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Abstract. Convex hulls are fundamental geometric tools used in a number of 

algorithms. This paper presents a fast, simple to implement and robust Smart 

Convex Hull (S-CH) algorithm for computing the convex hull of a set of points 

in ��. This algorithm is based on “spherical” space subdivision. The main idea 

of the S-CH algorithm is to eliminate as many input points as possible before the 

convex hull construction. The experimental results show that only a very small 

number of points is used for the final convex hull calculation. Experiments made 

also proved that the proposed S-CH algorithm achieves a better time complexity 

in comparison with other algorithms in ��. 

1 Introduction 

A convex hull is a fundamental construction not only in computational geometry and 

mathematics. It has numerous applications in various fields such as collision detection, 

mesh generation, shape analysis, cluster analysis, metallurgy, crystallography, 

cartography, image processing, sphere packing and point location. There are many 

other problems which can be reduced to the convex hull, e.g. halfspace intersection, 

Delaunay triangulation, Voronoi diagram, etc. Fast convex hull algorithms are useful 

for interactive applications, such as collision detection in computer games and path 

planning for robotics in dynamic environments. 

A subset �⊆ℝ� is convex if and only if for any two points �, � ∈ � the line segment 

with endpoints � and � is contained in �. The convex hull 	ℋ(�) of a set � is the 

smallest convex set containing �. The convex hull of a set of points 
 is a convex 

polyhedron with vertices in 
. 

Many algorithms for calculation of the convex hull in 3� have been developed over 

the last several decades. Chand and Kapur [1] developed the Gift Wrapping algorithm, 

and Preparata and Hong [2] developed a recursive algorithm, which is based on Divide 

& Conquer. Clarkson and Shor [3] introduced an incremental insertion algorithm, 

where the points are processed one by one with respect to the currently constructed 

convex hull. Barber et al. [4] developed an efficient convex hull algorithm, which is 

called QuickHull. The time complexity of some of the convex hull algorithms is 

presented in Table 1.  

Several parallel algorithms for convex hull construction were proposed. Chow [12] 

presented a parallel convex hull algorithm that runs at �(log� �) time complexity. 



Amato and Preparata [13] designed an �(log� �) time algorithm using � processors, 

where � is the number of input points. Reif and Sen [14] proposed a randomized 

algorithm for three dimensional convex hulls that runs at �(log �) time using a divide 

and conquer approach on �(�) processors. Amato et al. [15] gave a deterministic 

�(log� �) time algorithm for a convex hull in �� using ��� log� + ���/��� work. 

Gupta and Sen [11] proposed a fast parallel convex hull algorithm that is output-size 

sensitive. 

There are several convex hull algorithms modified for GPU applications. Gao et al. 

[17] developed a two-phase convex hull algorithm in three dimensions that runs on the 

GPU. Stein et al. [10] proposed a parallel algorithm based on QuickHull approach. 

Other algorithms are based on a probabilistic approach [18]. Precision of convex hull 

algorithm with regard to physical floating point representation is solved as well, e.g. in 

[16]. 

Table 1. Comparison of 3D convex hull algorithms and their time complexity. The number of input points is 
� and ℎ is the number of points on the output convex hull. Note that ℎ < �, so �ℎ < ��, usually ℎ ≪ �. 

Algorithm Time complexity Reference 

Gift Wrapping �(�ℎ) [1],[7] 

QuickHull �(� log �) [4] 

Divide & Conquer �(� log �) [2] 

Randomized Incremental �(� log �) [3],[5] 

Chan's algorithm �(� log ℎ) [6] 
 

2 Proposed Algorithm 

In this section, we introduce a new Smart Convex Hull (S-CH) algorithm based on 

space subdivision for construction of the convex hull in E3. The main idea of this 

algorithm is to eliminate as many input points as possible using an algorithm with �(!) 
complexity based on space subdivision,  and a "standard" convex hull algorithm with 

�(� log �) is used for the remaining points, where � ≪ !. We use “spherical” space 

subdivision based on 3� sectors for efficient elimination of points not contributing to 

the final convex hull. 

