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Abstract

In many important design problems, some decisions should be made
by finding the global optimum of a multiextremal objective function
subject to a set of constrains. Frequently, especially in engineering ap-
plications, the functions involved in optimization process are black-box
with unknown analytical representations and hard to evaluate. Such
computationally challenging decision-making problems often cannot be
solved by traditional optimization techniques based on strong supposi-
tions about the problem (convexity, differentiability, etc.). Nature and
evolutionary inspired metaheuristics are also not always successful in
finding global solutions to these problems due to their multiextremal
character. In this paper, some innovative and powerful deterministic
approaches developed by the authors to construct numerical methods
for solving the mentioned problems are surveyed. Their efficiency is
shown on solving both the classes of random test problems and some
practical engineering tasks.

Key Words.Global optimization, black-box functions, derivative-free meth-
ods, Lipschitz condition, applied problems.

1 Introduction

Numerical approaches to efficiently find optimal parameters of mathemat-
ical models arising from different real-life design problems are nowadays
becoming more and more significant in industrial processes. Optimization
models characterized by the functions with several local optima (typically,
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their number is unknown and can be very high) have a particular impor-
tance for practical applications. When the best set of parameters should be
determined for these multiextremal models, traditional local optimization
techniques, including many heuristic approaches, can be insufficient and,
therefore, global optimization methods are used. Moreover, the objective
functions and constraints to be examined are often black-box and hard to
evaluate functions with unknown analytical representations. For example,
their values can be obtained by executing some computationally expensive
simulation, by performing a set of experiments, and so on. Such a kind
of functions is frequently met in various fields of human activity (as, e.g.,
automatics and robotics, structural optimization, safety verification prob-
lems, engineering design, network and transportation problems, mechani-
cal design, chemistry and molecular biology, economics and finance, data
classification, etc.) and corresponds to computationally challenging global
optimization problems, being actively studied around the world (see, e.g.,
[3, 17, 25, 28, 52, 53, 55, 56, 59, 72, 73, 80, 85] and the references given
therein).

This paper is based upon the work [43] presented at the Eleventh Inter-
national Conference on Computational Structures Technology (Dubrovnik,
Croatia, 4–7 September 2012) and extends the previous research in both
the theoretical and the experimental directions, thus offering to the optimal
design community competitive tools to tackle real-life engineering decision-
making tasks.

The paper is structured as follows. In the next Section, an insight into
black-box global optimization problems is given and some approaches for
their solution are briefly discussed. One of these approaches are based on a
quite natural (from the physical viewpoint) assumption that the objective
function and constraints have bounded slopes, i.e., they satisfy the Lipschitz
condition. Such a problem statement is formalized and examined more in
detail in Section 3. Some approaches proposed by the authors to construct
efficient numerical methods for solving the mentioned problems are briefly
presented in Section 4. Section 5 illustrates the theoretical considerations of
the paper with some numerical experiments. Finally, conclusions and future
research directions are drawn.

2 Black-box global optimization

To illustrate real-world global optimization problems we deal with, let us con-
sider the field of geomechanics and geophysics where one has to work with
different mechanical-mathematical optimization models. Generally, these
models are very complex since they can involve multidimensional linear or
nonlinear partial differential equations with multiple contact boundaries,
regions with sharp changes in functions values, ill-posedness, and so on.
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Knowledge of the properties and types of geological rocks lying at a depth of
several kilometers is of great interest, e.g., for prospecting seismology, which
determines the location of oil fields by means of acoustic waves. Prospect-
ing seismology techniques allow one both to avoid the costly exploration
methods (e.g., well drilling) and to accelerate the process of pinpointing oil
resources. Among these techniques, numerical methods for solving inverse
problems are of fundamental importance in prospecting seismology. They
aim at estimating parameters of the Earth’s structure and material prop-
erties (e.g., location of the inhomogeneities as cracks/cavities in the crust)
based on data measured on the surface.

To give a concrete example of the resulting global optimization problem,
a simplified version of the prospecting seismology inverse problem can be
taken: namely, let us suppose that there is a fluid-filled crack (or a number
of such cracks) of a given length located in the host rock with known elastic
properties (see, e.g., [21, 38]). Then, the vector x of unknown parameters
defining the region geometry contains only two components: the depth of
the crack occurrence h, h1 ≤ h ≤ h2, and the crack inclination angle α,
α1 ≤ α ≤ α2 (h1, h2, α1, and α2 are known constants).

One of the peculiarities of the stated problem is that information can be
obtained only from experimental measurements with the usage of acoustic
sounding (see, e.g., [49]). A number of seismic detectors are located at
points di on the surface of the Earth, which record the vertical components
Ṽy(di, tj) of particles velocity in the reflected wave at time instances tj . We
look for such a value of x that best fits the numerically simulated response
Vy(x, di, tj) to a measured one. Computational simulation can be performed
by some numerical integration algorithm: for example, the grid-characteristic
method (see, e.g., [58, 46]) can be used for this scope, thus taking into account
the physical features of the problem and allowing one to set correctly the
boundary and contact conditions.

