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Abstract

In this work, we present a simultaneous untangling and smoothing technique for
quadrilateral and hexahedral meshes. The algorithm iteratively improves a quadri-
lateral or hexahedral mesh by minimizing an objective function defined in terms of
a regularized algebraic distortion measure of the elements. We propose several tech-
niques to improve the robustness and the computational efficiency of the optimization
algorithm. In addition, we have adopted an object-oriented paradigm to create a com-
mon framework to smooth meshes composed by any type of elements, and using dif-
ferent minimization techniques. Finally, we present several examples to show that the
proposed technique obtains valid meshes composed by high-quality quadrilaterals and
hexahedra, even when the initial meshes contain a large number of tangled elements.

Keywords: Mesh generation; hexahedral mesh; mesh smoothing; mesh untangling;
object-oriented framework.



1 Introduction

The accuracy and performance of a finite element analysis depend on the quality of
the mesh on which the spatial domain has been discretized. Most three-dimensional
meshes are composed by tetrahedral elements as they can be automatically generated
to discretize an arbitrary domain by rapid and mature algorithms. While more chal-
lenging to mesh, hexahedral elements have several advantages over tetrahedral meshes
both in structural and in fluid mechanics. Unfortunately, ready access to these advan-
tages is hampered by the significant challenges regarding the generation of hexahedral
meshes. Several algorithms have been developed to generate hexahedral meshes. On
the one hand, specific algorithms have been developed for specific types of geome-
tries. For instance, the submapping method [1, 2] is devoted to blocky geometries
or the sweep method [3, 4, 5, 6] is designed for extrusion geometries. On the other
hand, several methods have been developed to mesh any geometry with an unstruc-
tured hexahedral mesh. For instance, /. dual methods such as wisker weaving [7] or
the local dual contributions [8]; 2. primal methods that directly generates the hexahe-
dral mesh such as grid based methods [9, 10, 11], advancing front methods [12, 13],
or the receding front method [14], and 3. primal methods that transform a tetrahedral
mesh into a hexahedral mesh [15, 16]. However, fully automatic unstructured hexahe-
dral mesh generation algorithms are still not available and, at this stage, no automated
technique exists which compares to tetrahedral methods such as Delaunay or advanc-
ing front techniques. Moreover, the hexahedral meshes obtained by these algorithms
may contain poorly shaped or even inverted elements that can affect and invalidate
any subsequent analysis. For this reason, it is of the major importance to apply a mesh
optimization algorithm after the mesh generation process is finished to untangle the
inverted elements and to increase the quality of the whole mesh.

In this work, we present a technique that iteratively untangles and smooths a given
quadrilateral or hexahedral mesh by minimizing a regularized objective function de-
fined in terms of an algebraic distortion measure [17, 18, 19]. This objective function
allows simultaneously untangling and smoothing the initial mesh. The distortion of
quadrilateral and hexahedral elements is defined in terms of their decomposition in
triangular and tetrahedral sub-elements, respectively [20, 21]. Thus, the optimization
methods for quadrilateral and hexahedral meshes inherit the properties of the methods
for triangular and tetrahedral meshes [22, 23, 24, 25, 26]. We have implemented two
optimization methods to obtain the final configuration of nodes. Specifically, we have
considered the steepest-descent and the Newton-Raphson line-search methods. It is
important to point out that the proposed method optimizes the quality of quadrilateral
and hexahedral meshes by a local node relocation process. That is, without modifying
the mesh connectivity.

This paper is based in the work presented in [27]. However, in the current paper
we include several new contributions that clearly improve the preliminary version of
the simultaneous untangling and smoothing procedure for quadrilateral and hexahe-
dral meshes. We regularize the objective function that measures the distortion of the
quadrilateral and hexahedral elements in order to penalize the elements with lower



quality. Moreover, we incorporate three features to increase the robustness and the
computational efficiency of the optimization procedure. First, for each free node, we
propose to translate to the origin, and scale to a reference size the local sub-mesh.
Second, when applying the minimization algorithm on each free node, we do not it-
erate until convergence. Instead, we perform only one iteration. Third, we reduce the
cost of evaluating the objective function and its derivatives by only considering the
sub-elements adjacent to the free node. In addition, we have implemented a new opti-
mization algorithm based on a line-search approach, and we have included the steepest
descent and the Newton-Raphson methods. Note that these methods require the use
of the first and second derivatives of the objective function. Therefore, in this paper
we include a new appendix where we detail their analytical expressions. To imple-
ment the proposed untangling and smoothing algorithm, in this work we have adopted
an object-oriented paradigm to create a common framework to smooth meshes com-
posed by any kind of elements. Furthermore, this new framework also allows using a
generic line-search minimization method to optimize the objective function. Finally,
new examples with real geometries are used to show the robustness and strengths of
the proposed algorithm.