This section is organized as follows. Section 2.1 presents the first step of the S-CH 

algorithm, which is an inner convex polyhedron construction followed by the location 

of points inside the initial convex polyhedron. In Section 2.2, we describe how to 

perform the division of points into non-overlapping 3D pyramidal shape sectors. 

Section 0 presents reduction of the suspicious points. The calculation of a convex hull 

from the selected points with a standard convex hull algorithm is made in Section 2.4. 

2.1 Location of Points inside Polyhedron 

At the beginning of the proposed S-CH algorithm, we need to find the extremal points 

in all axes, i.e. points with maximum and minimum ", # or $ coordinates. The time 



complexity of this step is �(!). For our purpose, we do not need the exact extremal 

points, because extremal points close enough are sufficient. This means that we do not 

have to search extremes through all the input points, but we can search only random 

sample points. According to experiments made, approx. 10% of all points is sufficient. 

This simplification does not cause any problems for future calculations and we save 

computational time as well and the complexity of this step is �(!) only. Therefore, we 

generally get six distinct extremal points or less.  

Now we can create a convex polyhedron using these points, see Fig. 1. Note that the 

extremal points are determined using the above presented estimation. We assume that 

the volume of the final object is nonzero, so the convex polyhedron will not be 

degenerated. One very important property of this polyhedron is that any point lying 

inside cannot be a point on the convex hull. Thus, we can perform a fast and simple 

initial test for a point inside/outside the polyhedron and discard many points.  

 
a) 

 

b) 
 

c) 

Fig. 1. Location of an initial inner testing polyhedron inside the convex hull for 104 points: a) uniform points 

in sphere, b) uniform points in cube, c) Gauss points. 

 

The location test of a point inside a polyhedron can be performed as follows. Each 

face of the polyhedron is an oriented plane with a normal vector oriented outside of the 

polyhedron. Then we can calculate: 

%&(') = )&" + *&# + +&$ + ,& = -&.' + ,& = 0, (1)

where ' is a point and %&(') = 0 is the implicit equation of a plane with index 0 having 

the normal vector -1 = ()& , *& , +&). If %&(') < 0 for at least one 0 ∈ 20,1, … ,76, then 

point ' lies outside of the polyhedron and has to be further processed. Otherwise, point 

' lies inside of the polyhedron and can be eliminated. 

2.2 Division of Points into 3D Sectors 

In the second step of the S-CH algorithm, only the points, which lie outside of the initial 

polyhedron, will be further processed. Firstly, we perform the division of 3� space into 

several non-overlapping “pyramidal shape” sectors, i.e. we are using an “approximated 

spherical” subdivision. A center point and both angles (azimuth 7 and zenith 8) are 



used in this subdivision. The center point 9 is defined as the average of all vertices of 

the initial polyhedron. 

Division of space can be performed as a uniform spherical subdivision in both 

angles, where azimuth 7 ∈ :0, 2<) and zenith 8 ∈ :0, <=. However, using this, we 

would have to calculate the exact angles and, moreover, an explosion of small and 

singular triangles would occur at the both poles. Therefore, we use a simplified 

calculation of approximated angle. As a result of this simplification, the sectors are not 

uniformly distributed in the spherical coordinate space, but are uniformly distributed 

on the faces of a cube, see Fig. 2. Now, when calculating the azimuth and zenith, we 

have to locate the exact third of the octant, where the point is located and then calculate 

the intersection with the given face. Calculation of the intersection is easy, because all 

faces are axes aligned, i.e. " = ±1 or # = ±1 or $ = ±1. Finally, we have to determine 

a table of neighbors for each sector. Note that the neighboring sector can lie on another 

face of the cube. This means that adjacency of sectors can be determined across the 

edge of a cube or the vertex of a cube.  