Hereby, this particular problem can be formulated as the following least
squares optimization problem (see, e.g., [80, 85, 51, 62, 64, 77]):

min f(x), x ∈ D = [h1, h2]× [α1, α2], (1)

f(x) =
∑

i

∑

j

[Vy(x, di, tj)− Ṽy(di, tj)]
2. (2)

Function (2) is essentially multiextremal, it has no analytical representa-
tion and its evaluation (sometimes called trial) is associated with performing
computationally expensive numerical experiments. Therefore, the usage of
fast and robust global optimization methods aimed at tackling this class
of complex multiextremal problems is required for solving efficiently prob-
lem (1)–(2).
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Because of the computational costs involved, typically a small number
of functions evaluations are available for a decision-maker (engineer, physi-
cist, chemist, economist, etc.) when optimizing such costly functions. Thus,
the main goal is to develop fast global optimization methods that produce
acceptable solutions with a limited number of functions evaluations. But to
obtain this goal, there are still a lot of difficulties that are mainly related ei-
ther to the lack of information about the objective function (and constraints,
if any) or to the impossibility to adequately represent the available informa-
tion about the functions.

For example, gradient-based algorithms (see, e.g., [17, 28, 55]) cannot
be used in many applications because black-box functions are often non-
differentiable or derivatives are not available and their finite-difference ap-
proximations are too expensive to obtain. Automatic differentiation (see,
e.g., [7]), as well as interval-based approaches (see, e.g., [8, 33]), cannot be
appropriately used in cases of black-box functions when their source codes
are not available. A simple alternative could be the usage of the so-called
direct (or derivative-free) search methods (see, e.g., [34, 6, 35, 50, 9, 61]),
frequently used now for solving engineering design problems (see, e.g., the
DIRECT method [17, 34, 30], the response surface, or surrogate model meth-
ods [31, 60], pattern search methods [81, 10, 1, 2], etc.). But unfortunately
(see, e.g., [71, 11, 44, 57]), these methods either are designed to find only
stationary points or can require too high computational effort for their work.

Therefore, solving the described global optimization problems is actually
a real challenge both for the theoretical and the applied scientists. In this
context, deterministic global optimization is a well developed mathematical
theory which has many important applications (see, e.g., [17, 28, 59, 72,
80, 16]). One of its main advantages is the possibility to obtain guaranteed
estimations of global solutions and to demonstrate (under certain analytical
conditions) rigorous global convergence properties. However, the currently
available deterministic models can still require too large number of functions
evaluations to obtain adequately good solutions for these problems.

Stochastic approaches (see, e.g., [17, 28, 53, 55, 85, 84]) can often deal
with the stated problems in a simpler manner than the deterministic algo-
rithms (being also suitable for the problems where the evaluations of the
functions are corrupted by noise). However, there can be difficulties with
these methods, as well (e.g., in studying their convergence properties). Sev-
eral restarts can also be involved, requiring even more functions evaluations.
Moreover, solutions found by many stochastic algorithms (especially, by pop-
ular heuristic methods like evolutionary algorithms, simulated annealing,
etc.; see, e.g., [52, 55, 27, 63, 83, 26, 32, 82]) can be only local solutions to
the problems, far from the global ones. This can preclude such methods from
their usage in practice, especially when an accurate estimate of the global
solution is required. That is why we concentrate, hereafter, on deterministic
approaches.
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The possibility to outperform the ‘brute-force computation’ techniques
in solving global optimization problems is fundamentally based on the avail-
ability of some realistic a priori assumptions characterizing the objective
function and eventual constraints (see, e.g., [28, 55, 59, 72, 80, 85]). They
serve as mathematical tools for obtaining estimates of the global solution
related to a finite number of function trials and, therefore, play a crucial role
in the construction of any efficient global search algorithm. As observed, e.g.,
in [28, 78], if no particular assumptions are made on the objective function
and constraints, any finite number of function evaluations cannot guarantee
getting close to the global minimum value, since this function may have very
high and narrow peaks.

One of the natural and powerful (from both the theoretical and the ap-
plied points of view) assumptions on the global optimization problem is that
the objective function (and constraints) has (have) bounded slopes. In other
words, any limited change in the object parameters yields limited changes
in the characteristics of the objective performance. This assumption can be
justified by the fact that in technical systems the energy of change is always
limited (see the related discussion in [80]). One of the most popular math-
ematical formulations of this property is the Lipschitz continuity condition,
which assumes that the difference (in the sense of a chosen norm) of any two
function values is majorized by the difference of the corresponding function
arguments, multiplied by a positive factor L < ∞. In this case, the func-
tion is said to be Lipschitz and the corresponding factor L is said to be the
Lipschitz constant. The problem involving Lipschitz functions (the objec-
tive function and constraints) is said to be the Lipschitz global optimization
problem (see, e.g., [28, 59, 72, 73, 80, 85, 45, 14] and the references given
therein).

