals by Coussy [3, 4]. According

to this approach, the formula between the effective stress σ′ [Pa] and total stress

σ [Pa] has following form

σ = σ′ − bppi, (28)
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where b [−] is Biot’s coefficient, pp [Pa] is the pressure exerted by ice crystal

on the pore walls and i = {1, 1, 1, 0, 0, 0}T. The standard formulation of Biot’s

coefficient related to the liquid water is based on introduction of the bulk modulus

of porous material K [Pa] and the bulk modulus of solid matrix Ks [Pa]. For our

purpose, we utilize more convenient relation for porous system derived in [22] .

b =
2n

n + 1
≈ 1−

K

Ks
, (29)

where n [−] is the total porosity. As a further extension, we introduce one pa-

rameter isotropic nonlocal damage model given by constitutive law, see [1, 7],

σ′ = (1− dw)Deε, (30)

damage law

dw = g(κ) (31)

and loading-unloading conditions

f(ε, κ) = εeq(ε)− κ ≤ 0, κ̇ ≥ 0, f(ε, κ)κ̇ = 0, (32)

whereDe [Pa] is the elastic stiffness matrix, dw [−] is the damage parameter, κ [−]

is the internal variable corresponding to the maximum value of equivalent strain

εeq [−] reached in the loading history. The equivalent strain can be expressed in

Mazars’s form as

εeq =

√
√
√
√

3∑

I=1

〈εI〉2, (33)

where εI [−] is component of the principal strains and the brackets denote the

positive part. According to [1], the local value εeq [−] is replaced by its nonlocal
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average defined as

εeq,nonlocal(x) =

∫

V

φ(x, ξ)εeq(ξ)dξ, (34)

where φ(x, ξ) [−] is the nonlocal weight function representing distance in the

domain between the source point ξ [m] and target point x [m]. For more details

about nonlocal formulation we refer to [1]. Finally, the damage law dw = g(κ) is

provided by following relation

g(κ) =







0 for 0 ≤ κ ≤ ε0,

1− κ−ε0
εf−ε0

for ε0 ≤ κ ≤ εf ,

1 for εf ≤ κ.

, (35)

where εf [−] is the equivalent strain at critical crack opening and ε0 [−] is the

strain at the elastic limit.

Considering the stress relation Eq. (28) and Eq. (30), the linear momentum

balance equation for the porous system, can be expressed in the following form:

∇ · [σ′ − bppi] + b = 0, (36)

where b [Nm−3] is the body force. The governing equations are discretized in

space using the standard finite element approximation. The unknown displace-

ment field u [m] is expressed in terms of its nodal values. Details of the formu-

lation may be found in [6].

2.4 Boundary and initial conditions

To complete the proposed material model, the initial and boundary conditions
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are set as follows:

• The Dirichlet boundary conditions

θ = θ̂(t) on ΓI
θ,

ϕ = ϕ̂(t) on ΓI
ϕ, (37)

u = û(t) on ΓI
u,

• The Neumann boundary conditions

[−λ∇θ − δv∇{ϕpsat(θ)}] · n = qh(t) + qh,swr(t) on ΓII
θ ,

[−Dϕ∇ϕ− δv∇{ϕpsat(θ)}] · n = qv(t) + ql(t) + ql,rain(t) on ΓII
ϕ ,

σ′ · n = σt(t) on ΓII
u , (38)

• The Robin boundary conditions

[−λ∇θ − δv∇{ϕpsat(θ)}] · n = αh[θ − θ∞(t)] on ΓIII
θ ,

[−Dϕ∇ϕ− δv∇{ϕpsat(θ)}] · n = βv[ϕ− ϕ∞(t)] on ΓIII
ϕ , (39)

• Initial conditions

θ(x, 0) = θin ϕ(x, 0) = ϕin u(x, 0) = uin for all x ∈ Ω, (40)

where the symbol ·̂ denotes prescribed value, n [−] is the unit normal vec-

tor, qh,swr [Wm−2] is the solar short-wave radiation flux, ql,rain [kgm
−2s−1] is the

driving-rain flux, σt [Pa] is the imposed traction, αh [Wm−2K−1] is the heat trans-

fer coefficient, βv [kgm
−2s−1Pa−1] is the water vapor transfer coefficient, θ∞ and

ϕ∞ are the ambient temperature and moisture, respectively.
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Figure 4: 2-D domain with initial and boundary conditions

3 Numerical example

In this section, we employ the proposed thermo-hygro-mechanical model to per-

form a numerical simulation of transport processes below freezing point in porous

media and their impact on the mechanical properties. In doing so we consider

geometry together with the initial and loading conditions displayed in Fig 4.