The paper is organized as follows. In Section 2, we survey the literature on mesh
smoothing techniques. In Section 3, we review the concept of an algebraic shape
quality metric for triangular and tetrahedral elements. Then, in Section 4, we extend to
quadrilateral and hexahedral elements the distortion and quality measures previously
reviewed. Section 5 is devoted to detail the simultaneous untangling and smoothing
technique for quadrilateral and hexahedral meshes. In Section 6, we present an object
oriented framework to implement the different objective functions and minimization
methods. In Section 7, we present several examples illustrating that the proposed
technique can be used to obtain valid meshes composed by high-quality quadrilaterals
and hexahedra. Finally, the conclusions and the future work are summarized in Section
8.

2 Related work

Mesh smoothing is a key process for keeping mesh shape regularity and avoiding a
costly re-meshing process. Several smoothing algorithms have been developed during
the last decades to improve the quality of a given mesh. Most of them are based on
geometrical or numerical reasoning [28, 29]. Although they are fast from the compu-
tational point of view, they have some drawbacks. For instance, they can move nodes
outside of a domain near non-convex boundaries. In addition, they are not designed
to optimize any quality measure. To overcome these drawbacks, Knupp [20, 21, 26]
introduced a family of quality measures placed within an algebraic framework that
have been intensively used during the last decade. These quality measures facilitate
the development of smoothing methods based on its optimization [22, 23, 24, 25, 26].

The objective function of the minimization algorithm for a given node is based
on a measure of the quality of adjacent elements. The minimization process can be



performed globally [26] or based on a local approach [25]. In the global approach, a
non-linear equation has to be minimized for all the nodes at the same time. In the local
approach, all the free nodes are smoothed sequentially until the objective function is
optimized. Usually, the used objective functions are appropriate to improve the quality
of a valid mesh, but they do not work properly when there are inverted elements.
This is because the objective functions present singularities (barriers) when the mesh
contains inverted elements. Thus, the classical smoothing approach involves two steps
[26, 25]. The first step untangles the inverted elements, and second one improves the
quality of the mesh. Since they are different processes, the objective function for each
step is different.

To avoid the need of defining two objective functions for the untangling and smooth-
ing process, references [17, 18, 19] propose a regularization of the objective function
for tetrahedral meshes. Using the regularized objective function, the authors obtain
a simultaneous untangling and smoothing process. This technique has been consid-
ered in different finite element applications. For example, it has been the key of the
meccano method [30], its recent application for isogeometric solid modeling [31] and
high-order mesh generation [32, 33, 34, 35].

In this work, we analyze the extension of the simultaneous untangling and smooth-
ing technique to quadrilaterals and hexahedral elements. In addition, we improve the
robustness and the performance of the algorithm using several techniques discussed
in this paper. Finally, we have adopted an object-oriented paradigm to implement
the simultaneous untangling and smoothing technique in order to create a common
framework to smooth meshes composed by any type of elements. This framework
also allows to use different line-search minimization algorithms to optimize the objec-
tive function.

3 Algebraic quality measures for triangles and tetra-
hedra

Knupp [20], introduced a family of distortion and quality measures placed within an
algebraic framework. In this framework, the distortion measure of a simplex (triangle
or tetrahedron) is measured in terms of the deviation from an ideal simplex. That is,
the element that represents the desired shape to achieve. In this section, we summarize
the formulation of the algebraic framework for triangles and tetrahedra. Although it is
already presented in [27], we include it here for completeness.

Let ¢ denote a triangle in the physical space, and ¢; denote the ideal triangle. Ac-
cording to [20], to measure the deviation of the physical triangle from the ideal one,
we want to determine the affine mapping (see Figure 1):

fsit[ —
X — X=8Sx+V, (D)

where X are the coordinates of the ideal element.
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Figure 1: Affine mappings for triangular elements.

To this end, we consider a reference triangle, tr, delimited by vertices uy =
(0,0)",u; = (1,0)” and uy = (0,1)7 in the parametric space. If the ideal element, ¢;,
is delimited by the vertices: Xo = (Zo, 70)?, X1 = (Z1,71)7, and Xy = (T2, 72)7, the
affine mapping that transforms the reference element to the ideal one can be written
as (see Figure 1):

fwi tp — 1
u — X =Wu+X, (2)
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Similarly, if the triangle in the physical space is delimited by nodes xo = (o, yo)7,
x; = (a1, yl)T and x; = (9, yg)T, the affine mapping that maps the reference ele-
ment, g, into the physical triangle, ¢, can be written as (see Figure 1):

where

fAItR —
u — x=Au+ X, 3)

A:(Il—xo $2—I0)
Yi—Y% Y2—Y )
The desired affine mapping, Equation (1), that maps the ideal triangle to the physi-

cal triangle can be determined by composing the inverse of fyw, Equation (2), with
function f,, Equation (3). That is,

where

£-1
fS:fAOfgvli t[ l> tR f—A> t

X — u=fg'(X) — x="fa(u).
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Therefore, the analytical expression of the affine mapping fg is

x = f5(X) = fa(Fgl (X)) = AfRH(R) + X0 = AWK + %) + xo

AW % + AV + x, (5)
being v = —W~1%,. Comparing this expression with Equation (1) we realize that:
S = AW 1 (6)
v = AvV+xg. (7
Note that if we consider Xy = (0,0)%, then v = (0,0)” and consequently, from

Equation (7), v = xo. The Jacobian matrix of the affine mapping (1), S, is called
weighted Jacobian matrix in reference [20].