The Lipschitz continuity assumption, being quite realistic for many prac-
tical black-box problems, is also an effective tool for obtaining accurate global
optimum estimates after performing a limited number of functions evalua-
tions. It is used by the authors to develop efficient and reliable deterministic
methods for solving multidimensional constrained global optimization prob-
lems from different real-life applied areas (as, e.g., the problem (1)–(2)),
which are characterized by black-box multiextremal and hard to evaluate
functions. In the next Section, the Lipschitz global optimization is exam-
ined more in detail.

3 Lipschitz global optimization problem

A general Lipschitz global optimization problem can be formalized as follows
(see, e.g., [59, 72, 80, 85, 14]):

f∗ = f(x∗) = min f(x), x ∈ Ω ⊂ R
N , (3)
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where Ω is a bounded set defined as

Ω = {x ∈ D : ζi(x) ≤ 0, 1 ≤ i ≤ p}, (4)

D = [a, b ] = {x ∈ R
N : a(j) ≤ x(j) ≤ b(j), 1 ≤ j ≤ N}, a, b ∈ R

N , (5)

with N being the problem dimension. In (3)–(5), the objective function f(x)
and the constraints ζi(x), 1 ≤ i ≤ p, are multiextremal, non necessarily dif-
ferentiable, black-box and hard to evaluate functions that satisfy the Lips-
chitz condition over the search hyperinterval D:

|f(x′)− f(x′′)| ≤ L‖x′ − x′′‖, x′, x′′ ∈ D, (6)

|ζi(x′)− ζi(x
′′)| ≤ Li‖x′ − x′′‖, x′, x′′ ∈ D, 1 ≤ i ≤ p, (7)

where ‖ · ‖ denotes, usually, the Euclidean norm, L and Li, 1 ≤ i ≤ p, are
the (unknown) Lipschitz constants such that 0 < L < ∞, 0 < Li < ∞,
1 ≤ i ≤ p. If p = 0 in (4), the problem is said to be box-constrained.

The admissible region Ω can consist of disjoint, non-convex subregions
because of the multiextremality of the constraints ζi(x). Moreover, these
constraints can be partially defined, i.e., a constraint ζi+1(x) (or the objective
function f(x)) can be defined only over subregions where ζi(x) ≤ 0, 1 ≤ i ≤ p

(see, e.g., [73, 80] for more details and applied examples).
Problem (3), (5), (6) with a differentiable objective function having the

Lipschitz (with an unknown Lipschitz constant) gradient f ′(x) (which could
be itself a multiextremal black-box function) is sometimes included in the
same class of Lipschitz global optimization problems (see, e.g., the references
given in [80, 44, 42]).

As evidenced, e.g., in [73, 80], it is not easy to manage multiextremal con-
straints (4) within the context of Lipschitz global optimization. For example,
the traditional penalty approach (see, e.g., the references in [17, 28, 50]) can
lead to extremely high Lipschitz constants, thus forcing degeneration of the
methods. In this connection, a promising approach called the index scheme
(see, e.g., [80, 4, 70, 74]) can be applied. It does not introduce additional
variables and/or parameters by opposition as, e.g., many traditional penalty
approaches do, and reduces the general constrained problem (3)–(7) to a
box-constrained discontinuous one.

Therefore, in order to give an insight into the principal ideas of the
authors’ techniques for solving the stated problem, box-constrained Lipschitz
global optimization problem (3), (5), (6) will be considered in the following.

Once a valid estimate of the Lipschitz constant is known and some func-
tion trials are performed, the Lipschitz condition (6) allows us to easily
find the lower bounds of a Lipschitz function at different subregions of the
search domain D from (5). Let us consider, for the sake of example, a one-
dimensional objective function f(x) defined over an interval [a, b] (see Fig-
ure 1) that satisfies the Lipschitz condition (6) with a known Lipschitz con-
stant L. If the function values zi have been obtained at points xi, 0 ≤ i ≤ k
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Figure 1: Lower bounding function Fk(x) (dashed line) constructed for a
Lipschitz function f(x) (solid line) over [a, b] after having performed k + 1
function trials (in this case, k = 6).

(see black dots on the objective function graph in Figure 1), the following
inequality is satisfied over [a, b]:

f(x) ≥ Fk(x) = max
0≤i≤k

{zi − L|x− xi|}, (8)

where Fk(x) is a piecewise linear function (called lower bounding or mino-
rant function, see, e.g., [73, 80, 45]; its graph is drawn by a dashed line in
Figure 1).