Two-dimensional L-shape domain was discretized by an FE mesh into 741 nodes

and 1358 triangular elements. The solution of the time-dependent problem also

involves a discretization of the time domain into 744 uniform time steps chosen

with regard to the convergence criteria of nonlinear solution.

The measured material parameters, corresponding to a lime mortar, are listed

in Tab. 1. Several parameters were obtained from a set of experimental mea-

surements providing mostly the hygric and thermal properties of mortar, see

[17]. Unfortunately, no additional experiments were conducted for the mechani-

cal properties, hence we utilize some material parameters of mortars mentioned
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Symbol Unit Value Ref.

Transport properties of mortar

wf [kgm−3] free water saturation 160 [23]

w80 [kgm−3] water content at ϕ = 0.8 [-] 23 [23]

λ0 [Wm−1K−1] thermal conductivity 0.45 [23]

btcs [−] thermal conductivity supplement 9 [23]

ρs [kgm−3] bulk density 1670 [23]

µ [−] water vapor diffusion resistance factor 9.63 [17, 23]

a [kgm−2s−0.5] water absorption coefficient 0.82 [17, 23]

cs [Jkg−1K−1] specific heat capacity 1000 [17, 23]

Mechanical properties of mortar

E [Pa] Young’s modulus 1 · 1010 [15, 16]

ν [−] Poisson’s ratio 0.2 [15, 16]

ft [Pa] tensile strength 2.5 · 106 [15, 16]

εf [−] equivalent strain at critical crack opening 2.5 · 10−3 [1, 7]

lintl [m] internal length 1 · 10−3 [1, 7]

α [K−1] thermal expansion coefficient 1.2 · 10−5 [15, 16]

Ice formation process

γli [Nm−1] liquid/ice surface tension 0.0409 [13]

∆sm [PaK−1] melting entropy 1.2 · 106 [13]

n [−] total porosity 0.35 [17, 21]

ψ [−] cumulative volume of pores Fig. 3(b) [17, 21]

Other properties

αh [Wm−2K−1] heat transfer coefficient 8 [10]

βv [kgm−2s−1Pa−1] water vapor transfer coefficient 5.6 · 10−8 [10]

αswr [−] short-wave absorption coefficient 0.6 [10]

Table 1: Input parameters of numerical simulation

in the literature, see Tab. 1.

The initial conditions were set equal to uin = 0 [m], θin = 14 [◦C] and ϕin =

0.5 [−] in the whole domain. The following Robin boundary conditions were

imposed: on the interior side a constant temperature of 24 [◦C] and a constant

relative humidity 0.6 [−] were maintained, while on the exterior side the real cli-

matic data representing the winter conditions were prescribed, see Figs. 5(a),(b).

Moreover, the exterior side of the domain was loaded by the heat flux from so-
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Figure 5: Exterior and interior boundary conditions - (a) temperature, (b) mois-
ture, (c) driving-rain, (d) short-wave radiation

lar short-wave radiation qh,swr [Wm−2] and the driving-rain flux ql,rain [kgm
−2s−1]

(the Neumann boundary conditions), see Figs. 5(c),(d) and Tab. 2.

The results are presented in Fig. 6 showing variation of the temperature and

moisture at selected nodes labeled in Fig. 4. The obtained results clearly man-

ifesting the influence of exterior boundary conditions on the temperature and

moisture fields, especially near the exterior surface of the 2-D domain.

Several interesting results have been derived within the scope of the calcula-

tion of internal damage. Figs. 7(a),(b) display the evolution of damage parameter

and its dependence on the average pore pressure. Beside the comparison of the

evolution of damage parameter in the time, we also compare growth of damage
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Side BC type Description Fig.

Boundary conditions

Γext II [−λ∇θ − δv∇{ϕpsat(θ)}] · n = qh,swr(t) 5(d)

Γext II [−Dϕ∇ϕ− δv∇{ϕpsat(θ)}] · n = ql,rain(t) 5(c)

Γext III [−λ∇θ − δv∇{ϕpsat(θ)}] · n = 8[θ − θ∞(t)] 5(a)

Γext III [−Dϕ∇ϕ− δv∇{ϕpsat(θ)}] · n = 5.6 · 10−8[ϕ− ϕ∞(t)] 5(b)

Γint III [−λ∇θ − δv∇{ϕpsat(θ)}] · n = 8[θ − 24] 5(a)

Γint III [−Dϕ∇ϕ− δv∇{ϕpsat(θ)}] · n = 5.6 · 10−8[ϕ− 0.6] 5(b)

ΓA I ux(t) = 0 [m]

ΓB I uy(t) = 0 [m]

Initial conditions

Ω θin = 14 [◦C]

Ω ϕin = 0.5 [−]

Ω uin = 0 [m]

Table 2: Boundary and initial conditions
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Figure 6: (a) Resulting temperature at selected nodes, (b) resulting moisture at
selected nodes

parameter in the domain, see Fig. 8. Analysis of these results allows better un-

derstanding of physical phenomena in porous media subjected to the frost action.