Now we are able to calculate the exact index of a sector to which the given point 

belongs. 

 
a) 

 
b) 

Fig. 2. Division of space into 96 (16 × 6 faces) non-overlapping sectors uniformly distributed on a cube: a) 
sectors displayed on a cube, b) sectors displayed on a sphere. 

 

For each sector with index 0, one maximal point A&BCD  is determined. This point 

equals a point where is a maximum distance between the center point 9 and all points 

in a sector. The initial points A&BCD  are lying on the faces of the initial polyhedron. 

These points can be calculated as an intersection point of the axis of a sector and the 

face of the initial polyhedron. 

For each new point we have to check whether the distance from this point to the 

center point 9 is greater than the distance from A&BCD  to the center point 9. If this is 

true, then we have to replace point A&BCD  with a processed point, add this point into the 

sector with index 0 and recalculate the test planes, see Fig. 3. Otherwise we continue 

with the next step. 



 

Fig. 3. Visualization of testing planes. 

 

In the next step, we check whether the processed point lies over or under the test 

planes.  

Firstly, we determine the projection of the actual point to the face of the unit cube. 

Then we can compare coordinates of this projection with the projection of maximal 

point A&BCD  and based on the result, we choose one of four options, see Fig. 4. Now we 

have to use the five planes which are defined by maximal points A&BCD  of the actual 

sector and neighboring sectors (hatched green) and perform a test for a point over/under 

the plane. If the point is under all five planes, we can discard it, because such a point 

cannot be part of the convex hull. Otherwise we add this point into the sector with index 

0. 

Fig. 4. Schema of a testing point with respect to the test planes. 

 

We can gain some extra speed-up if the input dataset is pre-sorted according to the 

distance from the center point 9. In such case we start by processing the farthest points 

from the input dataset. It leads to fast determination of maximal points A&BCD  and more 

points from the input dataset can be eliminated. Moreover, the next step, which is 

described in Section 2.3, does not need be performed. 

The pre-sorted input dataset can speed-up the reduction steps. However, the sorting 

algorithms have the time complexity E(!	 log!), which is higher than the time 

complexity of reduction steps E(!). Therefore, it is not beneficial to sort the input 

dataset.  



2.3 Reduction of Suspicious Points 

We have already divided all suspicious points into sectors. We gave points A&BCD  some 

initial values before starting to divide points into non-overlapping sectors and we used 

these points A&BCD  to check whether to add or eliminate a point. Values of points A&BCD  

have changed during the division process; hence we have to recheck all suspicious 

points using the final values of points A&BCD . We minimize the number of suspicious 

points, which are input for the final convex hull construction, using this step. Final sets 

of suspicious points for input datasets with different distributions of points are shown 

in Fig. 5. 

 
a) 

 

b) 
 

c) 

Fig. 5. Suspicious points that are the input for convex hull creation (10G input points): a) uniform points in 
sphere, b) uniform points in cube, c) Gauss points. 

 

It should be noted that the reduction test eliminates the vast majority of given points. 

In case that the majority of points are close to the surface of the corresponding convex 

hull then the performance of reduction steps will decreases as only few points will be 

reduced. 

2.4 Convex Hull Construction 

After performing the previous steps, we use any known algorithm for calculation of the 

convex hull. The set of input points for this algorithm equals suspicious points. The 

number of suspicious points is extremely low in comparison of the number of the 

original points; thus the time needed for determining the convex hull is insignificant 

compared to the time needed for reduction of the original input points. Therefore, this 

step is more or less independent of the choice of a convex hull algorithm. In our 

approach we used the library MIConvexHull1, which is based on the QuickHull 

algorithm. 

QuickHull uses a divide and conquer approach. This algorithm performs the 

following steps: 

                                                           
1 This library is available at https://miconvexhull.codeplex.com/.  



1. Find three points (for example, points with minimum and maximum " 

coordinates and a point with a minimum # coordinate) which are bound to 

be part of the convex hull. 

2. Divide the set into two subsets of points by a plane formed by the three 

points. This step will be processed recursively. 