A method (e.g., the Piyavskij–Shubert method being one of the first
methods in Lipschitz global optimization, see [28, 73, 80, 45, 13]), using in
its work this simple but efficient geometric interpretation, iteratively con-
structs an auxiliary function which bounds the objective function f(x) from
below and evaluates f(x) at a point (x̂t in Figure 1) corresponding to a
minimum of the bounding function. This point is easy to find (see, e.g.,
[28, 73, 80, 45]). The methods of this type form the class of geometric al-
gorithms that are based on constructing, updating, and improving auxiliary
piecewise functions built by using an estimate of the Lipschitz constant L. It
should be noted in this connection, that similar ideas are used in many other
surrogate-based optimization methods (see, e.g., [76, 5, 29, 18]). As shown,
e.g., in [72, 80], there exists a strong relationship between the geometric ap-
proach and another possible technique for solving the stated problem—the
so-called information-statistical approach (see, e.g., [80, 79] and also [53, 85]
for other probabilistic techniques). Together with the geometric ideas of the
Piyavskij-Shubert method, it has consolidated foundations of the Lipschitz
global optimization.

In order to develop Lipschitz global optimization methods, the Lipschitz
constant L from (6) should be estimated. It can be done in several ways. For
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example, the Lipschitz constant can be given a priori (see, e.g., [28, 13, 15]).
More practical approaches are based on an adaptive estimation of L in the
course of the search: such algorithms can use either an adaptive global esti-
mate of the Lipschitz constant (see, e.g., [59, 80, 79, 41]) valid for the whole
search domain D, or adaptive local estimates Li valid only for some sub-
regions Di ⊂ D (see, e.g., [72, 80, 65, 66, 40]). Estimating local Lipschitz
constants during the work of a global optimization algorithm allows one to
significantly accelerate the global search. Balancing between local and global
information must be performed in an appropriate way (see, e.g., [72, 80, 65])
since an unjustified usage of local information can lead to the loss of the
global solution (see, e.g., [78]). Finally, multiple estimates of L can be also
used (see, e.g., [72, 34, 30, 71, 19]). We would like to emphasize here that
either the Lipschitz constant is given and an algorithm is developed corre-
spondingly, or it is not known but there exist a sufficiently large number
of parameters of the considered algorithm ensuring its convergence (conver-
gence properties of the Lipschitz global optimization methods are thoroughly
examined, e.g., in [72, 80, 79, 67]).

Considering both the theoretical generality and the application diffusion
of the Lipschitz global optimization problem (3), (5), (6), it is used by the
authors to mathematically model various real-life optimal design problems
(see [72, 80, 21, 39, 38, 69]).

4 Some deterministic tools in Lipschitz global op-

timization

In this Section, some innovative deterministic approaches developed by the
authors for constructing efficient global optimization techniques are briefly
presented as in [43]. The consolidated success of these ideas, confirmed by
important international publications and presentations around the world,
allows the authors’ group, on the one hand, to develop promising optimiza-
tion approaches over a solid scientific basis, thus eliminating the theoretical
faults risks, and, on the other hand, to tackle difficult black-box practical
optimization problems (e.g., from control theory, environmental sciences and
geological mechanics, electrical engineering and telecommunications, gravi-
tational physics, etc.) with more efficiency with respect to the techniques
traditionally used by the optimal design engineers.

4.1 ‘Divide-the-Best’ algorithms

Many global optimization algorithms (of both deterministic and stochastic
types) have a similar structure. Therefore, several attempts aiming to con-
struct a general framework for describing computational schemes and pro-
viding their convergence conditions in a unified manner have been made (see,
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Step 1

Estimation of the Lipschitz constant L

Step 2

Calculation of Characteristics
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Step 3

New Trials

new , arg max

Step 4

New Partition

t

,, ,+ + + +

Data

current iteration number

current set of trial points

current set of results of trials

current vector of parameters

k

current partition of D

Stopping Criterion

Figure 2: Flow chart of ‘Divide-the-Best’ scheme.

e.g., [17, 28, 59, 24]). One of the more flexible and robust among such unify-
ing schemes is the ‘Divide-the-Best’ approach (see [72, 67]), which general-
izes both the schemes of adaptive partition [59] and characteristic [72, 80, 24]
algorithms, widely used for describing and studying numerical global opti-
mization methods.

In this scheme (the flow chart of its generic iteration is reported in Fig-
ure 2), given a vector p of the method parameters, an adaptive partition of
the admissible region D from (5) into a collection {Dk

i } of the finite number
of robust subsets Dk

i is considered at each iteration k. The ‘merit’ (called
characteristic) Ri of each subset (see Step 2 in Figure 2) for performing a
subsequent, more detailed, investigation (see Steps 3 and 4 in Figure 2) is
estimated on the basis of the obtained information Xk, Zk about the objec-
tive function. The best (in some predefined sense) characteristic obtained
over some hyperinterval Dk

t corresponds to a higher possibility to find the
global minimizer within Dk

t (see Step 3). This hyperinterval is subdivided
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at the next iteration of the algorithm. Naturally, more than one ‘promising’
hyperinterval can be partitioned at every iteration.