Note that using this formulation, we can select different ideal elements to generate
elements with different geometric properties. For isotropic triangular meshes, the ideal
element is selected as the equilateral triangle. Thus, we have

(i )

Similar reasoning can be developed for tetrahedral elements. In this case, if the
tetrahedron in the physical space is delimited by the vertices: xo = (20, %0, 20)7,
X1 = (ZL‘l, Y1, Zl)T, X9 = (ZL’Q, Y2, ZQ)T, and X3 = (Ig, Ys, Zg)T, then we have:

1 —Typ T2 —Top T3 — Xg

A= vy1—% Y2—¥% ¥Ys—%
g1 —Rp R2— R0 23— X0

In addition, for isotropic tetrahedral meshes, the ideal element is defined as an equi-
lateral tetrahedron. Thus, we have

1 1/2  1/2
W=1|0 v3/2 V3/6
0 0 2/3

The weighted Jacobian matrix S defined in (6) contains information about how much
we have “distorted” the ideal element to become the physical one. Based on this
matrix, Knupp [20] introduced the shape distortion measure

S|”

n(S) = o () (8)

where 7 is the space dimension (n = 2 for triangles and n = 3 for tetrahedra), o(S) =
det(S) is the determinant of S, and |S| = 1/ (S, S) is the Frobenius norm, being (-, -)
a dot product for matrices defined as

(A,B) =t (A"B). 9)



If the physical element is not inverted the image of this function is the interval [1, 0o,
achieving oo only when the physical element is degenerated, and 1 when it becomes
the ideal element.

The shape quality measure is defined as the inverse of the shape distortion measure
(see [20])
1 no(S)%/m
q(8) = = : (10)
n(S) SI?
Note that the shape quality measure reaches a maximum value of 1 for the ideal ele-
ment, and a minimum value O for degenerated elements.

The shape distortion measure (8) has been widely used in optimization procedures
to smooth triangular and tetrahedral meshes, see for instance [20, 22, 23, 24, 25].
However, it presents asymptotes (or barriers) when o(S) = 0. In addition, it also
presents local minima for tangled (inverted) configurations. Thus, the optimization
algorithm might lead to smoothed meshes that contain inverted elements.

To overcome this drawback, Escobar ef al. [17, 18] introduced a regularization for
the shape distortion measure (8) in order to obtain a new measure without asymptotes
and with a global minimum near the optimal position of the original shape distortion
function (8). Specifically, they replace o in (8) by

h(o) = % (a Vo T 452) , (11)

where ¢ is an arbitrary small parameter that is chosen depending on the problem (see
[17, 18, 36, 37] for further details). Taking into account equation (11), the regularized
shape distortion measure for an element is

(8= (12)
T (8

Note that if a sufficiently small value of ¢ is chosen, the minimum of the original and
the modified shape distortion measures are close, see references [17, 32], and the mesh
quality is not compromised. However, in our implementation the § parameter is only
set to non-zero values when an invalid (tangled) configuration of the mesh is being
optimized. Once the elements in that configuration are valid, ¢ is set to zero for all the
elements.

4 Distortion and quality measures for quadrilateral and
hexahedral elements
According to Knupp [26], the distortion measure of a quadrilateral element can be

computed by decomposing it into four triangles, see Figure 2. Similarly, the distor-
tion measure of an hexahedral element can be computed by decomposing it into eight
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Figure 2: Decomposition of a quadrilateral into four triangles.
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Figure 3: Decomposition of a hexahedron into eight tetrahedra.

tetrahedra, see Figure 3. Thus, given a quadrilateral (hexahedral) element, if we de-
note the shape distortion measure of the /th triangle (tetrahedron) by n(S!), the shape
distortion measure of a quadrilateral (hexahedral) elements is:

1 1/p X S1? p11/P
= | = Sh)? = |—= _— 13
- rpeer] -ERGEES] @
where NV is the number of sub-elements in which the original element is decomposed,

and p is a parameter that can be used to penalize low-quality elements. Note that the
values of the shape distortion measure (13) are also in the range [1, o).