3. On one side of the plane, determine the point with the maximum distance 

from the plane. The three points found before along with this one form a 

pyramid. 

4. In the next step, the points lying inside of the pyramid can be ignored. 

5. Repeat the previous two steps on the three planes formed by the pyramid. 

6. Repeat this procedure until no points are left. Then the recursion has come 

to an end. 

It can be seen that the S-CH algorithm is quite simple. In the following experimental 

results will be presented. 

3 Experimental Results 

The proposed S-CH algorithm has been implemented in C# using .Net Framework 4.5 

and tested on data sets using a PC with the following configuration:  

• CPU: Intel® Core™ i7-2600 (4 × 3,40GHz)  

• memory: 16 GB RAM  

• operating system Microsoft Windows 7 64bits 

3.1 Distribution of Points 

The proposed S-CH algorithm has been tested using different 3� datasets. These 

datasets have different types of distributions of points. For experiments, we used well-

known distributions such as randomly distributed uniform points in a unit sphere, 

uniform points in a unit cube, points lying on a unit sphere or points with a Gaussian 

distribution. Other distributions used were Halton points and Gauss ring points, which 

are described in the following text. Furthermore, we describe how to generate uniform 

spherical data. 

Spherical Points. For generating uniform spherical points, spherical coordinates 

cannot be used, because these coordinates cause the points to be concentrated around 

poles. Therefore, we use the following approach to generate spherical points. 

First, we generate a point H lying in a cube, which represents an axis-aligned 

bounding box for a unit sphere, and determine the Euclidean norm of this point ‖H‖. If 
‖H‖ > 1, then we return to the start. Otherwise we normalize point H. Finally, we 

multiply this point by the required radius. The value of a radius can be either the same 

for all points (points on the sphere) or randomly generated for each point. 



Halton Points. Construction of a Halton sequence is based on a deterministic method. 

This sequence generates well-spaced “draws” points from the interval :K, L=. The 

sequence uses a prime number as its base and is constructed based on finer and finer 

prime-based divisions of sub-intervals of the unit interval. The Halton sequence [8] can 

be described by the following recurrence formula: 

M)NOP�(Q)R = ∑ T
UVWX YZ

R
UV[ 	mod	Q^

_`abc Rd
&ef , (2)

where Q is the prime number and g is the index of the calculated element. 

For the 3� space, subsequent prime numbers are used as a base. In our test, we used 

22,3,56 for the Halton sequence and we got a sequence of points in a unit cube: 
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Visualization of the dataset with 104 points of the Halton sequence from (3) can be 

seen in Fig. 6. We can see that the Halton sequence in 3� space covers this space more 

evenly than randomly distributed uniform points in the unit cube. 

  

Fig. 6. 3� Halton points generated by M)NOP�(2,3,5) (left) and 3� random points in a cube with uniform 
distribution (right). Number of points is 104 in both cases. 

Gauss Ring Points. Construction of Gauss ring points in pq space is based on the 

method for generating spherical points which is described above. For each point, the 

radius is determined using the following equation: 



r = 0.5 + 0.5	 ∙ u0v� ∙ r)�,wCxyy , (4)

where u0v� is a randomly generated number from set 2−1,16 and r)�,wCxyy is a 

randomly generated number with Gauss distribution from interval :0,∞). 
Visualization of the dataset with 104 Gauss ring points can be seen in Fig. 7. We can 

see that this dataset consists of a large set of points, which are close to the sphere, and 

a small set of points, which are far from this sphere. 

 

 

Fig. 7. 3� Gauss ring points. Number of points is 104. 

3.2 Examples of Convex Hull Generated 

Some samples of convex hulls for datasets with a different distribution of points, which 

consist of 104 points, are shown in Fig. 8.  