Several strategies (mainly, in the context of the geometric approach) for
selection of a subset for further partitioning (see Step 3 in Figure 2) and
for performing this partitioning (by means of an operator P , see Step 4 in
Figure 2 and the next subsection 4.2) are proposed by the authors from
a general viewpoint and successfully used for solving practical applications
(see, e.g., the references in [72, 73]).

Regarding the stopping criteria, one can constantly check, e.g., the vol-
ume of a hyperinterval with the best characteristic or depletion of computing
resources such as the maximum number of trials. The verification of a stop-
ping criterion can be performed at any step of the current iteration of the
algorithm.

Convergence properties of the ‘Divide-the-Best’ family for different types
of characteristic values and partition operators are studied in [72, 67]. Great
attention is given to situations (very important in practice) when conditions
of global (local) convergence are satisfied not in the whole search domain D,
but only in its small subregion (or a set of subregions). This can corre-
spond, for example, to Lipschitz global optimization algorithms that work
underestimating the Lipschitz constant or which are oriented on using local
information in subregions of D (see, e.g., [72, 80, 67]). It should be also
noted that the described scheme can be successfully applied to constructing
parallel multidimensional global optimization algorithms [80, 24].

4.2 Efficient partitioning strategy

Regarding the partitioning strategies (partitioning operator P on Step 4
in Figure 2), the main attention of the authors is focused on the diagonal
partition strategies (see the references in [59, 72, 73, 71]).

In this approach, the initial hyperinterval D from (5) is partitioned into a
set of smaller hyperintervals, the objective function is evaluated only at two
vertices corresponding to the main diagonal of hyperintervals of the current
partition of D (see, e.g., points ai and bi of a hyperinterval Di in Figure 3),
and the results of these evaluations are used to select a hyperinterval for the
further subdivision. The diagonal approach has a number of attractive theo-
retical properties and has proved to be efficient in solving applied problems.

First, it allows one to easily perform an extension of efficient univari-
ate global optimization algorithms to the multidimensional case (see, e.g.,
[72, 73, 71]). In fact, in order to calculate the characteristic Ri of a multidi-
mensional subregion Di, some one-dimensional characteristics can be used as
prototypes. After an appropriate transformation they can be applied to the
one-dimensional segment being the main diagonal [ai, bi] of the hyperinterval
Di (see Lipschitz-based lower bounding functions H1 and H2 in Figure 3).

Second, the diagonal approach is close from the computational point
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Figure 3: Lower bounding a Lipschitz function f(x) over a hyperinterval Di

in a diagonal algorithm.

of view to one of the simplest strategies—centre-sampling technique (see,
e.g., [6, 30, 14, 15, 19])—but at the same time, the objective function is eval-
uated at two points of each subregion, providing in this way more information
about the function over the subregion than centre-sampling methods.

Different exploration techniques based on various diagonal adaptive par-
tition strategies are analyzed, e.g., in [72, 73, 68]. It is demonstrated that
partition strategies traditionally used in the framework of the diagonal ap-
proach do not fulfil the requirements of computational efficiency because
of the execution of many redundant trials. Such a redundancy slows down
significantly the global search in the case of costly functions.

An efficient diagonal partition strategy is therefore proposed in [72, 68],
that allows one to avoid the computational redundancy of traditional diag-
onal schemes. In contrast to these schemes, the proposed strategy produces
regular meshes of the function evaluation points in such a way that one ver-
tex where f(x) is evaluated can belong to several hyperintervals (up to 2N ,
N is the problem dimension from (5)). Thus, the time-consuming procedure
of the function evaluations is replaced by a significantly faster operation of
reading (up to 2N times) the function values obtained at the previous it-
erations and saved in a special database (see, e.g., [37, 36]). Hence, this
partition strategy considerably speeds up the search and also leads to saving
computer memory. It is particularly important that these advantages be-
come more pronounced when the problem dimension N increases (see, e.g.,
[72, 71, 41]).

A novel scheme for creating fast Lipschitz global optimization algorithms
is, thus, introduced by the authors. It relies on the efficient diagonal par-
tition strategy allowing an efficient extension of popular one-dimensional
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Lipschitz global optimization algorithms to the multidimensional case. In a
sense, this scheme combines the ideas of the diagonal approach and Peano
space-filling curves (see, e.g., [80, 79, 75]). Innovative multidimensional di-
agonal algorithms for solving Lipschitz global optimization problems, based
on different ways for obtaining the Lipschitz information and developed in
the framework of the efficient diagonal scheme, are proposed by the authors
and their convergence properties are analyzed, e.g., in [72, 71, 41].