The shape distortion measure for quadrilaterals and hexahedra (13) presents bar-
riers (where o(S') = 0) and local minima for tangled configurations that prevent its
use in a minimization procedure. Therefore, the regularization introduced in Equa-
tion (11) is also used when the distortion measure of each sub-element is computed.
That is, we substitute o(S!) by h(c(S')) in Equation (13). Thus, the regularized shape
distortion measure for quadrilaterals and hexahedra is:

N N 1/p

1/p
* 1 *rQl\\P 1 ‘SZP '
nzlﬁzms»] :[NZ<W>

=1 =1

(14)

For isotropic meshes, the ideal quadrilateral element is a square. Hence, the ideal
triangles in which it is decomposed are the isosceles right triangles, see Figure 2.
Similarly, the ideal hexahedron is a cube and the ideal tetrahedra are the isosceles
right tetrahedra, see Figure 3. Therefore, the mappings between the reference and the
ideal element for quadrilaterals and hexahedra are given by

10

W:{Ol

1 00
} ad W=1]010] (15)
0 0 1

respectively. If we consider node n; of the quadrilateral element of Figure 2, and
we denote by u; its coordinates in the reference configuration, then mapping (15)
assumes that u; is mapped to the node with the right angle of the ideal sub-element.
The same applies to the hexahedral case. That is, to obtain transformations (15) we
have to assign the node of the physical element to the node of the ideal sub-element
with an inner angle of 90°. Using Equation (14), and according to Equation (10), the
regularized shape quality measure for quadrilateral (hexahedral) elements is defined

as: 1 1

N 1/p
[% > (n*<sl>)p]

Note that the values of the quality measure (16) for valid elements are in the range
0,1].

S Simultaneous untangling and smoothing of quadri-
lateral and hexahedral meshes

5.1 Objective function

Given a quadrilateral or hexahedral mesh M, let V be the set of free nodes (the nodes
that can be moved to improve the quality of the mesh), and let v be a given node v € V.
We define the local sub-mesh associated to v, M,, as the set of elements that contain
node v, see Figure 4(a).
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(a)

Figure 4: Quadrilateral mesh with a marked node: (a) in light gray elements that
belong to the marked node sub-mesh ; and (b) in dark gray sub-triangles of the quadri-
lateral decomposition not adjacent to the marked node.

The simultaneous untangling and smoothing algorithm for quadrilateral and hexa-
hedral meshes is based on the optimization of an objective function defined in terms
of the regularized distortion measure (14) of the elements in the local sub-mesh. Let
X, be the coordinates of a free node v € V), and assume that the local sub-mesh, M,,,
is composed by M elements (quadrilaterals or hexahedra in our case). We define the
objective function as:

Ky () = 1230 06

where 7} (x,) is computed according to Equation (14) as:

) = [Nz(nh 2 Xm)?»?/”)p] -

being S} the weighted Jacobian matrix of the /th sub-element of the kth element in
the local sub-mesh. Parameter p allows increasing the penalization of low quality
elements. Note that as we increase p, the objective function takes higher values for
low-quality elements. In our application, we use p = 2. Finally, the objective function
for node v can be written as:

_ 11y S Y’
o) = 575 2 2 (o) n

k=1 I=1

5.2 Minimization procedure

In this work, we deduce a continuous minimization procedure to simultaneously un-
tangle and smooth quadrilateral and hexahedral meshes. Specifically, for each free
node, we propose to minimize the objective function (17) defined on its local sub-
mesh. Algorithm 1 details the procedure to improve the quality of a mesh, M. The
main idea consists on looping on all the free nodes (Lines 6-9). For each free node,

10



Algorithm 1 Procedure to smooth a mesh, M.
1: function smoot hMesh(Mesh M, Real max Displacement)
2: DistortionMeasure [ < K- (>) See Equation (17)
Boolean isConverged < false
while not isC'onverged do
Real displacement < 0
forallv € V do
Real current Displacement <+ smoothNode(v,maxlterations,f)
displacement < max{displacement, current Displacement}
end for
10: isConverged < (displacement < maxDisplacement)
11: end while
12: end function

e AW

we modify its position while keeping fixed the position of all the other nodes (Line 7).
The process ends when the maximum displacement of the nodes is below a threshold
prescribed by the user (Line 10).

To compute the new position of a free node, v, we minimize the objective function
(17) on the local sub-mesh using a line-search iterative process, see Algorithm 2. Let
x" denote the location of a free node v at iteration k of the line-search process. Then,
the location at the k + 1 iteration, x*t1, is computed as:

P =x5 + alpl, (18)

where p’ is the advancing direction and o the step length. There are several methods
to compute both the step length and the advancing vector. In this work, we have
considered the steepest-descent and the Newton-Raphson methods, see reference [38]
for more details. Note that to use these methods, it is required the first and second
derivatives of the objective function detailed in A.

To increment the robustness of the optimization procedure, we translate the sub-
mesh, M,, to the origin of coordinates, and we scale it using a reference size before
starting the actual minimization process, Line 3 in Algorithm 2. On the one hand, the
translation to the origin reduces the relative error of the process, since the coordinates
of the nodes are of the same order of magnitude as the size of the elements. On the
other hand, the scaling of the elements increases the robustness, since the optimization
process is independent of the actual size of the elements. To increment the computa-
tional efficiency of the optimization procedure we do not iterate until convergence in
Algorithm 2. Instead we propose to perform only a given number of iterations of the
line-search procedure, Line 5.