It can be seen, the convex hull of points on a sphere or points with uniform 

distribution in a sphere has a spherical shape. Moreover, these convex hulls contain the 

majority of points. The convex hull of points with uniform distribution in a cube or 

Halton points is a box-shaped object. The random shape has a convex hull of Gauss 

points or Gauss ring points. 



 
a) 

 
b) 

 
c) 

 
d) 

 
e) 

 
f) 

Fig. 8. Convex hulls of points with different distributions (10G points): a) uniform points in sphere, b) uniform 
points in cube, c) Halton points, d) Gauss points, e) Gauss ring points and f) points on sphere. 

3.3 Optimal Number of Divisions 

In the proposed approach, the main step is the division of the input set of points into 

non-overlapping sectors. Therefore, we need know an estimation of the optimal number 

of divisions, which should depend on the distribution of points. Consequently, we have 

to determine it for each type of input points separately. 

We measured the time performance of the convex hull for different distributions of 

points, different numbers of points and different numbers of divisions. Measurement 

for 10| points is presented in Graph 1. For all tested distributions of input points, except 

points on a sphere, we can see that the time performance decreases with the increasing 

number of divisions until the optimal number of divisions is achieved. After that time, 

the complexity increases with the increasing number of divisions. The situation is 

different for points on a sphere. Based on Graph 1f), it can be seen that the time 

complexity decreases with the increasing number of divisions. This is due to the fact 

that points are partially organized by the first step of the S-CH algorithm, and thus the 

construction of the final convex hull is accelerated. The speed up is gained due to better 

cache memory usage, more explained in [19]. 



a) b) 

c) d) 

e) f) 

Graph 1. The time performance of the convex hull algorithm for different distributions of points and different 

division counts. The divisions count denotes the number of divisions in one axis, i.e. the total number of 

non-overlapping sectors is 6 ∙ (,0}0u0P�u	+P~�O)�. The number of input points is 10|. Distributions of points 
are: a) uniform points in sphere, b) uniform points in cube, c) Halton points, d) Gauss points, e) Gauss ring

points and f) points on sphere.  

Evaluating experimental results for different numbers of input points, including 

results from Graph 1, i.e. 10�, √10 ∙ 10�, 10�, √10 ∙ 10�, 10| and √10 ∙ 10|, we came 

to the following conclusion. 

The expected optimal number of divisions is directly proportional to number of 

points lying on the convex hull. If the user knows properties of the input dataset, then 

the number of divisions can be determined more precisely. The optimal number of 

divisions, which is almost the same for all numbers of input points, is shown in          

Graph 2. 
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Graph 2. The optimal number of subdivisions for different numbers of input points and different distributions
of these points. 

3.4 Number of Points Processed at Each Step 

In order to assess the effectiveness of the proposed algorithm, we need to know what 

proportion of input points to eliminate in each step of our algorithm, the size of the set 

of suspicious points and the number of points that lie on the convex hull. All these 

values are given relative to the size of the input dataset. Measurements were performed 

for different numbers of input points and different types of point distributions. The 

results of these experiments are in Table 2 - Table 6. 

In Table 2 we can see the percentage of points eliminated by the initial polyhedron. 

It is obvious that the most points are eliminated for the Gauss distribution points. This 

is due to the fact that most of the Gauss points lie around the center. The number of 

points eliminated for Gauss ring points by the initial polyhedron is dependent on the 

total number of input points. From this, we can deduce, consistent with the Gauss ring 

distribution, that for smaller inputs, it may not be always possible to choose the ideal 

initial polyhedron. The results for the uniform distribution of points in a cube and 

Halton points are consistent with the theoretical estimate. (The theoretical estimate is 

obtained as the quotient of two volumes. The dividend is a volume of the ideal initial 

polyhedron and the divisor is a bounding volume for the input dataset.) The number of 

eliminated points is larger than the theoretical estimate for points with a uniform 

distribution inside a sphere. 
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Table 2. The percentage of points eliminated by the initial polyhedron. 