A fast moisture increase in the zone close to the exterior surface (Fig. 6(b)) leads

also to the similar trend of the damage parameter, see Fig. 7(a). This can be

attributed to the lower exterior temperature and higher moisture content in the

surface layer caused by the driving-rain flux. It is evident from the boundary
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Figure 7: (a) Evolution of damage parameter dw,1 [−] and pore pressure pp,1 [Pa]
at node 1, (b) Evolution of damage parameters dw [−] at selected nodes

conditions plotted in Figs. 5(a),(c). The calculated results promote the capabil-

ity of proposed governing equations to simulate a degradation processes in the

building materials exposed to real weather conditions.

(a) (b)

Figure 8: (a) Evolution of damage parameter dw [−] after t = 372 [h], (b) evolu-
tion of damage parameter dw [−] at the end of analyzed time period (t = 744 [h])
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3.1 Influence of porosity

The formation of ice is mainly controlled by pore size distribution, see [28]. To

address this issue we consider the same input data as in the previous numeri-

cal example except for the total porosity n [−] and cumulative porosity ψ [−].

Note that the structure of porous system affects surely transport and mechan-

ical properties of mortars, but we focus here only on the influence of different

porosity to keep the numerical study clear and transparent, see Eqs. (26) and

(36). Therefore, two different pore size distributions were taken into account,

see Fig. 9(a). Further we assume in calculations the following values of total

porosity {nspec01 = 0.35 [−], nspec02 = 0.13 [−]} representing material properties

of the lime mortar and the lime mortars with oil additive, respectively.

For a given pore size distributions, Figs. 9(b), (d) shows the evolution of

damage parameters in the critical location of the 2-D domain. It is shown that

the value of total porosity changes slightly, while the influence on the evolution of

damage parameter is significant. This is clearly observed from the comparison of

pore pressures displayed in Fig. 7(a) and Fig. 9(c). Combining all the previous

results suggests that the structure of porous system plays crucial role in the

resulting pore pressure and subsequently calculated internal damage.

4 Conclusions

This paper presents the numerical modeling of damage caused by ice crystalliza-

tion process in mortars. Attention is focused on the thermo-hygro-mechanical

model developed here in the framework of uncoupled algorithmic scheme. Two

particular issues were addressed: (i) the formulation of material model based on

laws of the thermodynamics, poromechanics and damage mechanics, (ii) influ-
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Figure 9: (a) Two different pore size distributions and cumulative porosity func-
tions, (b) comparison of damage evolutions at node 1, (c) evolution of damage
parameter dw,1,spec02 [−] and pore pressure pp,1,spec02 [Pa] at node 1 for porosity
equal to nspec02 = 0.13 [−], (d) evolution of damage parameter dw,spec02 [−] at the
end of analyzed time period (t = 744 [h])

ence of porosity on the mechanical behavior.

In particular, we employed Künzel’s model, which is sufficiently robust to de-

scribe real-world materials, but which is also highly nonlinear, time-dependent

material model. Supported by several successful applications in civil engineer-

ing we adopted Biot’s model and the nonlocal isotropic damage model in the

framework to simulate the frost action on porous media.

A crucial point in modeling of damage in mortars is the pore size distribution.
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The obtained results suggest a high importance of porosity on evolution of the

damage parameter, at least for the present material parameters and applied range

of initial and boundary conditions.

Finally a comparison of the numerical calculations with experimental mea-

surements is under current investigation and will be presented elsewhere.
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[26] R. Černý and P. Rovnańıková. Transport Processes in Concrete. London:

Spon Press, 2002.

[27] G. Wardeh and B. Perrin. Numerical modelling of the behaviour of con-

solidated porous media exposed to frost action. Construction and Building

Materials, 22(4):600–608, 2008.

[28] B. Zuber and J. Marchand. Modeling the deterioration of hydrated cement

systems exposed to frost action - Part 1: Description of the mathematical

model. Cement and Concrete Research, 30(12):1929–1939, 2000.

29


	1 Introduction
	2 Material model
	2.1 Transport model
	2.2 Ice formation process
	2.3 Mechanical (damage) model
	2.4 Boundary and initial conditions

	3 Numerical example
	3.1 Influence of porosity

	4 Conclusions