4.3 Balancing local and global information

Is well known (see, e.g., [17, 28, 72, 80, 78]) that the usage of the only global
information on the objective function and constraints during optimization
can lead to a slow convergence of algorithms to global minimizers. Therefore,
particular attention is paid by the authors to the usage of local information
in global optimization methods, as well. One of the traditional ways in this
context (see, e.g., [17, 28, 55]) recommends stopping the global procedure
and switching to a local optimization method in order to improve the solution
and to accelerate the search during its final phase. Unfortunately, applying
this technique can lead to some problems related to the combination of global
and local phases, the main problem being that of determining when to stop
the global procedure and start the local one. A premature arrest can provoke
the loss of the global solution whereas a late one can slow down the search.

Theoretical and experimental results obtained by the authors (see, e.g.,
[72, 80, 65, 40]) confirm that more fruitful approaches can be considered.
The first one is the so-called local tuning approach [65] allowing global op-
timization algorithms to tune their behaviour to the shape of the functions
at different parts of the search domain by estimating the local Lipschitz
constants.

In fact, the Lipschitz constant L has a significant influence on the conver-
gence speed of the Lipschitz global optimization algorithms and the problem
of its specifying is of great importance. Accepting, for instance, too high a
value of L for a concrete objective function means assuming that the function
has complicated structure with sharp peaks and narrow attraction regions of
minimizers within the whole admissible region. Thus, if the value of L does
not correspond to the real behaviour of the objective function, it can lead to a
slow convergence of the algorithm to the global minimizer. Global optimiza-
tion algorithms using in their work a global estimate of L (or some values of
L given a priori) do not take into account local information about behaviour
of the objective function over every small subregion of D. Therefore, es-
timating local Lipschitz constants allows one to significantly accelerate the
global search (see, e.g., [72, 80, 66, 40]).

The second technique regards a continual local improvement of the cur-
rent best solution incorporated in a global search procedure (see, e.g., [72,
71, 47, 48]). Particularly, it forces the global optimization method to make
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a local improvement of the best approximation of the global minimum im-
mediately after a new approximation better than the current one is found.
These techniques become even more efficient when information about the
objective function derivatives is available (see, e.g., [44, 42]).

4.4 Computational aspects

A particular attention is paid by the authors to the problem of testing global
optimization algorithms. As widely accepted, a set of test functions is usually
taken for this purpose, problems from this set are solved by the algorithms
to be compared, and a conclusion about the efficiency of these algorithms is
made on the basis of the obtained numerical results. This approach, being an
important instrument for acquiring a knowledge about the existing and new
global optimization algorithms, presents at the same time some limitations
since the conclusions made can be valid only for the selected functions, and
their propagation to a more wide set of functions requires particular caution.
Testing an algorithm on a relatively large set of test functions can, in a sense,
diminish these limitations, but it needs, among other things, the coding of the
functions, and it is a tedious and time-consuming job. Moreover, the lack
of such information as number of local optima, their locations, attraction
regions, local and global values, describing global optimization tests taken
from real-life applications, creates additional difficulties in verifying validity
of the algorithms. Therefore, the global optimizers are very interested in
simple and powerful software tools realizing test problems. As observed,
e.g., in [72, 80, 85, 61, 23, 12, 54], a well designed testing framework is
of the primary importance in identifying the merits of each algorithm and
implementation.

To tackle the problem of testing global optimization algorithms system-
atically, the GKLS-generator described in [20] is proposed by the authors’
group. The generator produces several classes of multidimensional and mul-
tiextremal test functions with known local and global minima. Each test
class provided by the generator includes 100 functions. By changing the
user-defined parameters, classes with different properties can be created.
For example, fixed dimension of the functions and number of local minima,
a more difficult class can be created either by shrinking the attraction region
of the global minimizer, or by moving the global minimizer closer to the
domain boundary.

The generator is available on the ACM Collected Algorithms (CALGO)
database (the CALGO is part of a family of publications produced by the
Association for Computing Machinery) and it is also downloadable for free
from http:\\wwwinfo.dimes.unical.it\~yaro\GKLS.html. It has already
been downloaded by companies and research organizations from more than
40 countries of the world.
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5 Some numerical results

To conclude, we would like to report some numerical results obtained by
using a Lipschitz global optimization method proposed by the authors in [71].
In developing this method for solving problem (3), (5), (6), techniques from
the previous Section have been applied. Particularly, it is a multidimensional
‘Divide-the-Best’ global optimization method that uses in its work multiple
estimates of the Lipschitz constant and based on efficient diagonal partitions.