For a given free node v € V), in a quadrilateral (hexahedral) mesh, all the sub-
elements of the sub-mesh, M, contribute to the value of the objective function (17).
However, some of them are not adjacent to the free node. For instance, Figure 4(b)
shows a local sub-mesh composed by three quadrilateral elements with three triangular
sub-elements (marked in grey) that are not adjacent to node v. It is important to point

11



Algorithm 2 Procedure to smooth a node, v.
1: function smoothNode(Node v, Int maxNodelterations, DistortionMeasure

D

2 M, < get SubMesh(v)

3 translateAndScale(M,)

4 Vector x? < getPoint(v)

5 for k < 1, maxNodelterations do

6: Vector p#~! «+— getAdvancingDirection(x* 1, M,,f)

7 Real af~1 < getstepLength(x*~1,pF~1, M,,f)

8 Vector xF < xF=1 4 ofi~1pk~1 (>) See Equation (18)
9 end for

10: undoScaleAndTranslate(M,)

11: end function

out that these sub-elements do not contribute to the first and second derivatives of the
objective function. Thus, to not deteriorate the performance of the proposed algorithm,
they are not considered in the computation of the objective function and its derivatives.
That is, we only consider three sub-triangles in the quadrilateral decomposition and
four tetrahedra in the hexahedron decomposition. Thus, the computational cost of
the optimization procedure can be approximately reduced by a 25% for quadrilateral
meshes and a 50% for hexahedra meshes.

6 Smoothing framework for two and three dimensional
meshes

The smoothing procedure detailed in Algorithms 1 and 2 is independent of the se-
lected objective function (i.e. the element type) and the minimization method. For
this reason, in this work we have adopted an object-oriented paradigm to create a
common framework to smooth meshes composed by any kind of elements. Object-
oriented frameworks have been extensively used in mesh generation, see for instance
[39, 40, 41, 42]. Using the optimization procedure detailed in Section 5, we are able
to untangle and smooth meshes composed either by triangles, quadrilaterals, tetrahe-
dra or hexahedra by assigning the corresponding objective function to each type of
element, see Line 2 in Algorithm 1.

To compute the values and the derivatives of each type of objective function, we
use the object structure defined in Figure 5. We define a base object, Distortion—
Measure, that implements the basic interface for all the distortion measures. Specit-
ically, this base object provides an interface to obtain the value and the derivatives
of the distortion measure. The different distortion measures will overwrite these
functions in order to obtain their corresponding values and derivatives. In addition,
DistortionMeasure object provides an interface to assign the node in which the
shape distortion measure is evaluated, and the § parameter to be used, if required.

12
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[ DistortionTrij [DistortionQuad] [ DistortionTetj [ DistortionHex]

Figure 5: Object structure to model an objective function for the different types of

elements.
[ NewtonRaphson ]

Figure 6: Object structure to model a minimization algorithm for different optimiza-
tion methods.

SteepestDescent Others

Distortion2D and Distortion3D objects are derived from Distortion-
Measure. These two objects define the interface for the two-dimensional and three-
dimensional shape distortion measures. From the three points that define a triangle,
Distortion2D computes the corresponding weighted Jacobian matrix, S. Then, it
calculates the value n*(S), Equation (14), and its derivatives for the given matrix S.
Similarly, Distortion3D computes the weighted Jacobian matrix, S, from the four
points that define a tetrahedron, and then calculates the value n*(S) and its derivatives.

DistortionTri and DistortionQuad are derived objects from Distor—
tion2D, while DistortionTet and DistortionHex derive from Distor-—
tion3D. The derived classes are responsible of calculating the actual value of the
function and its derivatives. To this end, the derived classes add the contributions the
sub-elements adjacent to the given node, according to Equation (17). To compute
each contribution, the derived classes perform a call to the parent object with the
nodal coordinates that define each the sub-element. Hence, DistortionTri and
DistortionTet perform only one call, while DistortionQuadand Distor—
tionHex perform three and four calls, respectively.

We also propose an object structure to implement the line-search minimization al-
gorithms, see Figure 6. We first define a base object, LineSearch, that implements

13



the common interface for all the line-search minimization methods. This object is re-
sponsible of controlling the maximum number of iterations and the tolerances for the
convergence criteria, as well as implementing the main loop defined in Algorithm 2.
The computation of the advancing direction and the step length is performed by the
derived objects SteepestDescent and NewtonRaphson, see Lines 6 and 7 of
Algorithm 2, respectively. Using this diagram class, we can decouple the smoother
algorithm from the minimization method and, for this reason, it is easier to add addi-
tional minimization algorithms with different properties.