 Number of points eliminated [%] (100% means all the input data) 

Number of points Uniform ○ Uniform ���� Halton Gauss Gauss ���� Sphere 

1E+5 49.37% 12.77% 13.71% 89.79% 47.65% 0.00% 

√10E+5 49.83% 13.61% 14.28% 91.13% 59.31% 0.00% 

1E+6 50.16% 15.22% 14.27% 91.88% 67.67% 0.00% 

√10E+6 50.33% 15.42% 13.70% 92.53% 75.57% 0.00% 

1E+7 50.41% 15.14% 14.91% 92.85% 82.24% 0.00% 

√10E+7 50.46% 14.39% 16.66% 93.10% 86.06% 0.00% 
 

 

The percentage of points eliminated by the testing planes can be seen in Table 3. The 

most points are reduced for Halton points and for points with uniform distribution in a 

cube. For all tested distributions of input points, except points on a sphere, we can see 

that almost all input points are discarded after these two steps of the S-CH algorithm. 

Table 3. The percentage of points eliminated by the testing planes. 

 Number of points eliminated [%] (100% means all the input data) 

Number of points Uniform ○ Uniform ���� Halton Gauss Gauss ���� Sphere 

1E+5 40.42% 72.22% 72.64% 6.62% 43.11% 0.00% 

√10E+5 43.53% 76.93% 77.24% 6.93% 36.30% 0.00% 

1E+6 45.07% 78.87% 80.29% 7.10% 30.11% 0.00% 

√10E+6 45.91% 80.50% 82.54% 6.94% 23.32% 0.00% 

1E+7 46.51% 82.01% 82.50% 6.86% 17.18% 0.00% 

√10E+7 46.89% 83.65% 81.55% 6.72% 13.63% 0.00% 
 

 

The percentage of points eliminated by reduction of suspicious points can be seen in 

Table 4. The minimal number of points is discarded by this step for all tested 

distributions of input points. But there exist distributions of points when this step is 

important, e.g. points forming a spiral. We can see non-zero values for points on a 

sphere. This is due to the elimination of initial points A&BCD, which were artificially  

added  at the beginning  (see Section 2.2) and lying on the faces of the initial 

polyhedron. 



Table 4. The percentage of points eliminated by reduction of suspicious points.  

 Number of points eliminated [%] (100% means all the input data) 

Number of points Uniform ○ Uniform ���� Halton Gauss Gauss ���� Sphere 

1E+5 5.24% 7.37% 6.66% 2.14% 5.78% 0.38% 

√10E+5 2.93% 4.24% 3.84% 1.22% 2.82% 0.12% 

1E+6 1.76% 2.54% 2.30% 0.66% 1.39% 0.04% 

√10E+6 1.13% 1.63% 1.49% 0.35% 0.72% 0.01% 

1E+7 0.82% 1.08% 1.01% 0.19% 0.36% 0.00% 

√10E+7 0.60% 0.74% 0.69% 0.11% 0.19% 0.00% 
 

 

The number of suspicious points for different numbers of input points and for 

different types of distributions is shown in Table 5. These points are used for the final 

calculation of the convex hull. It can be seen that for all tested distributions of points, 

except points on a sphere, the number of suspicious points is extremely low compared 

to the number of the original points. 

Table 5. The percentage of suspicious points. 

 Number of candidates [%] (100% means all the input data) 

Number of points Uniform ○ Uniform ���� Halton Gauss Gauss ���� Sphere 

1E+5 5.36% 8.03% 7.38% 1.83% 3.84% 100.00% 

√10E+5 3.84% 5.33% 4.76% 0.84% 1.68% 100.00% 

1E+6 3.05% 3.41% 3.18% 0.39% 0.86% 100.00% 

√10E+6 2.64% 2.47% 2.28% 0.20% 0.41% 100.00% 

1E+7 2.27% 1.77% 1.59% 0.11% 0.22% 100.00% 

√10E+7 2.05% 1.22% 1.10% 0.07% 0.12% 100.00% 
 

 

Table 6 presents the percentage of points lying on the final convex hull. Convex 

hulls of points with Gauss ring distribution, Gauss distribution, Halton distribution or 

uniform distribution in a cube are determined by the few remaining points. More points 

lie on the convex hull of uniform points in a sphere. The convex hull of points on a 

sphere should be determined by all these points, but the experimental results do not 

correspond to this assumption. This is due to the floating point precision of calculation. 