Numerical results performed on the GKLS-generator to compare this al-
gorithm with two algorithms belonging to the same class of methods for
solving problem (3), (5), (6) — the DIRECT algorithm from [30] and its
locally-biased modification DIRECTl from [19] — are presented here, as
described in [71]. As known, both of these methods are widely used in solv-
ing practical engineering problems (see, e.g., the references in [17, 34, 71]).
Moreover, as shown numerically in [22], they often outperform metaheuristic
algorithms as, e.g., the Firefly algorithm (see [83]) belonging to the widely
used family of Particle Swarm Optimization algorithms (see, e.g., [83, 82]).

Eight GKLS classes of continuously differentiable test functions of di-
mensions N = 2, 3, 4, and 5 have been used. For each dimension, both a
‘hard’ and a ‘simple’ classes have been considered. The difficulty of a class
was increased either by decreasing the radius of the attraction region of the
global minimizer, or by decreasing the distance from the global minimizer
x∗ to the domain boundaries.

The global minimizer x∗ ∈ D was considered to be found when the
algorithm generated a trial point x′ inside a hypercube with a vertex x∗

and the volume smaller than the volume of the initial hypercube D = [a, b]
multiplied by an accuracy coefficient ∆, 0 < ∆ ≤ 1, i.e.,

|x′(j) − x∗(j)| ≤ N
√
∆(b(j) − a(j)) (9)

for all i, 1 ≤ j ≤ N , where N is from (5). The algorithm stopped either
when the maximal number of trials equal to 1 000 000 was reached, or when
condition (9) was satisfied.

In view of the high computational complexity of each trial of the objective
function, the methods were compared in terms of the number of evaluations
of f(x) required to satisfy condition (9). The number of hyperintervals
generated until condition (9) is satisfied, was taken as the second criterion
for comparison of the methods. This number reflects indirectly degree of
qualitative examination of D during the search for a global minimum (see,
e.g., [72, 71, 41]).

Results of numerical experiments with eight GKLS tests classes are re-
ported in Tables 1–2. These tables show, respectively, the maximal number
of trials and the corresponding number of generated hyperintervals required
for satisfying condition (9) for a half of the functions of a particular class
(columns “50%”) and for all 100 function of the class (columns “100%”). The
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Table 1: Number of trial points for 800 GKLS test functions.

N ∆ Class 50% 100%
DIRECT DIRECTl New DIRECT DIRECTl New

2 10−4 simple 111 152 166 1159 2318 403
2 10−4 hard 1062 1328 613 3201 3414 1809
3 10−6 simple 386 591 615 12507 13309 2506
3 10−6 hard 1749 1967 1743 >1000000 (4) 29233 6006
4 10−6 simple 4805 7194 4098 >1000000 (4) 118744 14520
4 10−6 hard 16114 33147 15064 >1000000 (7) 287857 42649
5 10−7 simple 1660 9246 3854 >1000000 (1) 178217 33533
5 10−7 hard 55092 126304 24616 >1000000 (16) >1000000 (4) 93745

Table 2: Number of hyperintervals for 800 GKLS test functions.
N ∆ Class 50% 100%

DIRECT DIRECTl New DIRECT DIRECTl New
2 10−4 simple 111 152 269 1159 2318 685
2 10−4 hard 1062 1328 1075 3201 3414 3307
3 10−6 simple 386 591 1545 12507 13309 6815
3 10−6 hard 1749 1967 5005 >1000000 29233 17555
4 10−6 simple 4805 7194 15145 >1000000 118744 73037
4 10−6 hard 16114 33147 68111 >1000000 287857 211973
5 10−7 simple 1660 9246 21377 >1000000 178217 206323
5 10−7 hard 55092 126304 177927 >1000000 >1000000 735945

notation “> 1 000 000 (k)” means that after 1 000 000 trials the method
under consideration was not able to solve k problems.

Note that on a half of test functions from each class (which were simple
for each method with respect to the other functions of the class) the algo-
rithm from [71] manifested a good performance with respect to DIRECT
and DIRECTl in terms of the number of generated trial points (see Table 1).
When all functions were taken in consideration, the number of trials pro-
duced by the new algorithm was significantly fewer in comparison with two
other methods (see columns “100%” of Table 1), providing at the same time
a good examination of the admissible region (see Table 2).