The main advantage of this smoothing framework is that it provides a unified im-
plementation to smooth meshes composed by any type of elements, and to optimize
the objective function using the desired minimization algorithm. It is only necessary
to assign the correct objective function to smooth the corresponding mesh, and the de-
sired minimization algorithm to optimize the objective function. Moreover, different
element distortion measures can be used to select different geometric properties on the
final mesh. For instance, the mesh can be adapted to a size field to better reproduce
element size functions, or to create boundary layers.

7 Examples

In this section, we present several examples to illustrate the robustness and applica-
bility of the proposed method. The first two examples focus on the robustness of the
method. In particular they present a quadrilateral and hexahedral mesh such that the
location of all inner nodes is randomized, generating a large number of inverted ele-
ments. The last three examples are devoted to the optimization of hexahedral meshes
for real-world geometries. Specifically, the third and four examples present an applica-
tion to semi-structured hexahedral meshes for multi-sweeping [3, 4, 5, 6] mechanical
pieces. In the last example, we improve the quality of a unstructured hexahedral mesh
generated using the receding front method [14].

For all the examples, we have used p = 2 in Equation (17) and one iteration for
the line-search minimization methods, see Algorithm 2. In addition, for all of them,
we present a table summarizing the quality statistics of the meshes. In particular, we
provide: the minimum, the maximum, the mean and the standard deviation of the
elements quality, and the number of tangled elements in the mesh. We highlight that
in all cases, the smoothed mesh increases the minimum and mean values of the mesh
quality and decreases its standard deviation. Moreover, all the smoothed meshes do
not contain any inverted element.

All the algorithms presented in Section 5, and all the objects described in Section
6 have been implemented using C++ in the meshing environment ez4u [43, 44]. All
the examples where executed in an Intel 17-3770 CPU at 3.40GHz with 16 GB of
RAM under Ubuntu 13.10 operating system. Although no special attention is focused
on optimizing the developed code, it should be mentioned that the smallest example
(the gear geometry) took less than one second to smooth and untangle the mesh. For

14



shape

0.5
RN,

1

Figure 7: Quadrilateral mesh generated for a pressure plate: (a) before applying
the untangling and smoothing algorithm; and (b) after applying the untangling and
smoothing algorithm.

the medium-size examples (the pressure plate, the mechanical piece and the linking
rod) around seven second were needed to obtain the final mesh. Finally, the largest
example took around eighty seconds to optimize the mesh.

2D quadrilateral mesh for a pressure plate. This example presents a two-dimen-
sional quadrilateral mesh generated for a pressure plate. It is composed by 19101
nodes and 18099 elements. The interior nodes of the mesh have been moved to a ran-
dom position before applying the proposed simultaneous untangling and smoothing
algorithm, see Figure 7(a). Then, we have applied the optimization algorithm using
the Newton-Raphson method obtaining a valid mesh (without tangled elements) com-
posed by high-quality elements, see Figure 7(b).

Figure 8(a) presents the element quality distribution for the generated mesh with
a random position for the nodes. Note that it contains 11141 inverted elements. Fig-
ure 8(b) shows the element quality distribution after applying the proposed smoother
algorithm. In this case, there are no degenerated elements and the mesh quality has
been improved. In particular, the minimum and mean values of the shape quality have
been incremented to 0.43 and 0.93, respectively, see Table 1.

3D hexahedral mesh of a mechanical piece. This example presents a hexahe-
dral mesh generated for a mechanical piece using the multi-sweeping method (14781
nodes and 11370 elements). In this example, similar to the previous one, we have ran-
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Figure 8: Element quality distribution of the quadrilateral mesh generated for a pres-
sure plate: (a) before applying the untangling and smoothing algorithm; and (b) after
applying the untangling and smoothing algorithm.

domized the location of the inner nodes, see Figure 9(a). Then, we have applied the
proposed hexahedral smoothing algorithm using the Newton-Raphson method, and
we have obtained an untangled high-quality mesh, See Figure 9(b). Note that the pro-
posed optimization algorithm is able to recover a valid position for the inner nodes,
generating a high-quality mesh even when the initial one contains 9856 inverted ele-
ments, see Figure 10.

Table 1 details the statistical information for the randomized and optimized meshes
for the mechanical piece. Similar to the previous 2D example, we highlight that using
the proposed smoothing algorithm we are able to untangle the inverted elements and
increase the minimum and the mean shape quality from 0.0 to 0.57 and from 0.03 to
0.92, respectively.

3D semi-structured mesh for a gear. In this example, we improve the quality
of a hexahedral mesh for a gear generated using the multi-sweeping method. It is
composed by 5246 nodes and 3606 elements. Figure 11(a) presents the output of the
multi-sweeping method when the position of the inner nodes is computed taking into
account only target cap surfaces. Note that the method generates stretched elements
in the upper layer and, for this reason, low-quality elements appear. When we apply
the proposed smoother algorithm using the Newton-Raphson method, a high-quality
hexahedral mesh without inverted elements is obtained, see Figure 11(b). Figure 12(a)
shows the element quality distribution for the initial mesh generated for a gear. Note
that the multi-sweeping method has generated a great number of low-quality elements
and 4 inverted elements. When the optimization algorithm is applied, the quality of
the mesh is improved and the mesh does not contain any inverted element.