Table 6. The percentage of points lying on the convex hull. 

 Number of points on the convex hull [%] (100% means all the input data) 

Number of points Uniform ○ Uniform ���� Halton Gauss Gauss ���� Sphere 

1E+5 1.100% 0.191% 0.183% 0.173% 0.086% 95.016% 

√10E+5 0.620% 0.073% 0.068% 0.080% 0.034% 76.890% 

1E+6 0.350% 0.027% 0.025% 0.038% 0.013% 42.410% 

√10E+6 0.190% 0.009% 0.009% 0.017% 0.005% 16.370% 

1E+7 0.110% 0.003% 0.003% 0.008% 0.002% 5.541% 

√10E+7 0.060% 0.001% 0.001% 0.004% 0.001% 1.805% 
 

 

Moreover, we can see the percentage of suspicious points, which lie on the convex 

hull, in Graph 3. 

 

Graph 3. The percentage of suspicious points lying on the final convex hull for different numbers of input 

points and different distributions of these points. 

3.5 Time Performance 

In this section, we focus on running times for the calculation of a convex hull using our 

proposed S-CH algorithm. Running times were measured for different numbers of input 

points with different distributions of points. Measurements were performed many times 

and average running times, calculated from the measured results, are in Table 7 - Table 

9; we can see these running times in Graph 4. 

It can be seen that the best time performance is for datasets with the Gaussian 

distribution. These datasets are followed by Gauss ring points. This is expected 

behavior because most of the points using one of these distributions lie inside the initial 

polyhedron. Therefore, there are only a few points on the convex hull. The time 

performance for Halton points and for uniform points in a cube is similar. The running 

times for points with uniform distribution inside a sphere are a bit slower than the 
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running times for uniform points in a cube. The worst time performance was obtained 

for points, which lie on a sphere. This is again expected behavior because there are no 

points for elimination during the first phase and therefore the convex hull calculation 

has to be done from the whole dataset. 

Table 7. The time performance of the convex hull for different numbers of input points and different 
distributions of points. The number of divisions is equal to 4. 

 Time [ms] 

Number of points Uniform ○ Uniform ���� Halton Gauss Gauss ���� Sphere 

1E+5 36.6 30.7 30.3 15.5 23.9 868.0 

√10E+5 111.9 92.9 89.9 47.9 67.8 2 470.3 

1E+6 339.0 284.2 274.4 149.5 189.2 5 857.8 

√10E+6 1 057.8 875.8 849.2 465.5 554.3 14 426.4 

1E+7 3 357.6 2 710.8 2 619.1 1 471.2 1 609.4 43 515.7 

√10E+7 10 792.3 8 497.7 8 192.9 4 611.7 4 898.7 160 238.9 
 

 

Table 8. The time performance of the convex hull for different numbers of input points and different 
distributions of points. The number of divisions is equal to 8. 

 Time [ms] 

Number of points Uniform ○ Uniform ���� Halton Gauss Gauss ���� Sphere 

1E+5 35.1 31.6 31.2 16.1 24.9 865.6 

√10E+5 104.4 94.1 91.1 48.6 68.8 2 451.1 

1E+6 312.1 285.1 277.5 149.4 189.3 5 760.5 

√10E+6 970.8 879.9 849.7 463.1 554.9 13 989.2 

1E+7 3 054.4 2 716.4 2 633.6 1 456.2 1 612.5 40 942.3 

√10E+7 9 715.4 8 541.4 8 215.8 4 567.2 4 877.4 146 343.2 
 

 

You can see the best average running time for the optimal number of divisions for 

each distributions of points and different numbers of input points in Table 9. 

Table 9. The time performance of the convex hull for different numbers of input points and different 
distributions of points. The results are presented for the optimal number of divisions, see Graph 2. 