As it can be seen from Tables 1–2, the method [71] demonstrates a
quite satisfactory performance with respect to popular DIRECT [30] and
DIRECTl [19] methods when multidimensional functions with a really com-
plex structure are minimized. Its superiority can be also confirmed by the
so-called operating characteristics (introduced in 1978 in [23], see [80] for
their English language description; they can be considered as predecessors of
‘performance profiles’ from [12] and ‘data profiles’ from [54]). The operating
characteristics, as an indicator of the efficiency of an optimization method,
are formed by the pairs (k, P (k)) where k (k > 0) is the number of trials
and P (k) (0 ≤ P (k) ≤ M) is the number of test problems (among a set of
M tests) solved by the method with less than or equal to k function trials.
It is convenient to represent this indicator in a graph where each pair (for
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Figure 4: Operating characteristics of the methods New from [71], DIRECT,
and DIRECTl on the ‘simple’ and ‘hard’ four-dimensional GKLS test classes

increasing values of k) corresponds to a point on the plane.
For example, Figure 4 illustrates the operating characteristics for the new

method and the DIRECT and DIRECTl methods while solving M = 100
four-dimensional functions of both ‘simple’ and ‘hard’ GKLS classes. The
transition from the ‘simple’ class to the ‘hard’ one can be clearly traced in
the diagram: e.g., the new method has solved 50 problems from the ‘simple’
class after 4098 trials while the solution of 50 problems from the ‘hard’ class
has required 15064 trials (see the intersection of the horizontal line P (k) = 50
with graphs labelled ‘New (Simple)’ and ‘New (Hard)’ in Figure 4).

By examining the operating characteristics in Figure 4, it can be seen that
for functions with simple structure (up to 50 functions of the ‘simple’ class
and up to 40 functions of the ‘hard’ class) all three methods behave similarly.
But from the global optimization viewpoint such functions are not interest-
ing because it is possible to successfully minimize them even by very naive
methods. The situation is changed when problems with complex structure
should be solved: here, both the DIRECT and DIRECTl methods experi-
ence serious difficulties. For example, on the ‘hard’ class the new method has
solved all 100 problems after about 43000 trials while the DIRECT method
has solved 75 problems after the same number of trials and the DIRECTl
method — only 55 problems. Note also that even after 80000 trials neither
DIRECT nor DIRECTl methods were able to solve all the problems of both
the ‘simple’ and ‘hard’ classes of dimension N = 4 (see the most right vertical
line in Figure 4). A similar situation occurs for the operating characteristics
on classes of dimensions N = 2, 3, and 5, thus, confirming the efficiency of
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the proposed method compared with the DIRECT and DIRECTl methods
when solving multidimensional multiextremal problems.

This method, as an example of the deterministic techniques mentioned
in the previous Sections, not only has manifested a high performance on a
large set of tests, but has been also successfully applied for solving real-world
global optimization problems. For example, its application to a control the-
ory problem has been considered in [39]. This problem regards global tuning
of fuzzy power system stabilizers present in a multi-machine power system
in order to damp the power system oscillations. Power system stabilizers
with conventional industry structure are extensively used in modern power
systems as an efficient means of damping power. Traditionally their param-
eters are determined by a local tuning procedure based on a single-machine
infinite-bus system in which the effects of inter-machine and inter-area dy-
namics are usually ignored. Heuristic methods (like genetic algorithms) are
usually used for their optimizing (as in many other engineering contexts)
that often leads to very rough solutions (see, e.g., the references in [39]).
To improve overall system dynamic performance, novel global optimization
techniques have been therefore applied by the authors’ group in [39].
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Figure 5: Solutions to the problem of global tuning fuzzy power system
stabilizers (see [39]) obtained by applying the method [71] based on the
authors’ techniques (solid line) and by a traditionally used genetic approach
(dotted line).

In Figure 5, the graph that illustrates the best solution (the axis of or-
dinates) obtained by a particular genetic algorithm (often used by engineers
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from the control field) and by the method [71] after a number of simulations
(the axis of abscissas) is reported. It can be seen that the global optimiza-
tion method proposed by the authors spent more function trials (namely,
284 trials) than the genetic algorithm at the initial iterations. This phase
corresponds to the initial exploration of the search domain and it is nec-
essary for all global optimization techniques. On the initial phase of the
work (less than 300 trials) the genetic algorithm has found local solutions
to the problem better than those found by the method [71], but far from
the final global solution (f∗ ≈ 0.533). However, it is more important and
should be underlined that the method [71] has determined a solution to the
problem very close to the global optimal one (as demonstrated in [39]) in
almost half of the simulations with respect to the genetic algorithm (284 tri-
als for the method [71] and 500 for the genetic algorithm). Moreover, it has
found an attraction region of a new minimizer with a much better solution
to the problem (see the graph jump in Figure 5 around 450 trials) than that
found by the genetic approach. Thus, when a reasonable limit of function
trials is given, the considered method [71] can determine a good estimate
of the global solution to the studied control theory problem faster than the
traditionally used genetic techniques.

Therefore, global optimization techniques briefly presented in this sur-
vey can provide the scientists and engineers with comprehensive and powerful
tools for successful solving challenging decision-making problems from dif-
ferent real-life application areas, which are characterized by black-box mul-
tiextremal and hard to evaluate functions. A more detailed and systematic
comparison of the described deterministic approaches with some heuristic
nature inspired techniques widely used in engineering applications could be
an interesting and useful direction of future research.
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