Table 2 presents a comparison of the statistical information of the original gear
mesh and the smoothed meshes obtained using a Newton-Raphson and steepest de-
scent line-search approaches. The statistical information for the optimized meshes
are similar. That is, we have obtained comparable results when different optimization
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Figure 9: Hexahedral mesh generated for a mechanical piece: (a) before applying
the untangling and smoothing algorithm; and (b) after applying the untangling and
smoothing algorithm.

methods to minimize the objective function are used.

3D semi-structured mesh for a linking rod. In this example, we present the
mesh generated for a linking rod using the multi-sweeping algorithm (14783 nodes
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Figure 10: Element quality distribution of the hexahedral mesh generated for a me-
chanical piece: (a) before applying the untangling and smoothing algorithm; and (b)
after applying the untangling and smoothing algorithm.

and 11316 elements). Similar to the previous example, the position of the inner nodes
is computed taking into account only target cap surfaces. Thus, the mesh generated
using this method contains several areas with low-quality elements, see Figure 13(a).
To improve its quality we have applied the optimization algorithm obtaining a mesh
composed by valid and high-quality elements, see Figure 13(b).

Figure 14(a) presents the element quality distribution for the initial mesh. Note that
this mesh contains inverted and low-quality elements. Figure 14(b) shows the element
quality distribution for the linking rod mesh after applying the proposed optimization
algorithm using the Newton-Raphson method. Note that the improved mesh does not
contain tangled elements and that the minimum quality is above 0.36.

Table 2 presents a comparison of the statistical information of the original linking
rod mesh and the smoothed meshes obtained using a Newton-Raphson and steepest
descent line-search approach. The original mesh contains 16 inverted elements and
the smoothed meshes do not contain any inverted element. In this case, the results
between the mesh obtained using a Newton-Raphson solver and the mesh obtained
using a steepest descent solver are also comparable. In fact they provide meshes with
the same minimum and mean values of the element quality.

3D unstructured mesh for the exterior domain of an aircraft. In this exam-
ple we present the mesh for the exterior domain of an aircraft generated using the
receding front method. The mesh, composed by 32454 nodes and 30962 elements,
contains inverted and low-quality elements due to the behavior of the mesh generation
algorithm, see Figure 15(a). The quality of the mesh can be improved by applying
the proposed optimization algorithm, see Figure 15(b). Note that the optimized mesh
does not contain inverted elements and the quality of the elements has been improved.

Figure 16(a) shows the element quality distribution of the mesh generated for the
exterior domain of a plane. Note that the receding front method has generated low-
quality and inverted elements. Figure 16(b) presents the element quality distribution

18



(b)

shape

0.25 0.5 0.75
||‘II\II\|I||I\|IHII\|I

0

II“]

Figure 11: Hexahedral mesh generated for a gear using the multi-sweeping method:
(a) before applying the untangling and smoothing algorithm; and (b) after applying
the untangling and smoothing algorithm.
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Figure 12: Element quality distribution of the hexahedral mesh generated for a gear:
(a) before applying the untangling and smoothing algorithm; and (b) after applying
the untangling and smoothing algorithm.

Geom. Mesh Min.Q. Max.Q. Mean Q. Std.Dev. Tang.

Pressure plate Initial 0.00 0.98 0.13 0.22 11141
Smoothed  0.43 1.00 0.93 0.08 0

Mechanical piece Initial 0.00 0.84 0.03 0.11 9856
Smoothed  0.57 0.99 0.92 0.07 0

Table 1: Shape quality statistics of the meshes for the pressure plate and the mechani-
cal piece.

of the mesh after applying the proposed smoothing algorithm. Note that in this case,
the minimum element quality has been increased.

Table 2 presents a comparison of the statistical information of the original mesh
for the exterior domain of a plane and the smoothed meshes obtained using a Newton-
Raphson and steepest descent line-search approaches. Similarly to the other examples,
the smoothed meshes improve the minimum quality of the original mesh, which con-
tains 149 inverted elements. The proposed optimization algorithm obtains a mesh
without inverted elements, using either a Newton-Raphson or a steepest descent ap-
proach. In addition, similar statistical results of the elements quality are obtained for
the mesh optimized using the Newton-Raphson and the steepest descent methods.
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Figure 13: Hexahedral mesh generated for a linking rod using the multi-sweeping
method: (a) before applying the untangling and smoothing algorithm; and (b) after
applying the untangling and smoothing algorithm.
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Figure 14: Element quality distribution of the hexahedral mesh generated for a link-
ing rod: (a) before applying the untangling and smoothing algorithm; and (b) after
applying the untangling and smoothing algorithm.

Geom. Mesh Min.Q. Max.Q. Mean Q. Std.Dev. Tang.