 Time [ms] 

Number of points Uniform ○ Uniform ���� Halton Gauss Gauss ���� Sphere 

1E+5 35.1 30.7 30.2 15.5 23.9 865.6 

√10E+5 103.4 92.9 89.9 47.9 67.8 2 436.4 

1E+6 300.5 284.2 274.4 149.4 189.2 5 666.3 

√10E+6 910.8 875.8 849.2 463.1 554.3 13 358.2 

1E+7 2 799.4 2 710.8 2 619.1 1 456.2 1 609.4 36 873.2 

√10E+7 8 718.4 8 497.7 8 192.9 4 564.4 4 877.4 121 323.3 
 

 



 

Graph 4. The time performance of the convex hull for different numbers of input points and different 

distributions of these points. 

Moreover, we were performed the measurements for different real-world examples, 

see Fig. 9. Average running times for S-CH algorithm and QuickHull algorithm are in 

Table 10. We can see that our proposed S-CH algorithm give for dataset of MRI of 

brain better time performance than QuickHull algorithm. Contrary, time performance 

of QuickHull algorithm is better than S-CH algorithm for dataset of laser scanned 

bunny. 

 
a) 

 
b) 

Fig. 9. Input sets for convex hull computation: a) MRI of brain (9 247 234 points), b) laser scanned bunny 

(35 947 points). 
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Table 10. The time performance of the convex hull for different real-world examples. The optimal number 
of divisions is equal to 16. 

 Time [ms] 

Model 
Number of 

points 

S-CH 

algorithm 
QuickHull 

bunny 35 947 62.0 47.0 

brain 9 247 234 2925.0 4 118.5 
 

3.6 Comparison with Other Algorithms 

We compared the proposed S-CH algorithm with the incremental insertion algorithm 

and QuickHull algorithm, whose expected time complexity is �(! log!), and with the 

Chan’s algorithm, which expected time complexity is �(! log ℎ),	where ! is the 

number of input points and ℎ is the number of points on the output convex hull. It 

should be noted that we use the library MIConvexHull, which is implemented in C# 

using .Net Framework 4.5, for measurements of the QuickHull algorithm. The results 

for the incremental insertion algorithm are based on the use of the ratio of the 

Randomized Incremental algorithm to QuickHull. This ratio was obtained from 

measurements for a C implementation of both algorithms. 

Running times were measured for different numbers of input points with uniform 

distribution inside a sphere. The resultant speed-up of the S-CH algorithm with respect 

to the QuickHull algorithm, Chan’s algorithm and Randomized Incremental algorithm 

can be seen in Graph 5.  

 

Graph 5. The speed-up of the S-CH algorithm for points in a sphere with uniform distribution with respect 

to QuickHull, Chan’s algorithm and Randomized Incremental algorithm for the same datasets. 

It can be seen that the proposed S-CH algorithm clearly outperforms “standard” 

convex hull algorithms. The graph shows that speed-up grows slowly from 10| points. 

This is due to swapping. 
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4 Conclusion 

A new fast convex hull algorithm in �� has been presented. The S-CH algorithm uses 

a space division technique. It is robust, as we do not use any angle calculations, and can 

process a large number of points as well as different distributions of points. Advantages 

of the S-CH algorithm are simple implementation, robustness and the use of almost any 

known algorithm for the final calculation of the convex hull as very efficient filtering, 

very small number of points are left for the final processing, i.e. for the final convex 

hull construction. Therefore the final efficiency is not sensitive to the convex hull 

algorithm properties. Thus, any brute force algorithm, which is easy to implement and 

robust, can also be used without significant influence to the algorithm efficiency. We 

do not assume any special order of input points. Otherwise, there is a possibility for a 

modification to increase the effectiveness of the algorithm.   

For future work, the S-CH algorithm can be easily parallelized, as most of the steps 

are independent, and for large datasets influence of caching and data transfer should be 

explored more deeply.  
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