Initial 0.00 0.99 0.76 0.23 4
Gear N-R 0.41 0.99 0.83 0.11 0
Step. Desc.  0.39 0.99 0.86 0.09 0

Initial 0.00 0.99 0.82 0.13 16
Linking rod N-R 0.36 0.99 0.85 0.10 0
Step. Desc.  0.36 0.99 0.85 0.09 0

Initial 0.00 0.99 0.73 0.16 149
Aircraft N-R 0.31 0.99 0.76 0.15 0
Step. Desc.  0.31 0.99 0.79 0.13 0

Table 2: Shape quality statistics of the meshes for the gear, linking rod and aircraft.
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Figure 15: Element quality distribution of the hexahedral mesh generated for an air-

craft: (a) before applying the untangling and smoothing algorithm; and (b) after ap-

plying the untangling and smoothing algorithm.
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Figure 16: Element quality distribution of the hexahedral mesh generated for a plane:
(a) before applying the untangling and smoothing algorithm; and (b) after applying
the untangling and smoothing algorithm.

8 Concluding remarks

In this work, we have presented an optimization algorithm to simultaneously untangle
and smooth quadrilateral and hexahedral meshes. The method minimizes an objective
function defined in terms of a regularized algebraic distortion measure. In order to im-
prove the computational efficiency, we only perform one iteration of the line-search
optimization algorithm for each free node. Experience has shown that this regular-
ization improves the time to obtain an optimized mesh. Moreover, to not deteriorate
the performance of the optimization process, the evaluation of the objective function
only takes into account the relevant sub-elements in the quadrilateral and hexahedral
decomposition. In addition, we have also improved the robustness and the precision
of the minimization process by translating the local sub-mesh of each node to the ori-
gin of coordinates and then scale it to a reference size. To implement the proposed
untangling and smoothing algorithm, we have adopted an object-oriented paradigm to
create a common framework to smooth meshes composed by any kind of elements and
using a generic line-search minimization method to optimize the objective function.

Several aspects of the algorithm can be extended in the near future. Specifically,
we have to improve the computational time to smooth a mesh, specially in the three-
dimensional case. While the algorithm is competitive to smooth quadrilateral meshes,
it is required to reduce the time to smooth a hexahedral mesh. The objective func-
tion for hexahedral elements is more expensive to compute than the objective function
for quadrilateral elements. For instance, a hexahedron is decomposed in more sub-
elements than a quadrilateral and, in addition, there are more hexahedra than quadri-
laterals adjacent to a given node. Moreover, the objective function related to quadrilat-
erals is computed in two dimensions while the objective function related to hexahedra
is computed in three-dimensions, which further increase the cost of computing the
objective function.

24



We plan to apply the proposed optimization framework to improve the quality of
mixed meshes composed by tetrahedral and hexahedral elements. Moreover, note that
pyramid and prismatic elements can also be included in these mixed meshes since each
one of these elements, similar to hexahedral elements, can be decomposed in several
tetrahedra. While the proposed algorithm is able to smooth the presented meshes
taking a few seconds, it would be interesting to further decrease the computational
time to smooth a mesh for large industrial problems. To this end, we propose to use
a parallelization technique to distribute the tasks to different processors. Moreover,
in order to avoid race conditions and to minimize the communication between the
processors, different coloring techniques would be considered. Finally, it may be of
interest to compare the performance of the proposed optimization method when it is
applied to meshes composed by different kind of elements.

A First and second derivatives of the objective func-
tion

In this appendix, we detail the first and second derivatives of the objective function,
K-, see Equation (17). To this end, we express the first and second derivatives of the
objective function in terms of the derivatives of the shape distortion measure, n*, see
Equation (14) using the chain rule.

77*
-~ NM 1
O NM ; ; ()" (19)
O*K, - p LK 8% My, 1y O -
= = )P Pl (20
0x;0x; NM & 121 c%z dx; ()" + 0z, (7e)”™, (20)

where z; and z; are two generic coordinates, and 7, is the shape distortion measure of
the /th sub-element contained in the kth element of the local sub-mesh. To obtain the
final expression for the derivatives of the objective function, we need to deduce the
first and second derivatives of the regularized distortion measure for a sub-element,
see Equation (12). Applying the chain rule we obtain

ar 1(9(S,8) 1 o (1
o o w8957 () -

where the dot product (9) is used. We decompose Equation (21) in two terms. They
can be expressed as
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where h is defined in Equation (11) and
do 4,08
oz det(S)tr (S 8@-) :

Combining Equations (22) and (23), we obtain the final expression for the first
derivative of the distortion measure
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The second derivative of the shape distortion measure is
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Similarly to the first derivative case, we split Equation (25) in two terms. The first
term is
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The second term of Equation 25 is decomposed again into two terms. The first one is
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and the second one
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Finally, introducing Equations (26), (27) and (28) in Equation (25), we obtain the final
expression for the second derivatives of the shape distortion measure
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